
An algorithm for computing an elimination tree ofminimum height for a treeFredrik ManneAbstractThe elimination tree is a rooted tree that is computed from the adjacencygraph of a symmetric matrix A. The height of the elimination tree is one re-stricting factor when solving a sparse linear system Ax = b on a parallel computerusing Cholesky factorization. An e�cient algorithm is presented for the problemof ordering the nodes in a tree G so that its elimination tree is of minimum height.Its running time is O(n logn log d) where n is the number of nodes in G and dthe maximum degree of any node in G. The number of �ll edges caused by thisalgorithm is less than n.We also show that there exists a minimal separator ordering on any matrixsuch that the resulting elimination tree is of minimum height. Implications ofthese results are given for the computation of elimination trees of minimum heightfor more general classes of graphs.

1



1 Introduction and motivationConsider using Cholesky factorization to solve the linear system Ax = b, where A isan n � n sparse symmetric positive de�nite matrix. On a sequential computer this isusually done in four separate stages:1. Ordering. Determine a permutation matrix P so that the Cholesky factor L ofPAP T will su�er little �ll.2. Symbolic factorization. Determine the structure of the nonzeros of L and set upa data structure in which to store A and compute the nonzero entries of L.3. Numeric factorization. Insert the nonzeros of A into the data structure andcompute the numeric values of L.4. Triangular solution. Solve Ly = Pb and LT z = y, and then set x = P T z.Both the ordering of A and the symbolic factorization are independent of the nu-merical entries of A and can be performed completely on the adjacency graph G ofA [20, 22]. Determining a permutation matrix is equivalent to �nding an ordering onthe nodes of G, while the symbolic factorization uses a graph elimination process tocompute the zero-nonzero structure of L. The reason for �nding a permutation matrixfor A in the �rst stage so that L su�ers little �ll is that the amount of work and storageneeded in the subsequent stages depends on the number of nonzeros in L.Most parallel algorithms for performing sparse Cholesky factorization operate in thesame four stages. In the �rst stage, the only di�erence when ordering A, is that notonly must we keep the �ll low, but we must also consider whether PAP T is suitablefor parallel methods. For a more detailed overview of the di�erent aspects of parallelsparse Cholesky factorization see [8].What is unique to sparse Cholesky factorization compared to dense Cholesky fac-torization, is that each column does not generally depend on all the previous columns.The elimination tree (etree) [17, 24] is a data structure that describes the dependenciesamong the columns of A when factoring A into LLT . This is true both for the symbolicfactorization and for the numeric factorization. For a dense matrix the etree would bea single path indicating that each column is dependent on all the previous columns.For a sparse matrix one can expect the etree to contain branching and therefore to belower.The fact that disjoint parts of the etree can be factored independently of each othergives a potential for a high-level parallelism for sparse matrices that does not exist for2



dense matrices. This is also referred to as large grained parallelism [15]. Exploitationof this fact is essential in producing good parallel algorithms. The lower the etree andthe more branching it contains, the more parallelism there is to exploit. Thereforeit would be desirable to �nd a P that both lowers the etree of PAP T and keeps theCholesky factor L of PAP T sparse. It is however not di�cult to show that these tworequirements might be in conict with each other. To make matters worse, both theproblem of minimizing �ll and the problem of �nding the lowest possible etree areknown to be NP-hard [21, 26].There are methods for �nding orderings that give low etrees and few �ll edges.Nested dissection is a method for ordering G that was developed to reduce �ll [5, 6]and has also been shown to produce low etrees [13]. Another approach is �rst tocompute a �ll-reducing ordering P and then to �nd an equivalent ordering (giving thesame �ll edges) of the adjacency graph G� of L + LT that produces a low etree. Themain motivation behind this approach is that one knows how to e�ciently compute anordering for G� such that its etree is of minimum height under the restriction that nonew �ll edges are introduced [10, 16, 14].Little is known about how to compute etrees of minimum height for classes of graphswhen additional �ll is allowed, and how much �ll this might cause. We show that forany graph, the class of minimal separator orderings contains an ordering giving an etreeof minimum height.However, the main result presented in this paper is an e�cient algorithm that solvesthe minimum height problem when the original graph is itself a tree. The algorithm willbe shown to have time complexity O(n logn log d), where d is the maximum degree ofany node in G. This is the �rst e�cient algorithm for computing an etree of minimumheight for a nontrivial class of graphs. We will also show that when solving this problemwe introduce at most n� 1 �ll edges.A subexponential algorithm for solving the minimum height etree problem for treeswas �rst presented in [18]. It was based on the following idea: Let x be the root ofan etree where each subtree of the etree hanging from x is of minimum height. It wasthen shown that at most logn etrees with this property have to be created before anetree of minimum height is found. However, the time complexity of this algorithmwas O(nlog log n). In this paper we will demand not only that each subtree of the etreehanging from the root is of minimum height, but also that each subtree is tilted. Asshown in subsequent sections, such an etree can be reordered into an etree of minimumheight in time proportional to the height of the etree. The idea of tiltedness is similarto the use of leftist heaps [3, 12] to facilitate e�cient merging of heaps.3



It is true that few matrices of practical importance have adjacency graphs that aretrees. Still, as we shall discuss, being able to compute etrees of minimum height fortrees points to the possibility of solving this problem for more general classes of graphssuch as chordal graphs. We will also show how the algorithm developed in this papercan be generalized to a heuristic for reducing the height of an etree for a general graph.The outline of this paper is as follows. In Section 2 we show how the etree of Ais constructed. We also present the notation that will be used in this paper. Nesteddissection is presented in Section 3 along with a discussion of how it works on trees.The main algorithm is presented in Section 4 along with a short motivation. Somepreliminary results on the height of an etree of minimum height are given in Section5. In Sections 6 and 7 we prove that the algorithm presented in Section 4 produces anetree of minimum height for a tree. Some of the details of the implementations of thealgorithm in Section 4, which depend on the fact that the algorithm produces an etreeof minimum height, are given in Section 8. The time complexity of the algorithm isdiscussed in Section 9 and the amount of �ll edges it causes is discussed in Section 10.In Section 11 we consider the problem of computing low etrees for more general graphsthan trees. Finally, in Section 12 we summarize.2 Etrees and notationWe now explain how the elimination tree of A is constructed, and also present somegraph notation that might be unfamiliar to the reader. The reader is assumed to befamiliar with standard graph notation. For a more thorough introduction to eliminationtrees see [17].The adjacency graph G = (V;E) of A is formed by taking n nodes and adding anedge (i; j) for each aij 6= 0, i < j. The set of nodes of G is denoted by V (G) and theset of edges by E(G). The adjacency graph of L + LT is called the �lled graph and isdenoted by G�. It can be computed from G by the following algorithm:Filled Graph(G)Set all nodes unmarked.Iterate the following step n times:Select an unmarked node v and add edges to G such that all v's unmarked neigh-bors are adjacent (i.e. the unmarked neighbors form a clique), and then mark v.End Filled Graph 4



The order in which the nodes are selected when forming G� is called an eliminationordering, and the edges added to G to form G� are called �ll edges. If a node vis selected before a node w in an elimination ordering we write v < w. A perfectelimination ordering is an ordering such that G = G�. The class of chordal graphsis exactly the class of graphs for which perfect elimination orderings exist [22]. If Gis a tree then a perfect elimination ordering can be found by selecting a leaf in theunmarked graph in each iteration of the above algorithm.The elimination tree T of G is a directed graph such that V (T ) = V (G) with thedirected edge hi; ji 2 E(T ) if and only if j = minfk j (i; k) 2 E(G�); k > ig. Ifhi; ji 2 E(T ) then j is the parent of i and is denoted by p(i).If A is irreducible then G is connected and T is a rooted tree. Throughout thispaper we will assume that A is irreducible.The root of T is the node with only incoming edges and is denoted by root(T ). ByT [x] we mean the subtree of T induced by x and all its descendants in T ; x is the rootof this subtree.The height of a leaf in T is 0. The height of a node v in T is denoted by h(v) (orh(T [v])) and is de�ned as max fh(w) + 1 j p(w) = vg. The height of T is the height ofthe root and is denoted by h(T ). The depth of a node x 2 V (T ) is the length of thepath from x to root(T ).If T is an etree for G such that for any other etree T 0 for G we have h(T ) � h(T 0),we then say that T is an etree of minimum height. If T is an etree of minimum heightwe denote its height by mh(G).We do not distinguish between the nodes in T and G. This means that if B isa connected component of G such that V (T [x]) = V (B) we write both mh(B) andmh(T [x]) for the height of an etree of minimum height for B. If h(T [x]) = mh(B) wesay that T [x] is of minimum height.A topological ordering of T is an ordering where each descendant of node x is orderedbefore x. If T 0 is found by a topological ordering of T we do not distinguish betweenT and T 0. This is because T and T 0 have the same structure, and the �lled graphs ofT 0 and T have the same structure.Let K = fw1; w2; :::; wkg be a set of nodes in T such that p(wi) = wi+1 and wi isthe only child of wi+1, 1 � i < k. Then the nodes in K induce a chain in T .A monotone path in G is a path w1; w2:::; wl such that wj < wj+1 for 1 � j < l. IfS is a set of nodes, G� S is the induced subgraph of G containing all nodes not in S.We write G � v if S = fvg. If G � S contains more than one component then S is aseparator. 5



The neighbors of a node v are denoted by adj(v). The degree of v is jadj(v)j. If Sis a set of nodes we write adj(S) = fx j (x; v) 2 E(G) for some x 62 S and v 2 Sg.If G is a tree we write bw(x; v) to denote the component B of G� fx; vg such thatx; v 2 adj(B). Thus bw(x; v) is the unique component of G \between" x and v. If(x; v) 2 E(G) then bw(x; v) = ;. If G is a tree and x; v 2 V (G) we denote the lengthof the unique path from x to v by dist(x; v).3 Some aspects of computing an etreeIn this section, we study a top-down approach for computing an etree as opposed tothe one given in Section 2. This leads us to characterize elimination orderings in termsof separators in G. This is of importance not only as a tool, but as we show, the classof minimal separator orderings always contain an ordering giving an etree of minimumheight. We �rst present the following lemma [19]:Lemma 3.1 Let u be the lowest common ancestor in T of two given nodes x and y.Let S be the set of nodes on the path u; w1; w2; :::; wl = root(T ) in T . Then T [x] andT [y] are disjoint if and only if x and y are in di�erent connected components of G�S.2 Let T be an etree for a graph G and let S be the set of nodes on the chainw1; w2; :::; wl = root(T ) in T . From Lemma 3.1 it follows that ifB is a nonempty compo-nent of G�S then there exists a subtree T [z] such that p(z) = w1 and V (T [z]) = V (B).Furthermore, from the same lemma it also follows that the nodes in V (T [x]) induce aconnected component of G for any node x 2 V (G).Using these observations we now give a top-down approach to computing T directlyfrom G. We let t be a dummy node such that p(root(T )) = t. If G has already beenordered, then the call Order(G; t), will compute the etree of G.Order(B; v)u := The highest numbered node in B;p(u) := v;For each connected component C of B � uOrder(C; u);End Order 6



Note that the order in which the components of B � u are processed by Order()has no e�ect on the structure of the resulting etree. If the ordering of G is not givenin advance, Order() can be used to compute an ordering on G by choosing any nodeu 2 V (B) to be the highest numbered node in V (B).If the removal of the node u in Order() does not disconnect B then there is at mostone component of B � u. Thus one can alter the algorithm to keep on choosing nodesK = fu1; u2; :::; ulg until either B �K contains at least two connected components oruntil K = B. Then we will have p(uj) = uj�1, 2 � j � l, and the recursive call wouldbe for each component of B � K, with the node ul passed along to the next level.We call the resulting ordering a separator ordering. If K has been chosen so that theremaining components of B �K are balanced, meaning that no component of B �Kcontains more than cjV (B)j nodes for some constant c < 1, we get a nested dissectionordering.For any tree G of n nodes there is a node v such that no component of G�v containsmore than bn=2c nodes [2, 11]. Thus for a tree, nested dissection can be used to �ndan etree of height at most blognc. But this might still be far from an optimal solution.It has been shown [9] that there for k > 0 exists a tree G with n = 22k nodes such thatmh(G) = k where nested dissection would give an etree of height 2k.We now look at another class of orderings for general graphs that can be obtainedby modifying Order(). This will be used in the proof of Lemma 9.1. If instead ofimposing constraints on the size of each component of B � K, we require that eachchosen K is a minimal separator in G, we get a minimal separator ordering. As thefollowing lemma and theorem show there exists a minimal separator ordering on anygraph giving an etree of minimum height.Lemma 3.2 Let G be a graph with etree T . Then there exists a minimal separatorordering on G with resulting etree T 0 such that h(T 0) � h(T ).Proof: The proof is by induction on the number of nodes in G. The result is triviallytrue if jV (G)j = 1. Assume that the result is true for graphs with fewer than n nodesand that jV (G)j = n > 1. There are two cases to consider, depending on the structureof T .The �rst case is when T is a chain. If G is a clique any etree for G must be a chainand the result follows. If G is not a clique then there exists some minimal separator Cin G. Order C last and the nodes in G � C in any order. This will not increase theheight of the etree and the result follows by applying the induction hypothesis on eachcomponent of G� C. 7



The second case is when T is not a chain. Let K be the uppermost maximal chainin T . Note �rst that reordering the nodes in K will not increase the height of the elimi-nation tree. Since G�K is disconnected, K is a separator in G and must contain a setof nodes C such that G � C is disconnected and no subset of nodes in C disconnectsG. Then C is a minimal separator. Reorder K such that the nodes in C are orderedlast and the nodes in K � C second to last leaving the rest of the etree unchanged.The height of the elimination tree has not increased and a minimal separator is noweliminated last. The result now follows from the induction hypothesis. 2Since Lemma 3.2 is true for any etree for a graph we have the following result:Theorem 3.3 Let G be a graph. Then there exists a minimal separator ordering on Gwith resulting etree T such that h(T ) = mh(G). 2Although Theorem 3.3 is unconstructive, it still points to how etrees of minimumheight can be constructed for restricted classes of graphs. This will be discussed furtherin Section 11.We now present another observation that can be made from Order(). This resultwill be used in the proof of Lemma 9.1. Let T be the etree of a general graph G. Letx 2 V (T ) and let B be the component of G induced by the nodes in T [x]. Then x willhave as many children in T as there are connected components of B � x. Since B � xcannot contain more connected components than the number of neighbors of x in G wehave the following result:Lemma 3.4 Let G be a graph and v 2 V (G) a node of degree d. Then v can have nomore than d children in any etree for G. 24 A reordering algorithmIn this section, we describe an algorithm for computing a low etree for a tree G. Aswill be shown in the subsequent sections, this algorithm in fact computes an orderingon G that results in an etree of minimum height.The �rst step of the algorithm is to order G by any perfect elimination orderingand to compute the etree T for G. The algorithm then tries to reduce the height of Tthrough a series of local reordering steps called rotations. These rotations are analogousto the rotations used to maintain balanced binary trees as described in [25]. For therest of this section we will assume that G is a tree with jV (G)j > 1.8



We start by de�ning a rotation. Let T be an etree for G such that v = root(T ) andlet x be a child of v in T . Let B = bw(x; v). If (x; v) 62 E(G) then B is nonempty. Inthis case let z be the root of the subtree in T consisting of the nodes in V (B). Thenp(z) = x in T . The etree T is as shown in Figure 1a. Without loss of generality weassume that x and v are consecutively ordered. Then a rotation with respect to x,consists of letting x and v switch places in the elimination ordering. From the nesteddissection view, this is equivalent to choosing x as the �rst separator instead of v. Thenode v is then chosen �rst among the nodes in the component of G � x that containsv. This means that p(v) = x after the rotation. Since B and v are now in the samecomponent of G � x we have p(z) = v after the rotation. All other parts of T remainunchanged in the new etree. The new etree is as shown in Figure 1b.
z

x

v

v

x

z

a bFigure 1:We now present the code to perform a rotation. For the time being we assume thatif (v; x) 62 E(G) then the function s(x) returns a pointer to the node z. If (v; x) 2 E(G)then T [z] is empty. In that case we assume that s(x) = x. In Section 8 we will showhow to initialize and maintain s(x) when the etree is reordered.Rotate(x)v := p(x);p(x) := p(v);p(v) := x;If s(x) 6= xp(s(x)) := v;End RotateIt is possible to perform Rotate(x) also when v is not the root of T . Thus we canperform a rotation with respect to any node in T other than root(T ). Also note that9



the e�ect of performing Rotate(x) can be reversed by performing Rotate(v). ThusRotate(x) followed by Rotate(v) leaves the etree unchanged.We now study how rotations can be used to reduce the height of an etree. Let Tbe as in Figure 1a and let T 0 be the etree after Rotate(x). Then T 0 is as in Figure1b. The rotation is called successful if h(T 0) < h(T ) and unsuccessful if h(T 0) � h(T ).Let h(T ) = k and assume that x is the only child of v in T of height k � 1. Thenh(T 0[v]) � k � 1 and each child y 6= v of x in T 0 satis�es h(T 0[y]) � k � 2. Thush(T 0) � h(T ). Since v is the only child of x in T 0 that can be of height k� 1 it followsthat the rotation is successful if and only if h(T 0[v]) � k � 2.Even if h(T 0[v]) = k�1 we can still hope to �nd an etree for G of lower height thank. This can be accomplished if we can reorder T 0[v] into an etree of height � k � 2.Based on this idea we now present the outline of a simple algorithm for reducing theheight of an etree. It takes an etree T [v] as input.The algorithm operates by performing a sequence of rotations r1; r2; :::; rl with respectto the current highest child of v. The rotations are performed until either v is a leaf inthe etree or until v has at least two children of maximum height. Finally the algorithmreverses a maximal sequence of rotations rl; rl�1; :::; rk such that each ri, k � i � l wasunsuccessful.Note that reversing the rotations rl through rk can be done by performing Rotate(v)k � l + 1 times.Let Ti be the etree after rotation ri, 0 � i � l, (T = T0). Then the height ofTi�1[v] will be reduced if and only if Ti[v] is ordered into an etree of height less thanh(Ti�1[v]) � 1. Thus by a simple inductive argument we have that if ri is the �rstsuccessful rotation then h(Tj) < h(T0), k � j � i. Since the algorithm returns Tk�1where either k = 1 or rk�1 is the last successful rotation, it follows that if at least onerotation is successful then the algorithm will be able to reduce the height of T [v].Before performing each rotation in the algorithm we store the current height of vin a stack S. This way we can test if the rotation was successful by comparing thetopmost element of S with h(v). We use the operation push to place a new element ontop of the stack and the operation pop to remove the topmost element and return itsvalue. We assume that each node has at least two children in T . This is accomplishedby adding dummy nodes of height �1 as children to each node with fewer than twochildren. To avoid having to treat root(T ) separately we assume that there exists aspecial node t 62 V (G) such that p(root(T )) = t. In the algorithm we assume that T is10



the data structure containing the etree.Tilt(v)x := A highest child of v in T ;y := A second highest child of v in T ;S := fg;While (h(v) > 0) and (h(x) > h(y))push(S; h(v));Rotate(x);x := A highest child of v in T ;y := A second highest child of v in T ;End WhileWhile (jSj > 0) and (h(v) = pop(S) - 1)Rotate(v);End TiltWe now give an example showing how Tilt can be used to reduce the height of an etree.Example 4.1 Consider the tree G in Figure 2a. Figure 2b shows a possible etreeT for G. Note that the only tree edge which is not in G is hf; bi. Figure 2c through2e show the e�ect of performing Tilt(b) on T . As can be seen, three rotations areperformed with respect to the current highest child of b. Only the �rst rotation issuccessful. Thus the algorithm backtracks and returns the etree in Figure 2c.
i

b

d

f

h

j

a

c

e

g

i

b

a

c
e

f

d
h

g
j

i
i

h

f

j

b

a

c

e

d
g

j

d h

b

a

e

f

c
g

d h

i

a

b

e

f

c
g

j

a b c d eFigure 2:Note that Tilt can also be implemented as a recursive procedure. If h(v) > 0 andh(x) > h(y) then Tilt would perform Rotate(x) thereby reordering T [v] into T 0[x]. Tiltthen calls itself recursively with T 0[v] as argument. Let T 00 be the resulting etree fromthis call and let r be the child of x in T 00 such that V (T 00[r]) = V (T 0[v]). Then if11



h(T 00[r]) = h(T [v])�1 no successful rotation has been performed and each but the �rstrotation has been reversed. Thus r = v and the �rst rotation is reversed by performingRotate(r). If h(T 00[r]) < h(T [v])� 1 then at least one rotation has been successful andT 00 is left unchanged. In Section 7 we will use this recursive formulation of Tilt to provethat Tilt reorders a special kind of etree into an etree of minimum height.We now state our main algorithm for computing a low etree for the tree G. It isbasically a driver routine for Tilt.Min HeightOrder G by any perfect elimination ordering;Construct T ;Perform a postorder traversal of T and for each visited node v 6= t do:Tilt(v);End Min HeightThe discussion on the time complexity of the Min Height algorithm is postponed untilSection 9. This is because the time complexity is strongly dependent on the heightof v when performing Tilt(v). Note however that the initial ordering of G and theconstruction of T can be done in O(n) time. Sections 5 through 10 will concentrate onshowing that Min Height produces an etree for G of minimum height and in doing soit does not result in more than n� 1 �ll edges.5 Minimum height etreesIn this section we present a lemma on mh(G) and mh(B) where B is a subgraph of ageneral graph G, along with two corollaries. These results will be used when provingthat Min Height �nds an etree of minimum height for a tree.Lemma 5.1 Let G be a connected graph and B a connected subgraph of G. Thenmh(B) � mh(G).Proof: Let � be an ordering on G that gives an etree of minimum height. Order thenodes in B in the same relative order as in �. Let (x; y) 2 E(B�) be a �ll edge in B�.By the path lemma [23] we know that there exists a path from x to y in B throughnodes numbered lower than both x and y. Since the nodes in B are ordered in the samerelative order as in G we see that this path must also exist in G and that (x; y) 2 E(G�).12



Thus it follows that E(B�) � E(G�). It is known [16] that the height of the etree isthe length of the longest monotone path in the �lled graph. Since E(B�) � E(G�), wesee that any monotone path in B� must also exist in G�. Thus it follows that B has anetree that is no higher than mh(G). 2The �rst corollary shows how close the height of an etree is to the minimum heightwhen each subtree hanging from the root of the etree is of minimum height.Corollary 5.2 Let G be a graph with etree T where each component of G� root(T ) isa subtree of T of minimum height. Then h(T ) = mh(G) or h(T ) = mh(G) + 1.Proof: By Lemma 5.1 each component B of G� root(T ) has mh(B) � mh(G). Thush(T ) � mh(G) + 1. The result follows since mh(G) � h(T ). 2The next corollary shows that a certain type of etree is of minimum height.Corollary 5.3 Let G be a graph with etree T where each component of G � root(T )is a subtree of T of minimum height. If the two highest children of v in T are of equalheight then T is of minimum height.Proof: Since v has at least two children of minimum height k, G� v must containtwo connected components B and C such that mh(B) = k and mh(C) = k. Thusany etree with v as root will be of height � k + 1. Let T 0 be an etree for G wherex = root(T 0) and x 6= v. The component D of G�x that contains v also contain eitherB or C as a subgraph. By Lemma 5.1 mh(D) � k giving h(T 0) � k + 1. 26 Tilted etreesIn this section, we will de�ne a special kind of etree for a tree, called a tilted etree. Wewill show that a tilted etree is well de�ned and that it is always of minimum height.As we shall see in Section 7, the algorithm Find Min produces a tilted etree. Beforethe de�nition we need some intermediate results. The �rst result concerns which nodecan be the root of an etree of minimum height. From this section through Section 10we will assume that G is a tree on n nodes.Lemma 6.1 Let T and T 0 be two etrees for G such that h(T ) = h(T 0) = mh(G). Thenfor each node wj on the path root(T ); w1; w2; :::; wl;root(T 0) in G, there exists an etreeTj for G, such that root(Tj) = wj and h(Tj) = mh(G).13



Proof: Let k = mh(G), x = root(T ) and y = root(T 0). Let wj be a node on the pathx; w1; w2; :::; wl; y in G. Since h(T ) = k and h(T 0) = k it follows that each componentB of G � x satis�es mh(B) � k � 1 and that similarly each component C of G � ysatis�es mh(C) � k� 1. Let B1 be the component of G� x containing wj (and y) andlet C1 be the component of G� y containing wj (and x). Then G is as in Figure 3.Let D1 be any component of G�wj such that x 62 V (D1). Since G is a tree it followsthat D1 � B1. Since mh(B1) � k � 1 we see from Lemma 5.1 that mh(D1) � k � 1.Let D2 be the component of G�wj such that x 2 V (D2). Then D2 � C1 and it followsfrom Lemma 5.1 that mh(D2) � k � 1. Thus each component D of G � wj satis�esmh(D) � k � 1. An etree Tj, where root(Tj) = wj and where each subtree hangingfrom wj in Tj is of minimum height, will then have h(Tj) = k. 2
x ywj

B1

w2
C1 w1 wl

Figure 3:The following corollary is a direct consequence of Lemma 6.1:Corollary 6.2 The set of nodes that can be chosen as the root of an etree of minimumheight for G, form a connected component in G. 2We are now in a position to de�ne the node that will be the root of a tilted etree.De�nition 6.3 (cG(x)) For a given node x 2 V (G), let cG(x) be a node in V (G)satisfying the following two conditions:1. There exists an etree T for G such that h(T ) = mh(G) and root(T ) = cG(x).2. Over all nodes in V (G) satisfying condition 1, dist(cG(x); x) is minimum.The node cG(x) is thus a closest node to x in G that can be chosen as the root of anetree of minimum height. Note that if there is an etree T of minimum height such thatroot(T ) = x then cG(x) = x. Given x, we now show that there is exactly one node inV (G) satisfying the conditions of De�nition 6.3.14



Lemma 6.4 Given x, the node cG(x) exists and is unique.Proof: Let S be the set of nodes that can be the root of an etree of minimum height forG. Since there exists an etree of minimum height, S is nonempty. Assume that thereexists at least two distinct nodes y; z 2 S such that among the nodes in S, they are bothof minimum distance from x in G. Then there exist unique paths y; v1; v2; :::; vl = xand z; w1; w2; :::; wl = x in G such that vi; wi 62 S, 1 � i � l. Let u = minfi j vi = wig.Note that u exists since wl = vl = x. From Corollary 6.2 we know that there exists apath from y to z in G consisting entirely of nodes in S. This path together with thepath from y to u and the path from u to z give a cycle in G, contradicting the factthat G is a tree. It follows that there exists exactly one node in S of minimum distancefrom x in G. 2Now we are ready to de�ne a tilted etree.De�nition 6.5 (Tilted etree) Let T be an etree for G and let x be any node in V (G).Then T is tilted towards x if the following two conditions are satis�ed:1. The node cG(x) is the root of T .2. Each component B of G � root(T ) is ordered so that its elimination subtree TBof T , is tilted towards the node z 2 V (B) such that dist(z; x) is minimum overall nodes in V (B).Note that if x 2 V (B) in De�nition 6.5 then z = x, and if x 62 V (B) then z is the nodein V (B) such that (z; cG(x)) 2 E(G). Just as we did for cG(x), we now show that theetree tilted towards x is well de�ned.Lemma 6.6 Let x be a node in V (G). Then there exists a unique etree T that is tiltedtowards x.Proof: The proof is by induction on the number of nodes in G. The result is trivial ifjV (G)j = 1. Assume that the result is true for all trees with less than n nodes and thatjV (G)j = n > 1. From Lemma 6.4 we know that cG(x) exists and is unique. Let B be acomponent of G� cG(x). Because G is a tree there exist a unique node z 2 V (B) suchthat dist(z; x) is minimum over all nodes in B. Since jV (B)j < n it follows from theinduction hypothesis that there exists a unique etree TB for B that is tilted towards z.Thus both cG(x) and TB exists and are unique and the result follows. 2As promised we now show that a tilted etree is of minimum height.15



Lemma 6.7 Let x be a node in V (G). Then the etree T tilted towards x is of minimumheight.Proof: The proof is by induction on the number of nodes in G. The result is trivialif jV (G)j = 1. Assume that the result is true for all trees with less than n nodes andthat jV (G)j = n > 1. Let T be an etree for G that is tilted towards x and let T 0 be anetree of minimum height where root(T 0) = cG(x). Let B be a component of G� cG(x)and let TB be its subtree of T and T 0B its subtree of T 0. Since jV (B)j < n it followsfrom the induction hypothesis that h(TB) = mh(B). This implies that h(TB) � h(T 0B)and that h(T ) � h(T 0). Since h(T 0) = mh(G) we must have h(T ) = mh(G). 2It should be made clear that the converse of Lemma 6.7 is not true in general:h(T ) = mh(G) does not imply that T is tilted towards some node.7 Merging tilted elimination treesIn this section, we will show that Min Height returns an etree of minimum height. Thisis done by �rst showing that the procedure Tilt presented in Section 4 produces a tiltedetree if it is given a semi-tilted etree. Then we show that the etrees that Min Heightpasses on to Tilt are semi-tilted. A semi-tilted etree is a relaxed version of a tiltedetree. If x is a node in V (G) then in a semi-tilted etree we have x as the root insteadof cG(x). This is the only di�erence between a semi-tilted etree and an etree tiltedtowards x. The formal de�nition is as follows:De�nition 7.1 (Semi-tilted) An elimination tree T is semi-tilted if each componentB of G� root(T ) is ordered so that its elimination subtree TB of T is tilted towards theunique node u 2 V (B) such that (u; root(T )) 2 E(G).If we remove the root x of a semi-tilted etree T we get a number of tilted subtrees.As we shall see, the e�ect of Tilt(x) is that the tilted subtrees hanging from x in T aremerged together with x into a new etree that is tilted towards x. From Corollary 5.2we know that if T is semi-tilted then either h(T ) = mh(G) or h(T ) = mh(G) + 1.In Lemmas 7.2 through 7.7, we will show a number of properties of semi-tiltedetrees. These properties will be used to show that Tilt produces a tilted etree if it isgiven a semi-tilted etree. In each lemma we assume that T is a semi-tilted etree ofheight k > 0 and that x is a highest child of v = root(T ) in T . If v has more thanone child in T let y be a second highest child of v in T . Thus h(T [x]) = k � 1 and if16



y exists h(T [y]) � k � 1 (otherwise assume h(y) = �1). Also let T 0 be the etree afterperforming Rotate(x).The following names will be used for di�erent components of G. Let B be thecomponent of G� x containing v. Let C be the component of G� v containing x. LetD = bw(x; v). If (x; v) 62 E(G) let v; w1; w2; :::; wl; x be the nodes on the path from vto x in G. Then G is as in Figure 4.
x

G-B
D

wlwl-1w2

C

v w1

Figure 4:Lemma 7.2 If h(x) = h(y) in T then mh(G) = k.Proof: From De�nition 7.1 the etrees T [x] and T [y] are both tilted. From Lemma 6.7we know that T [x] and T [y] are of minimum height. From Corollary 5.3 it then followsthat if h(T [x]) = h(T [y]) then mh(G) = k. 2Lemma 7.3 If mh(G) = k then T is tilted towards v.Proof: Note �rst that mh(G) = k implies that T is of minimum height. Since v is theroot of T it follows that cG(v) = v. Let F be a component of G� v and let TF be itselimination subtree of T . Since T is semi-tilted, TF is tilted towards the node z 2 V (F )such that (z; v) 2 E(G). Since G is a tree it follows that z is the closest node to v in Gamong the nodes in V (F ). Thus TF satis�es condition 2 of De�nition 6.5. This showsthat if mh(G) = k then T is tilted towards v. 2Lemma 7.4 mh(G�B) = k � 1.Proof: The etree T [x] is tilted towards the node u such that (u; v) 2 E(G). Thus T [x]is of minimum height k� 1. If x = u (i.e., D = ;), the result then follows immediatelyfrom the fact that V (T [x]) = G � B. Suppose therefore that x 6= u. Then u = w1.Since V (T [x]) = V (C) and D � (C � fxg) we must have mh(D) � k � 2. Note17



that dist(w1; wl) < dist(w1; x) and that cC(w1) = x. This implies that there does notexist an etree for C of height k � 1 with wl as its root. This again implies that somecomponent F of C�wl must have mh(F ) = k� 1. Let H be any component of C�wlsuch that x 62 V (H). Then since H � D and mh(D) < k � 1 we see from Lemma 5.1that mh(H) < k � 1 and it follows that H 6= F . Since G � B is the component ofC � wl containing x, we must have F = G� B and mh(G� B) = k � 1. 2Lemma 7.5 If mh(G) = k � 1 then cG(v) = x.Proof: Note that x is the closest node in V (G� B) to v. First we will show that nonode in V (B) can be the root of an etree for G of height k� 1. Then we will show thatif there exists an etree of height k � 1 with a node from V (G� B) as root, then theremust also exist an etree of height k� 1 with x as its root. From this it will follow thatif mh(G) = k � 1 then cG(v) = x.Let T1 be an etree for G where z = root(T1) and z 2 V (B). Then there existsa component F of G � z such that (G � B) � F . From Lemma 7.4 we know thatmh(G � B) = k � 1. Thus from Lemma 5.1 mh(F ) � k � 1. This implies thath(T1) � k and that no node in V (B) can be the root of an etree of height k � 1.Suppose now that there exists an etree T2 of height k � 1 where z = root(T2) andz 2 V (G� B). Then each component F of G� z satis�es mh(F ) � k � 2. Let H bethe component of G� z containing v. Since B � H it follows from Lemma 5.1 that wemust also have mh(B) � k�2. Since h(T [x]) = k�1 each component I of (G�B)�xhas mh(I) � k� 2. Now we have shown that each component of G� x has an etree ofheight � k � 2. It follows that there exists an etree for G of height k � 1 with x as itsroot.Thus we can conclude that if mh(G) = k � 1 then cG(v) = x. 2Lemma 7.6 The etree T 0[v] is semi-tilted.Proof: We must show that each subtree T 0[u] where p(u) = v in T 0, is tilted towardsthe node s in V (T 0[u]) such that (s; v) 2 E(G). Let T 0[u] be a subtree of T 0 suchthat p(u) = v in T 0 and V (T 0[u]) 6= V (D). Then T 0[u] = T [u] and p(u) = v in T .Since T is semi-tilted, the etree T 0[u] is tilted towards the node s 2 V (T 0[u]) such that(s; v) 2 E(G).If D is nonempty the nodes in D form a subtree T [z] of T and a subtree T 0[z] ofT 0 such that T [z] = T 0[z]. Moreover, p(z) = x in T and p(z) = v in T 0. (See Figure 1a and 1 b.) The node z is the only child of v in T 0 that was not a child of v in T . It18



remains to show that T 0[z] (and thus T [z]) is tilted towards the node w1 2 V (D). Thesubtree T [x] is tilted towards w1. Since w1 2 V (D) it follows from De�nition 6.5 thatT [z] (and T 0[z]) is also tilted towards w1. Thus T 0[v] is semi-tilted. 2Lemma 7.7 mh(G) = k � 1 if and only if mh(T 0[v]) � k � 2.Proof: ()) From Lemma 7.5 we know that if mh(G) = k � 1 then cG(v) = x. Thusif mh(G) = k � 1 each component F of G � x satis�es mh(F ) � k � 2. The resultfollows since T 0[v] consists of all the nodes in B and B is the component of G� x thatcontains v.(() From Lemma 7.5 we know that if mh(G) = k � 1 then there exists an etreeof height k � 1 with x as its root. Since h(T [x]) = k � 1, each child z 6= v of x in T 0satis�es h(T 0[z]) � k � 2. Thus mh(G) = k � 1 if mh(T 0[v]) � k � 2. 2Now we are in a position to show the following lemma on the e�ect of Tilt on asemi-tilted etree.Lemma 7.8 Let T be an etree with v = root(T ). If T is semi-tilted then Tilt(v) willreorder T into an etree that is tilted towards v.Proof: The proof is by induction on the height of T . Let x be a highest child of v in Tand y a second highest child of v in T (h(y) = �1 if v only has one child). As discussedin Section 4, Tilt can be implemented as a recursive procedure that performs Rotate(x)if h(v) > 0 and h(x) > h(y) and then calls itself with v as argument. Depending onthe outcome of this call the etree is either left unchanged or T is restored by a call toRotate(v).The induction hypothesis is: If T is semi-tilted and h(T ) < k then Tilt(v) returnsan etree tilted towards v.If h(T ) = 0 then Tilt leaves T unchanged. It is easy to see that T is tilted towardsv in this case.Assume now that the induction hypothesis is true and that h(T ) = k > 0. Ifh(T [x]) = h(T [y]) then Tilt exits without altering T . From Lemma 7.2 it follows thatT is of minimum height and from Lemma 7.3 it follows that T is tilted towards x. Theinduction hypothesis is thus proved true in this case.Assume that h(T [x]) > h(T [y]). Tilt then performs a rotation with respect to x toget a new etree T 0. Since x is the only child of v of height k�1 in T we have h(T 0[v]) < k.From Lemma 7.6 it follows that T 0[v] is also semi-tilted. From the induction hypothesis19



we know that Tilt will �nd an etree for T 0[v] that is tilted towards v, and therefore alsoof minimum height. Let T 00 be the new etree after reordering T 0[v] into an etree thatis tilted towards v and let r be the child of x in T 00 such that v 2 V (T 00[r]). Now welook at two di�erent cases depending on the height of T 00[r].First we consider the case when h(T 00[r]) = k � 1. In this case Tilt will performRotate(r) and exit. From Lemma 7.7 we know that h(T 00[r]) = k � 1 implies thatmh(G) = k. Since mh(G) = k we see from Lemma 7.3 that T is tilted towardsv. Thus we must show that Rotate(r) restores T . Since mh(G) = k we must haveh(T 0[v]) = k � 1 or else h(T 0) < k. Thus T 0[v] is of minimum height. From Lemma7.6 we know that T 0[v] is semi-tilted. Since T 0[v] is of minimum height and semi-tiltedit follows from Lemma 7.3 that T 0[v] is tilted towards v. Thus T 0[v] = T 00[r] and byperforming Rotate(r) Tilt restores T .Assume now that h(T 00[r]) < k � 1. Then Tilt exits without altering T 00. We mustshow that T 00 is tilted towards v. From Lemma 7.7 it follows that if h(T 00[r]) < k � 1then mh(G) = k � 1. From Lemma 7.5 we know that cG(v) = x. Since root(T 00) = xit remains to show that each subtree hanging from x in T 00 is tilted towards the nodez that is closest to v in G. We already know from the induction hypothesis that T 00[r]is tilted towards v. Let s be a child of x in T 00 other than r. Then T [s] = T 00[s] andp(s) = x both in T and in T 00. The etree T [x] is tilted towards the node q 2 V (T [x])such that (q; v) 2 E(G). If q 6= x then q 2 V (T 0[v]) and q 2 V (T 00[r]). Thus T 00[s] (andT [s]) is tilted towards the node z 2 V (T 00[s]) such that (z; x) 2 E(G). Since G is a tree,z is the closest node to x; q and v in G among the nodes in V (T 00[s]). We have nowshown that T 00 satis�es each condition in De�nition 6.5 and is therefore tilted towardsv. 2Now we can show the main result of this section.Theorem 7.9 Min Height(G) returns an etree of minimum height for G.Proof: Min Height initially constructs an etree T such that for each node x 6= root(T )we have (x; p(x)) 2 E(G). The nodes are then visited in postorder and for each nodev the procedure Tilt(v) is called. We now prove by induction on the height of v in Tthat the etree rooted at v is semi-tilted when Tilt(v) is called.If h(v) = 0 then T [v] is clearly semi-tilted. Assume that the induction hypothesisis true for each node of height < k in T . Let v be a node of height k in T , k > 0.Each child x of v in T is of height < k in T and is visited before v. From the induction20



hypothesis and Lemma 7.8 we know that when v is visited T [x] has been reordered intoan etree that is tilted towards x. Since (x; v) 2 E(G) it follows that v is the root of asemi-tilted etree T 0[v] before Tilt(v) is called. Thus Tilt(v) reorders T 0[v] into an etreethat is tilted towards v and the induction hypothesis is proved true.The last call to Tilt is done with argument v = root(T ). The node v is the rootof a semi-tilted etree containing each node in V (G). Since the induction hypothesis isproven true it follows that the resulting etree is tilted towards v and therefore also ofminimum height. 28 Some details of the implementationIn this section we will look at some of the details of the procedure Tilt as presentedin Section 4. Speci�cally we will show how to implement the two functions s() andh(). This must be done before we can give an analysis of the time complexity ofMin Height. The reason for giving these details here rather than in Section 4 is thatthe implementation of the function h() depends on the fact that Min Height returnsan etree of minimum height.First we look at s(). Let T be the current etree at the time of calling Tilt(v). Letx be a highest child of v in T . If x is the only child of v in T of height h(T [v])� 1 thenTilt will perform Rotate(x). If bw(x; v) 6= ; then prior to performing Rotate(x), s(x)must point to the root of the subtree of T consisting of the nodes in bw(x; v). SinceT [v] is semi-tilted this is achieved if s(x) points to the child z of x in T such that zis an ancestor of the node that T [x] is tilted towards. If bw(x; v) = ; then s(x) mustpoint to x. We assume that this is true for each node in T [v] except v, at the time ofcalling Tilt(v). The code we will give here ensures that this will be true for each nodeoriginally in T [v] when Tilt exits.The following code is added right after Rotate(x) inside the �rst while loop of Tilt:s(x) := v;s(p(x)) := x;Note that s(p(x)) = v is true before each but the �rst rotation in the �rst while loop.After the execution of the �rst while loop, s() will be correct for each node originallyin T [v] except v. In the second while loop of Tilt we might want to reverse some ofthe rotations performed in the �rst while loop. This is done by executing Rotate(v) anumber of times. Let x = p(v) prior to such a rotation. Also let z be the root of the21



subtree of the current etree consisting of the nodes in bw(x; v). To be able to locate zwe use a temporary pointer t() associated with x. Prior to Rotate(x) in the �rst whileloop we add:t(x) := s(x);Then if bw(x; v) 6= ;, t(x) will point to z before executing Rotate(v), and to x ifbw(x; v) = ;. We also rewrite the body of the second while loop as follows:x := p(v);If t(x) = xs(v) := velses(v) := t(x);Rotate(v);s(x) := t(x);s(p(x)) := v;This ensures that s() will be correct for each node in T [v] except v when the secondwhile loop is done. When Tilt exits, the etree rooted at v is tilted towards v. Wetherefore add:s(v) := v;after the second while loop. Then if s() is correct for each node in T [v] except v whenTilt(v) is called, s() will be correct for each node originally in T [v] when Tilt exits. Toinitialize s() we set s(x) = x in Min Height for each node such that h(x) = 0 in theoriginal etree.We now discuss how to maintain the height of each node as Tilt reorders a semi-tiltedetree into a tilted etree. Let ch(v) be a function that returns maxfh(x)+1 j p(x) = vg.Note �rst that if we initially know the height of each node in T [v] then the �rstwhile loop in Tilt will function correctly even if we do not update the heights of v andp(v) after each rotation. However, we must use a test other than h(v) > 0 in order todetermine whether v is a leaf in the etree. This can be done by testing whether v hasany children in the etree. If we do not update any heights in the �rst while loop, theonly heights that might be incorrect at the start of the second while loop are those ofv and its ancestors. For the second while loop to function correctly we only need tokeep the height of v updated. To do this we rewrite the second while loop as follows:22



h(v) := ch(v);h(p(v)) := ch(p(v));While (jSj > 0) and (h(v) = pop(S)-1)x := p(v);Rotate(v);h(x) := ch(x);h(v) := ch(v);h(p(v)) := ch(p(v));End WhileNote that this does not include the extra code to maintain s(). After executing Tiltthe only heights that might be incorrect are those of the ancestors of p(v). To assurethat these are correct we add the following code in the �rst while loop after Rotate(x):h(v) := ch(v)� 1;h(x) := ch(x);To see that this is su�cient for computing the correct height of each node originallyin T [v] we need the following lemma.Lemma 8.1 The height of each node initially in T [v] will be correct when Tilt exits.Proof: As discussed we need to show only that the height of the ancestors of p(v)are correct when Tilt exits. Let x be a node originally in T [v] that is an ancestorof p(v) when Tilt exits. At some stage of the �rst while loop Rotate(x) must havebeen performed. Let T 0 be the resulting etree from this rotation. The height of x isnow computed under the assumption that h(T 0[v]) is one lower than what it actuallyis. Let B be the component of G consisting of the nodes in V (T 0[v]). Since x is anancestor of p(v) when Tilt exits we must have been able to �nd an etree T 00B for Bsuch that h(T 00B) < h(T 0[v]). Since T 0[v] is semi-tilted it follows from Corollary 5.2 thath(T 00B) = h(T 0[v])� 1. Thus it was correct to assume that h(T 0[v]) was one lower thanit actually was at the time of computing h(x). 2From the above discussion we see that if we can �nd ch() in constant time thenkeeping track of the height of each node will not increase the asymptotic running timeof Tilt. To be able to implement ch() e�ciently we assume that each node y has itscurrent children in the etree, in a heap ordered by decreasing height. The heap is a23



standard heap as described in [25]. The heap is updated after a rotation that involves yis performed and the new height of y has been computed. If v = p(x) and u = p(v) thenafter performing Rotate(x) we must update the heaps of x; v and u. Since the heightof v and p(v) are recomputed prior to the second while loop in Tilt we also update theheap of p(v) just before the second while loop.9 Time complexityIn this section, we give an upper bound on the time complexity of Min Height. Westart by giving a time bound on Tilt. Let d be the maximum vertex degree of a nodein G.Lemma 9.1 Let T be the etree at the time of calling Tilt(v). Then the time complexityof Tilt(v) is O(h(T [v]) logd).Proof: In the �rst while loop of Tilt a number of rotations are performed on the cur-rent highest child of v until either v is a leaf or v has at least two children of maximalheight. In each rotation the height of v is reduced by at least one. Thus we performat most h(T [v]) rotations in the �rst while loop. In the second while loop we performRotate(v) until either v is not the only child of p(v) of maximum height or until T [v] isrestored. Each rotation reverses a rotation performed in the �rst while loop. Thus wedo not perform more than 2h(T [v]) rotations in each call to Tilt. After each rotationthree heaps must be updated. A heap update is also performed before the second whileloop. Thus we do not perform more than 6h(T [v]) + 1 heap updates. From Lemma3.4 we know that no node has more than d children in the etree. Thus it follows from[25] that each update of the heap can be done in O(log d) time giving a total time ofO(h(T [v]) logd) for Tilt. 2Now we can show the main result of this section.Theorem 9.2 The time complexity of Min Height(G) is O(n logn log d)Proof: The initial ordering of G and construction of T can be done in linear time.When Tilt(v) is called the etree rooted at v is semi-tilted. This implies that h(T [v]) �blognc + 1. The result now follows from Lemma 9.1 since Tilt is called once inMin Height for each node in G. 2 24



It is also clear from the code in Section 4 and Section 8 that Min Height does notrequire more space than a constant times the number of edges and nodes in G. ThusMin Height requires O(n) space.10 Fill-inIn this section, we will show that if G is ordered so that its etree T is tilted then thenumber of �ll edges in G� is at most n�h(T )� 1. Note �rst the following lemma from[17] concerning �ll edges.Lemma 10.1 Let H be a general graph with elimination tree T and let x be a nodein V (H). Then there is a �ll edge between a node y 2 T [x] and x if and only if(x; y) 62 E(H) and there exists a node z 2 T [y] such that (z; x) 2 E(H). 2Let T be the etree of G and let v; x 2 V (G) such that p(x) = v in T . Then since Gis a tree there is exactly one node z in T [x] such that (z; v) 2 E(G). From Lemma10.1 it follows that there is a �ll edge between each proper ancestor of z in T [x] and v,and that no other node in T [x] has a �ll edge to v. Thus if z has k proper ancestorsin T [x] then there are exactly k �ll edges between v and the nodes in T [x]. Note thatk � h(T [x]).We now de�ne a partitioning of the nodes in a tilted etree into paths in the etree.This partitioning will be used to give a bound on the number of �ll edges if G is orderedso that its etree is tilted. For the rest of this section we assume that T is tilted (towardssome node).De�nition 10.2 (t-path) Let T [u] be a subtree of T such that T [u] is tilted towards u.Let further u = w0; w1; :::; wl be a maximal path in T such that p(wi) = wi+1, 0 � i < l,and T [wi] is tilted towards u for 0 � i � l. Then w0; w1; :::; wl is a t-path in T .To see that the t-paths actually partitions V (T ) we need the following lemma:Lemma 10.3 Each node in V (T ) is on exactly one t-path.Proof: Let x be a node in V (T ). Then T [x] is tilted towards some node u 2 V (T [x]).This implies that x can be on at most one t-path. We will show that T [wi] is tiltedtowards u, for each node wi on the path u = w0; w1; :::; wl = x in T . This will thenimply that x is on a t-path. The proof is by induction on the distance of each wi from25



x in T . We already know that T [x] is tilted towards u. Assume that T [wi] is tiltedtowards u for some i > 0. Let B be the component of G containing the nodes in T [wi].Then the nodes in T [wi�1] form a connected component C of B � wi containing u.Since u 2 V (T [wi�1]) and dist(u; u) = 0 it follows from De�nition 6.5 that T [wi�1] istilted towards u. Thus the induction hypothesis is proved true and the result follows. 2Let T [v] be a subtree that is tilted towards u and let y be a child of v in T thatis not an ancestor of u. Then from De�nition 6.5, T [y] is tilted towards the node z inV (T [y]) that is closest to u in G. Since G is a tree it follows that (z; v) 2 E(G). SinceT [y] and T [v] are tilted towards two di�erent nodes, y must be the topmost node of at-path z = w0; w1; :::; wl = y. Thus there is a �ll edge from v to each wi, 1 � i � l, andto no other node in V (T [y]).We now show that the each non-leaf node in T has a child of maximum height thatis the topmost node of some t-path.Lemma 10.4 Let wi be a node on a t-path w0; w1; :::; wl in T , where h(wi) = k > 0.Then wi has a child y in T such that h(T [y]) = k � 1 and y is the topmost node of at-path.Proof: If i = 0 the result is obviously true since each child of w0 is the topmost node ina t-path. Assume therefore that i > 0. Let B be the component of G that contains thenodes in T [wi]. Let C be the component of B�wi that contains w0 and let D = B�C.Then from Lemma 7.4, mh(D) = k > 0. Thus there must exists a nonempty compo-nent E of D � wi such that mh(E) = k � 1. In T , the nodes in E consist of a subtreehanging from wi of height k� 1. Let y be the root of this subtree. Then since y 6= wi�1the node y is the topmost node of a t-path. 2We can now give a bound on the number of �ll edges between the nodes in anysubtree of T . For ease of notation we will denote jV (T [v])j by f(v).Lemma 10.5 Let wi be a node on a t-path w0; w1; :::; wl in T . Then there are at mostf(wi)� h(wi)� (i + 1) (1)�ll edges between the nodes in T [wi]. 26



Proof: The proof is by induction on the height of wi. If h(wi) = 0 then i = 0 andf(wi) = 1. Substituting this into (1) there can be no �ll edges between the nodes inT [wi] if the induction hypothesis is to hold. But since T [w0] consists of a single nodewhen h(w0) = 0 this is obviously true. Assume that the lemma is true for all nodes xwhere 0 � h(x) < k, and let h(wi) = k. From Lemma 10.4 it follows that wi has a childx such that h(x) = k � 1 and x is the topmost node of a t-path u0; u1; :::; ur = x in T .From the induction hypothesis we know that there are at most f(x)� (k� 1)� (r+1)�ll edges between the nodes in T [x]. There are r �ll edges between wi and the nodesin T [x] giving a total of no more thanf(x)� k (2)�ll edges involving wi and the nodes in T [x]. Let y1; y2; :::; ym be children of wi in Tsuch that for 1 � j � m, yj 6= x and if i > 0 then yj 6= wi�1. Then each yj is thetopmost node of a t-path. From the same argument used on T [x], we see that thereare at most f(yj)� h(yj)� 1 < f(yj) (3)�ll edges involving wi and the nodes in T [yj]. If i > 0 then wi�1 is also a child of wiin T . From the induction hypothesis there are at most f(wi�1)� h(wi�1)� i �ll edgesamong the nodes in T [wi�1]. There are no more than h(wi�1) �ll edges between wi andthe nodes in T [wi�1]. Thus there are at mostf(wi�1)� i (4)�ll edges involving wi and nodes in T [wi�1].If i = 0 then f(x) +Pmj=1 f(yj) = f(w0) � 1. Combining this with (2) and (3) wesee that there are no more than f(w0)� k� 1 �ll edges in T [w0]. Substituting i = 0 in(1) we see that the induction hypothesis is true in this case.If i > 0 then f(x) + f(wi�1) +Pmj=1 f(yj) = f(wi) � 1. From (2), (3) and (4) itfollows that there can at most be f(wi) � k � (i + 1) �ll edges in T [wi]. This is thesame as (1) and the induction hypothesis is proved true. 2Now we can give an upper bound on the number of �ll edges in T .27



Theorem 10.6 If T is tilted towards some node x then G� contains at most n�h(T )�1�ll edges.Proof Let w0; w1; :::; wk be the t-path in T such that wk = root(T ). The result followsfrom Lemma 10.5 since f(root(T )) = n and n� h(T )� (k + 1) � n� h(T )� 1. 2Since h(T ) � 0 it follows from Theorem 10.6 that there can never be more thann � 1 �ll edges in G�. To see that the bound from Theorem 10.6 is sharp consider agraph G on n = 2k nodes on a single path, where v 2 V (G) is a node of degree one. IfT is tilted towards v then h(T ) = k and there are n� k� 1 �ll edges in G�. The proofof this is left as an exercise for the reader.11 Other applicationsIn this section, we consider how the results in this paper might help us �nd low etreesfor more general classes of graphs. We consider the problem of computing an etree ofminimum height for a chordal graph. But �rst we mention a possible generalization ofrotations to general graphs.One way in which rotations can be generalized to etrees for general graphs is toperform rotations on maximal chains in the etree instead of on single nodes. Let T bean etree for a general graph G and let K = fk1; k2; :::; ksg be the uppermost maximalchain in T and L = fl1; l2; :::; ltg a maximal chain so that p(lt) = k1 in T . Without lossof generality we can assume that L and K are ordered consecutively. A generalizedrotation consists of letting the nodes in K and L switch places in the eliminationordering while maintaining the internal order among the nodes in K and L.The e�ect of a rotation is more complicated for a general graph than for a tree. LetT 0 be the etree after performing the rotation. Then the structure of each subtree of Tconsisting of nodes in G�K � L will remain unchanged. The structure of L will alsoremain unchanged except that lt = root(T 0). The only structural di�erences betweenT and T 0 apart from p(lt), involve K and p(x) where x is a child of l1 in T . Withoutgoing into the details we note that it is possible that K will break into more than oneconnected component. Each such component will hang from some lj in T 0. It is alsopossible that some children of l1 in T become children of nodes in K in T 0. In termsof the height of T 0 it is favorable if K breaks up and if the children of l1 in T remainas children of l1 in T 0. The worst possible scenario in terms of the height of T 0 is whenK is a chain that hangs from l1 in T 0. Let x be the highest child of l1 in T and y the28



highest child of k1 in T . Then if h(T [y]) � h(T [x]) we get h(T 0) � h(T ) even if K isconnected in T 0.Whether generalized rotations can be used in a practical algorithm for reducing theheight of an etree for a general graph needs further study.We now consider whether it is possible to compute an etree of minimum height for achordal graph based on the results presented in this paper. There are three key reasonswhy it is possible to compute an etree of minimum height for a tree e�ciently. The�rst is that in a tree G there are a limited number of easily identi�able separators. Thesecond is that each connected subgraph of G is also a tree. The third is that if for somenode v 2 V (G) we know mh(B) for each component B of G � v, then we can decidein which component of G� v to look for the root of an etree of minimum height. Theintroduction of tiltedness improves the e�ciency of this search.We investigate how well these properties extend to chordal graphs. From Theorem3.3 we know that there for any graph exists a minimal separator ordering giving anetree of minimum height. From [22] it is known that every minimal separator K of achordal graph G is a clique and that every connected component of G�K is chordal.Thus we only have to consider separators that are cliques and every subgraph thatneeds to be considered will also be chordal. There are at most n�1 minimal separatorsin a chordal graph [4]. By the use of clique trees these can be identi�ed in linear time[14]. From this we see that the �rst two conditions extend to chordal graphs. However,as shown below the third condition does not necessarily extend.Let K be a minimal separator of the chordal graph G and let B be a component ofG�K such that mh(B) is maximal over all components of G�K. There exists thenan etree T for G of height jKj +mh(B). From this one might be lead to believe thatthe top separator for an etree of minimum height for G must be found among the nodesin B and K. However, this is not true in general. If a minimal separator C 6� fK;Bgis used as the topmost separator then some component D of G�C will contain B as asubgraph. But if jCj < jKj then the only lower bound one can give on the height of anetree with C as the topmost separator is jCj+mh(B). If jCj < jKj it is possible thatan etree with C as the topmost separator can have height < jKj + mh(B). For thesame reason one cannot prove the obvious analogue of Corollary 5.3 one might hopewould hold true. Thus to �nd an etree of minimum height for G we must not onlysearch K and B for the topmost separator, but we must also consider separators for Gnot in K and B, that are of smaller size than K.These observations indicate that the problem of computing an etree of minimum29



height for a chordal graph cannot be solved by a simple extension of the algorithmpresented in this paper. More insight is needed before one can determine whether ane�cient algorithm for this problem can be found.We note that the recent development of a method [1] which computes an etree ofminimum height for interval graphs. This points to the possibility that there are otherclasses of graphs for which the minimum height etree problem can be solved e�ciently.12 ConclusionIn this paper, we presented an algorithm for computing an etree of low height for agraph that is a tree. It uses local rotations in order to reduce the height of the etree.We then de�ned and analyzed a theory for a special kind of etrees of minimum heightcalled tilted etrees. Through a series of lemmas we were able to show that our mainalgorithm returns a tilted etree. We showed that the running time of the algorithm isO(n logn log d) and that it introduced at most n � 1 �ll edges. We also pointed to apossible generalization of rotations to general graphs and discussed the possibility ofbeing able to compute etrees of minimum height for more general graphs than trees.As to the e�ciency of the Min Height algorithm we note that in [18] a nesteddissection algorithm for trees was presented which computes an etree of height no morethan blognc. This algorithm also had time complexity O(n logn log d).Gilbert has conjectured [7] that any graph has an etree of minimum height suchthat the number of �ll edges is at most a constant times the number of edges in G�where G is ordered by a minimum �ll ordering. This paper shows that the conjectureis true for trees.References[1] B. Aspvall and P. Heggernes, Finding minimum height elimination treesfor interval graphs in polynomial time, Tech. Report CS-93-80, Department ofInformatics, University of Bergen, Norway, 1993.[2] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks,Approximating treewidth, pathwidth and minimum elimination tree height, Tech.Report CSL-90-10, Xerox Palo Alto Research Center, 1991.[3] C. A. Crane, Linear lists and priority ques as balanced binary trees, Tech. ReportCS-72-259, Computer Science Dept., Stanford Univ., 1972.30



[4] G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg, 25 (1961),pp. 71{76.[5] A. George, Nested dissection of a regular �nite element mesh, SIAM J. Numer.Anal., 10 (1973), pp. 345{363.[6] A. George and J. W. H. Liu, An automatic nested dissection algorithm forirregular �nite element problems, SIAM J. Numer. Anal., 15 (1978), pp. 1053{1069.[7] J. R. Gilbert, 1991. Personal comunication.[8] M. T. Heath, E. Ng, and B. Peyton, Parallel algorithms for sparse linearsystems, SIAM Rev., 33 (1991), pp. 420{460.[9] P. Heggernes, Minimizing �ll-in size and elimination tree height in parallelCholesky factorization, master's thesis, Department of Informatics, University ofBergen, Norway, 1992.[10] J. A. G. Jess and H. G. M. Kees, A data structure for parallel L/U decompo-sition, IEEE Trans. Comput., C-31 (1982), pp. 231{239.[11] C. Jordan, Sur les assemblages de lignes, Journal Reine Angew. Math., 70 (1869),pp. 185{190.[12] D. E. Knuth, Sorting and Searching, vol. 3 of The Art of Computer Program-ming, Addison-Wesley, 1973.[13] C. E. Leiserson and J. G. Lewis, Orderings for parallel sparse symmetricfactorization, in Parallel Processing for Scienti�c Computing, G. Rodrigue, ed.,SIAM, 1989, pp. 27{32.[14] J. G. Lewis, B. W. Peyton, and A. Pothen, A fast algorithm for reorderingsparse matrices for parallel factorization, SIAM J. Sci. Statist. Comput., 10 (1989),pp. 1146{1173.[15] J. W. H. Liu, Computational models and task scheduling for parallel sparseCholesky factorization, Parallel Comput., 3 (1986), pp. 327{342.[16] , Reordering sparse matrices for parallel elimination, Parallel Comput., 11(1989), pp. 73{91.[17] , The role of elimination trees in sparse factorization, SIAM J. Matrix Anal.Appl., 11 (1990), pp. 134{172.[18] F. Manne, Minimum height elimination trees for parallel Cholesky factorization,master's thesis, Department of Informatics, University of Bergen, Norway, 1989.(In Norwegian). 31



[19] , Reducing the height of an elimination tree through local reorderings, Tech.Report CS-91-51, University of Bergen, Norway, 1991.[20] S. Parter, The use of linear graphs in Gauss elimination, SIAM Rev., 3 (1961),pp. 119{130.[21] A. Pothen, The complexity of optimal elimination trees, Tech. Report CS-88-13,Pennsylvania State University, 1988.[22] D. J. Rose, Triangulated graphs and the elimination process, SIAM J. MatrixAnal. Appl., 32 (1970), pp. 597{609.[23] D. J. Rose, R. E. Tarjan, and G. S. Leuker, Algorithmic aspects and vertexelimination on graphs, SIAM J. Comput., 5 (1976), pp. 266{283.[24] R. Schreiber, A new implementation of sparse Gaussian elimination, ACMTrans. Math. Software, 8 (1982), pp. 256{276.[25] R. E. Tarjan, Data Structures and Network Algorithms, SIAM, 1983.[26] M. Yannakakis, Computing the minimum �ll-in is NP-complete, SIAM J. Alg.Discrete Meth., 2 (1981), pp. 77{79.

32


