
Efficient Multi-Stage Self-Stabilizing Algorithms

for Tree Networks

Jean R. S. Blair∗ Fredrik Manne†

Abstract

In [1] a new efficient self-stabilizing algorithm for leader election in trees was pro-
posed and shown to have a moves complexity of O(n2). In the current work we combine
two such algorithms where the variables of one of the algorithms drives the predicates
of the other. In this way we obtain a general framework for developing self-stabilizing
algorithms on trees where some kind of feedback mechanism is needed. Contrary to
what one might expect we show that the moves complexity of this new algorithm is
not the multiplicative moves complexity of the two algorithms, but in fact O(n3).

A number of previously published self-stabilizing algorithms are shown to fit into
our framework and therefore obtain the improved bound not only in terms of reducing
the number of moves but also in that the required model is less restrictive than the
earlier published algorithms.

We further show that our approach can be generalized to design k-stage self-
stabilization algorithms on trees giving a combined moves complexity of O(nk+1).

1 Introduction

Two self-stabilizing algorithms A and B can be combined so that local stabilized values
resulting from the execution of algorithm A drive the predicates of algorithm B. In this way
one can build up more complex algorithms. One example of such a 2-stage self-stabilizing
algorithm could be to combine a self-stabilizing algorithm for finding a spanning tree in a
general network with a self-stabilizing algorithms that operates on the resulting spanning
tree.

In the current paper we investigate the possibility of converting sequential tree algo-
rithms that require more than a single bottom-up pass to solve a problem into multi-stage
self-stabilizing algorithms. In particular, we focus on algorithms that first require that a
node (or pair of nodes) with a certain property be designated as the leader in a tree net-
work and then pass information about that leader back into the network before subsequent
stages in which the particular problem is solved.

Several such self-stabilizing algorithms have been proposed previously in the literature.
Examples include finding a 2-coloring of a tree network [10], solving various problems that
are applicable to dynamic programming such as maximum weighted independent set [3],
and finding a 2-center in a tree [8].

∗Department of Electrical Engineering and Computer Science, United States Military Academy, West

Point, New York 10996, USA, Jean-Blair@usma.edu
†Department of Informatics, University of Bergen, N-5020 Bergen, Norway, Fredrik.Manne@ii.uib.no

1

Although none of these algorithms contain a detailed analysis of their moves complexity
we note that it is fairly straight forward to show that they could use Ω(n5) moves. This
is partly because they rely on an O(n3) algorithm for rooting the tree. In addition some
of these algorithms demand the existence of a fair daemon where no eligible rule will wait
indefinitely long before it is applied.

In the current paper we combine two instances of the leader election algorithm from
[1] to develop a general framework that can be shown to solve all of the above mentioned
problems. Since the moves complexity of the leader election algorithm is O(n2) one might
expect that the moves complexity of this combined algorithm will be their multiplicative
complexity of O(n4). However, we show that it is in fact O(n3).

Although it might seem intuitive for general algorithms A and B with moves complexity
m(A) and m(B) respectively, that their combined moves complexity (where A drives B)
should be O(m(A)m(B)) (i.e. B must stabilize after each A move) we argue that it is in
fact O(m(A)m(B)∆) where ∆ is the maximum number of neighbors of any node in the
underlaying graph. This should again be contrasted to the presented moves complexity of
O(n3) moves which is an order of magnitude less than the multiplicative moves complexity.

We further show that our approach can be generalized to design k-stage self-stabilization
algorithms on trees giving a combined moves complexity of O(nk+1).

For the rest of this paper we assume that G is a tree with n nodes. If H is a subgraph
of G then we let G−H denote the induced subgraph found by removing H and all edges
incident to H from G. The only exception to this is if (v, w) is an edge of G, then we write
G − (v, w) for the (disconnected) graph obtained by removing only the edge (v, w) (and
not v and w) from G. When G is a tree and (i, j) ∈ E we write Gi(j) for the component
of G− {i} containing node j.

If i is a node, then N(i) denotes the set of nodes to which i is adjacent. We assume
that each node has a unique identifier.

We assume read-write atomicity, but make no assumptions about a central demon.
Thus, two or more nodes can make simultaneous moves, as long as no node is accessing a
value that is being written by another node.

In the next section we review the self-stabilizing algorithm that will be the building
block of our multi-stage algorithm. In Section 3 we present and analyze our generic 2-stage
algorithm. Various applications of this algorithm is presented in Section 4. In Section 5,
we develop a generic k-stage algorithm before concluding in Section 6.

2 A 1-stage tree algorithm

In this section we look at a generic algorithm for tree-networks that will be our building
block when we later design multistage algorithms. The algorithm was first presented in [1]
where it was used to perform leader election in a tree network and also to implement various
bottom-up type algorithms on trees to solve problems such as maximum independent set
and maximum matching. All of these algorithms were shown to have a moves complexity
of θ(n2).

In the algorithm each node i has a separate value fi(j) for each neighbor j. Let further
g() be a function defined on values of f . The main rule is then as follows:

G1: if (∃j ∈ N(i) such that fi(j) 6= g(∪k∈N(i)−{j}fk(i))

2

then (fi(j)← g(∪k∈N(i)−{j}fk(i)))

Rule G1 specifies that in order to set fi(j) the only input that will be used are values
fk(i), k ∈ N(i)−{j} while fi(j) again will only be used as input to compute values fj(r),
r 6= i. This is as illustrated in Figure 1.

f(i)

k

i r

k

G1
G1

k’ G1

j

f(j)i

f (i)k’

f(r)j

Figure 1: The input to G1 moves

In the following we will give an alternative proof of the moves complexity of G1 than
the one given in [1]. The reason for this is that we will need some of the intermediate
results when we analyze what happens when we combine several such algorithms. Also,
this gives a good review of how the algorithm works.

In [1] the moves complexity was derived by showing that the values of a particular pair
fi(j) and fj(i) can change at most n times during the execution of G1. The result then
follows since there are n− 1 such pairs. The proof we present here will instead show how
many subsequent moves an initial value of fi(j) can lead to on other nodes. To do this we
first need a formal definition of what is meant by “a value leads to a move”. We introduce
the notation GT

i (j) to denote the application of G1 on the variable fi(j) at time T . We
also denote the value of the variable fi(j) at time T by fT

i (j). Note that T = 0 indicates
the starting time of the algorithm. The g() function on a leaf does not depend on any
other f -value. To make the analysis simpler we assign a dummy value fi(i) to each leaf i.
This value will be used as input to g() on i but will neither alter its value nor will it be
updated by G1. Our definition then becomes:

Definition 2.1 Let GT1

i1
(i2), G

T2

i2
(i3), . . . , G

Tr

ir
(ir+1) be a sequence of moves such that for

each pair of adjacent moves G
Tk

ik
(ik+1), G

Tk+1

ik+1
(ik+2) the following holds:

1. Tk < Tk+1

2. ik 6= ik+2

3. There is no move GT ′

ik+1
(ik+2) such that Tk < T ′ < Tk+1

Then if fT1

i0
(i1) is a variable that is used as input to GT1

i1
(i2) we write fT1

i0
(i1) ; GTr

ir
(jj).

What Definition 2.1 says is that there exists a chain of moves starting with the variable
fT1

i0
(i1) as input and (possibly) ending with the move GTr

ir
(ir+1), where each move uses the

outcome of the previous move as input. Note that it is not necessarily the value fik(ik+1)

set in move G
Tk

ik
(ik+1) that triggers the next move G

Tk+1

ik+1
(ik+2). It is only required that

G
Tk+1

ik+1
(ik+2) is the first subsequent move that makes use of this value as input when altering

the value of fik+1
(ik+2).

3

We now proceed to bound the number of moves that a particular value f T
i (j) can lead

to.

Lemma 2.2 Let i and j be neighboring nodes in G and let sizei(j) be the number of nodes

in Gi(j). Then for a particular value T there can at most be sizei(j) − 1 moves GTr

ir
(jr)

such that fT
i (j) ; GTr

ir
(jr) is true.

Proof. Note first that from Definition 2.1 a sequence of moves that causes f T
i (j) ;

GTr

ir
(jr) to be true is unique and cannot contain moves performed on the same node more

than once. Thus it is sufficient to show that the number of values in Gi(j) that could be
changed due to fT

i (j) is bounded by sizei(j)− 1.
The rest of the proof is by induction on sizei(j). If sizei(j) = 1 then j is a leaf and

will not use fT
i (j) to update any values. Assume therefore that the result is true for all

neighboring nodes k and l where sizek(l) < p and that sizei(j) = p > 1. Then the node j

will have N(j) > 1 neighbors. For each k ∈ N(j)−{i} there can at most be one application
of G1 to update fj(k) at some time Tk > T . Since sizej(k) < p it follows that each such

updated value f
Tk

j (k) will again cause at most sizej(k) subsequent moves. Thus the total

number of moves caused by fT
i (j) is bounded by |N(j)| − 1+

∑
k∈N(j)−{i}(sizej(k)− 1) =∑

k∈N(j)−{i} sizej(k) = sizei(j) − 1 and the result follows.

What Lemma 2.2 says is that each value f T
i (j) can at most cause a “ripple” effect that

will reach each non-leaf node in Gi(j) at most once. This gives us the following corollary.

Corollary 2.3 Let i be a node at a given time T . Then the total number of moves such

that fT
i (j) ; GT ′

k (l) summed over all j ∈ N(i) is at most n− |N(i)| − 1.

Proof. From Lemma 2.2 we know that for a particular value of j there can at most be
sizei(j) − 1 moves such that fT

i (j) ; GT ′

k (l). Thus summing over all values of j ∈ N(i)
we get the desired result

∑
j∈N(i)(sizei(j)− 1) = n− |N(i)| − 1.

To be able to bound the total number of moves we now show that every move originates
from some initial f -value.

Lemma 2.4 For any move GT
i (j) there exists some value f 0

k (l) such that f 0
k (l) ; GT

i (j)
is true.

Proof. Let fT
q (i) be a value that is used as input to GT

i (j). If fT
q (i) = f0

q (i) then we are

done. If not, starting with fT
q (i), repeatedly select a new f -value that was used as input

to the move that set the current f -value. Since the fact that the underlying graph is a
tree this process will never enter the same node twice and must therefore terminate with
some value fT ′

k (l) (possibly with k = l) which has not been set by any G1 move. Thus
we must have T ′ = 0 and the result follows.

Theorem 2.5 The moves complexity of the G1 algorithm is O(n2).

Proof. By Lemma 2.4 it is sufficient to sum the number of moves such that f 0
i (l) ; Gi(j)

over all values of i and l. From Corollary 2.3 it follows that if i 6= l then for any specific

4

node this sum is at most n− 1. Since there are n nodes this gives at most n(n− 1) moves.
On a leaf node fi(i) might contribute another n moves. But since there are at most n

leafs in G the upper bound still remains at O(n2).

It is shown in [1] that the bound from Theorem 2.5 is also a lower bound thus the
moves complexity of algorithm G1 is Θ(n2).

In the next section we will use these results to look at what happens when the g()
function not only depends on f -values, but also on input from another self-stabilizing
algorithm.

3 Combining two algorithms

We will in this section describe and analyze what happens when we combine two rules
as described in Section 2 such that one of the rules uses values from the other rule as
part of its input. In particular we will show that our proposed combined algorithm has a
moves complexity of O(n3). The purpose of this new rule is to be able to perform some
calculation on the graph G that depends on the stabilized values of G1. We will show
several such examples in Section 4.

We consider a rule H1 similar to G1 that sets a local value qi(j) in the same way as
G1 sets fi(j). The only major change from G1 is that we have replaced the g() function
with an h() function that in addition to the appropriate q-values also takes fi(j) and fj(i)
as input for all j ∈ N(i).

H1: if (∃j ∈ N(i) such that qi(j) 6= h(∪k∈N(i)−{j}qk(i),∪k∈N(i)(fk(i), fi(k)))
then (qi(j)← h(∪k∈N(i)−{j}qk(i),∪k∈N(i)(fk(i), fi(k)))

Figure 2 shows the values that are used as input to H1 when altering the value of
qi(j). Note in particular that the structure of which q-values are used is the same as for
the f -values that are used by G1. Moreover, the f -values are only used as input and are
never altered by H1.

k

i

k’

j

q (j)i
f (j)if (k’)i

f (k)i

q (i)k
f (i)k

q (i)k’
f (i)k’

f (i)j

Figure 2: The input to H1 moves

The formulation of H1 is as general as possible and we will see more specific examples
of how it can be instantiated in the following sections. We now proceed to analyze the
combined moves complexity of G1 and H1. First we show that Lemma 2.2 also applies
to rule H1.

5

Lemma 3.1 Let i and j be neighboring nodes in G and let sizei(j) be the number of nodes

in Gi(j). Then for a particular value T there can at most be sizei(j) − 1 moves HTr

ir
(jr)

such that qT
i (j) ; HTr

ir
(jr) is true.

Proof. The key observation to realizing that this is true is that f -values that are altered
do not influence the ; relation for H1 moves.

In particular if qT
i (j) ; HT

j (k) and subsequently some f -value changes such that qj(k)

must be recomputed with a move HT ′

j (k), T < T ′, then qT
i (j) ; HT ′

j (k) is not true since

qT
i (j) has already been used to set the value of qj(k). Once this is clear the proof is

identical to the proof of Lemma 2.2.

Lemma 3.1 states that independent of where a value qT
i (j) originates from it can at

most cause sizei(j) subsequent moves. We cannot prove a similar result as Lemma 2.4
for H1 stating that every H1 move must originate from some initial q-value since an H1
move can be triggered both by a changing q-value and also by a changing f -value. Thus
for each move HTr

i (j) either there exists some q such that qT
i (j) ; HTr

i (j) is true or it is
a direct consequence of some fi(j) or fj(i) value. We can now give the desired bound for
the number of moves caused by the combined G1−H1 algorithm.

Lemma 3.2 The algorithm G1−H1 can at most make O(n3) moves.

Proof. We first note that by Theorem 2.5 there can at most be O(n2) G1 moves. Thus
it remains to count the number of H1 moves.

Initially we consider all H1 moves HTr

k (l) such that q0
i (j) ; HTr

k (l) is true for some
i and j. That is, the moves that can be traced back to some initial q value. Since H1
follows the same structure as G1 there can at most be O(n2) such moves.

Finally, we are left with the H1 moves that can only be traced back to q-values that
were altered due to changing f -values. To bound these we consider a particular node i. If
some fi(j) changes then this might lead to |N(i)| H1 moves on node i and also to |N(j)|
H1 moves on node j. The q-values that are changed on node i can from Lemma 3.1 again
at most cause at most n− 1 new H1 moves throughout the graph. The same is true for
the q-values on node j that were changed due to fi(j). Thus it follows that any change of
an fi(j) value will at most lead to 2n new H1 moves. From Theorem 2.5 we know that
the total number of times any f -value changes is O(n2). This gives the desired bound of
O(n3) H1 moves.

4 Applications

We will in this section give three examples of algorithms or types of algorithms that fit
the framework we developed in Sections 2 and 3 and which therefore achieve a moves
complexity of O(n3). All of these algorithms are based on using algorithm G1 to root
the tree while algorithm H1 computes some value based on knowledge of in which direction
the root is.

For ease of notation and to make the presentation clearer we will subdivide the compu-
tation of h() using separate functions that compute various properties based on the input
parameters to h(). Most important among these functions is the computation of a leader.
Since this is a common task for all of the resented algorithms we present this first.

6

4.1 Leader election

As discussed in [1] the leader election algorithm can be implemented with several different
criteria for determining the leader. In the version presented here a 1-center node is elected
as the leader. This is a node such that the maximum distance to a leaf is as small as
possible. As shown in [6] a tree has either one unique 1-center node or two adjacent ones.

We set g(∪k∈N(i)−{j}fk(i)) = 1 + maxk∈N(i)−{j} fk(i). Then when algorithm G1 sta-
bilizes fi(j) will contain the maximum distance from node i to a leaf in Gj(i). The node
can now determine its maximum distance to a leaf as max{fi(j), fj(i) + 1}. By testing if
fi(j) > fj(i) for all j ∈ N(i) a node can easily determine if it is a unique one center. If
it is not a 1-center, then there will be exactly one neighbor j such that fi(j) < fj(i) and
the 1-center(s) must lie in Gi(j) If there are two 1-centers then there will be exactly one
neighbor j such that fi(j) = fj(i) and i and j are the two 1-centers. In case we only need
one root we can break a tie between two 1-centers by using the nodes unique id’s (IDi).
For more details about the leader election algorithm we refer to [1].

In order to determine that the algorithm is stable from its local perspective node i

uses a predicate sizeCorrecti defined as follows:
sizeCorrecti = (∀j ∈ N(i), fi(j) = 1 + maxk∈N(i)−{j} fk(i))

The predicate sizeCorrecti simply states that G1 cannot be executed on node i. The
following function pi can now be used to return a pointer to the neighbor of i that is
closest to the root of G. If the algorithm is not locally stable it returns null.

Integer Function pi()
if (¬sizeCorrecti)

return null;
if (∀j ∈ N(i) fi(j) > fj(i))

return i;
if (∃j ∈ N(i) such that fi(j) < fj(i))

return j;
Let j ∈ N(i) be such that fi(j) = fj(i))
if (IDi > IDj)

return i;
else return j;

Note that the function maxk∈N(i)−{j} is defined to have a value of 0 when i is a leaf,
i.e., when N(i) = {j}.

If we do not need to break a tie between two 1-centers we can change the test for
determining if a node is a 1-center to fi(j) ≥ fj(i)). That is, as long as a node is one of
the 1-centers in a tree, it will return a pointer to itself. Then when a node is not a 1-center
there will always exist a neighbor j such that fi(j) < fj(i)) and we can omit the last if
test.

The input values used by the function pi are all contained among the values used by
h(). Thus we can make use of pi when defining new h() functions.

7

4.2 Distance from the root and 2-coloring of trees

As a first simple example of how Algorithm H1 can be instantiated to compute properties
that rely on knowledge about the leader node, we show how to compute, at each node in
the network, the distance from any node to the root node. This algorithm can also easily
be modified to compute a 2-coloring on G.

The algorithm assumes that qi is an integer value and uses the following h function:

Integer Function h()
if (pi = i)

return 0;
else

return qpi
+ 1;

On the root node h() will always return the value 0 and on all other nodes it will return
one more than the q-value of its parent node.

Given that Algorithm G1 is correct and has stabilized it is straight forward to show
that with this h() function Algorithm H1 will stabilize with each qi containing the distance
from node i to the leader node. The moves complexity of O(n3) follows directly from
Lemma 3.2.

If we wish to compute an optimal 2-coloring of a tree we can modify h() by setting qi

to be a boolean variable and replace the return value 0 with true and qpi
+ 1 with ¬qpi

.
For this algorithm it would have been sufficient to only use one qi value for each node.
But as this does not influence the asymptotic moves complexity and in order to maintain
consistency we choose to maintain one qi(j) value for each j ∈ N(i).

We note that the information that is being sent back from the root to the rest of the
graph could also be a fixed value giving for example the (unique) identity of the root or
its spatial coordinates.

4.3 Dynamic Programming

Several graph-theoretic optimization problems have linear time dynamic programming so-
lutions when restricted to trees. These include among others, maximum weighted match-
ing, maximum weighted independent set, minimum weighted edge covering, and minimum
weighted dominating set. All of these algorithms are based on performing a postorder
traversal of the rooted tree and for each node computing a fixed number of values based
on the values of its children. When the algorithm terminates, the size of the global solution
will be known at the root node and a second phase starting from the root and moving
down to the leaves can be used to find the actual solution.

Self-stabilizing algorithms for these types of problems were first presented in [3] where
an algorithm was presented that computes a solution using r + 1 “rounds” where r is the
radius of the graph and a round consists of a minimal sequence of moves such that every
node that could possibly become eligible makes a move. This was later improved on in
[1] where algorithms similar to G1 where presented with a moves complexity of O(n2).
It should be noted that these complexity results do not include the computation of the
actual solution which, as described in [3], requires a second stage.

8

It is fairly straight forward to show that algorithm H1 can be used to compute the
actual solution thus resulting in a moves complexity of O(n3). As an example of this we
show how the solution to the maximum weighted independent set problem on a tree can
be obtained using H1. This algorithm is adapted from [3].

For ease of presentation we make the initial asumption that the graph is rooted. Let
w(i) be the integer weight of node i. Let further f +(i) be the weight of a maximum
weight independent set that includes i of the subtree rooted at i, f−(i) be the weight of
a maximum weight independent set that does not include i, and f(i) be the maximum
weight of an independent set of the subtree rooted at i regardless of weather i is in it
or not. Then f(i) = max{f+(i), f−(i)} and f+(i) and f−(i) can be computed using the
following formulas:

f+(i) =
∑

j∈N(i)−{pi}

f−(j) + w(i)

f−(i) =
∑

j∈N(i)−{pi}

f(i)

If we let f be an array containing two values we can convert the computation of f +(i)
and f−(i) into a g() function for G1 as follows:

Integer [2] Function g()
f+

i (j) =
∑

k∈N(i)−{j} f−
k (i) + w(i);

f−
i (j) =

∑
k∈N(i)−{j} max{f−

k (i), f+
k (i)};

return (f+
i (j), f−

i (j));

This function will compute f+
i (j) and f−

i (j) for every node i for every possible root
except the case where node i itself is the root. To determine the root of the tree one can
as described in [1] run two separate copies of G1, one containing the above g() function
to evaluate weights of different solutions depending on the placement of the root and one
copy of G1 with a g() function to root the tree. These algorithms will not interact and
will stabilize in O(n2) moves.

We now use the output of both of these algorithms as input to H1 to determine which
nodes should be in an optimal solution. Let qi to be a boolean value which indicates if
node i is in the maximum weight independent set, let pi be based on the G1 algorithm
that roots the tree, and let the f -values be based on the above g() function. Then we get
the following h() function.

Boolean Function h()
if (pi = i)

t+i =
∑

k∈N(i) f−
k (i) + w(i);

t−i =
∑

k∈N(i) max{f−
k (i), f+

k (i)};

return t+i > t−i ;
return (¬qpi

(i) ∧ f+
i (pi) > f−(pi));

9

The first if statement makes the root calculate f -values that includes every neighbor.
If this results in that the solution with the root included is the heaviest then the root is
in the solution otherwise not. Any other node can only be in the solution if its parent
node is not in and its solution with itself included is larger than the one without itself.
When the algorithms stabilizes the value of qi(pi) will be true if and only if node i is in
the maximum weight independent set. Using two separate G1 rules will only change the
proof of Lemma 3.2 so that the number of H1 moves that can be traced back to changing
values in the two G1 will at most double. Thus the moves complexity of this algorithm is
also O(n3).

4.4 2-centers in trees

A k-center of a graph G is a k-tuple of nodes x1, x2, . . . , xk ∈ V such that the maximum
minimum distance from any node in G to a node in the k-tuple is as small as possible.
Thus a k-center minimizes the distance between any node in G and a node in the k-center.
As a particular case note that a 1-center is a node where the maximum distance to a leaf is
as small as possible. In [6] it is shown that a tree has either one 1-center or two 1-centers
which are neighbors.

In [8] a self-stabilizing algorithm for computing a 2-center of a tree G was presented
and proved correct. The algorithm relies on the following scheme to find a 2-center of G:

Algorithm 2C

1. Find the 1-center(s) of G

2. (a) If G has two 1-centers r1 and r2 then split G into two connected components
G1 and G2 by removing the edge (r1, r2).

(b) If G has exactly one 1-center r then there are at least two nodes a and b at
maximum distance from r such that a and b are in different connected compo-
nents Ca and Cb of G − {r}. Let u be the node in Ca such that (r, u) ∈ E.
Create connected components G1 = Ca ∪ (r′, u) where r′ is a clone of r and
G2 = G− Ca.

3. Find one 1-center in G1 and one in G2 and return these as a 2-center of G.

Figure 3 illustrates the two cases in Step 2 of the algorithm.

r1 r2 r1 r2

r u r u

Step 2a

Step 2b

b

a

b

a

ŕ

Figure 3: The two cases in Step 2 of Algorithm 2C

Our algorithm progresses in the same interleaved three stages as Algorithm 2C. In the
following we present each stage separately.

10

As described in [1] algorithm G1 can be used to find the 1-center(s) of G. We then
sett the value of fi(j) to be the maximum distance from node i to a leaf in Gi(j). This is
achieved with the following g function:

Integer Function g()
return 1 + maxk∈N(i)−{j} fk(i);

Note that when i is a leaf we define g() to return 0, i.e. when N(i) = {j}. When the
algorithm stabilizes the 1-center node(s) can be identified by the fact that they will have
fi(j) ≥ fj(i) for all j ∈ N(i) and if there exists a j ∈ N(i) such that fi(j) < fj(i) then
the 1-center(s) must lie in Gi(j).

The sizeCorrect predicate and the p() function must also be updated appropriately
to reflect that the g() function now calculates the maximum distance to a leaf.

Integer Function pi()
if (!sizeCorrecti)

return null;
if (∀j ∈ N(i) fi(j) < fj(i))

return i;
if (∃j ∈ N(i) such that fi(j) < fj(i))

return j;

The second stage of the algorithm should cut the graph into two components as spec-
ified in Step 2 of Algorithm 2C and then proceed to run a 1-center algorithm on each
component returning one 1-center for each component. In order to point to where the
graph should be cut we define a function cuti to be used on the 1-center node(s).

Integer Function cuti()
if (pi = i)

return maxk∈N(i) fk(i);
else

return null

With this definition it is clear that for a stabilized system cuti() will on the 1-center
node(s) point to a neighbor j such that Gi(j) contains a leaf at a maximum distance from
i. If there are two 1-centers this implies that they will both set their cut values to point
to the other 1-center.

Before we proceed we consider how the value of cuti should be used on the 1-center(s)
to achieve the effect of Step 2 and 3 of algorithm 2C.

In Step 2a it is clear that G will be cut appropriately if each component of G−{r1, r2}
disregards the values of qr1

(cutr2
) and qr2

(cutr1
) and runs the 1-center algorithm again.

In Step 2b this will also work for the component Gu(r). To get the desired result on the
component Gr(u) node r must set qr(u) = 0. This will give node u the impression that r

is a leaf. Note that this will not effect the case when there are two 1-centers.

11

The following h function for calculating the values to determine the new 2-centers
reflects these values of cuti on the 1-center node(s).

Integer Function h()
if (j = cuti)

return 0;
return 1 + maxk∈N(i)−{j,cuti} qk(i);

We can define a parent pointer on each node to indicate the closest 2-center in a similar
fashion to pi the only difference is that on the 1-center node(s) we ignore the node pointed
to by cuti. The function that calculates this pointer must also break ties in the case that
any component contains two 1-centers.

5 Multi-stage algorithms

In this section we consider how algorithm G1-H1 presented in Sections 2 and 3 can be
further extended into a general k-level algorithm where the input to the rule on level l,
l > 1 can make use of the variables of level l − 1.

Such an algorithm could for instance be used to extend the 2-center algorithm of
Section 4.4 into a “2k−1-center” algorithm. If one instead had used an n

2 -separator as the
center node this algorithm could have been modified to compute the nodes on the first k

levels of an elimination tree of height log n [9].
Before we consider how the rules should be designed in detail we look at the moves

complexity of a general multi-stage self-stabilizing algorithm. Assume that we have algo-
rithms A and B with moves complexity M(A) and M(B) respectively and that certain
variables set in A are used as input to the rules of B. Then a variable ai set by A on
node i can at most be used as input to rules of B on node i and the neighbors of i. It
is reasonable to assume that B will only use each ai once on each node i and set all its
dependent variables in one move. However, we have no knowledge of in which order the
nodes will make use of ai. Thus it could be that after a B move that uses ai there could
be as many as M(B) moves before the next B move that reads ai is made. Thus in the
worst case B could make (deg(i)+1)M(B) moves before the next A move, where deg(i) is
the number of neighbors of i in G. This shows that in general the best moves complexity
we can give for the combined algorithm A−B is ∆M(A)M(B) where ∆ = maxi∈V deg(i).

In spite of this rather pessimistic observation we note that we were able to show that
the combined moves complexity of algorithm G1-H1 was O(n3) even though a particular
fi(j) or fj(i) value can be used up to 2deg(i) times in an application of H1. But looking
more closely at the proof of Lemma 3.2 reveals that each f -value could again cause a total
of 2(n− 1) H1 moves. Including the moves complexity of G1 and of the H1 moves that
can be accounted to initial q-values a more precise bound on the moves complexity would
then be 2n(n− 1)2 + 2n(n− 1). If we were to recursively combine k such algorithms this
would result in a moves complexity of O(2k−1nk+1). In the following we show how to
develop an algorithm with a moves complexity of O(nk+1).

From the above discussion it follows that in order to achieve this bound on the moves
complexity each value of level l, l < k, should at most cause n moves on level l + 1. To be

12

more concrete we study the relationship between the f -values of G1 (which will be our
Level 1) and the number of (i.e. Level 2) H1 moves they can cause. In the current H1
algorithm a node j can read a value fi(j) directly from node i and then perform sizei(j)
H1 moves to propagate the effect of this value throughout Gi(j). At a later stage node
i can make use of fi(j) to alter the value of qi(j) which could again cause sizei(j) new
moves in Gi(j). The same is true for Gj(i) where there could be sizej(i) moves initiated
by node i reading fi(j). Then in a second sweep node j could alter qj(i) and again cause
sizej(i) moves before H1 stabilizes.

This effect can be accredited to the fact that there are two different paths between
fi(j) and each qs(t), except qi(j) and qj(i), along which moves can propagate. See Figures
4a and 4b for an illustration of how fi(j) can influence the values of H1.

q (i)

f (j)i

jq (j)

f (j)i

q (j)i
f (j)i,i

f (j)i f (j)iG1

H1

G1

H1

G1

H1

G1

H1

c d

a b

i

q (i)j
f (j)i,j

Figure 4: The influence of fi(j) on H1 moves.

To avoid the possibility of two H1 sweeps throughout G due to one fi(j) value we must
ensure that qj(i) is updated using fi(j) before a sweep throughout Gj(i) is performed and
similarly that qi(j) is updated with fi(j) before a sweep of Gi(j). This can be achieved if
we create two new variables fi,i(j) and fi,j(j) which the value of fi(j) is to be copied into.
The variable fi,i(j) resides on node i together with qi(j) and fi,j(j) on node j with qj(i).
When node i updates the value of qi(j) using fi(j) it simultaneously makes sure that the
value of fi,i(j) is set equal to fi(j) and similarly when node j updates qj(i) it makes sure
that fi,j(j) is set equal to fi(j). Then when node i updates a value qi(r), r 6= j it makes
use of fi,j(j) (instead of fi(j)) and similarly when node j updates qj(t), t 6= i the value
of fi,i(j) is used. This is as shown in Figures 4c and 4d. In this way the value of qi(j)
will be updated with fi(j) before a propagation of moves through Gi(j) and similarly will
qj(i) be updated with fi(j) before a propagation of moves through Gj(i). The resulting
effect is that there will only be one path along which moves can be propagated from fi(j)
to any q-value and thus there will at most be n H1 moves initiated by fi(j). Note that

13

with this setting there will be two extra values associated with each qi(j) namely fi,i(j)
and fj,i(i). Both of these must be updated accordingly whenever qi(j) is updated.

For the k-level algorithm let ql
i(j), j ∈ N(i), be a value on node i that is used on level

l of the algorithm and let hl() be the function that is used for updating the value of q l
i(j).

Then for l > 1 the following parameters can be used as input to hl():

• ∪k∈N(i)−{j}q
l
k(i)

• ql−1
i (j), ql−1

j (i)

• ∪k∈N(i)−{j}(q
l−1
i,k (k), ql−1

k,k (i))

For l = 1 only the values ∪k∈N(i)−{j}q
l
k(i) are used as input. In addition to updating

ql
i(j) we must also at the same time for l > 1 make sure that the values of q l−1

i,i (j) and

ql−1
j,i (i) are updated. This can be achieved as follows. (The input parameters to hl() has

been omitted for brevity.)

H l: if (∃j ∈ N(i) such that ql
i(j) 6= hl()) or (ql−1

i,i (j) 6= ql−1
i (j)) or (ql−1

j,i (i) 6= ql−1
j (i))

then
if (∃j ∈ N(i) such that ql

i(j) 6= hl())
qi(j)← hl()

if (ql−1
i,i (j) 6= ql−1

i (j))

ql−1
i,i (j) 6= ql−1

i (j)

if (ql−1
j,i (i) 6= ql−1

j (i))

ql−1
j,i (i) 6= ql−1

j (i)

For l = 1 one would only test if q1
i (j) 6= h1() and then set it appropriately. It follows

from the above discussion that the total moves complexity of this algorithm is O(nk+1).

6 Concluding remarks

We have described a generic 2-stage self-stabilizing algorithm to solve problems on a tree
network where some kind of feedback mechanism is needed. Although each stage of the
algorithm has a moves complexity of O(n2) we show that their combined moves complexity
is O(n3). The generic algorithm is then instantiated to solve a number of problems on
tree networks including 2-coloring, dynamic programming on trees, and finding a 2-center.
Although self-stabilizing algorithms for each of theses problems have been presented before
in the literature our algorithms reduce the moves complexity by at least a factor of O(n2)
and also requires a less restrictive model.

We also generalize our algorithm into a k-level self-stabilizing algorithm with moves
complexity O(n2k).

One interesting research direction from this work would be to investigate if there
are other multistage algorithms on more general topologies that also leads to a moves
complexity less than the product of the individual algorithms.

14

References

[1] J. R. Blair and F. Manne, Efficient self-stabilizing algorithms for tree networks.
To be presented at ICDCS’03, The 23rd International Conference on Distributed
Computing Systems, 2003.

[2] S. C. Bruell, S. Ghosh, M. H. Karaata, and S. V. Pemmaraju, Self-stabilizing

algorithms for finding centers and medians of trees, SIAM J. Comput., 29 (1999),
pp. 600–614.

[3] S. Ghosh, A. Gupta, M. H. Karaata, and S. V. Permmaraju, Self-stabilizing

dynamic programming algorithms on trees, in Proceedings of the Second Workshop
on Self-Stabilizing Systems, 1995, pp. 11.1–11.15.

[4] S. Ghosh and M. H. Karaata, A self-stabilizing algorithm for coloring planar

graphs, Distributed Computing, 7 (1993), pp. 55–59.

[5] M. Gradinariu and S. Tixeuil, Self-stabilizing vertex coloring of arbitrary graphs,
in Proc. OPODIS’2000, 4th international conference on principles of distributed sys-
tems, 2000, pp. 55–70.

[6] F. Harary, Graph Theory, Addison-Wesley, 1972.

[7] S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani, Self-stabilizing maximal

independent set and grundy coloring in linear time. Submitted.

[8] T. C. Huang, J.-C. Lin, and H.-J. Chen, A self-stabilizing algorithm which finds a

2-center of a tree, Computers and Mathematics with Applications, 40 (2000), pp. 607–
624.

[9] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix
Anal. Appl., 11 (1990), pp. 134–172.

[10] S. K. Shukla, D. Rosenkrantz, and S. S. Ravi, Observations on self-stabilizing

graph algorithms for anonymous networks, in Proceedings of the Second Workshop
on Self-stabilizing Systems, 1995, pp. 7.1–7.15.

[11] S. Sur and P. K. Srimani, A self-stabilizing algorithm for coloring bipartite graphs,
Information Sciences, 69 (1992), pp. 219–227.

15

