
'

&

$

%

1Structured Data Partitioning
Fredrik ManneDepartment of InformaticsUniversity of Bergen

'

&

$

%

2Outline
� Introduction� Di�erent ways to partition data� Structured partitioning� 1D partitioning� 2D partitioning� Conclusion

'

&

$

%

3Parallel Processing
Parallel Computer: Several processors connected together(hypercube, grid, etc.)

To parallelize a large task it must be split into (at least partly)independent tasks.Data-parallelism: Same set of instructions on di�erentparts of the data.Control parallelism: Di�erent instruction set on di�erentprocessors.

'

&

$

%

4Data model
� Data describes a \connected" physical area.� Data locality - What happens in one place in
uences onlyits close vicinity.

� Divide data to perform tasks in parallel.� Want even load balance with as little communication aspossible.Data dependencies + Partitioning = Parallel Algorithm

'

&

$

%

5Regular Data Partitioning
Full regular systems can easily be divided into equally sizedparts.

p p

p

Irregular systems without data locality can be partitioned inseveral ways.
p

p

f(1,1)

f(2,1)

f(1,2)

Will be looking at problems with irregular load where datalocality is of importance.

'

&

$

%

6High Performance Fortran
High Performance Fortran has support both for block andcyclic partitioning.real u(0:n+1,0:n+1)!HPF$ PROCESSORS pros(4,4)!HPF$ DISTRIBUTE u(BLOCK,BLOCK) ONTO prosu(1:n,1:n) = (u(0:n-1,1:n)+u(2:n+1,1:n)+ &u(1:n,0:n-1)+u(1:n,2:n+1))/4

u i,j-1

u i+1.j

u i,j+1

u i-1,j

'

&

$

%

7Ocean modeling
Miami Isopycnic Coordinate Ocean Model(MICOM)� Simulates currents in the sea� Computations are very parallel� Divides data into many small rectangles� Areas with water are spread on the
y among the proces-sors

'

&

$

%

8Sparse Matrix Computations
Wish to solve Ax = b. A is sparse, symmetric, and positivede�nite.Direct method: Parallel Cholesky-factorization
1 5 3

2 6 4

6

5

2

1 3

4

� Vertices 5 og 6 make up a vertex separator.� Can solve for x1 and x3 simultaneously� Recursive partitioning of the graph gives the needed par-allelism

'

&

$

%

9Iterative methods
Domain decomposition
A11 A22

A33 A44

A55

A11

0 A22

A33

A44

A55A54A53A52A51

0

0

0

0 0 A54

A53

A52

A51
T

T

T

T

� Divide the system� Eliminate A5;1 through A5;4� Solve for x5 using iterative (parallel) method� Perform back substitution and solve for x1 through x4 us-ing direct method

'

&

$

%

10Graph Partitioning
Both direct and iterative methods requires partitioning of agraph into smaller parts of equal size.� Gives a good partitioning of complex systems� Even load, good data locality

� Requires separate (complex) graph partitioning software� The programmer must exploit the parallelism herself� Must keep track of communication

'

&

$

%

11Structured Data Partitioning
6

� Each data object has a coordinate in a n dimensional space(n=1,2 or 3)� The data space is partitioned using vertical and horizontallines.� The goal is to get an even load (largest load as small aspossible).� Can aggregate data items into a table� The cutting pattern determines the communication pat-tern

'

&

$

%

121D-Partitioning
Divide a sequence of n positive numbers into p connected com-ponents such that the most expensive interval is as cheap aspossible.n = 10p = 3

1 3 3 2 1 2 4 2 3 2

9 7 7

� Cost is (usually) measured using summation� Can include cost of nearest neighbor communication� Supported in High Performance Fortran 2� Several exact algorithms

'

&

$

%

13Optimal 1D-partitioning, History
Time complexity AuthorO(n3p) BokhariO(p3n) Becker, Perl and SchachO(n2p) Nicol and HallaronO(n2p) Anily and FedergruenO(n2p) Hansen and LihO(np2) Perl and VishkinO(np2) Pinar and AykanatO(np logn) Iqbal and BokhariO(p(n� p) log p) Manne and S�revikO(np) Choi and NarahariO(p(n� p)) Olstad and ManneO(n + p2 log2 n) NicolO(n + p2 log2 n) Charikar, Chekuri, and MotwaniO(n + p1+�) Han, Narahari, and ChoiO(n log n) Khanna, Muthukrishnan, and SkienaO(n) Frederickson

'

&

$

%

141D-partitioning, Chronological
Time complexity YearO(p3n) 1982O(np2) 1985O(n3p) 1988O(n2p) 1991O(n2p) 1991O(np) 1991O(n + p2 log2 n) 1991O(n) 1991O(n2p) 1992O(n + p1+�) 1992O(np logn) 1995O(p(n� p) log p) 1995O(p(n� p)) 1995O(n + p2 log2 n) 1996O(np2) 1997O(n log n) 1997

'

&

$

%

15Shift Algorithms
Place the dividers to the left of their optimal placement.Repeat until 1. intervall is the most expensive:Find most expensive interval iShift i0s left divider one place to the right

2 1 3 2 1 2

2 1 3 2 1 2

2 1 3 2 1 2

� Will generate the optimal solution at some stage.� Time complexity O(p(n� p) log p)

'

&

$

%

16Dynamic Programing
Solve smal problems in order to build larger solutions.g(i; k) = Optimal cost when partitioning [a1; a2; :::; ai] into kintervals.Want to �nd g(n; p).Initial values:g(i; 1) = �ij=1ajRecursion:g(i; k) = minsfmaxfg(s; k � 1); f(s + 1; i)gg

g(s,k-1) f(s+1,i)

s i1

� Time complexity: O((n� p)p)

'

&

$

%

17Probe Algorithms
P (
; p) = True if [a1; a2; :::; an] can be partitioned into p in-tervals of cost �
.

n1

< γ < γ < γ ?

Greedy algorithm calculates P (
; p) in O(n) time.
� Observation: In the optimal solution some interval mustthe most expensive.� Search for the most expensive interval such that P (
; p) istrue.� Time complexity: O(n) (Asymptotically)

'

&

$

%

18Experiments 1D
Can bound the search area for an optimal solution:W = Total weight of all the elementsWp � Opt � 2Wp� (Pinar and Aykanat 97) Shift algorithm with smart initial-izationruns 50 to 100 times faster than O(n + p2 log2 n) probealgorithm.� Shift algorithm is also approximately 2 times faster thandynamic programming algorithm.� Still unclear which algorithm to choose(Have master student working on this...)

'

&

$

%

192D: Generalized block partitioning
� Perform 1D partitioning in both dimensions� Gives variable block size� Each processor still has 4 neighbors

p

p

� More even load balance� Can give rise to more communication than ordinary blockpartitioning� Supported in High Performance Fortran 2

20Generalized block partitioning, Theory
� 2D problem is NP-hard (Grigni and Manne 96)� Heuristic (Nicol 94): Keep the vertical dividers �xedFind optimal placement of the horizontal dividers using a1D algorithm. Repeat iteratively with vertical dividers.

a3,2 a3,3 a3,4a3,1 a3,2max

{ Is O(p1=4) times optimal after at most three iterations(Aspvall, Halldorsson, Manne 97).{ Experimental results gives solutions < 2 times optimal(Manne and S�revik 96)� New heuristic (Khanna et.al): Gives solution which isO(1)times optimal! But{ The constant has three digits{ The time complexity is O(n4)

'

&

$

%

21Sparse Matrix-Vector multiplication
(Manne 93) Calculate y = Ax where A is sparse using a gridconnected parallel computer (Maspar MP2).� Perform a random permutation of A in order to get aneven load.� Find a generalized block partitioning

x

5

6

5

yTime is given by� jmax columnj + � jmax blockj +
 jmax rowjGave performance increase of up to 40%.

'

&

$

%

222D: Semi-Generalized Block Partitioning

� More even load than Generalized block partitioning� Can have as many as pp neighbors north and south
opta3,1

a3,1

Calculates optimal partitioning using 1D algorithm.

'

&

$

%

232D: Recursive partitioning

 Quad-tree partitioning Binary recursive
 partitioningQuad-tree partitioning = Recursive Generalized block parti-tioning(p = 4)Binary recursive partitioning = Recursive Semi-generalizedblockpartitioning (p = 4)� Di�cult to calculate optimal partitioning� Never backtrack when performing partitioning� Can stop partitioning when an area is \small" enough� Each block can have several neighbors

'

&

$

%

24N-body simulations
Simulate movement of objects that in
uence each other� Planets� Particles

� Each object in
uences each other object� Divide until each block contains exactly one object� Accumulate force in each vertex� Regard four vertices as one object

'

&

$

%

25Video compression
Digital video� Transmit the change between two consecutive frames.� Divides a frame into blocks.� Search in previous frame for similar block.� Use small blocks for complex movements and large blocksfor unchanged areas.

Transmit movement vector and change for each block.

'

&

$

%

262D Experiments
(Nicol 94) Graph partitioning using Generalized block parti-tioning: Better result for more structured graphs.
(Manne and S�revik 96) Matrix with two distinct peaks.

5 10 15 20 25 30 35

2.0

1.0

Number of dividers

M
o
s
t

e
x

 p.

b
l
o
c
k

Binary recursive partitioning
Generalized block partitioning
Semi-generalized block partitioning

'

&

$

%

27ConclusionStructured data partitioning� Relatively simple to compute partitioning� Can give worse load balance than graph partitioning� Somewhat more limited applications than graph partition-ing� Easier to handle communication� Can be handled by compiler� Easier to develop code
For the future� Parallel algorithms for load balancing� Theoretical results Vs. practical experiences� Other cost functions and applications

