Structured Data Partitioning

Fredrik Manne

Department of Informatics

University of Bergen




Outline

e Introduction

e Different ways to partition data
e Structured partitioning

e 1D partitioning

e 2D partitioning

e Conclusion




Parallel Processing

Parallel Computer: Several processors connected together
(hypercube, grid, etc.)

To parallelize a large task it must be split into (at least partly)
independent tasks.

Data-parallelism: Same set of instructions on different
parts of the data.

Control parallelism: Different instruction set on different
Processors.

N




Data model

e Data describes a “connected” physical area.

e Data locality - What happens in one place influences only
its close vicinity:.

e Divide data to perform tasks in parallel.

e Want even load balance with as little communication as
possible.

Data dependencies + Partitioning = Parallel Algorithm




Regular Data Partitioning

Full regular systems can easily be divided into equally sized
parts.

p \p

Irregular systems without data locality can be partitioned in
several ways.

x|ty -

W X f(2,1)

Will be looking at problems with irregular load where data
locality is of importance.

-




High Performance Fortran

High Performance Fortran has support both for block and
cyclic partitioning,.

real u(0:n+1,0:n+1)

'HPF$ PROCESSORS pros(4,4)
'HPF$ DISTRIBUTE u(BLOCK,BLOCK) ONTO pros

u(l:n,1:n) = (u(0:n-1,1:n)+u(2:n+1,1:n)+ &
u(1:n,0:n-1)+u(1:n,2:n+1))/4

Uij-1 Uij+1

Ui

SHONOIONONCIONONCIONONS,
> O 0|00 0|00 O|0O0 W
SHONOC)ONONCICNONCIONONS
SHONOIONONCIONONCIONONY,
> 0000 0000|000 W
SHONOIONONCIONONCIONONS,
SHONOIONONCIONONCIONONY,
2> 00|00 0|00 O|0 0w
SHONOIONONCIONONCIONONY,
SHONOIONONCIONONCIONONS,




Ocean modeling

Miami Isopycnic Coordinate Ocean Model
(MICOM)

e Simulates currents in the sea
e Computations are very parallel
e Divides data into many small rectangles

e Areas with water are spread on the fly among the proces-
SOr's




Sparse Matrix Computations

Wish to solve Ax = b. A is sparse, symmetric, and positive
definite.
Direct method: Parallel Cholesky-factorization

X X!
X

XXX

N

_— N
w—> K

X

X
X
X XXX

e Vertices 5 og 6 make up a vertex separator.
e Can solve for 1 and x5 simultaneously

e Recursive partitioning of the graph gives the needed par-
allelism




lterative methods

Domain decomposition

e Divide the system
e Lliminate As; through As 4
e Solve for x5 using iterative (parallel) method

e Perform back substitution and solve for z; through x4 us-
ing direct method




10

Graph Partitioning

Both direct and iterative methods requires partitioning of a
graph into smaller parts of equal size.

e Gives a good partitioning of complex systems

e Elven load, good data locality

e Requires separate (complex) graph partitioning software
e The programmer must exploit the parallelism herself

e Must keep track of communication




Structured Data Partitioning

11

e Fach data object has a coordinate in a n dimensional space

(n=1,2 or 3)

e The data space is partitioned using vertical and horizontal

lines.

e The goal is to get an even load (largest load as small as

possible).

e Can aggregate data items into a table

e The cutting pattern determines the communication pat-

tern




12

1D-Partitioning

Divide a sequence of n positive numbers into p connected com-
ponents such that the most expensive interval is as cheap as

possible.

n = 10
p=3

[1332124232]

9 7 7

e Cost is (usually) measured using summation
e Can include cost of nearest neighbor communication
e Supported in High Performance Fortran 2

e Several exact algorithms




13

Optimal 1D-partitioning, History

Time complexity Author

O(n’p) Bokhari

O(p°n) Becker, Perl and Schach

O(n’p) Nicol and Hallaron

O(n?p) Anily and Federgruen

O(n?p) Hansen and Lih

O(np?) Perl and Vishkin

O(np?) Pinar and Aykanat

O(nplogn) Igbal and Bokhari

O(p(n — p)logp) Manne and Sgrevik

O(np) Choi and Narahari

O(p(n — p)) Olstad and Manne

O(n + p*log* n) Nicol

O(n + p? log* n) Charikar, Chekuri, and Motwani
O(n + p'*) Han, Narahari, and Choi
O(nlogn) Khanna, Muthukrishnan, and Skiena
O(n) Frederickson




1D-partitioning, Chronological

Time complexity

©9090929999999999

Year
1982
1985
1988
1991
1991
1991
1991
1991
1992
1992
1995
1995
1995
1996
1997
1997

14




Shift Algorithms

Place the dividers to the left of their optimal placement.

Repeat until 1. intervall is the most expensive:
Find most expensive interval ¢
Shift s left divider one place to the right

12[1[3]|2 1 2]
12]1]3i2|1 2]
12 1(3|2|1 2]

e Will generate the optimal solution at some stage.

e Time complexity O(p(n — p)logp)

15




16

Dynamic Programing

Solve smal problems in order to build larger solutions.
g(i, k) = Optimal cost when partitioning [aq, as, ..., a;] into k
intervals.

Want to find g(n, p).

Initial values:
g(i, 1) = X5 a,

Recursion:

g(i, k) = ming{max{g(s,k — 1), f(s+ 1,i)}}

g(s, k-1) f(s+1,1)
1 «—S — i

e Time complexity: O((n — p)p)




17

Probe Algorithms

P(v,p) = True if [aq, as, ..., a,] can be partitioned into p in-
tervals of cost < .

/N\
<
/N\
<
/N\
<<
N

Greedy algorithm calculates P(v,p) in O(n) time.

e Observation: In the optimal solution some interval must
the most expensive.

e Search for the most expensive interval such that P(v, p) is
true.

e Time complexity: O(n) (Asymptotically)




Experiments 1D

Can bound the search area for an optimal solution:

W = Total weight of all the elements

L < Opt < 2L
p p

18

e (Pinar and Aykanat 97) Shift algorithm with smart initial-

1zation

runs 50 to 100 times faster than O(n + p?log®n) probe

algorithm.

e Shift algorithm is also approximately 2 times faster than

dynamic programming algorithm.

e Still unclear which algorithm to choose
(Have master student working on this...)




19

2D: Generalized block partitioning

e Perform 1D partitioning in both dimensions
e Gives variable block size

e Fach processor still has 4 neighbors

P

e More even load balance

e Can give rise to more communication than ordinary block
partitioning

e Supported in High Performance Fortran 2




20

Generalized block partitioning, Theory

e 2D problem is NP-hard (Grigni and Manne 96)

e Heuristic (Nicol 94): Keep the vertical dividers fixed
Find optimal placement of the horizontal dividers using a
1D algorithm. Repeat iteratively with vertical dividers.

max |83

—Is O(p'/*) times optimal after at most three iterations
(Aspvall, Halldorsson, Manne 97).

— Experimental results gives solutions < 2 times optimal
(Manne and Sgrevik 96)

e New heuristic (Khanna et.al): Gives solution which is O(1)
times optimal! But

— The constant has three digits
— The time complexity is O(n?)



21

Sparse Matrix-Vector multiplication

(Manne 93) Calculate y = Ax where A is sparse using a grid
connected parallel computer (Maspar MP2).

e Perform a random permutation of A in order to get an
even load.

e ['ind a generalized block partitioning

X

Poa—
|

X XX X X X X X X X
x X X X X X X X
X X X X X X X ||
X P4 X
X X X
X X X X X X X
X X X X X X
P4 X X P4 X |
X X X X 5 x| x
X
X X X X x X X X X
X X X X 1
X X X X X X X 5
x X X
X X XX x X X
X X X X ||
X X X X X X XX X
X X X
X X X X
X X X X X
X X X X ||
X X X X X X X P4 X X
x X X
X X X X X X X X X
| % ol | |
6 y

Time is given by
« |max column| + f |max block| 4+ v |max row

Gave performance increase of up to 40%.




2D: Semi-Generalized Block Partitioning

e More even load than Generalized block partitioning

e Can have as many as ,/p neighbors north and south

opt a

3,1

Calculates optimal partitioning using 1D algorithm.

22




2D: Recursive partitioning

Quad-tree partitioning Binary recursive
partitioning

23

Quad-tree partitioning = Recursive Generalized block parti-

tioning
(p=4)

Binary recursive partitioning = Recursive Semi-generalized

block
partitioning (p = 4)

e Difficult to calculate optimal partitioning
e Never backtrack when performing partitioning
e Can stop partitioning when an area is “small” enough

e Fach block can have several neighbors




N-body simulations

Simulate movement of objects that influence each other
e Planets

e Particles

e Fach object influences each other object
e Divide until each block contains exactly one object
e Accumulate force in each vertex

e Regard four vertices as one object

24




25

Video compression

Digital video
e Transmit the change between two consecutive frames.
e Divides a frame into blocks.
e Search in previous frame for similar block.

e Use small blocks for complex movements and large blocks
for unchanged areas.

m= e
== 1Ale:

i L
l: BEE




2D Experiments

26

(Nicol 94) Graph partitioning using Generalized block parti-
tioning: Better result for more structured graphs.

(Manne and Sgrevik 96) Matrix with two distinct peaks.

~n o

X O

©

X000 —0T

A

1.0

o
O
O
[
X
O - X
X X

5 10 15 20 25 30 35

Number of dividers

@® Binary recursive partitioning
B Generalized block partitioning
X Semi-generalized block partitioning




27

Conclusion

Structured data partitioning
e Relatively simple to compute partitioning
e Can give worse load balance than graph partitioning
e Somewhat more limited applications than graph partition-
ing
e Hasier to handle communication
e Can be handled by compiler

e Hasier to develop code

For the future
e Parallel algorithms for load balancing
e Theoretical results Vs. practical experiences

e Other cost functions and applications




