
1 IntroductionIn many scienti�c and industrial applications there is a need to solve large sparsesystems of linear equations. This is the case in �elds such as meteorology, oil reservoirmodeling and structural analysis.Treating sparse systems of equations di�erently from dense systems is importantboth for the time spent on solving a system and for the amount of storage needed toperform the computations. A large sparse matrix of dimension n may have fewer than0.1% nonzeros. To store such a matrix as dense would require storing n2 
oating pointvalues of which 99.9% would be zero. Clearly, this is very ine�cient and limits severelythe size of the problems that one can handle. Also, the amount of work that needs tobe performed when solving a sparse system is mainly a function of the number of non-zeros. Thus ignoring that most elements are zero would slow down the computationconsiderably.As the size of the problems that need to be solved increases, so does the needfor fast computers. A cost e�cient way of achieving increased computational speedis by the use of parallel computers. Today there exist parallel computers of severaldi�erent architectures. However, due to the inherent di�erences between them one oftenhave to develop new algorithms to solve the same problem on di�erent architectures.The irregularity of sparse matrices makes it especially challenging to design e�cientalgorithms on parallel computers. Although methods developed for treating sparsematrices on sequential computers are often applicable on parallel computers, there arealso many new issues that arise and must be taken into account.In e�cient algorithms for sparse problems on parallel computers one must achievea good load balance between the processors. This means that the tasks that must beperformed are distributed among the processors in such a way that each processor getsroughly the same amount of work. On many types of parallel computers it is di�cult toschedule the tasks dynamically while the program is executing. In such a case the loadbalancing must be performed before the actual computation. A second requirement fore�ciency is that the tasks are mapped to the processors in such a way as to reduce thetime spent on communication. This may put restrictions on how the tasks are assigned.The time spent on precomputations to speed up the algorithm must be compared to thetime spent on solving the actual problem. It is therefore important that the algorithmsfor load balancing are e�cient.This thesis address issues related to load balancing when performing sparse matrixcomputations on parallel computers. It consists of the following papers:1



I. P. Bj�rstad, F. Manne, T. S�revik, and M. Vajter�sic, E�cient matrixmultiplication on SIMD computers, SIAM J. Matrix Anal. Appl., 13 (1992),pp. 386{401.II. F. Manne and T. S�revik, Optimal partitioning of sequences, Tech. ReportCS-92-62, University of Bergen, Norway, 1992.III. B. Olstad and F. Manne, E�cient partitioning of sequences with an applica-tion to sparse matrix computations, 1993.IV. F. Manne, An algorithm for computing an elimination tree of minimum heightfor a tree, 1992.V. F. Manne and H. Hafsteinsson, E�cient sparse Cholesky factorization on aparallel SIMD computer, 1993.Paper II has been slightly revised from the technical report to the current paper.The results of IV are based on results from [29] and [30].The main focus of this thesis is on the design of e�cient parallel algorithms fordirect methods for solving sparse systems of linear equations. However, we will alsopresent work related to parallel iterative methods. The point of view we take is fromthe algorithmic side. Most problems that we consider have their origin in the numericsphere. We do not develop any fundamentally new algorithms for these problems, butinvestigate instead what needs to be done in order to make standard numeric algorithmsexecute faster on parallel computers. In most of the work presented here we study howto achieve an even load balance, either by the scheduling of tasks among the processorsor by reducing dependencies among the tasks themselves.The implementations on parallel computers presented in this thesis are performedon a computer classi�ed as a Single Instruction, Multiple Data computer (SIMD). Thisis a computer where each processor executes the same instruction in lockstep, but onindividual data. One advantage of SIMD computers is that once an algorithm has beendesigned it is relatively easy to to implement it on the computer. This is especiallytrue in terms of achieving synchronization when two processors need to communicate.As a case study of how to program such computers paper I in this thesis is con-cerned with how to perform dense matrix multiplication on a SIMD computer. Thispaper highlights many of the issues that must be considered when using a SIMD com-2



puter. One such issue is the speed of memory references compared to the speed ofcommunication.The next subject we consider is a partitioning problem with applications to loadbalancing both in parallel and pipelined environments. In II and III we develop twoe�cient algorithms to solve this problem, as well as a number of variants of it. In III wealso demonstrate how a solution to this partitioning problem can be used to speed upsparse matrix-vector multiplication on a SIMD computer. Matrix-vector multiplicationis the core of many iterative algorithms for solving sparse linear systems.Finally, in papers IV and V we look at direct methods for solving sparse linear sys-tems on parallel computers. In particular we consider the use of Cholesky factorizationto solve systems of the form Ax = b, where A is a sparse symmetric positive de�nitematrix.Cholesky factorization of sparse matrices usually progresses in four separate stages:(1) Ordering, (2) symbolic factorization, (3) numeric factorization and (4) triangularsolution. This is true both for sequential and parallel algorithms. In the �rst stage Amust be ordered so that few �ll elements are introduced while at the same time makingA suitable for parallel algorithms. In IV we consider how to order a sparse matrix A sothat its elimination tree is of low height. An e�cient algorithm is given that computesan elimination tree of minimum height if the adjacency graph of A is a tree. This is the�rst non-trivial class of graphs for which the minimum elimination tree height problemhas been solved.In V we develop an algorithm for a SIMD computer that performs the numericfactorization stage of Cholesky factorization. Based on a graph-theoretical model ofthe tasks that need to be performed, we design an algorithm for assigning the datato the processors to achieve an even load balance. A number of test problems showthat this method is superior to other suggested schemes for mapping of data to theprocessors.The outline of this presentation is as follows: In Section 2 we give a short overviewof di�erent models for parallel computing. We discuss dense matrix multiplication inSection 3 and consider partitioning of sequences in Section 4. In Section 5 we lookat parallel sparse Cholesky factorization. Finally, in Section 6 we summarize. Thesispapers I-V follow after this presentation. 3



2 Parallel computersA parallel computer consists of a number of processors working together to solve acommon task. The problem to be solved is divided into a number of subproblems. Allof these are then solved simultaneously, each one on a separate processor. Thus theuse of parallel computers o�ers a possibility for solving the problem faster than on asequential computer.Most commercially available parallel computers can be classi�ed according to Flynn'staxonomy [9] as being in one of the two following classes:1. Single Instruction stream, Multiple Data stream (SIMD).2. Multiple Instructions stream, Multiple Data stream (MIMD).On a SIMD computer each processor performs the same instruction but on individ-ual data. The processors can make themselves idle by the means o� logical expressions.SIMD computers may have up to several thousand tightly interconnected processors.Examples of such computers are the CM-2, the MasPar family of computers and theDAP computer.On a MIMD computer each processor has its own individual instruction stream.MIMD computers often have a few but powerful processors. One computer built af-ter this line is the Intel Paragon. An exception is the CM-5 computer with severalthousands processors.Both SIMD and MIMD computers can be further classi�ed depending on whetherthe processors have local or shared memory. In a shared-memory computer each pro-cessor reads and writes to a common area of memory. This requires the use of atie-breaking scheme if two processors want to access the same area of memory simulta-neously. Communication between the processors can be done by writing into designatedareas of the memory.In a local-memory computer each processor has memory which it alone can access.Examples of such computers include all the SIMD computers mentioned above, theIntel Paragon, and the CM-5. Communication in local-memory computers requires thatthe processors are interconnected by some kind of network. Common �xed networksare hypercubes and grids. It is also possible that the processors have access to ageneral communication channel. In local-memory computers communication betweenprocessors is performed by the use of special communication primitives. Whenevertwo processors need to communicate they must agree on some kind of synchronization.4



This is easily handled on SIMD computers since the processors operate in lockstep. OnMIMD computers synchronization can be more di�cult to achieve.The large number of processors in many SIMD computers requires that the pro-cessors are organized in a highly structured manner such as a grid. This tends tomake SIMD computers less 
exible than MIMD computers. An advantage particularto shared memory MIMD computers is that they can support dynamic load balancing.This is often not practical on local memory SIMD computers, where the scheduling oftasks to processors must be done in advance of the computations. For more on thevarious architectures for parallel computers and their merits see [1, 33].In papers I, III, and V we will report on experiments performed on the MasParfamily of computers. These include the MP-1 computer [5] and the new version, the MP-2. Both the MP-1 and MP-2 computers are local-memory SIMD computers consistingof a large number of processors arranged in a toroidal wrapped grid. Each processor isconnected to its 8 nearest neighbors. The processors have two ways of communication:Either by a general point to point communication channel called the router or along thegrid lines. Communication along the grid lines is much faster but more restricted thanthrough the router. The processors also support indirect addressing. Other computerswith similar features as the MasPar computers include the DAP and the CM-2.3 Parallel matrix multiplicationThe multiplication of dense matrices is an important task in many areas of linearalgebra. This is a compute intensive operation where most tasks can be performedindependently of each other. Thus it lends itself well to be solved on parallel computers.As a consequence there exists a number of algorithms for matrix multiplication ondi�erent types of parallel computers, see [1, 15] for examples.The standard sequential algorithm for calculating the product A � B = C whereA;B and C are n � n matrices is given by ci;j = P0�k<n ai;k � bk;j. It follows thatthe standard matrix multiplication algorithm requires n3 multiplications and n2(n� 1)additions.There are other ways to perform matrix multiplications. Winograd [36] proposeda method that reduces the number of multiplications at the expense of an increasednumber of additions compared to the standard algorithm. It requires n3=2+n2 multipli-cations and 3n3=2+2n2�2n additions. This is of interest if additions can be performedfaster than multiplications. Strassen [35] proposed a fast recursive algorithm for per-5



forming matrix multiplication that requires only O(n2:807) operations. This methodthus o�ers an asymptotic speed-up compared to conventional matrix multiplication.However, this comes at a prize since the numeric stability of Strassen's method issomewhat weaker than for the ordinary matrix multiplication algorithm [7, 20].Many algorithms in linear algebra can be formulated in terms of operations onblocks. This may reduce the amount of data movement both for sequential computerswith multi-layered memory and for parallel message-passing computers. Matrix mul-tiplication is among the most used block operations. As an example, dense Choleskyfactorization can be formulated as containing a large degree of block matrix multipli-cations [15].We choose to study parallel matrix multiplication based on an interest to explore thenew range of SIMD computers. In paper I we investigate how matrix multiplication canbe performed on the MasPar MP-1 computer. The various aspects considered includeissues such as: the relative speed of communication compared to arithmetic and therelative speed between additions and multiplications. In the paper we show that non-standard practical algorithms such as those proposed by Strassen and Winograd canbe used to increase the e�ciency of parallel matrix multiplication. We also look at howblock algorithms can be implemented e�ciently, and how suchs algorithms are a�ectedby di�erent schemes for mapping the data onto the processors.4 Partitioning of sequencesIn parallel computing one often has a pool of tasks that need to be distributed amongthe processors. The objective is to achieve an even load balance between the processors.There might also be a number of constraints on how the tasks are executed. Examplesare a partial ordering of the tasks and a start time and deadline for each task. For anoverview of di�erent scheduling problems see [16].Finding an optimal solution to scheduling problems can sometimes be very di�cult.Even for two processors with no special constraints on the jobs or the processors,minimizing the total completion time is known to be NP-hard [10]. Thus schedulingproblems must have enough restrictions in order to be tractable.In the papers II and III we consider one such restricted problem. It involves howto partition a sequence of n ordered tasks into p intervals such that the maximum costof the intervals, measured with a cost function f is minimized. We also show how anumber of variants of this problem can be solved.6



In III we demonstrate how a solution to this problem can be used to speed up analgorithm suggested by Ogielski and Aiello [31] for sparse matrix-vector multiplicationon a SIMD computer. This operation is the core of many iterative algorithms for solvingsparse systems such as conjugate gradients [15]. Also the use of partitioned inverses[2] for solving triangular systems of equations, involves repeated applications of sparsematrix, dense vector multiplication.Another interesting application of this partitioning problem is the following:Often in communication systems a continuous stream of data packages has to bereceived and processed in real time. The processing may among other things involvedemodulation, error correction, and possibly decryption of each incoming data packagebefore the contents of the package can be accessed [17]. Assume that n computationaloperations are to be performed in a pipelined fashion on a continuous sequence ofincoming data packages. With n processors we may assign one operation to eachprocessor and connect the processors in a chain. This would give high throughput ofthe system. The time to process the data is now dominated by the processor that hasto perform the most time-consuming operation. With this mapping of the operationsto the processors, each processor will be idle once it has �nished its operation andhave to wait for the processor with the most time consuming operation, until it canget a new data package. This is an ine�cient utilization of the processors if the timefor performing each task varies greatly. Thus to circumvent this we get the followingproblem: partition n linearly ordered task into p intervals (p � n) such that themaximal time to �nish executing the tasks assigned to each interval is minimized. Thisway we can achieve good processor e�ciency and still hopefully keep the throughputof the system high.Previous studies of this partitioning problem [3, 6, 18] has lead to an algorithm oftime complexity O(n2p). In II we give an algorithm of complexity O(p(n�p) log p). Themethod used is based on �nding a series of non-optimal partitionings such that thereexists only one way in which each one can be improved. A similar idea is used in IV forpartitioning of trees. In III we give a �(p(n� p)) dynamic programming algorithm forthe same problem. We have chosen to include paper II in this thesis even though thepresented algorithm has a higher worst case bound than the one presented in III for twomain reasons. The �rst one is that the algorithms in III must perform p(n � p) stepson any input, where the algorithm in II might perform fewer than (n� p)p log p stepsdepending on the input. Also, there are variants of the general partitioning problemwhere the algorithm in III is not asymptotically faster than the algorithm in II even inthe theoretically worst case. 7



5 Parallel sparse Cholesky-factorizationConsider the linear system of equations Ax = b where A is an n � n large sparsesymmetric positive de�nite matrix. The are two main ways such a system can besolved: either by a direct method or by iterative methods. Since A is symmetricpositive de�nite, the direct method of choice is Cholesky factorization [13].There are many settings where Cholesky factorization might be preferred over aniterative method. One such case is when there are multiple right hand sides. Thenif the Cholesky factorization LLT is known the problem reduces to solving two lowertriangular systems with multiple right hand sides. This may be more e�cient than aniterative method which would require a complete execution of the algorithm for eachright hand side. We further note that Cholesky factorization might be advantageousfor reasons of numeric stability.On sparse matrices sequential Cholesky factorization is usually done in four separatestages:1. Ordering. Determine a permutation matrix P so that the Cholesky factor L ofPAP T will su�er little �ll.2. Symbolic factorization. Determine the structure of the nonzeros of L and set upa data structure in which to store A and compute the nonzero entries of L.3. Numeric factorization. Insert the nonzeros of A into the data structure andcompute the numeric values of L.4. Triangular solution. Solve Ly = Pb and LT z = y, and then set x = P T z.Most parallel algorithms for performing sparse Cholesky-factorization also operatein the same four stages [19].Finding a permutation for A in the �rst stage, so that L su�ers little �ll is alsoimportant for parallel algorithms. The added complication in parallel environments isthat PAP T should be suitable for parallel methods. One way this can be determinedis by the use of the elimination tree [28, 34]. This is a data structure that mirrors thepotential high-level parallelism found in sparse Cholesky-factorization [26]. This is trueboth for the symbolic and the numeric factorization. The height of the elimination treeis generally considered as measure of goodness, with short trees assumed to be superiorto tall ones. However, like the problem of minimizing �ll [37], the problem of �ndingthe lowest possible elimination tree is known to be NP-hard [32].8



Nested dissection is a method for ordering G that was developed to reduce �ll[11, 12] which has been shown to produce low elimination trees [23]. Another approachto �nding low elimination trees is to �rst compute a �ll-reducing ordering P . From thisa new ordering is then computed such that the resulting elimination tree of minimumheight under the restriction that no new �ll is introduced [21, 25, 27]. However, littleis known about the computation of elimination trees of minimum height for classes ofgraphs when additional �ll is allowed, and how much �ll this might cause.In paper IV we discuss how orderings giving low elimination trees can be found. Wepresent an e�cient algorithm that solves the minimum height problem for the class ofgraphs that are trees. The algorithm is shown to have time complexity O(n logn log d),where d is the maximum degree of any node in G. This is the �rst e�cient algorithmfor computing an elimination tree of minimum height for a nontrivial class of graphs.In doing so it does not introduce more than n� 1 �ll edges. We also show in the samepaper that for any graph there exists a minimal cutset ordering giving an eliminationtree of minimum height.The numeric factorization is the most compute intensive operation of Cholesky-factorization. A substantial amount of research has been carried out to perform thisoperation both on shared-memory and distributed-memory MIMD-computers, see [19]for an overview. However, we are only aware of two papers [14, 22] that have tried toperform the numeric factorization on a SIMD computer.In paper V we develop and implement an algorithm for performing the numericfactorization on a SIMD computer. This algorithm is similar to the one described in[22]. The algorithm is a fan-out algorithm based on computing one outer-productat a time. Thus the algorithm does not explicitly take advantage of the eliminationtree. The reason for using a fan-out algorithm that performs the outer-products in asequential manner is due to the cost of communication on the computer that we use: onthe MP-2, the cost of sending one value to each processor in the same column (or row)is little over twice that of sending it to the nearest neighbor. This indicates that once avalue has to be sent to another processor it could as well be sent to every processor thatmight need it. If the outer-products that need to be performed are su�ciently largecompared to the processor array, it is possible to keep a large fraction of the processorbusy in each outer-product.The mapping of the data onto the processors is crucial for the performance of thealgorithm. We show that obtaining a good load balance can be viewed as a graphcoloring problem on a weighted graph. Based on this observation we develop a greedyalgorithm that maps the data onto the processors in order to achieve an even load9



balance. We show that this method is superior to other suggested mapping schemes fora number of test problems from the Harwell-Boeing collection [8] as well as on regularstructured problems.The time spent on preprocessing to achieve an even load balance must be comparedwith the time saved in the numeric factorization algorithm. If the same structuralsystem is to be solved many times then only the numeric factorization and triangularsolve have to be performed each time. This is the case in the interior point method forlinear programming [4, 24]. In such settings the time spent on computing a good loadbalance can be averaged over the total time spent on factoring the matrices.6 ConclusionThe papers in this thesis are mainly in the domain of load balancing on parallel com-puters. We have investigated aspects related to SIMD-computing and parallel sparselinear algebra.In paper I we investigated how matrix multiplication could be performed on aSIMD-computer. We showed that non-standard algorithms such as those proposed byStrassen and Winograd can be used to speed up parallel matrix multiplication.In paper II and III we developed two di�erent algorithms for solving a partitioningproblem. The �rst algorithm was of time complexity O((n� p)p log p) and the secondone of �((n � p)p). It would be interesting to see if these two approaches could becombined into a single algorithm of time complexity O((n� p)p) but such that one didnot always need to perform (n� p)p steps.In paper III we reported on how the partitioning algorithm was used as a heuristicfor a two-dimensional partitioning problem to speed up matrix-vector multiplicationon a SIMD computer. This method has also been tried in connection with sparseCholesky-factorization on a SIMD computer. The results, however, were not as goodas the those presented in paper V and are therefore not reported here. Initial studiesindicates that the two-dimensional partitioning problem might be harder than the one-dimensional case. It would be interesting to know whether the two-dimensional casecould be solved e�ciently or if the problem is NP-hard.In paper IV we gave an algorithm for computing an elimination tree of minimumheight for a matrix whose adjacency graph is a tree. This algorithm was based onlimiting the search area for possible solutions in such a way that there only existedone way in which a given solution could be improved. Whenever it was not possible to10



improve a solution we shoved that this solution must be optimal. The same basic ideawas also used in the paper II for partitioning of sequences. We also gave a proof in IVthat for any matrix there exists a minimal cutset ordering giving an elimination treeof minimum height. This is a fact that can be exploited when designing algorithms forcomputing low elimination trees. It would be of interest to see if clique trees could becombined with the results in this paper into an algorithm to compute an eliminationtree of minimum height for chordal graphs.In paper V we presented an algorithm for performing the numeric factorization insparse Cholesky-factorization on a SIMD computer. We note that the algorithm doesnot take advantage of the parallelism given by the elimination tree, although we expectit to execute faster if the elimination tree is low. We have also investigated otheralgorithms that would take advantage of the elimination tree, but found that on theMP-2 computer these were less e�cient than the presented algorithm. This is mainlydue to the small di�erence in time between sending a value to the nearest processorneighbor and the time to broadcast it across a processor column.We also did a graph-theoretical study of the tasks to be performed in the presentedCholesky-factorization algorithm. From this we developed a load balancing algorithmfor assigning the data to the processors in order to reduce the number of parallelsteps. Through a number of test problems we showed that this method was superiorto previously suggested mapping schemes. Some of the matrices on which we triedthe algorithm were very large. As a consequence moving the matrices onto the theprocessor array was very time consuming. We also found that on the largest matricesthe ordering and the symbolic factorization, was slower than expected due to pagingproblems. It would therefore be interesting to see if these algorithms could also beimplemented on a SIMD computer in order to achieve additional speed-up.
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