1 Introduction

In many scientific and industrial applications there is a need to solve large sparse
systems of linear equations. This is the case in fields such as meteorology, oil reservoir
modeling and structural analysis.

Treating sparse systems of equations differently from dense systems is important
both for the time spent on solving a system and for the amount of storage needed to
perform the computations. A large sparse matrix of dimension n may have fewer than
0.1% nonzeros. To store such a matrix as dense would require storing n? floating point
values of which 99.9% would be zero. Clearly, this is very inefficient and limits severely
the size of the problems that one can handle. Also, the amount of work that needs to
be performed when solving a sparse system is mainly a function of the number of non-
zeros. Thus ignoring that most elements are zero would slow down the computation
considerably.

As the size of the problems that need to be solved increases, so does the need
for fast computers. A cost efficient way of achieving increased computational speed
is by the use of parallel computers. Today there exist parallel computers of several
different architectures. However, due to the inherent differences between them one often
have to develop new algorithms to solve the same problem on different architectures.
The irregularity of sparse matrices makes it especially challenging to design efficient
algorithms on parallel computers. Although methods developed for treating sparse
matrices on sequential computers are often applicable on parallel computers, there are
also many new issues that arise and must be taken into account.

In efficient algorithms for sparse problems on parallel computers one must achieve
a good load balance between the processors. This means that the tasks that must be
performed are distributed among the processors in such a way that each processor gets
roughly the same amount of work. On many types of parallel computers it is difficult to
schedule the tasks dynamically while the program is executing. In such a case the load
balancing must be performed before the actual computation. A second requirement for
efficiency is that the tasks are mapped to the processors in such a way as to reduce the
time spent on communication. This may put restrictions on how the tasks are assigned.
The time spent on precomputations to speed up the algorithm must be compared to the
time spent on solving the actual problem. It is therefore important that the algorithms
for load balancing are efficient.

This thesis address issues related to load balancing when performing sparse matrix

computations on parallel computers. It consists of the following papers:



I. P. BiorsTtAD, F. MANNE, T. SOREVIK, AND M. VAJTERSIC, Efficient matriz
multiplication on SIMD computers, SIAM J. Matrix Anal. Appl., 13 (1992),
pp- 386-401.

II. F. MANNE AND T. S@OREVIK, Optimal partitioning of sequences, Tech. Report
(CS-92-62, University of Bergen, Norway, 1992.

III. B. OLsTAD AND F. MANNE, Efficient partitioning of sequences with an applica-

tion to sparse matriz computations, 1993.

IV. F. MANNE, An algorithm for computing an elimination tree of minimum height
for a tree, 1992.

V. F. MANNE AND H. HAFSTEINSSON, Efficient sparse Cholesky factorization on a
parallel SIMD computer, 1993.

Paper II has been slightly revised from the technical report to the current paper.
The results of IV are based on results from [29] and [30].

The main focus of this thesis is on the design of efficient parallel algorithms for
direct methods for solving sparse systems of linear equations. However, we will also
present work related to parallel iterative methods. The point of view we take is from
the algorithmic side. Most problems that we consider have their origin in the numeric
sphere. We do not develop any fundamentally new algorithms for these problems, but
investigate instead what needs to be done in order to make standard numeric algorithms
execute faster on parallel computers. In most of the work presented here we study how
to achieve an even load balance, either by the scheduling of tasks among the processors
or by reducing dependencies among the tasks themselves.

The implementations on parallel computers presented in this thesis are performed
on a computer classified as a Single Instruction, Multiple Data computer (SIMD). This
is a computer where each processor executes the same instruction in lockstep, but on
individual data. One advantage of SIMD computers is that once an algorithm has been
designed it is relatively easy to to implement it on the computer. This is especially
true in terms of achieving synchronization when two processors need to communicate.

As a case study of how to program such computers paper I in this thesis is con-
cerned with how to perform dense matrix multiplication on a SIMD computer. This

paper highlights many of the issues that must be considered when using a SIMD com-



puter. One such issue is the speed of memory references compared to the speed of

communication.

The next subject we consider is a partitioning problem with applications to load
balancing both in parallel and pipelined environments. In II and III we develop two
efficient algorithms to solve this problem, as well as a number of variants of it. In IIT we
also demonstrate how a solution to this partitioning problem can be used to speed up
sparse matrix-vector multiplication on a SIMD computer. Matrix-vector multiplication

is the core of many iterative algorithms for solving sparse linear systems.

Finally, in papers IV and V we look at direct methods for solving sparse linear sys-
tems on parallel computers. In particular we consider the use of Cholesky factorization
to solve systems of the form Az = b, where A is a sparse symmetric positive definite

matrix.

Cholesky factorization of sparse matrices usually progresses in four separate stages:
(1) Ordering, (2) symbolic factorization, (3) numeric factorization and (4) triangular
solution. This is true both for sequential and parallel algorithms. In the first stage A
must be ordered so that few fill elements are introduced while at the same time making
A suitable for parallel algorithms. In IV we consider how to order a sparse matrix A so
that its elimination tree is of low height. An efficient algorithm is given that computes
an elimination tree of minimum height if the adjacency graph of A is a tree. This is the
first non-trivial class of graphs for which the minimum elimination tree height problem

has been solved.

In V we develop an algorithm for a SIMD computer that performs the numeric
factorization stage of Cholesky factorization. Based on a graph-theoretical model of
the tasks that need to be performed, we design an algorithm for assigning the data
to the processors to achieve an even load balance. A number of test problems show
that this method is superior to other suggested schemes for mapping of data to the

processors.

The outline of this presentation is as follows: In Section 2 we give a short overview
of different models for parallel computing. We discuss dense matrix multiplication in
Section 3 and consider partitioning of sequences in Section 4. In Section 5 we look
at parallel sparse Cholesky factorization. Finally, in Section 6 we summarize. Thesis

papers I-V follow after this presentation.



2 Parallel computers

A parallel computer consists of a number of processors working together to solve a
common task. The problem to be solved is divided into a number of subproblems. All
of these are then solved simultaneously, each one on a separate processor. Thus the
use of parallel computers offers a possibility for solving the problem faster than on a
sequential computer.

Most commercially available parallel computers can be classified according to Flynn’s

taxonomy [9] as being in one of the two following classes:

1. Single Instruction stream, Multiple Data stream (SIMD).

2. Multiple Instructions stream, Multiple Data stream (MIMD).

On a SIMD computer each processor performs the same instruction but on individ-
ual data. The processors can make themselves idle by the means off logical expressions.
SIMD computers may have up to several thousand tightly interconnected processors.
Examples of such computers are the CM-2, the MasPar family of computers and the
DAP computer.

On a MIMD computer each processor has its own individual instruction stream.
MIMD computers often have a few but powerful processors. One computer built af-
ter this line is the Intel Paragon. An exception is the CM-5 computer with several
thousands processors.

Both SIMD and MIMD computers can be further classified depending on whether
the processors have local or shared memory. In a shared-memory computer each pro-
cessor reads and writes to a common area of memory. This requires the use of a
tie-breaking scheme if two processors want to access the same area of memory simulta-
neously. Communication between the processors can be done by writing into designated
areas of the memory.

In a local-memory computer each processor has memory which it alone can access.
Examples of such computers include all the SIMD computers mentioned above, the
Intel Paragon, and the CM-5. Communication in local-memory computers requires that
the processors are interconnected by some kind of network. Common fixed networks
are hypercubes and grids. It is also possible that the processors have access to a
general communication channel. In local-memory computers communication between
processors is performed by the use of special communication primitives. Whenever

two processors need to communicate they must agree on some kind of synchronization.

4



This is easily handled on SIMD computers since the processors operate in lockstep. On
MIMD computers synchronization can be more difficult to achieve.

The large number of processors in many SIMD computers requires that the pro-
cessors are organized in a highly structured manner such as a grid. This tends to
make SIMD computers less flexible than MIMD computers. An advantage particular
to shared memory MIMD computers is that they can support dynamic load balancing.
This is often not practical on local memory SIMD computers, where the scheduling of
tasks to processors must be done in advance of the computations. For more on the
various architectures for parallel computers and their merits see [1, 33].

In papers I, III, and V we will report on experiments performed on the MasPar
family of computers. These include the MP-1 computer [5] and the new version, the MP-
2. Both the MP-1 and MP-2 computers are local-memory SIMD computers consisting
of a large number of processors arranged in a toroidal wrapped grid. Each processor is
connected to its 8 nearest neighbors. The processors have two ways of communication:
Either by a general point to point communication channel called the router or along the
grid lines. Communication along the grid lines is much faster but more restricted than
through the router. The processors also support indirect addressing. Other computers
with similar features as the MasPar computers include the DAP and the CM-2.

3 Parallel matrix multiplication

The multiplication of dense matrices is an important task in many areas of linear
algebra. This is a compute intensive operation where most tasks can be performed
independently of each other. Thus it lends itself well to be solved on parallel computers.
As a consequence there exists a number of algorithms for matrix multiplication on
different types of parallel computers, see [1, 15] for examples.

The standard sequential algorithm for calculating the product A x B = C' where
A,B and C are n X n matrices is given by ¢;; = >o<g<n @i * bpj. It follows that
the standard matrix multiplication algorithm requires n® multiplications and n?(n — 1)
additions.

There are other ways to perform matrix multiplications. Winograd [36] proposed
a method that reduces the number of multiplications at the expense of an increased
number of additions compared to the standard algorithm. It requires n3/2+n? multipli-
cations and 3n3/2+2n? — 2n additions. This is of interest if additions can be performed

faster than multiplications. Strassen [35] proposed a fast recursive algorithm for per-



forming matrix multiplication that requires only O(n?%°7) operations. This method
thus offers an asymptotic speed-up compared to conventional matrix multiplication.
However, this comes at a prize since the numeric stability of Strassen’s method is
somewhat weaker than for the ordinary matrix multiplication algorithm [7, 20].

Many algorithms in linear algebra can be formulated in terms of operations on
blocks. This may reduce the amount of data movement both for sequential computers
with multi-layered memory and for parallel message-passing computers. Matrix mul-
tiplication is among the most used block operations. As an example, dense Cholesky
factorization can be formulated as containing a large degree of block matrix multipli-
cations [15].

We choose to study parallel matrix multiplication based on an interest to explore the
new range of SIMD computers. In paper I we investigate how matrix multiplication can
be performed on the MasPar MP-1 computer. The various aspects considered include
issues such as: the relative speed of communication compared to arithmetic and the
relative speed between additions and multiplications. In the paper we show that non-
standard practical algorithms such as those proposed by Strassen and Winograd can
be used to increase the efficiency of parallel matrix multiplication. We also look at how
block algorithms can be implemented efficiently, and how suchs algorithms are affected

by different schemes for mapping the data onto the processors.

4 Partitioning of sequences

In parallel computing one often has a pool of tasks that need to be distributed among
the processors. The objective is to achieve an even load balance between the processors.
There might also be a number of constraints on how the tasks are executed. Examples
are a partial ordering of the tasks and a start time and deadline for each task. For an
overview of different scheduling problems see [16].

Finding an optimal solution to scheduling problems can sometimes be very difficult.
Even for two processors with no special constraints on the jobs or the processors,
minimizing the total completion time is known to be NP-hard [10]. Thus scheduling
problems must have enough restrictions in order to be tractable.

In the papers II and III we consider one such restricted problem. It involves how
to partition a sequence of n ordered tasks into p intervals such that the maximum cost
of the intervals, measured with a cost function f is minimized. We also show how a

number of variants of this problem can be solved.



In IIT we demonstrate how a solution to this problem can be used to speed up an
algorithm suggested by Ogielski and Aiello [31] for sparse matrix-vector multiplication
on a SIMD computer. This operation is the core of many iterative algorithms for solving
sparse systems such as conjugate gradients [15]. Also the use of partitioned inverses
[2] for solving triangular systems of equations, involves repeated applications of sparse
matrix, dense vector multiplication.

Another interesting application of this partitioning problem is the following:

Often in communication systems a continuous stream of data packages has to be
received and processed in real time. The processing may among other things involve
demodulation, error correction, and possibly decryption of each incoming data package
before the contents of the package can be accessed [17]. Assume that n computational
operations are to be performed in a pipelined fashion on a continuous sequence of
incoming data packages. With n processors we may assign one operation to each
processor and connect the processors in a chain. This would give high throughput of
the system. The time to process the data is now dominated by the processor that has
to perform the most time-consuming operation. With this mapping of the operations
to the processors, each processor will be idle once it has finished its operation and
have to wait for the processor with the most time consuming operation, until it can
get a new data package. This is an inefficient utilization of the processors if the time
for performing each task varies greatly. Thus to circumvent this we get the following
problem: partition n linearly ordered task into p intervals (p < n) such that the
maximal time to finish executing the tasks assigned to each interval is minimized. This
way we can achieve good processor efficiency and still hopefully keep the throughput
of the system high.

Previous studies of this partitioning problem [3, 6, 18] has lead to an algorithm of
time complexity O(n?p). In IT we give an algorithm of complexity O(p(n—p) logp). The
method used is based on finding a series of non-optimal partitionings such that there
exists only one way in which each one can be improved. A similar idea is used in IV for
partitioning of trees. In III we give a ©(p(n — p)) dynamic programming algorithm for
the same problem. We have chosen to include paper II in this thesis even though the
presented algorithm has a higher worst case bound than the one presented in I1I for two
main reasons. The first one is that the algorithms in III must perform p(n — p) steps
on any input, where the algorithm in IT might perform fewer than (n — p)plogp steps
depending on the input. Also, there are variants of the general partitioning problem
where the algorithm in IIT is not asymptotically faster than the algorithm in II even in

the theoretically worst case.



5 Parallel sparse Cholesky-factorization

Consider the linear system of equations Az = b where A is an n x n large sparse
symmetric positive definite matrix. The are two main ways such a system can be
solved: either by a direct method or by iterative methods. Since A is symmetric
positive definite, the direct method of choice is Cholesky factorization [13].

There are many settings where Cholesky factorization might be preferred over an
iterative method. Omne such case is when there are multiple right hand sides. Then
if the Cholesky factorization LLT is known the problem reduces to solving two lower
triangular systems with multiple right hand sides. This may be more efficient than an
iterative method which would require a complete execution of the algorithm for each
right hand side. We further note that Cholesky factorization might be advantageous
for reasons of numeric stability.

On sparse matrices sequential Cholesky factorization is usually done in four separate

stages:

1. Ordering. Determine a permutation matrix P so that the Cholesky factor L of
PAPT will suffer little fill.

2. Symbolic factorization. Determine the structure of the nonzeros of L and set up

a data structure in which to store A and compute the nonzero entries of L.

3. Numeric factorization. Insert the nonzeros of A into the data structure and

compute the numeric values of L.
4. Triangular solution. Solve Ly = Pb and L¥z =y, and then set z = P72,

Most parallel algorithms for performing sparse Cholesky-factorization also operate
in the same four stages [19].

Finding a permutation for A in the first stage, so that L suffers little fill is also
important for parallel algorithms. The added complication in parallel environments is
that PAPT should be suitable for parallel methods. One way this can be determined
is by the use of the elimination tree [28, 34]. This is a data structure that mirrors the
potential high-level parallelism found in sparse Cholesky-factorization [26]. This is true
both for the symbolic and the numeric factorization. The height of the elimination tree
is generally considered as measure of goodness, with short trees assumed to be superior
to tall ones. However, like the problem of minimizing fill [37], the problem of finding

the lowest possible elimination tree is known to be NP-hard [32].

8



Nested dissection is a method for ordering G that was developed to reduce fill
[11, 12] which has been shown to produce low elimination trees [23]. Another approach
to finding low elimination trees is to first compute a fill-reducing ordering P. From this
a new ordering is then computed such that the resulting elimination tree of minimum
height under the restriction that no new fill is introduced [21, 25, 27]. However, little
is known about the computation of elimination trees of minimum height for classes of
graphs when additional fill is allowed, and how much fill this might cause.

In paper IV we discuss how orderings giving low elimination trees can be found. We
present an efficient algorithm that solves the minimum height problem for the class of
graphs that are trees. The algorithm is shown to have time complexity O(nlognlogd),
where d is the maximum degree of any node in GG. This is the first efficient algorithm
for computing an elimination tree of minimum height for a nontrivial class of graphs.
In doing so it does not introduce more than n — 1 fill edges. We also show in the same
paper that for any graph there exists a minimal cutset ordering giving an elimination
tree of minimum height.

The numeric factorization is the most compute intensive operation of Cholesky-
factorization. A substantial amount of research has been carried out to perform this
operation both on shared-memory and distributed-memory MIMD-computers, see [19]
for an overview. However, we are only aware of two papers [14, 22] that have tried to
perform the numeric factorization on a SIMD computer.

In paper V we develop and implement an algorithm for performing the numeric
factorization on a SIMD computer. This algorithm is similar to the one described in
[22]. The algorithm is a fan-out algorithm based on computing one outer-product
at a time. Thus the algorithm does not explicitly take advantage of the elimination
tree. The reason for using a fan-out algorithm that performs the outer-products in a
sequential manner is due to the cost of communication on the computer that we use: on
the MP-2, the cost of sending one value to each processor in the same column (or row)
is little over twice that of sending it to the nearest neighbor. This indicates that once a
value has to be sent to another processor it could as well be sent to every processor that
might need it. If the outer-products that need to be performed are sufficiently large
compared to the processor array, it is possible to keep a large fraction of the processor
busy in each outer-product.

The mapping of the data onto the processors is crucial for the performance of the
algorithm. We show that obtaining a good load balance can be viewed as a graph
coloring problem on a weighted graph. Based on this observation we develop a greedy

algorithm that maps the data onto the processors in order to achieve an even load



balance. We show that this method is superior to other suggested mapping schemes for
a number of test problems from the Harwell-Boeing collection [8] as well as on regular
structured problems.

The time spent on preprocessing to achieve an even load balance must be compared
with the time saved in the numeric factorization algorithm. If the same structural
system is to be solved many times then only the numeric factorization and triangular
solve have to be performed each time. This is the case in the interior point method for
linear programming [4, 24]. In such settings the time spent on computing a good load

balance can be averaged over the total time spent on factoring the matrices.

6 Conclusion

The papers in this thesis are mainly in the domain of load balancing on parallel com-
puters. We have investigated aspects related to SIMD-computing and parallel sparse
linear algebra.

In paper I we investigated how matrix multiplication could be performed on a
SIMD-computer. We showed that non-standard algorithms such as those proposed by
Strassen and Winograd can be used to speed up parallel matrix multiplication.

In paper II and III we developed two different algorithms for solving a partitioning
problem. The first algorithm was of time complexity O((n — p)plogp) and the second
one of O((n — p)p). It would be interesting to see if these two approaches could be
combined into a single algorithm of time complexity O((n — p)p) but such that one did
not always need to perform (n — p)p steps.

In paper III we reported on how the partitioning algorithm was used as a heuristic
for a two-dimensional partitioning problem to speed up matrix-vector multiplication
on a SIMD computer. This method has also been tried in connection with sparse
Cholesky-factorization on a SIMD computer. The results, however, were not as good
as the those presented in paper V and are therefore not reported here. Initial studies
indicates that the two-dimensional partitioning problem might be harder than the one-
dimensional case. It would be interesting to know whether the two-dimensional case
could be solved efficiently or if the problem is NP-hard.

In paper IV we gave an algorithm for computing an elimination tree of minimum
height for a matrix whose adjacency graph is a tree. This algorithm was based on
limiting the search area for possible solutions in such a way that there only existed

one way in which a given solution could be improved. Whenever it was not possible to

10



improve a solution we shoved that this solution must be optimal. The same basic idea
was also used in the paper II for partitioning of sequences. We also gave a proof in IV
that for any matrix there exists a minimal cutset ordering giving an elimination tree
of minimum height. This is a fact that can be exploited when designing algorithms for
computing low elimination trees. It would be of interest to see if clique trees could be
combined with the results in this paper into an algorithm to compute an elimination
tree of minimum height for chordal graphs.

In paper V we presented an algorithm for performing the numeric factorization in
sparse Cholesky-factorization on a SIMD computer. We note that the algorithm does
not take advantage of the parallelism given by the elimination tree, although we expect
it to execute faster if the elimination tree is low. We have also investigated other
algorithms that would take advantage of the elimination tree, but found that on the
MP-2 computer these were less efficient than the presented algorithm. This is mainly
due to the small difference in time between sending a value to the nearest processor
neighbor and the time to broadcast it across a processor column.

We also did a graph-theoretical study of the tasks to be performed in the presented
Cholesky-factorization algorithm. From this we developed a load balancing algorithm
for assigning the data to the processors in order to reduce the number of parallel
steps. Through a number of test problems we showed that this method was superior
to previously suggested mapping schemes. Some of the matrices on which we tried
the algorithm were very large. As a consequence moving the matrices onto the the
processor array was very time consuming. We also found that on the largest matrices
the ordering and the symbolic factorization, was slower than expected due to paging
problems. It would therefore be interesting to see if these algorithms could also be

implemented on a SIMD computer in order to achieve additional speed-up.

References

[1] S. G. AKL, The design and analysis of parallel algorithms, Prentice-Hall, 1989.

[2] F. L. ALVARADO AND R. SCHREIBER, Optimal parallel solution of sparse trian-
gular systems, SIAM J. Sci. Statist. Comput., 14 (1993).

[3] S. ANILY AND A. FEDERGRUEN, Structured partitioning problems, Operations
Research, 13 (1991), pp. 130-149.

11



4]

[14]

[15]

[16]

[17]

18]

G. AsTFALK, I. LusTiG, R. MARSTEN, AND D. SHANNO, The interior-point
method for linear programming, IEEE Software, (1992), pp. 61-68.

T. BLANK, The MasPar MP-1 architecture, in Proceedings of IEEE Compcon
Spring 1990, IEEE, February 1990.

S. H. BOKHARI, Partitioning problems in parallel, pipelined, and distributed com-
puting, IEEE Trans. Comput., 37 (1988), pp. 48-57.

R. P. BRENT, Algorithms for matriz multiplication, Tech. Report CS 157, Com-
puter Science Department, Stanford University, Stanford, CA, 1960.

I. Durr, R. GRIMES, AND J. LEWIS, Sparse matrixz test problems, ACM Trans.
Math. Software, 15 (1989), pp. 1-14.

M. J. FLYNN, Very high—speed computing systems, in Proceedings of the IEEE 54,
1966, pp. 1901-1909.

M. R. GAREY AND D. S. JOHNSON, Complexity results for multiprocessor
scheduling under resource constraints, SIAM J. Comput., 4 (1975), pp. 397-411.

A. GEORGE, Nested dissection of a reqular finite element mesh, STAM J. Numer.
Anal., 10 (1973), pp. 345-363.

A. GEORGE AND J. W. H. Liu, An automatic nested dissection algorithm for
irregular finite element problems, SIAM J. Numer. Anal., 15 (1978), pp. 1053-1069.

——, Computer Solutions of Large Sparse Positive Definite Systems, Prentice-Hall,
1981.

J. R. GILBERT AND R. SCHREIBER, Highly parallel sparse Cholesky factorization,
SIAM J. Sci. Statist. Comput., 13 (1992), pp. 1151-1172.

G. H. GoruB AND C. F. V. LoaN, Matrix Computations, North Oxford Aca-
demic, 2 ed., 1989.

R. L. GrRAHAM, E. L. LAWLER, J. K. LENSTRA, AND A. H. G. R. KAN,
Optimization and approximation in deterministic sequencing and scheduling: A
survey, Annals of Discrete Mathematics, 5 (1979), pp. 287-326.

F. HALSALL, Data Communications, Computer Networks and OSI, Addison Wes-
ley, 1988.

P. HANSEN AND K.-W. LiH, Improved algorithms for partitioning problems in
parallel, pipelined, and distributed computing, IEEE Trans. Comput., 41 (1992),
pp. 769-771.

12



[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

M. T. HEaTtH, E. NG, AND B. PEYTON, Parallel algorithms for sparse linear
systems, SIAM Rev., 33 (1991), pp. 420-460.

N. J. HicHAM, Ezploiting fast matriz multiplication within the level 3 BLAS,
ACM Trans. Math. Software, 16 (1990), pp. 352-368.

J. A. G. Jess AND H. G. M. KEEgs, A data structure for parallel L/U decompo-
sition, IEEE Trans. Comput., C-31 (1982), pp. 231-2309.

S. G. KRATZER AND A. J. CLEARY, Sparse matriz factorization of SIMD parallel
computers, Tech. Report SRC-TR-92-063, Supercomputing Research Center, 1992.

C. E. LEISERSON AND J. G. LEwIS, Orderings for parallel sparse symmetric
factorization, in Parallel Processing for Scientific Computing, G. Rodrigue, ed.,
SIAM, 1989, pp. 27-32.

R. LEVKOVITZ AND G. MITRA, Solution of large scale linear programs: A review
of hardware, software, and algorithmic issues, Tech. Report TR/06/92, Dept. of
Mathematics and Statistics, Brunel University, 1992.

J. G. LEwis, B. W. PEYTON, AND A. POTHEN, A fast algorithm for reordering
sparse matrices for parallel factorization, SIAM J. Sci. Statist. Comput., 10 (1989),
pp. 1146-1173.

J. W. H. Liu, Computational models and task scheduling for parallel sparse
Cholesky factorization, Parallel Comput., 3 (1986), pp. 327-342.

—, Reordering sparse matrices for parallel elimination, Parallel Comput., 11
(1989), pp. 73-91.

—, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 134-172.

F. MANNE, Reducing the height of an elimination tree through local reorderings,
Tech. Report CS-91-51, University of Bergen, Norway, 1991.

—, An algorithm for computing an elimination tree of minimum height for a
tree, Tech. Report CS-91-59, University of Bergen, Norway, 1992.

A. T. OGIELSKI AND W. AIELLO, Sparse matriz computations on parallel pro-
cessor arrays. To appear in SIAM J. Sci. Statist. Comput., 1993.

A. POTHEN, The complexity of optimal elimination trees, Tech. Report CS-88-13,
Pennsylvania State University, 1988.

M. J. QUINN, Designing efficient algorithms for parallel computers, McGraw-Hill,
1987.

13



[34] R. SCHREIBER, A new implementation of sparse Gaussian elimination, ACM
Trans. Math. Software, 8 (1982), pp. 256—276.

[35] V. STRASSEN, Gaussian elimination is not optimal, Numer. Math, 13 (1969),
pp. 354-356.

(36] S. WINOGRAD, A new algorithm for inner product, IEEE Trans. Comput., C-18
(1968), pp. 693-694.

[37] M. YANNAKAKIS, Computing the minimum fill-in is NP-complete, SIAM J. Alg.
Discrete Meth., 2 (1981), pp. 77-79.

14



