An algorithm for computing an elimination tree of

minimum height for a tree

Fredrik Manne

Abstract

The elimination tree is a rooted tree that is computed from the adjacency
graph of a symmetric matrix A. The height of the elimination tree is one re-
stricting factor when solving a sparse linear system Ax = b on a parallel computer
using Cholesky factorization. An efficient algorithm is presented for the problem
of ordering the nodes in a tree G so that its elimination tree is of minimum height.
Its running time is O(nlogn logd) where n is the number of nodes in G and d
the maximum degree of any node in G. The number of fill edges caused by this
algorithm is less than n.

We also show that there exists a minimal separator ordering on any matrix
such that the resulting elimination tree is of minimum height. Implications of
these results are given for the computation of elimination trees of minimum height
for more general classes of graphs.

1 Introduction and motivation

Consider using Cholesky factorization to solve the linear system Ax = b, where A is
an n X n sparse symmetric positive definite matrix. On a sequential computer this is

usually done in four separate stages:

1. Ordering. Determine a permutation matrix P so that the Cholesky factor L of
PAPT will suffer little fill.

2. Symbolic factorization. Determine the structure of the nonzeros of L and set up

a data structure in which to store A and compute the nonzero entries of L.

3. Numeric factorization. Insert the nonzeros of A into the data structure and

compute the numeric values of L.

4. Triangular solution. Solve Ly = Pb and LTz = y, and then set z = P72,

Both the ordering of A and the symbolic factorization are independent of the nu-
merical entries of A and can be performed completely on the adjacency graph G of
A [20, 22]. Determining a permutation matrix is equivalent to finding an ordering on
the nodes of (G, while the symbolic factorization uses a graph elimination process to
compute the zero-nonzero structure of L. The reason for finding a permutation matrix
for A in the first stage so that L suffers little fill is that the amount of work and storage
needed in the subsequent stages depends on the number of nonzeros in L.

Most parallel algorithms for performing sparse Cholesky factorization operate in the
same four stages. In the first stage, the only difference when ordering A, is that not
only must we keep the fill low, but we must also consider whether PAPT is suitable
for parallel methods. For a more detailed overview of the different aspects of parallel
sparse Cholesky factorization see [8].

What is unique to sparse Cholesky factorization compared to dense Cholesky fac-
torization, is that each column does not generally depend on all the previous columuns.
The elimination tree (etree) [17, 24| is a data structure that describes the dependencies
among the columns of A when factoring A into LLT. This is true both for the symbolic
factorization and for the numeric factorization. For a dense matrix the etree would be
a single path indicating that each column is dependent on all the previous columns.
For a sparse matrix one can expect the etree to contain branching and therefore to be
lower.

The fact that disjoint parts of the etree can be factored independently of each other

gives a potential for a high-level parallelism for sparse matrices that does not exist for

dense matrices. This is also referred to as large grained parallelism [15]. Exploitation
of this fact is essential in producing good parallel algorithms. The lower the etree and
the more branching it contains, the more parallelism there is to exploit. Therefore
it would be desirable to find a P that both lowers the etree of PAPT and keeps the
Cholesky factor L of PAPT sparse. It is however not difficult to show that these two
requirements might be in conflict with each other. To make matters worse, both the
problem of minimizing fill and the problem of finding the lowest possible etree are
known to be NP-hard [21, 26].

There are methods for finding orderings that give low etrees and few fill edges.
Nested dissection is a method for ordering G that was developed to reduce fill [5, 6]
and has also been shown to produce low etrees [13]. Another approach is first to
compute a fill-reducing ordering P and then to find an equivalent ordering (giving the
same fill edges) of the adjacency graph G* of L + LT that produces a low etree. The
main motivation behind this approach is that one knows how to efficiently compute an
ordering for G* such that its etree is of minimum height under the restriction that no
new fill edges are introduced [10, 16, 14].

Little is known about how to compute etrees of minimum height for classes of graphs
when additional fill is allowed, and how much fill this might cause. We show that for
any graph, the class of minimal separator orderings contains an ordering giving an etree
of minimum height.

However, the main result presented in this paper is an efficient algorithm that solves
the minimum height problem when the original graph is itself a tree. The algorithm will
be shown to have time complexity O(nlognlogd), where d is the maximum degree of
any node in GG. This is the first efficient algorithm for computing an etree of minimum
height for a nontrivial class of graphs. We will also show that when solving this problem
we introduce at most n — 1 fill edges.

A subexponential algorithm for solving the minimum height etree problem for trees
was first presented in [18]. It was based on the following idea: Let x be the root of
an etree where each subtree of the etree hanging from z is of minimum height. It was
then shown that at most logn etrees with this property have to be created before an
etree of minimum height is found. However, the time complexity of this algorithm
was O(n'°81°6™). In this paper we will demand not only that each subtree of the etree
hanging from the root is of minimum height, but also that each subtree is tilted. As
shown in subsequent sections, such an etree can be reordered into an etree of minimum
height in time proportional to the height of the etree. The idea of tiltedness is similar
to the use of leftist heaps [3, 12] to facilitate efficient merging of heaps.

3

It is true that few matrices of practical importance have adjacency graphs that are
trees. Still, as we shall discuss, being able to compute etrees of minimum height for
trees points to the possibility of solving this problem for more general classes of graphs
such as chordal graphs. We will also show how the algorithm developed in this paper
can be generalized to a heuristic for reducing the height of an etree for a general graph.

The outline of this paper is as follows. In Section 2 we show how the etree of A
is constructed. We also present the notation that will be used in this paper. Nested
dissection is presented in Section 3 along with a discussion of how it works on trees.
The main algorithm is presented in Section 4 along with a short motivation. Some
preliminary results on the height of an etree of minimum height are given in Section
5. In Sections 6 and 7 we prove that the algorithm presented in Section 4 produces an
etree of minimum height for a tree. Some of the details of the implementations of the
algorithm in Section 4, which depend on the fact that the algorithm produces an etree
of minimum height, are given in Section 8. The time complexity of the algorithm is
discussed in Section 9 and the amount of fill edges it causes is discussed in Section 10.
In Section 11 we consider the problem of computing low etrees for more general graphs

than trees. Finally, in Section 12 we summarize.

2 Etrees and notation

We now explain how the elimination tree of A is constructed, and also present some
graph notation that might be unfamiliar to the reader. The reader is assumed to be
familiar with standard graph notation. For a more thorough introduction to elimination
trees see [17].

The adjacency graph G = (V, E) of A is formed by taking n nodes and adding an
edge (i,7) for each a;; # 0, i < j. The set of nodes of G is denoted by V(G) and the
set of edges by E(G). The adjacency graph of L + L is called the filled graph and is
denoted by G*. It can be computed from G by the following algorithm:

Filled_Graph(G)
Set all nodes unmarked.
Iterate the following step n times:
Select an unmarked node v and add edges to G such that all v’s unmarked neigh-

bors are adjacent (i.e. the unmarked neighbors form a clique), and then mark v.
End Filled_Graph

The order in which the nodes are selected when forming G* is called an elimination
ordering, and the edges added to G to form G* are called fill edges. If a node v
is selected before a node w in an elimination ordering we write v < w. A perfect
elimination ordering is an ordering such that G = G*. The class of chordal graphs
is exactly the class of graphs for which perfect elimination orderings exist [22]. If G
is a tree then a perfect elimination ordering can be found by selecting a leaf in the
unmarked graph in each iteration of the above algorithm.

The elimination tree 7" of G is a directed graph such that V(7T') = V(G) with the
directed edge (i,5) € E(T) if and only if j = min{k | (i,k) € E(G*),k > i}. If
(i,7) € E(T) then j is the parent of i and is denoted by p(i).

If A is irreducible then G is connected and 7' is a rooted tree. Throughout this
paper we will assume that A is irreducible.

The root of T is the node with only incoming edges and is denoted by root(T'). By
T'[x] we mean the subtree of T induced by z and all its descendants in T'; z is the root,
of this subtree.

The height of a leaf in T is 0. The height of a node v in T is denoted by h(v) (or
h(T'[v])) and is defined as max {h(w)+ 1| p(w) = v}. The height of T" is the height of
the root and is denoted by h(7T). The depth of a node = € V(T) is the length of the
path from z to root(T).

If T is an etree for G such that for any other etree 7" for G we have h(T) < h(T"),
we then say that 7" is an etree of minimum height. If 7" is an etree of minimum height
we denote its height by mh(G).

We do not distinguish between the nodes in 7" and G. This means that if B is
a connected component of G such that V(T[z]) = V(B) we write both mh(B) and
mh(T[z]) for the height of an etree of minimum height for B. If h(T[z]) = mh(B) we
say that T'[z| is of minimum height.

A topological ordering of 1" is an ordering where each descendant of node x is ordered
before . If 7" is found by a topological ordering of 7' we do not distinguish between
T and T". This is because T" and T" have the same structure, and the filled graphs of
T" and T have the same structure.

Let K = {w;, ws,...,w;} be a set of nodes in T such that p(w;) = w;;1 and w; is
the only child of w; 1, 1 <4 < k. Then the nodes in K induce a chain in T'.

A monotone path in G is a path wy, ws...,w; such that w; < w;yq for 1 <j <. If
S is a set of nodes, G — S is the induced subgraph of G containing all nodes not in S.
We write G — v if S = {v}. If G — S contains more than one component then S is a

separator.

The neighbors of a node v are denoted by adj(v). The degree of v is |adj(v)|. If S
is a set of nodes we write adj(S) = {z | (z,v) € E(G) for some z ¢ S and v € S}.

If G is a tree we write bw(z,v) to denote the component B of G — {z, v} such that
z,v € adj(B). Thus bw(z,v) is the unique component of G “between” z and v. If
(z,v) € E(G) then bw(z,v) = 0. If G is a tree and z,v € V(G) we denote the length
of the unique path from z to v by dist(z,v).

3 Some aspects of computing an etree

In this section, we study a top-down approach for computing an etree as opposed to
the one given in Section 2. This leads us to characterize elimination orderings in terms
of separators in G. This is of importance not only as a tool, but as we show, the class
of minimal separator orderings always contain an ordering giving an etree of minimum

height. We first present the following lemma [19]:

Lemma 3.1 Let u be the lowest common ancestor in T of two given nodes x and y.
Let S be the set of nodes on the path u,wy, ws, ...,w; = root(T) in T. Then T|x] and
Ty] are disjoint if and only if x and y are in different connected components of G — S.
l

Let T be an etree for a graph G and let S be the set of nodes on the chain
Wy, Wa, ..., w; = root(T) in T'. From Lemma 3.1 it follows that if B is a nonempty compo-
nent of G — S then there exists a subtree 7[z] such that p(z) = wy and V(T'[z]) = V(B).
Furthermore, from the same lemma it also follows that the nodes in V' (7'[z]) induce a
connected component of G for any node z € V(G).

Using these observations we now give a top-down approach to computing 7" directly
from G. We let ¢ be a dummy node such that p(root(T")) = t. If G has already been
ordered, then the call Order(G, t), will compute the etree of G.

Order(B,v)
u := The highest numbered node in B;
p(u) = v;
For each connected component C' of B — u
Order(C, u);
End Order

Note that the order in which the components of B — u are processed by Order()
has no effect on the structure of the resulting etree. If the ordering of G is not given
in advance, Order() can be used to compute an ordering on G' by choosing any node
u € V(B) to be the highest numbered node in V(B).

If the removal of the node u in Order() does not disconnect B then there is at most
one component of B — u. Thus one can alter the algorithm to keep on choosing nodes
K = {uy,us, ...,u;} until either B — K contains at least two connected components or
until K = B. Then we will have p(u;) = u;_1, 2 < j <, and the recursive call would
be for each component of B — K, with the node u; passed along to the next level.
We call the resulting ordering a separator ordering. If K has been chosen so that the
remaining components of B — K are balanced, meaning that no component of B — K
contains more than ¢|V(B)| nodes for some constant ¢ < 1, we get a nested dissection
ordering.

For any tree G of n nodes there is a node v such that no component of G—v contains
more than |n/2]| nodes [2, 11]. Thus for a tree, nested dissection can be used to find
an etree of height at most [logn|. But this might still be far from an optimal solution.
It has been shown [9] that there for £ > 0 exists a tree G with n = 92" nodes such that
mh(G) = k where nested dissection would give an etree of height 2.

We now look at another class of orderings for general graphs that can be obtained
by modifying Order(). This will be used in the proof of Lemma 9.1. If instead of
imposing constraints on the size of each component of B — K, we require that each
chosen K is a minimal separator in G, we get a minimal separator ordering. As the
following lemma and theorem show there exists a minimal separator ordering on any

graph giving an etree of minimum height.

Lemma 3.2 Let G be a graph with etree T. Then there exists a minimal separator
ordering on G with resulting etree T" such that h(T") < h(T).

Proof: The proof is by induction on the number of nodes in G. The result is trivially
true if |V(G)| = 1. Assume that the result is true for graphs with fewer than n nodes
and that |V (G)| =n > 1. There are two cases to consider, depending on the structure
of T'.

The first case is when 7" is a chain. If G is a clique any etree for G must be a chain
and the result follows. If GG is not a clique then there exists some minimal separator C
in G. Order C' last and the nodes in G — C' in any order. This will not increase the
height of the etree and the result follows by applying the induction hypothesis on each

component of G — C.

The second case is when 1" is not a chain. Let K be the uppermost maximal chain
in T'. Note first that reordering the nodes in K will not increase the height of the elimi-
nation tree. Since G — K is disconnected, K is a separator in G and must contain a set
of nodes C' such that G — C' is disconnected and no subset of nodes in C' disconnects
G. Then C is a minimal separator. Reorder K such that the nodes in C' are ordered
last and the nodes in K — C second to last leaving the rest of the etree unchanged.
The height of the elimination tree has not increased and a minimal separator is now

eliminated last. The result now follows from the induction hypothesis. O

Since Lemma 3.2 is true for any etree for a graph we have the following result:

Theorem 3.3 Let G be a graph. Then there exists a minimal separator ordering on G
with resulting etree T such that h(T) = mh(G). O

Although Theorem 3.3 is unconstructive, it still points to how etrees of minimum
height can be constructed for restricted classes of graphs. This will be discussed further
in Section 11.

We now present another observation that can be made from Order(). This result
will be used in the proof of Lemma 9.1. Let T" be the etree of a general graph G. Let
z € V(T) and let B be the component of G induced by the nodes in T'[x]. Then z will
have as many children in 7" as there are connected components of B — z. Since B — x
cannot contain more connected components than the number of neighbors of z in G we

have the following result:

Lemma 3.4 Let G be a graph and v € V(G) a node of degree d. Then v can have no

more than d children in any etree for G. O

4 A reordering algorithm

In this section, we describe an algorithm for computing a low etree for a tree G. As
will be shown in the subsequent sections, this algorithm in fact computes an ordering
on G that results in an etree of minimum height.

The first step of the algorithm is to order G' by any perfect elimination ordering
and to compute the etree 17" for G. The algorithm then tries to reduce the height of 7'
through a series of local reordering steps called rotations. These rotations are analogous
to the rotations used to maintain balanced binary trees as described in [25]. For the

rest of this section we will assume that G is a tree with |V(G)| > 1.

8

We start by defining a rotation. Let 7" be an etree for G such that v = root(7") and
let « be a child of v in T'. Let B = bw(xz,v). If (z,v) ¢ E(G) then B is nonempty. In
this case let z be the root of the subtree in T' consisting of the nodes in V(B). Then
p(z) = x in T. The etree T is as shown in Figure la. Without loss of generality we
assume that x and v are consecutively ordered. Then a rotation with respect to =z,
consists of letting x and v switch places in the elimination ordering. From the nested
dissection view, this is equivalent to choosing = as the first separator instead of v. The
node v is then chosen first among the nodes in the component of G — x that contains
v. This means that p(v) = z after the rotation. Since B and v are now in the same
component of G — x we have p(z) = v after the rotation. All other parts of T remain

unchanged in the new etree. The new etree is as shown in Figure 1b.

\'% X

Figure 1:

We now present the code to perform a rotation. For the time being we assume that
if (v,) ¢ E(G) then the function s(z) returns a pointer to the node z. If (v, z) € E(G)
then T'[z] is empty. In that case we assume that s(z) = z. In Section 8 we will show

how to initialize and maintain s(z) when the etree is reordered.

Rotate(x)
v:=p(x);
p(x) := p(v);
p(v) = ;
If s(x) #
p(s(x)) = v;
End Rotate
It is possible to perform Rotate(z) also when v is not the root of 7. Thus we can

perform a rotation with respect to any node in 7" other than root(7"). Also note that

9

the effect of performing Rotate(x) can be reversed by performing Rotate(v). Thus
Rotate(z) followed by Rotate(v) leaves the etree unchanged.

We now study how rotations can be used to reduce the height of an etree. Let T
be as in Figure la and let 7" be the etree after Rotate(z). Then 7" is as in Figure
1b. The rotation is called successful if h(1T") < h(T") and unsuccessful if h(T") > h(T).
Let h(T) = k and assume that x is the only child of v in T of height k¥ — 1. Then
h(T'[v]) < k — 1 and each child y # v of x in T" satisfies h(T'[y]) < k — 2. Thus
h(T") < h(T). Since v is the only child of z in 7" that can be of height k — 1 it follows
that the rotation is successful if and only if h(T"[v]) < k — 2.

Even if h(7"[v]) = k — 1 we can still hope to find an etree for G of lower height than
k. This can be accomplished if we can reorder T'[v] into an etree of height < k — 2.
Based on this idea we now present the outline of a simple algorithm for reducing the

height of an etree. It takes an etree T'[v] as input.

The algorithm operates by performing a sequence of rotations ry, 7, ..., r; with respect
to the current highest child of v. The rotations are performed until either v is a leaf in
the etree or until v has at least two children of maximum height. Finally the algorithm
reverses a maximal sequence of rotations 7, 7;_1, ..., 7, such that each r;, k <1 <[was

unsuccessful.

Note that reversing the rotations r; through rj can be done by performing Rotate(v)
k —1+1 times.

Let T; be the etree after rotation r;, 0 < i < [, (T = Tp). Then the height of
T;_1[v] will be reduced if and only if T;[v] is ordered into an etree of height less than
h(T;—1[v]) — 1. Thus by a simple inductive argument we have that if r; is the first
successful rotation then h(7;) < h(Ty), k < j < i. Since the algorithm returns Tj_4
where either £k = 1 or r,_; is the last successful rotation, it follows that if at least one
rotation is successful then the algorithm will be able to reduce the height of Tv].

Before performing each rotation in the algorithm we store the current height of v
in a stack S. This way we can test if the rotation was successful by comparing the
topmost element of S with h(v). We use the operation push to place a new element on
top of the stack and the operation pop to remove the topmost element and return its
value. We assume that each node has at least two children in 7". This is accomplished
by adding dummy nodes of height —1 as children to each node with fewer than two
children. To avoid having to treat root(T) separately we assume that there exists a
special node t € V(G) such that p(root(T")) = t. In the algorithm we assume that 7" is

10

the data structure containing the etree.

Tilt(v)
x := A highest child of v in T7;
y := A second highest child of v in T

S={}

While (h(v) > 0) and (h(z) > h(y))
push(S, h(v));
Rotate(z);
x := A highest child of v in T
y := A second highest child of v in T
End While

While (|S| > 0) and (h(v) = pop(S) - 1)
Rotate(v);
End Tilt

We now give an example showing how Tilt can be used to reduce the height of an etree.

Example 4.1 Consider the tree G in Figure 2a. Figure 2b shows a possible etree
T for G. Note that the only tree edge which is not in G is (f,b). Figure 2c¢ through
2e show the effect of performing Tilt(b) on 7. As can be seen, three rotations are
performed with respect to the current highest child of . Only the first rotation is

successful. Thus the algorithm backtracks and returns the etree in Figure 2c.

o ™ o T

T Qa o o 9

Figure 2:

Note that Tilt can also be implemented as a recursive procedure. If h(v) > 0 and
h(z) > h(y) then Tilt would perform Rotate(z) thereby reordering 7T[v] into T"[z|. Tilt
then calls itself recursively with 7"[v] as argument. Let 7" be the resulting etree from
this call and let r be the child of z in 7" such that V(7"[r]) = V(I"[v]). Then if

11

h(T"[r]) = h(T[v]) — 1 no successful rotation has been performed and each but the first
rotation has been reversed. Thus » = v and the first rotation is reversed by performing
Rotate(r). If h(T"[r]) < h(T[v]) — 1 then at least one rotation has been successful and
T" is left unchanged. In Section 7 we will use this recursive formulation of Tilt to prove
that Tilt reorders a special kind of etree into an etree of minimum height.

We now state our main algorithm for computing a low etree for the tree G. It is

basically a driver routine for Tilt.

Min_Height
Order G by any perfect elimination ordering;
Construct 17

Perform a postorder traversal of T" and for each visited node v # t do:
Tilt(v);
End Min_Height

The discussion on the time complexity of the Min_Height algorithm is postponed until
Section 9. This is because the time complexity is strongly dependent on the height
of v when performing Tilt(v). Note however that the initial ordering of G and the
construction of 7" can be done in O(n) time. Sections 5 through 10 will concentrate on
showing that Min_Height produces an etree for G of minimum height and in doing so

it does not result in more than n — 1 fill edges.

5 Minimum height etrees

In this section we present a lemma on mh(G) and mh(B) where B is a subgraph of a
general graph G, along with two corollaries. These results will be used when proving

that Min_Height finds an etree of minimum height for a tree.

Lemma 5.1 Let G be a connected graph and B a connected subgraph of G. Then
mh(B) < mh(G).

Proof: Let o be an ordering on G that gives an etree of minimum height. Order the
nodes in B in the same relative order as in «. Let (z,y) € E(B*) be a fill edge in B*.
By the path lemma [23] we know that there exists a path from z to y in B through
nodes numbered lower than both z and y. Since the nodes in B are ordered in the same

relative order as in G we see that this path must also exist in G and that (z,y) € E(G").

12

Thus it follows that E(B*) C E(G*). It is known [16] that the height of the etree is
the length of the longest monotone path in the filled graph. Since E(B*) C E(G*), we
see that any monotone path in B* must also exist in G*. Thus it follows that B has an
etree that is no higher than mh(G). O

The first corollary shows how close the height of an etree is to the minimum height

when each subtree hanging from the root of the etree is of minimum height.

Corollary 5.2 Let G be a graph with etree T" where each component of G — root(T) is
a subtree of T of minimum height. Then h(T) = mh(G) or h(T) = mh(G) + 1.

Proof: By Lemma 5.1 each component B of G — root(T') has mh(B) < mh(G). Thus
h(T) < mh(G) + 1. The result follows since mh(G) < h(T'). O

The next corollary shows that a certain type of etree is of minimum height.

Corollary 5.3 Let G be a graph with etree T where each component of G — root(T')
15 a subtree of T of minimum height. If the two highest children of v in T are of equal
height then T s of minimum height.

Proof: Since v has at least two children of minimum height k£, G — v must contain
two connected components B and C such that mh(B) = k and mh(C) = k. Thus
any etree with v as root will be of height > k + 1. Let 7" be an etree for G where
z = root(T") and x # v. The component D of G — x that contains v also contain either
B or C as a subgraph. By Lemma 5.1 mh(D) > k giving h(7") > k+ 1. O

6 Tilted etrees

In this section, we will define a special kind of etree for a tree, called a tilted etree. We
will show that a tilted etree is well defined and that it is always of minimum height.
As we shall see in Section 7, the algorithm Find_Min produces a tilted etree. Before
the definition we need some intermediate results. The first result concerns which node
can be the root of an etree of minimum height. From this section through Section 10

we will assume that GG is a tree on n nodes.

Lemma 6.1 Let T andT" be two etrees for G such that h(T) = h(T") = mh(G). Then
for each node w; on the path root(T),ws, ws, ..., w;,root(T") in G, there exists an etree
1; for G, such that root(1;) = w; and h(1T;) = mh(G).

13

Proof: Let k = mh(G), x = root(T) and y = root(1"). Let w; be a node on the path
T, Wy, Wa, ..., wy,y in G. Since h(T) = k and h(T") = k it follows that each component
B of G — z satisfies mh(B) < k — 1 and that similarly each component C' of G — y
satisfies mh(C) < k — 1. Let B; be the component of G — « containing w; (and y) and
let C be the component of G — y containing w; (and z). Then G is as in Figure 3.
Let D; be any component of G—w, such that x ¢ V(D). Since G is a tree it follows
that D; C B;. Since mh(B;) < k — 1 we see from Lemma 5.1 that mh(D;) < k — 1.
Let D, be the component of G —w; such that € V(D;). Then D, C C; and it follows
from Lemma 5.1 that mh(D;) < k — 1. Thus each component D of G — w; satisfies
mh(D) < k — 1. An etree T}, where root(1;) = w; and where each subtree hanging

from w; in 7j is of minimum height, will then have k(1) = k. O

; N
e <, N B
X | W Wy W Wy
——@& - - - @- - - — @
N y

Figure 3:

The following corollary is a direct consequence of Lemma 6.1:

Corollary 6.2 The set of nodes that can be chosen as the root of an etree of minimum

height for G, form a connected component in G. O
We are now in a position to define the node that will be the root of a tilted etree.

Definition 6.3 (cg(z)) For a given node x € V(G), let cg(x) be a node in V(Q)

satisfying the following two conditions:
1. There exists an etree T for G such that h(T) = mh(G) and root(T) = cg(x).
2. Over all nodes in V(Q) satisfying condition 1, dist(cg(x),x) is minimum.

The node cg(z) is thus a closest node to = in G that can be chosen as the root of an
etree of minimum height. Note that if there is an etree T of minimum height such that
root(T) = z then cg(x) = z. Given z, we now show that there is exactly one node in
V(G) satisfying the conditions of Definition 6.3.

14

Lemma 6.4 Given z, the node cg(z) exists and is unique.

Proof: Let S be the set of nodes that can be the root of an etree of minimum height for
GG. Since there exists an etree of minimum height, S is nonempty. Assume that there
exists at least two distinct nodes y, z € S such that among the nodes in S, they are both
of minimum distance from x in G. Then there exist unique paths y, vy, vs,...,v; = ©
and z, wy, ws, ..., w; = x in G such that v;,w; € S, 1 <i <. Let v = min{i | v; = w;}.
Note that u exists since w; = v; = . From Corollary 6.2 we know that there exists a
path from y to z in G consisting entirely of nodes in S. This path together with the
path from y to u and the path from u to z give a cycle in GG, contradicting the fact
that G is a tree. It follows that there exists exactly one node in S of minimum distance

from z in G. O

Now we are ready to define a tilted etree.

Definition 6.5 (Tilted etree) LetT be an etree for G and let x be any node in V(G).

Then T is tilted towards x if the following two conditions are satisfied:

1. The node cg(x) is the root of T.

2. FEach component B of G — root(T) is ordered so that its elimination subtree T
of T, is tilted towards the node z € V(B) such that dist(z,z) is minimum over
all nodes in V(B).

Note that if x € V(B) in Definition 6.5 then z = z, and if ¢ V(B) then z is the node
in V(B) such that (z,cg(x)) € E(G). Just as we did for ¢g(z), we now show that the

etree tilted towards z is well defined.

Lemma 6.6 Let z be a node in V(G). Then there exists a unique etree T that is tilted

towards x.

Proof: The proof is by induction on the number of nodes in G. The result is trivial if
|[V(G)| = 1. Assume that the result is true for all trees with less than n nodes and that
|[V(G)| =n > 1. From Lemma 6.4 we know that cg(x) exists and is unique. Let B be a
component of G — cg(x). Because G is a tree there exist a unique node z € V(B) such
that dist(z,z) is minimum over all nodes in B. Since |V(B)| < n it follows from the
induction hypothesis that there exists a unique etree 1’ for B that is tilted towards z.

Thus both c¢g(z) and Ty exists and are unique and the result follows. O

As promised we now show that a tilted etree is of minimum height.

15

Lemma 6.7 Let x be a node in V(G). Then the etree T tilted towards x is of minimum
height.

Proof: The proof is by induction on the number of nodes in G. The result is trivial
if |V(G)| = 1. Assume that the result is true for all trees with less than n nodes and
that |V(G)| =mn > 1. Let T be an etree for G that is tilted towards = and let 7" be an
etree of minimum height where root(1") = c¢g(z). Let B be a component of G — c¢g(x)
and let T be its subtree of 7" and T} its subtree of 7". Since |V(B)| < n it follows
from the induction hypothesis that h(Ts) = mh(B). This implies that h(1s) < h(Tg)
and that h(T) < h(T"). Since h(T') = mh(G) we must have h(T) = mh(G). O

It should be made clear that the converse of Lemma 6.7 is not true in general:
h(T) = mh(G) does not imply that T is tilted towards some node.

7 Merging tilted elimination trees

In this section, we will show that Min_Height returns an etree of minimum height. This
is done by first showing that the procedure Tilt presented in Section 4 produces a tilted
etree if it is given a semi-tilted etree. Then we show that the etrees that Min_Height
passes on to Tilt are semi-tilted. A semi-tilted etree is a relaxed version of a tilted
etree. If z is a node in V(@) then in a semi-tilted etree we have = as the root instead
of ¢g(x). This is the only difference between a semi-tilted etree and an etree tilted

towards x. The formal definition is as follows:

Definition 7.1 (Semi-tilted) An elimination tree T is semi-tilted if each component
B of G —root(T) is ordered so that its elimination subtree T of T is tilted towards the
unique node u € V(B) such that (u,root(T)) € E(G).

If we remove the root x of a semi-tilted etree 17" we get a number of tilted subtrees.
As we shall see, the effect of Tilt(x) is that the tilted subtrees hanging from z in 7" are
merged together with x into a new etree that is tilted towards z. From Corollary 5.2
we know that if 7' is semi-tilted then either h(T) = mh(G) or h(T) = mh(G) + 1.

In Lemmas 7.2 through 7.7, we will show a number of properties of semi-tilted
etrees. These properties will be used to show that Tilt produces a tilted etree if it is
given a semi-tilted etree. In each lemma we assume that 7" is a semi-tilted etree of
height £ > 0 and that z is a highest child of v = root(T) in T. If v has more than
one child in T let y be a second highest child of v in T'. Thus h(T[z]) = k — 1 and if

16

y exists h(T[y]) < k — 1 (otherwise assume h(y) = —1). Also let 7" be the etree after
performing Rotate(z).

The following names will be used for different components of G. Let B be the
component of G — z containing v. Let C' be the component of G — v containing z. Let
D = bw(z,v). If (z,v) € E(G) let v, w;y, ws, ..., w;, z be the nodes on the path from v
to x in G. Then G is as in Figure 4.

4 N\
e N\
\Y W W W.1 W X
*—o - — - -
° ’X GB
g J
g C J
Figure 4:

Lemma 7.2 If h(z) = h(y) in T then mh(G) = k.

Proof: From Definition 7.1 the etrees T'[z] and T'[y] are both tilted. From Lemma 6.7
we know that T'[z] and T'[y] are of minimum height. From Corollary 5.3 it then follows
that if A(T'[z]) = h(T[y]) then mh(G) = k. O

Lemma 7.3 If mh(G) =k then T is tilted towards v.

Proof: Note first that mh(G) = k implies that T is of minimum height. Since v is the
root of 7' it follows that cg(v) = v. Let F' be a component of G — v and let T be its
elimination subtree of T'. Since 7" is semi-tilted, T is tilted towards the node z € V(F')
such that (z,v) € E(G). Since G is a tree it follows that z is the closest node to v in G
among the nodes in V' (F). Thus T satisfies condition 2 of Definition 6.5. This shows
that if mh(G) = k then T is tilted towards v. O

Lemma 7.4 mh(G — B) =k — 1.

Proof: The etree T'[z] is tilted towards the node u such that (u,v) € E(G). Thus T'[z]
is of minimum height & — 1. If x = u (i.e., D = (), the result then follows immediately
from the fact that V(T[z]) = G — B. Suppose therefore that # u. Then u = w;.
Since V(T[z]) = V(C) and D C (C — {z}) we must have mh(D) < k — 2. Note

17

that dist(wy,w;) < dist(wy, z) and that c¢c(wy) = x. This implies that there does not
exist an etree for C of height £ — 1 with w; as its root. This again implies that some
component F' of C'—w; must have mh(F) =k —1. Let H be any component of C' — w,
such that ¢ V(H). Then since H C D and mh(D) < k — 1 we see from Lemma 5.1
that mh(H) < k — 1 and it follows that H # F. Since G — B is the component of
C — w; containing x, we must have F = G — B and mh(G — B) =k —1. O

Lemma 7.5 If mh(G) =k — 1 then cg(v) = z.

Proof: Note that z is the closest node in V(G — B) to v. First we will show that no
node in V(B) can be the root of an etree for G of height £ — 1. Then we will show that
if there exists an etree of height £ — 1 with a node from V(G — B) as root, then there
must also exist an etree of height k£ — 1 with x as its root. From this it will follow that
if mh(G) =k — 1 then cg(v) = z.

Let 77 be an etree for G where z = root(1}) and z € V(B). Then there exists
a component F' of G — z such that (G — B) C F. From Lemma 7.4 we know that
mh(G — B) = k — 1. Thus from Lemma 5.1 mh(F) > k — 1. This implies that
h(T}) > k and that no node in V(B) can be the root of an etree of height k& — 1.

Suppose now that there exists an etree 75 of height k — 1 where z = root(13) and
z € V(G — B). Then each component F' of G — z satisfies mh(F) < k — 2. Let H be
the component of G — z containing v. Since B C H it follows from Lemma 5.1 that we
must also have mh(B) < k—2. Since h(T[z]) = k —1 each component [of (G— B) —x
has mh(I) < k —2. Now we have shown that each component of G — z has an etree of
height < k£ — 2. It follows that there exists an etree for G' of height k¥ — 1 with z as its
root.

Thus we can conclude that if mh(G) =k — 1 then cg(v) =z. O

Lemma 7.6 The etree T'[v] is semi-tilted.

Proof: We must show that each subtree 7"[u] where p(u) = v in 7", is tilted towards
the node s in V(T"[u]) such that (s,v) € E(G). Let T'[u] be a subtree of 7" such
that p(u) = v in 7" and V(1T'[u]) # V(D). Then T'[u] = T'[u] and p(u) = v in T.
Since T' is semi-tilted, the etree T"[u] is tilted towards the node s € V(71"[u]) such that
(s,v) € E(GQ).

If D is nonempty the nodes in D form a subtree T'[z] of T" and a subtree 7"[z] of
T" such that T'[z] = T"[z]. Moreover, p(z) =z in T and p(z) = v in T". (See Figure 1
a and 1 b.) The node z is the only child of v in 7" that was not a child of v in 7. Tt

18

remains to show that 7”[z] (and thus T'[z]) is tilted towards the node w; € V(D). The
subtree T'[z] is tilted towards w;. Since w; € V(D) it follows from Definition 6.5 that
T[z] (and T"[2]) is also tilted towards w;. Thus T"[v] is semi-tilted. O

Lemma 7.7 mh(G) =k — 1 if and only if mh(T"[v]) < k — 2.

Proof: (=) From Lemma 7.5 we know that if mh(G) = k — 1 then cg(v) = z. Thus
it mh(G) = k — 1 each component F' of G — x satisfies mh(F) < k — 2. The result
follows since T"[v] consists of all the nodes in B and B is the component of G — z that
contains v.

(<) From Lemma 7.5 we know that if mh(G) = k — 1 then there exists an etree
of height & — 1 with z as its root. Since h(7T'[z]) = k — 1, each child z # v of z in 1"
satisfies h(1"[z]) < k — 2. Thus mh(G) =k — 1 if mh(T"[v]) <k —2. O

Now we are in a position to show the following lemma on the effect of Tilt on a
semi-tilted etree.

Lemma 7.8 Let T be an etree with v = root(T). If T is semi-tilted then Tilt(v) will

reorder T into an etree that is tilted towards v.

Proof: The proof is by induction on the height of T'. Let x be a highest child of v in T’
and y a second highest child of v in T (h(y) = —1 if v only has one child). As discussed
in Section 4, Tilt can be implemented as a recursive procedure that performs Rotate(x)
if h(v) > 0 and h(xz) > h(y) and then calls itself with v as argument. Depending on
the outcome of this call the etree is either left unchanged or 7' is restored by a call to
Rotate(v).

The induction hypothesis is: If 7" is semi-tilted and h(7") < k then Tilt(v) returns
an etree tilted towards v.

If h(T') = 0 then Tilt leaves T" unchanged. It is easy to see that T is tilted towards
v in this case.

Assume now that the induction hypothesis is true and that h(T) = k£ > 0. If
h(T[x]) = h(T[y]) then Tilt exits without altering 7". From Lemma 7.2 it follows that
7" is of minimum height and from Lemma 7.3 it follows that 7' is tilted towards z. The
induction hypothesis is thus proved true in this case.

Assume that h(T[z]) > h(T[y]). Tilt then performs a rotation with respect to z to
get a new etree 7”. Since z is the only child of v of height £—1 in 7" we have h(T"[v]) < k.

From Lemma 7.6 it follows that 7”[v] is also semi-tilted. From the induction hypothesis

19

we know that Tilt will find an etree for 7"[v] that is tilted towards v, and therefore also
of minimum height. Let 7" be the new etree after reordering 7"[v] into an etree that
is tilted towards v and let 7 be the child of z in 7" such that v € V(T"[r]). Now we
look at two different cases depending on the height of T"[r|.

First we consider the case when h(T"[r]) = k — 1. In this case Tilt will perform
Rotate(r) and exit. From Lemma 7.7 we know that h(7"[r]) = k — 1 implies that
mh(G) = k. Since mh(G) = k we see from Lemma 7.3 that 7" is tilted towards
v. Thus we must show that Rotate(r) restores T. Since mh(G) = k we must have
h(T'[v]) = k — 1 or else h(T") < k. Thus T"[v] is of minimum height. From Lemma
7.6 we know that 7"[v] is semi-tilted. Since 7"[v] is of minimum height and semi-tilted
it follows from Lemma 7.3 that 7"[v] is tilted towards v. Thus 7"[v] = T"[r] and by
performing Rotate(r) Tilt restores T

Assume now that h(7"[r]) < k — 1. Then Tilt exits without altering 7. We must
show that 7" is tilted towards v. From Lemma 7.7 it follows that if h(T"[r]) < k — 1
then mh(G) = k — 1. From Lemma 7.5 we know that c¢g(v) = z. Since root(1") = x
it remains to show that each subtree hanging from z in 7" is tilted towards the node
z that is closest to v in G. We already know from the induction hypothesis that 7"[r]
is tilted towards v. Let s be a child of z in 7" other than r. Then T[s] = T"[s| and
p(s) = x both in T" and in T”. The etree T'[z] is tilted towards the node ¢ € V(T'[x])
such that (¢,v) € E(G). If ¢ # = then ¢ € V(1"[v]) and ¢ € V(1T"[r]). Thus T"[s] (and
T[s]) is tilted towards the node z € V(T"[s]) such that (z,z) € E(G). Since G is a tree,
z is the closest node to z,q and v in G among the nodes in V(7"[s]). We have now
shown that 7" satisfies each condition in Definition 6.5 and is therefore tilted towards
v. U

Now we can show the main result of this section.
Theorem 7.9 Min_Height(G) returns an etree of minimum height for G.

Proof: Min_Height initially constructs an etree 7" such that for each node = # root(T')
we have (z,p(z)) € E(G). The nodes are then visited in postorder and for each node
v the procedure Tilt(v) is called. We now prove by induction on the height of v in 7'
that the etree rooted at v is semi-tilted when Tilt(v) is called.

If h(v) = 0 then T[v] is clearly semi-tilted. Assume that the induction hypothesis
is true for each node of height < k in 7. Let v be a node of height £ in T, £ > 0.
Each child z of v in 7" is of height < k in 71" and is visited before v. From the induction

20

hypothesis and Lemma 7.8 we know that when v is visited 7'[z] has been reordered into
an etree that is tilted towards z. Since (z,v) € E(G) it follows that v is the root of a
semi-tilted etree T'[v] before Tilt(v) is called. Thus Tilt(v) reorders T"[v] into an etree
that is tilted towards v and the induction hypothesis is proved true.

The last call to Tilt is done with argument v = root(T"). The node v is the root
of a semi-tilted etree containing each node in V(G). Since the induction hypothesis is
proven true it follows that the resulting etree is tilted towards v and therefore also of

minimum height. O

8 Some details of the implementation

In this section we will look at some of the details of the procedure Tilt as presented
in Section 4. Specifically we will show how to implement the two functions s() and
h(). This must be done before we can give an analysis of the time complexity of
Min_Height. The reason for giving these details here rather than in Section 4 is that
the implementation of the function h() depends on the fact that Min_Height returns
an etree of minimum height.

First we look at s(). Let T be the current etree at the time of calling Tilt(v). Let
z be a highest child of v in T'. If z is the only child of v in T of height h(T'[v]) — 1 then
Tilt will perform Rotate(x). If bw(z,v) # 0 then prior to performing Rotate(z), s(z)
must point to the root of the subtree of 7" consisting of the nodes in bw(x,v). Since
T[v] is semi-tilted this is achieved if s(x) points to the child z of z in T such that z
is an ancestor of the node that T'[z] is tilted towards. If bw(z,v) = () then s(x) must
point to z. We assume that this is true for each node in T'[v] except v, at the time of
calling Tilt(v). The code we will give here ensures that this will be true for each node
originally in T'[v] when Tilt exits.

The following code is added right after Rotate(x) inside the first while loop of Tilt:

s(x) = wv;

s(p()) = =

Note that s(p(x)) = v is true before each but the first rotation in the first while loop.
After the execution of the first while loop, s() will be correct for each node originally
in T'[v] except v. In the second while loop of Tilt we might want to reverse some of
the rotations performed in the first while loop. This is done by executing Rotate(v) a

number of times. Let z = p(v) prior to such a rotation. Also let z be the root of the

21

subtree of the current etree consisting of the nodes in bw(z,v). To be able to locate z
we use a temporary pointer ¢() associated with z. Prior to Rotate(z) in the first while

loop we add:

t(z) = s(z);
Then if bw(z,v) # 0, t(z) will point to z before executing Rotate(v), and to z if

bw(z,v) = (. We also rewrite the body of the second while loop as follows:

z = p(v);
If t(z) =

s(v) == v
else

s(v) :=t(x);

Rotate(v);
s(x) = t(@);
s(p(x)) = v;

This ensures that s() will be correct for each node in T'[v] except v when the second

while loop is done. When Tilt exits, the etree rooted at v is tilted towards v. We
therefore add:

s(v) == wv;

after the second while loop. Then if s() is correct for each node in T'[v] except v when
Tilt(v) is called, s() will be correct for each node originally in T'[v] when Tilt exits. To
initialize s() we set s(z) = z in Min_Height for each node such that h(z) = 0 in the

original etree.

We now discuss how to maintain the height of each node as Tilt reorders a semi-tilted
etree into a tilted etree. Let ch(v) be a function that returns max{h(z)+1 | p(z) = v}.

Note first that if we initially know the height of each node in T'[v] then the first
while loop in Tilt will function correctly even if we do not update the heights of v and
p(v) after each rotation. However, we must use a test other than h(v) > 0 in order to
determine whether v is a leaf in the etree. This can be done by testing whether v has
any children in the etree. If we do not update any heights in the first while loop, the
only heights that might be incorrect at the start of the second while loop are those of
v and its ancestors. For the second while loop to function correctly we only need to

keep the height of v updated. To do this we rewrite the second while loop as follows:

22

h(v) := ch(v);
h(p(v)) = ch(p(v));

While (|S| > 0) and (h(v) = pop(S)-1)
z = p(v);
Rotate(v);

(z) := ch(z);

(v) := ch(v);
h(p(v)) := ch(p(v));

End While

h
h

Note that this does not include the extra code to maintain s(). After executing Tilt
the only heights that might be incorrect are those of the ancestors of p(v). To assure

that these are correct we add the following code in the first while loop after Rotate(z):

h(v) := ch(v) — 1;
h(z) := ch(x);

To see that this is sufficient for computing the correct height of each node originally

in T'[v] we need the following lemma.
Lemma 8.1 The height of each node initially in T'[v] will be correct when Tilt exits.

Proof: As discussed we need to show only that the height of the ancestors of p(v)
are correct when Tilt exits. Let x be a node originally in T'[v] that is an ancestor
of p(v) when Tilt exits. At some stage of the first while loop Rotate(z) must have
been performed. Let 7" be the resulting etree from this rotation. The height of z is
now computed under the assumption that h(7"'[v]) is one lower than what it actually
is. Let B be the component of G consisting of the nodes in V(7”[v]). Since z is an
ancestor of p(v) when Tilt exits we must have been able to find an etree T for B
such that h(T7) < h(1"[v]). Since T"[v] is semi-tilted it follows from Corollary 5.2 that
h(Tg) = h(T"[v]) — 1. Thus it was correct to assume that h(7"[v]) was one lower than
it actually was at the time of computing h(x). O

From the above discussion we see that if we can find ch() in constant time then
keeping track of the height of each node will not increase the asymptotic running time
of Tilt. To be able to implement ch() efficiently we assume that each node y has its

current children in the etree, in a heap ordered by decreasing height. The heap is a

23

standard heap as described in [25]. The heap is updated after a rotation that involves y
is performed and the new height of y has been computed. If v = p(z) and u = p(v) then
after performing Rotate(z) we must update the heaps of z,v and u. Since the height
of v and p(v) are recomputed prior to the second while loop in Tilt we also update the

heap of p(v) just before the second while loop.

9 Time complexity

In this section, we give an upper bound on the time complexity of Min_Height. We
start by giving a time bound on Tilt. Let d be the maximum vertex degree of a node
in G.

Lemma 9.1 Let T be the etree at the time of calling Tilt(v). Then the time complexity
of Tilt(v) is O(h(T[v]) logd).

Proof: In the first while loop of Tilt a number of rotations are performed on the cur-
rent highest child of v until either v is a leaf or v has at least two children of maximal
height. In each rotation the height of v is reduced by at least one. Thus we perform
at most h(7[v]) rotations in the first while loop. In the second while loop we perform
Rotate(v) until either v is not the only child of p(v) of maximum height or until T[v] is
restored. Each rotation reverses a rotation performed in the first while loop. Thus we
do not perform more than 2h(T'[v]) rotations in each call to Tilt. After each rotation
three heaps must be updated. A heap update is also performed before the second while
loop. Thus we do not perform more than 6hA(7T[v]) + 1 heap updates. From Lemma
3.4 we know that no node has more than d children in the etree. Thus it follows from
[25] that each update of the heap can be done in O(logd) time giving a total time of
O(h(T[v]) logd) for Tilt. O

Now we can show the main result of this section.
Theorem 9.2 The time complexity of Min_Height(G) is O(nlognlogd)

Proof: The initial ordering of G and construction of 7' can be done in linear time.
When Tilt(v) is called the etree rooted at v is semi-tilted. This implies that h(7'[v]) <
|llogn] + 1. The result now follows from Lemma 9.1 since Tilt is called once in
Min_Height for each node in G. O

24

It is also clear from the code in Section 4 and Section 8 that Min_Height does not
require more space than a constant times the number of edges and nodes in G. Thus

Min_Height requires O(n) space.

10 Fill-in

In this section, we will show that if G is ordered so that its etree 7' is tilted then the
number of fill edges in G* is at most n — h(T") — 1. Note first the following lemma from
[17] concerning fill edges.

Lemma 10.1 Let H be a general graph with elimination tree T and let x be a node
in V(H). Then there is a fill edge between a node y € T[z] and x if and only if
(z,y) & E(H) and there exists a node z € Ty| such that (z,z) € E(H). O

Let T be the etree of G and let v,z € V(G) such that p(x) = v in 7. Then since G
is a tree there is exactly one node z in T'[z] such that (z,v) € E(G). From Lemma
10.1 it follows that there is a fill edge between each proper ancestor of z in T'[z] and v,
and that no other node in 7T'[z] has a fill edge to v. Thus if z has k proper ancestors
in T'[z] then there are exactly & fill edges between v and the nodes in T'[z]. Note that
k < h(T[x]).

We now define a partitioning of the nodes in a tilted etree into paths in the etree.
This partitioning will be used to give a bound on the number of fill edges if G is ordered
so that its etree is tilted. For the rest of this section we assume that T is tilted (towards

some node).

Definition 10.2 (t-path) Let T'[u] be a subtree of T such that T'u] is tilted towards .
Let further u = wy, wy, ..., w; be a mazimal path in T such that p(w;) = w1, 0 <@ <,

and T[w;)] is tilted towards u for 0 < i <I. Then wy, ws, ...,w; is a t-path in T.

To see that the t-paths actually partitions V(7') we need the following lemma:

Lemma 10.3 Each node in V(T) is on exactly one t-path.

Proof: Let z be a node in V(7). Then T[z] is tilted towards some node v € V(T'[z]).
This implies that = can be on at most one t-path. We will show that T [w;] is tilted
towards u, for each node w; on the path u = wy, wy,...,w; = x in T. This will then

imply that x is on a t-path. The proof is by induction on the distance of each w; from

25

z in T. We already know that T[z] is tilted towards u. Assume that T'[w;] is tilted
towards u for some i > 0. Let B be the component of G' containing the nodes in 7'[w;].
Then the nodes in T'[w; 1] form a connected component C' of B — w; containing u.
Since u € V(T'|w; 1]) and dist(u,u) = 0 it follows from Definition 6.5 that T'[w; 4] is
tilted towards w. Thus the induction hypothesis is proved true and the result follows. O

Let T[v] be a subtree that is tilted towards u and let y be a child of v in T' that
is not an ancestor of u. Then from Definition 6.5, T'[y] is tilted towards the node z in
V(T'[y]) that is closest to u in G. Since G is a tree it follows that (z,v) € E(G). Since
Ty] and T'[v] are tilted towards two different nodes, y must be the topmost node of a
t-path z = wy, w, ..., w; = y. Thus there is a fill edge from v to each w;, 1 <4 <[, and
to no other node in V (T'[y]).

We now show that the each non-leaf node in 7" has a child of maximum height that

is the topmost node of some t-path.

Lemma 10.4 Let w; be a node on a t-path wy, wy,...,w; in T, where h(w;) = k > 0.
Then w; has a child y in T such that h(T[y]) = k — 1 and y is the topmost node of a
t-path.

Proof: If i = 0 the result is obviously true since each child of wy is the topmost node in
a t-path. Assume therefore that ¢ > 0. Let B be the component of G that contains the
nodes in T'[w;]. Let C be the component of B —w; that contains wy and let D = B—C.
Then from Lemma 7.4, mh(D) = k > 0. Thus there must exists a nonempty compo-
nent F of D — w; such that mh(E) =k — 1. In T, the nodes in E consist of a subtree
hanging from w; of height k — 1. Let y be the root of this subtree. Then since y # w;_;
the node y is the topmost node of a t-path. O

We can now give a bound on the number of fill edges between the nodes in any
subtree of T. For ease of notation we will denote |V (T'[v])| by f(v).

Lemma 10.5 Let w; be a node on a t-path wy, wq, ..., w; in 1. Then there are at most

f(wi) = h(w;) — (2 + 1) (1)
fill edges between the nodes in T[w;].

26

Proof: The proof is by induction on the height of w;. If h(w;) = 0 then ¢ = 0 and
f(w;) = 1. Substituting this into (1) there can be no fill edges between the nodes in
T'[w;] if the induction hypothesis is to hold. But since T[wy| consists of a single node
when h(wg) = 0 this is obviously true. Assume that the lemma is true for all nodes
where 0 < h(z) < k, and let h(w;) = k. From Lemma 10.4 it follows that w; has a child
x such that h(z) = k — 1 and z is the topmost node of a t-path wg, us, ..., u, = z in T
From the induction hypothesis we know that there are at most f(z) — (k—1) — (r +1)
fill edges between the nodes in T'[z]. There are r fill edges between w; and the nodes

in T'[z] giving a total of no more than

flz) =k (2)

fill edges involving w; and the nodes in T[z]. Let y1,y2, ..., Ym be children of w; in T
such that for 1 < j < m, y; # « and if ¢ > 0 then y; # w;_;. Then each y; is the
topmost node of a t-path. From the same argument used on T'[z|, we see that there

are at most

f(yi) = hly;) — 1 < f(y)) (3)

fill edges involving w; and the nodes in T'[y;]. If ¢ > 0 then w;_; is also a child of w;
in 7. From the induction hypothesis there are at most f(w; 1) — h(w; 1) — i fill edges
among the nodes in T'[w;_1]. There are no more than h(w;_;) fill edges between w; and

the nodes in T'[w;_;]. Thus there are at most

fwi1) —i (4)

fill edges involving w; and nodes in T'[w;_1].

If i =0 then f(z)+ X7, f(y;) = f(wo) — 1. Combining this with (2) and (3) we
see that there are no more than f(wy) —k — 1 fill edges in T'[wp]. Substituting ¢ = 0 in
(1) we see that the induction hypothesis is true in this case.

If i > 0 then f(z) + f(wi1) + X7 f(y;) = f(w)) — 1. From (2), (3) and (4) it
follows that there can at most be f(w;) —k — (i + 1) fill edges in T'[w;]. This is the

same as (1) and the induction hypothesis is proved true. O

Now we can give an upper bound on the number of fill edges in 7.

27

Theorem 10.6 IfT is tilted towards some node x then G* contains at most n—h(T)—1
fill edges.

Proof Let wy, wy, ..., wy be the t-path in 7" such that wy, = root(T). The result follows
from Lemma 10.5 since f(root(T)) =n and n —h(T) — (k+1) <n—h(T)—-1. O

Since h(T) > 0 it follows from Theorem 10.6 that there can never be more than
n — 1 fill edges in G*. To see that the bound from Theorem 10.6 is sharp consider a
graph G on n = 2* nodes on a single path, where v € V(G) is a node of degree one. If
T is tilted towards v then h(7") = k and there are n — k — 1 fill edges in G*. The proof

of this is left as an exercise for the reader.

11 Other applications

In this section, we consider how the results in this paper might help us find low etrees
for more general classes of graphs. We consider the problem of computing an etree of
minimum height for a chordal graph. But first we mention a possible generalization of
rotations to general graphs.

One way in which rotations can be generalized to etrees for general graphs is to
perform rotations on maximal chains in the etree instead of on single nodes. Let 71" be
an etree for a general graph G and let K = {ky, ks, ..., ks} be the uppermost maximal
chain in 7" and L = {l,1ls, ...,[;} a maximal chain so that p(l;) = k; in 7. Without loss
of generality we can assume that L and K are ordered consecutively. A generalized
rotation consists of letting the nodes in K and L switch places in the elimination
ordering while maintaining the internal order among the nodes in K and L.

The effect of a rotation is more complicated for a general graph than for a tree. Let
T’ be the etree after performing the rotation. Then the structure of each subtree of T'
consisting of nodes in G — K — L will remain unchanged. The structure of L will also
remain unchanged except that l; = root(T"). The only structural differences between
T and T" apart from p(l;), involve K and p(z) where z is a child of {; in 7. Without
going into the details we note that it is possible that K will break into more than one
connected component. Bach such component will hang from some [; in 7". It is also
possible that some children of [y in 1" become children of nodes in K in 7". In terms
of the height of T" it is favorable if K breaks up and if the children of /; in T remain
as children of [; in 7. The worst possible scenario in terms of the height of 7" is when
K is a chain that hangs from [; in 7". Let x be the highest child of /; in 7" and y the

28

highest child of k; in 7. Then if h(T[y]) < h(T'[z]) we get h(T") < h(T) even if K is
connected in 7"
Whether generalized rotations can be used in a practical algorithm for reducing the

height of an etree for a general graph needs further study.

We now consider whether it is possible to compute an etree of minimum height for a
chordal graph based on the results presented in this paper. There are three key reasons
why it is possible to compute an etree of minimum height for a tree efficiently. The
first is that in a tree G there are a limited number of easily identifiable separators. The
second is that each connected subgraph of GG is also a tree. The third is that if for some
node v € V(G) we know mh(B) for each component B of G — v, then we can decide
in which component of G — v to look for the root of an etree of minimum height. The
introduction of tiltedness improves the efficiency of this search.

We investigate how well these properties extend to chordal graphs. From Theorem
3.3 we know that there for any graph exists a minimal separator ordering giving an
etree of minimum height. From [22] it is known that every minimal separator K of a
chordal graph G is a clique and that every connected component of G — K is chordal.
Thus we only have to consider separators that are cliques and every subgraph that
needs to be considered will also be chordal. There are at most » — 1 minimal separators
in a chordal graph [4]. By the use of clique trees these can be identified in linear time
[14]. From this we see that the first two conditions extend to chordal graphs. However,
as shown below the third condition does not necessarily extend.

Let K be a minimal separator of the chordal graph G and let B be a component of
G — K such that mh(B) is maximal over all components of G — K. There exists then
an etree T for G of height |K| 4+ mh(B). From this one might be lead to believe that
the top separator for an etree of minimum height for G must be found among the nodes
in B and K. However, this is not true in general. If a minimal separator C' ¢ {K, B}
is used as the topmost separator then some component D of G — C will contain B as a
subgraph. But if |C| < |K| then the only lower bound one can give on the height of an
etree with C' as the topmost separator is |C| +mh(B). If |C| < |K]| it is possible that
an etree with C' as the topmost separator can have height < |K| + mh(B). For the
same reason one cannot prove the obvious analogue of Corollary 5.3 one might hope
would hold true. Thus to find an etree of minimum height for G we must not only
search K and B for the topmost separator, but we must also consider separators for G
not in K and B, that are of smaller size than K.

These observations indicate that the problem of computing an etree of minimum

29

height for a chordal graph cannot be solved by a simple extension of the algorithm
presented in this paper. More insight is needed before one can determine whether an
efficient algorithm for this problem can be found.

We note that the recent development of a method [1] which computes an etree of
minimum height for interval graphs. This points to the possibility that there are other

classes of graphs for which the minimum height etree problem can be solved efficiently.

12 Conclusion

In this paper, we presented an algorithm for computing an etree of low height for a
graph that is a tree. It uses local rotations in order to reduce the height of the etree.
We then defined and analyzed a theory for a special kind of etrees of minimum height
called tilted etrees. Through a series of lemmas we were able to show that our main
algorithm returns a tilted etree. We showed that the running time of the algorithm is
O(nlognlogd) and that it introduced at most n — 1 fill edges. We also pointed to a
possible generalization of rotations to general graphs and discussed the possibility of
being able to compute etrees of minimum height for more general graphs than trees.

As to the efficiency of the Min_Height algorithm we note that in [18] a nested
dissection algorithm for trees was presented which computes an etree of height no more
than |logn|. This algorithm also had time complexity O(nlognlogd).

Gilbert has conjectured [7] that any graph has an etree of minimum height such
that the number of fill edges is at most a constant times the number of edges in G*
where G is ordered by a minimum fill ordering. This paper shows that the conjecture

is true for trees.

References

[1] B. AspvaLL AND P. HEGGERNES, Finding minimum height elimination trees
for interval graphs in polynomial time, Tech. Report CS-93-80, Department of
Informatics, University of Bergen, Norway, 1993.

[2] H. L. BODLAENDER, J. R. GILBERT, H. HAFSTEINSSON, AND T. KLOKS,

Approzimating treewidth, pathwidth and minimum elimination tree height, Tech.
Report CSL-90-10, Xerox Palo Alto Research Center, 1991.

[3] C. A. CRANE, Linear lists and priority ques as balanced binary trees, Tech. Report
(CS-72-259, Computer Science Dept., Stanford Univ., 1972.

30

4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

G. A. DIRAC, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg, 25 (1961),
pp- 71-76.

A. GEORGE, Nested dissection of a reqular finite element mesh, STAM J. Numer.
Anal., 10 (1973), pp. 345-363.

A. GEORGE AND J. W. H. Liu, An automatic nested dissection algorithm for
irreqular finite element problems, STAM J. Numer. Anal., 15 (1978), pp. 1053-1069.

J. R. GILBERT, 1991. Personal comunication.

M. T. HEaTtH, E. NG, AND B. PEYTON, Parallel algorithms for sparse linear
systems, SIAM Rev., 33 (1991), pp. 420-460.

P. HEGGERNES, Minimizing fill-in size and elimination tree height in parallel
Cholesky factorization, master’s thesis, Department of Informatics, University of
Bergen, Norway, 1992.

J. A. G. JEss AND H. G. M. KEEs, A data structure for parallel L/U decompo-
sition, IEEE Trans. Comput., C-31 (1982), pp. 231-2309.

C. JORDAN, Sur les assemblages de lignes, Journal Reine Angew. Math., 70 (1869),
pp- 185-190.

D. E. KNUTH, Sorting and Searching, vol. 3 of The Art of Computer Program-
ming, Addison-Wesley, 1973.

C. E. LEISERSON AND J. G. LEwIS, Orderings for parallel sparse symmetric

factorization, in Parallel Processing for Scientific Computing, G. Rodrigue, ed.,
SIAM, 1989, pp. 27-32.

J. G. LEwis, B. W. PEYTON, AND A. POTHEN, A fast algorithm for reordering
sparse matrices for parallel factorization, SIAM J. Sci. Statist. Comput., 10 (1989),
pp. 1146-1173.

J. W. H. Liu, Computational models and task scheduling for parallel sparse
Cholesky factorization, Parallel Comput., 3 (1986), pp. 327-342.

—, Reordering sparse matrices for parallel elimination, Parallel Comput., 11
(1989), pp. 73-91.

—, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 134-172.

F. MANNE, Minimum height elimination trees for parallel Cholesky factorization,
master’s thesis, Department of Informatics, University of Bergen, Norway, 1989.
(In Norwegian).

31

[19]

[20]

[21]

22]

23]

[24]

[25]
[26]

——, Reducing the height of an elimination tree through local reorderings, Tech.
Report CS-91-51, University of Bergen, Norway, 1991.

S. PARTER, The use of linear graphs in Gauss elimination, STAM Rev., 3 (1961),
pp- 119-130.

A. POTHEN, The complexity of optimal elimination trees, Tech. Report CS-88-13,
Pennsylvania State University, 1988.

D. J. ROsE, Triangulated graphs and the elimination process, SIAM J. Matrix
Anal. Appl., 32 (1970), pp. 597-609.

D. J. RosE, R. E. TARJAN, AND G. S. LEUKER, Algorithmic aspects and vertex
elimination on graphs, SIAM J. Comput., 5 (1976), pp. 266-283.

R. SCHREIBER, A new implementation of sparse Gaussian elimination, ACM
Trans. Math. Software, 8 (1982), pp. 256-276.

R. E. TARJAN, Data Structures and Network Algorithms, STAM, 1983.

M. YANNAKAKIS, Computing the minimum fill-in is NP-complete, SIAM J. Alg.
Discrete Meth., 2 (1981), pp. 77-79.

32

