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Parallel Processing

Parallel Computer: Several processors connected together
(hypercube, grid, etc.)

To parallelize a large task it must be split into (at least partly)
independent tasks.

Data-parallelism: Same set of instructions on different
parts of the data.

Control parallelism: Different instruction set on different
Processors.
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Data model

e Data describes a “connected” physical area.

e Data locality - What happens in one place influences only
its close vicinity:.

e Divide data to perform tasks in parallel.

e Want even load balance with as little communication as
possible.

Data dependencies + Partitioning = Parallel Algorithm




Regular Data Partitioning

Full regular systems can easily be divided into equally sized
parts.
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Irregular systems without data locality can be partitioned in
several ways.
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Will be looking at problems with irregular load where data
locality is of importance.
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High Performance Fortran

High Performance Fortran has support both for block and
cyclic partitioning,.

real u(0:n+1,0:n+1)

'HPF$ PROCESSORS pros(4,4)
'HPF$ DISTRIBUTE u(BLOCK,BLOCK) ONTO pros

u(l:n,1:n) = (u(0:n-1,1:n)+u(2:n+1,1:n)+ &
u(1:n,0:n-1)+u(1:n,2:n+1))/4
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Ocean modeling

Miami Isopycnic Coordinate Ocean Model
(MICOM)

e Simulates currents in the sea
e Computations are very parallel
e Divides data into many small rectangles

e Areas with water are spread on the fly among the proces-
SOr's




Sparse Matrix Computations

Wish to solve Ax = b. A is sparse, symmetric, and positive
definite.
Direct method: Parallel Cholesky-factorization
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e Vertices 5 og 6 make up a vertex separator.
e Can solve for 1 and x5 simultaneously

e Recursive partitioning of the graph gives the needed par-
allelism




lterative methods

Domain decomposition

e Divide the system
e Lliminate As; through As 4
e Solve for x5 using iterative (parallel) method

e Perform back substitution and solve for z; through x4 us-
ing direct method
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Graph Partitioning

Both direct and iterative methods requires partitioning of a
graph into smaller parts of equal size.

e Gives a good partitioning of complex systems

e Elven load, good data locality

e Requires separate (complex) graph partitioning software
e The programmer must exploit the parallelism herself

e Must keep track of communication




Structured Data Partitioning
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e Fach data object has a coordinate in a n dimensional space

(n=1,2 or 3)

e The data space is partitioned using vertical and horizontal

lines.

e The goal is to get an even load (largest load as small as

possible).

e Can aggregate data items into a table

e The cutting pattern determines the communication pat-

tern
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1D-Partitioning

Divide a sequence of n positive numbers into p connected com-
ponents such that the most expensive interval is as cheap as

possible.

n = 10
p=3

[1332124232]

9 7 7

e Cost is (usually) measured using summation
e Can include cost of nearest neighbor communication
e Supported in High Performance Fortran 2

e Several exact algorithms
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Optimal 1D-partitioning, History

Time complexity Author

O(n’p) Bokhari

O(p°n) Becker, Perl and Schach

O(n’p) Nicol and Hallaron

O(n?p) Anily and Federgruen

O(n?p) Hansen and Lih

O(np?) Perl and Vishkin

O(np?) Pinar and Aykanat

O(nplogn) Igbal and Bokhari

O(p(n — p)logp) Manne and Sgrevik

O(np) Choi and Narahari

O(p(n — p)) Olstad and Manne

O(n + p*log* n) Nicol

O(n + p? log* n) Charikar, Chekuri, and Motwani
O(n + p'*) Han, Narahari, and Choi
O(nlogn) Khanna, Muthukrishnan, and Skiena
O(n) Frederickson




1D-partitioning, Chronological

Time complexity
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Year
1982
1985
1988
1991
1991
1991
1991
1991
1992
1992
1995
1995
1995
1996
1997
1997
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Shift Algorithms

Place the dividers to the left of their optimal placement.

Repeat until 1. intervall is the most expensive:
Find most expensive interval ¢
Shift s left divider one place to the right

12[1[3]|2 1 2]
12]1]3i2|1 2]
12 1(3|2|1 2]

e Will generate the optimal solution at some stage.

e Time complexity O(p(n — p)logp)
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Dynamic Programing

Solve smal problems in order to build larger solutions.
g(i, k) = Optimal cost when partitioning [aq, as, ..., a;] into k
intervals.

Want to find g(n, p).

Initial values:
g(i, 1) = X5 a,

Recursion:

g(i, k) = ming{max{g(s,k — 1), f(s+ 1,i)}}

g(s, k-1) f(s+1,1)
1 «—S — i

e Time complexity: O((n — p)p)
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Probe Algorithms

P(v,p) = True if [aq, as, ..., a,] can be partitioned into p in-
tervals of cost < .

/N\
<
/N\
<
/N\
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N

Greedy algorithm calculates P(v,p) in O(n) time.

e Observation: In the optimal solution some interval must
the most expensive.

e Search for the most expensive interval such that P(v, p) is
true.

e Time complexity: O(n) (Asymptotically)




Experiments 1D

Can bound the search area for an optimal solution:

W = Total weight of all the elements

L < Opt < 2L
p p
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e (Pinar and Aykanat 97) Shift algorithm with smart initial-

1zation

runs 50 to 100 times faster than O(n + p?log®n) probe

algorithm.

e Shift algorithm is also approximately 2 times faster than

dynamic programming algorithm.

e Still unclear which algorithm to choose
(Have master student working on this...)
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2D: Generalized block partitioning

e Perform 1D partitioning in both dimensions
e Gives variable block size

e Fach processor still has 4 neighbors

P

e More even load balance

e Can give rise to more communication than ordinary block
partitioning

e Supported in High Performance Fortran 2




20

Generalized block partitioning, Theory

e 2D problem is NP-hard (Grigni and Manne 96)

e Heuristic (Nicol 94): Keep the vertical dividers fixed
Find optimal placement of the horizontal dividers using a
1D algorithm. Repeat iteratively with vertical dividers.

max |83

—Is O(p'/*) times optimal after at most three iterations
(Aspvall, Halldorsson, Manne 97).

— Experimental results gives solutions < 2 times optimal
(Manne and Sgrevik 96)

e New heuristic (Khanna et.al): Gives solution which is O(1)
times optimal! But

— The constant has three digits
— The time complexity is O(n?)
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Sparse Matrix-Vector multiplication

(Manne 93) Calculate y = Ax where A is sparse using a grid
connected parallel computer (Maspar MP2).

e Perform a random permutation of A in order to get an
even load.

e ['ind a generalized block partitioning
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Time is given by
« |max column| + f |max block| 4+ v |max row

Gave performance increase of up to 40%.




2D: Semi-Generalized Block Partitioning

e More even load than Generalized block partitioning

e Can have as many as ,/p neighbors north and south

opt a

3,1

Calculates optimal partitioning using 1D algorithm.
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2D: Recursive partitioning

Quad-tree partitioning Binary recursive
partitioning
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Quad-tree partitioning = Recursive Generalized block parti-

tioning
(p=4)

Binary recursive partitioning = Recursive Semi-generalized

block
partitioning (p = 4)

e Difficult to calculate optimal partitioning
e Never backtrack when performing partitioning
e Can stop partitioning when an area is “small” enough

e Fach block can have several neighbors




N-body simulations

Simulate movement of objects that influence each other
e Planets

e Particles

e Fach object influences each other object
e Divide until each block contains exactly one object
e Accumulate force in each vertex

e Regard four vertices as one object
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Video compression

Digital video
e Transmit the change between two consecutive frames.
e Divides a frame into blocks.
e Search in previous frame for similar block.

e Use small blocks for complex movements and large blocks
for unchanged areas.

m= e
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2D Experiments
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(Nicol 94) Graph partitioning using Generalized block parti-
tioning: Better result for more structured graphs.

(Manne and Sgrevik 96) Matrix with two distinct peaks.
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Conclusion

Structured data partitioning
e Relatively simple to compute partitioning
e Can give worse load balance than graph partitioning
e Somewhat more limited applications than graph partition-
ing
e Hasier to handle communication
e Can be handled by compiler

e Hasier to develop code

For the future
e Parallel algorithms for load balancing
e Theoretical results Vs. practical experiences

e Other cost functions and applications




