Efficient Partitioning of Sequences with an

Application to Sparse Matrix Computations

Bjgrn Olstad* and Fredrik Manne!

Abstract

We consider the problem of partitioning a sequence of n real numbers into p
intervals such that the cost of the most expensive interval, measured with a cost
function f is minimized. This problem is of importance for the scheduling of jobs
both in parallel and pipelined environments. We develop an efficient dynamic
programming algorithm that solves this problem in time O(p(n — p)), which is
an improvement of a factor of log p compared to the previous best algorithm. A
number of variants of the problem are also considered. We demonstrate how a
solution to the partitioning problem can be used to speed up sparse matrix, dense
vector multiplication on a SIMD computer.

*Department of Computer Systems and Telematics, Norwegian Institute of Technology, N-7034
Trondheim-NTH, Norway. Email: Bjoern.QOlstad@idt.unit.no

tDepartment of Informatics, University of Bergen, N-5020 Bergen, Norway.
Email: Fredrik.Manne@ii.uib.no

1 Introduction

The scheduling of jobs to processors so as to minimize some cost function is an impor-
tant problem in many areas of computer science. In many cases, these problems are
known to be NP-hard [6]. Thus if scheduling problems are to be solved optimally in
polynomial time, they must contain enough restrictions to make them tractable. In
this paper we will consider one such problem. To motivate why this particular problem
is of interest consider the following:

The computational complexity of forming the product Az = y where A is an M x N
sparse matrix and z is a dense vector, is linear in the number of nonzeros in A. When
forming this product the elements in each column of A are multiplied by the same ele-
ment from . We consider how this can be performed on a parallel computer containing
p processors connected in a line (or ring) where each processor has local memory. One
obvious way this can be done is to divide the columns of A among the processors and
distribute each element of z to the appropriate processor. In this setting the mul-
tiplication algorithm would progress in two stages. In the first stage each processor
multiplies the values in A with the corresponding element from = and accumulates its
local contribution to y. In the second stage the processors communicates in order to
sum the values of y. The computational complexity of such a method will be limited
by the processor that gets assigned the highest number of nonzeros from A. This gives
rise to the following partitioning problem:

Given a vector v € ZV that contains the number of nonzeros in each column of A,
partition v into p consecutive intervals such that the maximal sum of the elements in
each interval is minimized.

In Sections 3 and 4 we develop a new efficient algorithm to solve this problem and
a number of variants of it. If we instead of processors coupled in a line, have an m x n
processor array, the partitioning approach can be used as a heuristic to achieve a good
load balance: Form vectors v and w respectively containing the number of elements
in each column and row. The vector v is then partitioned into n intervals and w into
m intervals so as to minimize the maximal sum of the elements in each interval. In
Section 5 we will show a practical example of such a method.

For an example of how solutions to the partitioning problem can be used to speed
up computations in pipelined environments see [4].

The outline of this paper is as follows: In Section 2 we describe the main partitioning
problem and give an overview of recent work. In Section 3 we develop a new efficient

algorithm for solving this problem. A number of variants of the partitioning problem are

2

described and solved in Section 4. In Section 5 we demonstrate how the algorithm can
be used to speed up sparse matrix, dense vector multiplication on a SIMD computer.

In the final section we summarize and point to areas of future work.

2 A partitioning problem

We will in this section give a formal definition of the main partitioning problem and
also recapitulate previous work. The problem as stated in [10] is as follows:

Let the two integers p < n be given and let {oo,01,...,0, 1} be a finite ordered
set of bounded real numbers. Let R = {rg,r1,...,mp} be a set of integers such that
ro=0<r <..<r_y <rp,=mn. Then R defines a partition of {0y, 01, ...,0n_1} into
p intervals: {0y, 01,...,00, 1}, {00y, oy Opy1} {00, 1, oy 0p, -1} I 7y = 741 then the
interval {oy,, ..., 0r,,,—1} is empty.

Let f be a function, defined on intervals taken from the sequence {og, 01, ..., 0n_1},

that satisfies the following two conditions:
f(O'Z',O','+1,...,0'j) Z 0 (1)
for 0 <14,7 < n—1, with equality if and only if j < 4.

f(0is1, 0019, -, 05) < f(0i, 0041, 0, 05) < f(04, 0ig1, 0, 0441) (2)

for0<i:<j<mn—1.
The problem is then:

MinMax Find a partition R such that max?_y{f (o, ..., 0r;,, 1)} is minimum over

all partitions of {og, ...,0n 1}.

For most problems of interest we expect the following criteria to be satisfied:

1. The function f(o;) can be computed in time O(1).

2. Given f(0;,041, ...,0;) we can calculate f in time O(1), where either ¢ or j has

been increased or decreased by one.

A straightforward example of such a function is f(o;, 0441, ..., 05) = E{:i\aﬂ, given
that o; # 0. To simplify the notation we write f(, j) instead of f(o;, 0it1,...,05). We
also denote the interval {o;,0;11,...,0;} by [i, j]. The cost of a partition is the cost of
the most expensive interval.

The first reference to the MinMax problem that we are aware of is by Bokhari
[4] who presented an O(n®p) algorithm using a bottleneck-path algorithm. Anily and
Federgruen [2] and Hansen and Lih [9] independently presented the same dynamic
programming algorithm with time complexity O(n?p). Manne and Sgrevik [10] then
presented an O(p(n — p) logp) algorithm based on iteratively improving a given parti-
tion. They also described a bisection method for finding an approximate solution which
runs in time O(nlog(f(0,n — 1)/¢€)), where € is the desired precision.

In the next section we show how the dynamic programming algorithm first presented

by Anily and Federgruen can be improved to run in O(p(n — p)) time.

3 A new algorithm

In this section we describe a new efficient dynamic programming algorithm for solving
the MinMax problem. We start by describing the algorithm by Anily and Federgruen.

Let g(7, k) be the cost of a most expensive interval in an optimal partition of [i, n—1]
into k intervals where 1 < k < p and 0 < i < n. The cost of the optimal solution is
then given by ¢(0,p). Once g¢(0,p) is known, the positions of the delimiters can be
obtained by a straightforward calculation. The following boundary conditions apply to

g.

9(i,1) = f(i,n — 1) (3)
g(i;n —4) = max f(4,J) (4)

Note that for n — i < k < p we have g(i, k) = g(i,n — 7).
The following recursion, first presented by Anily and Federgruen [2], shows how
9(i, k) can be computed for 2 <k <n —i:
g(i,k) = min {max{f(i,), 9(j + 1k - 1)}} (5)
This formula suggests that if one has access to each value of g(j+1,k—1),7 < j < n—k,
then g(i, k) can be computed by looking up n — k — i+ 1 values of g and by calculating

n — k — i+ 1 values of f. This gives a total time complexity of O(n?p) and a space

complexity of O(n) to compute g(0, p).

There are two basic ways that the complexity of a dynamic programming algorithm
can be reduced: either by general methods such as presented in [13] or by more problem
dependent methods such as [12]. We did not find that the results presented in [13]
directly applicable to the Anily and Federgruen algorithm. Thus our result is achieved
by taking advantage of the specifics of the given problem.

In the rest of this section we show how g(0, p) can be computed in O(p(n —p)) time.
This result is due to the fact that g(i, k) is monotonically increasing as i decreases. As
a consequence the optimal value of j in (5) also decreases monotonically as i decreases.

If R ={rg =1i,71,...,7x, = n} defines a partitioning of [i,n — 1] of cost g(i, k) we
will say that R is implied by ¢(i, k).

We start by showing that g(i, k) increases monotonically as i decreases.

Lemma 1 Let 4,7 be integers such that 0 < i < i < n. Then g(i,k) > g(¢, k) for
1<k <np.

Proof: Let R = {rg,71,...,7%} be a partitioning implied by g(i,k) and let
s =min{j | r; € R A r; > i'}. Let further R' = {r{,r],...,r},} define a parti-
tioning of [¢',n — 1] into k intervals where 7 = i, and i =Tej1for 1 <j<k-—s
and where r; = n for k — s < j < k. Let v be the cost of R’. Then from (2) we have
f(ro,m1) < f(rso1,7ms) and for 0 < j <k —s, f(r},7iy1) = f(rstj1,7s15). For j such
that k —s < j < k, we have f(rj,r’,;) = 0. This implies that v < g(i,k). Since
g(7', k) <~ we see that g(i', k) < g(i, k). O

From Lemma 1 follows that for fixed k& the function g increases monotonically in
the size of the interval to be partitioned. The following lemma shows how in certain
cases we can compute g(z, k) using the first interval [i + 1, j] in a partitioning implied
by g(i + 1, k) and the value of g(j + 1,k — 1).

Lemma 2 Let [i + 1, 7] be the first interval in a partitioning implied by g(i + 1, k),
k> 1 If f(i,5) < g(G+ 1,k — 1) then g(i,k) = g(j + 1,k — 1).

Proof: If f(i,j) < g(j+1,k—1) then f(i+1,j) < g(j+1,k—1). Since g(i + 1,k) =
max{f(i+1,7),9(j + 1,k — 1)} we have g(i + 1,k) = g(j + 1,k — 1). Together with
9(i, k) <max{f(i,5),9(j+1,k—1)} = g(j+1, k—1) this shows that g(i, k) < g(i+1, k).
From Lemma 1 we know that g(i, k) > g(i+1, k) and it follows that g(i, k) = g(i+1, k)
and thus g(i, k) = g(j + 1,k —1). O

Note that Lemma 2 could also have been stated: If f(i, j) < g(i+1,k) then g(i, k) =
g(i+ 1,k). The present formulation was chosen in order to emphasize the relationship
to (5).

We now discuss how g¢(%, k) can be computed efficiently if Lemma 2 does not apply.

For this purpose we need the following definition:

Definition 3 Let i and k be integers such that 0 < 7 < n and 2 < k < p. Fur-
ther let s;r be an integer, i < s; < n, such that f(i,s;x — 1) < g(sig, k — 1) and
f(i,sik) > g(sixg+ 1,k —1). Then s, is a balance point.

It follows from Definition 3 that max{f(i, six),g(six + 1,k — 1)} = f(¢, %) and
that max{f(,six — 1), 9(six. k — 1)} = g(Six, k — 1). We now show that s; is well
defined.

Lemma 4 The balance point s;; exists and is unique.

Proof: The result follows directly from the following two facts: (1) f(Z,4) is a strictly
monotonically increasing function of j on i — 1 < j < n for which f(i,4 — 1) = 0, and
2) g(j,k — 1) is a monotonically decreasing function of j on ¢ — 1 < j < n for which
gn,k—1)=0. O

We now state our main theorem. It tells us how the balance point s;; can be used

to compute g(%, k).
Theorem 5 For k > 2, g(i, k) = min{f (¢, s;x), g(six, k — 1)}

Proof: We consider two cases: Suppose first that f(4,s:x) < g(six, k& — 1). Since
f(i,8i5) > g(six + 1,k — 1), a partitioning of [¢,n — 1] into k intervals that costs
less than f(7, s;x) must have a first interval [i, j] where j < s;5. The cost of such
a partitioning is v = max{f(4,7),9(j + 1,k — 1)}. From Lemma 1 it follows that
9(six,k—1) <g(j+1,k—1) and since g(j + 1,k — 1) <~y we have g(sjx, k— 1) <.
By the assumption f(%, s;x) < g(Sik, k — 1) we have that f(i,s;x) <. Thus it follows
that g(i,k) = f(i, six)-

Assume now that f(i,six) > g(six, k — 1). Since f(i,s:6 — 1) < g(sip, k — 1)
a partitioning of [¢,n — 1] into k intervals that costs less than g(s;x, k — 1) must
have the first interval [i,j] such that j > s;5. The cost of such a partitioning is
v =max{f(%,7),9(j+1,k—1)}. Since f(¢,s;) < f(4,75) and f(4,j) < v it follows that

6

f(i,s:k) < . Together with the assumption that f(i,s;%) > g(six, & — 1) this shows
that g(six, kK — 1) <~y and therefore ¢g(i,k) = g(six, k —1). O

We can now show how g¢(i, k) and the first interval implied by g(i, k) can be com-
puted efficiently from the following information: The first interval [z + 1, j] implied by
g(i+1,k)and g(l,k—1) fori <l <j+1

If f(,7) < g(j+1,k—1) then as noted in Lemma 2 we have g(i,k) = g(j+1,k—1)
and the size of the first interval implied by ¢(i, k) is [z, j].

If f(i,5) > g(j + 1,k — 1) then we locate s;j and apply Theorem 5. From the
definition of s;; and Lemma 4 we see that f(i,j) > g(j + 1,k — 1) implies that i <
Sik < j. We first test if f(i,4) > g(¢ + 1,k — 1). If this is true then s;;, = 7 (since
f(i,i—1) = 0) and from Theorem 5 if follows that g(¢, k) = f(4,¢) and the first interval
contains only o;. If f(i,4) < g(¢ + 1,k — 1) then we know that 7 < s; .

Assume now that f(i,7) > g(j+1,k—1) and f(¢,4) < g(¢+1,k—1). To locate s;
we compute f(i,7 — 1) and compare with g(j,k — 1). If f(i,7 — 1) < g(j,k — 1), then
J=sik Il g(j,k—1) < f(i,j—1) we reduce j by one and repeat the process. This way
we will eventually get j such that f(i,7 —1) < g(j,k—1) and f(i,5) > g(F+1,k—1).
From Definition 3 it follows that j = s;,. We can now compute g(%, k) by applying
Theorem 5. The size of the first interval is [¢, j] if f(4,5) < ¢g(j,k — 1) and [4,5 — 1] if
1, 5) > g(G, k —1).

From the above it is clear that to compute g(i, k) we only make use of g(l,k — 1)
where ¢ < [< j + 1. This implies that for a fixed value of k£ we only need to compute
g(i, k) for p— k <i < mn — k to be able to compute g(0, p).

Before giving the complete algorithm we note that (4) can be transformed into the

following recursive formula:
g(n—i,i) =max{f(n—i,n—1),gln—i+1,i—1)}.

We use (3) to compute g(i,1) for p — 1 < i < n. The complete algorithm is shown in
Figure 1.

Now we show that the time complexity of this algorithm is O(p(n — p)). First we
argue that under the assumptions on f made in Section 2, we can calculate each needed
value of f in O(1) time. It is clear that this is true when evaluating g(¢,1) in (6). In
(7) and (9) we evaluate f on only one element which can be done in O(1) time. If we
ignore (9) then each calculation (except one) of f(7,7) in (8), (10) and (11) is directly
i

preceded by one of the following calculations: f(i + 1,7), f(i,7 + 1), f(i,7 — 1). The

7

for i :=n —1 down to p—1 do
g(i, 1) = f(i’n_l);

for £ :=2 to p do
g(n_kak) = max{f(n—k,n—k),g(n—k+1,k—1)};
ji=n—k;

fori:=n—k—1down top— £k do
if f(4,7) <g9(j+1L,k—-1)
g(i k) ==g(j + 1,k —1);
else
if f(i,0) > g(i +1,k—1)
g(i, k) = f(l7 i);
j=1
else
while f(i,5 —1) > g(j,k — 1) do
ji=3-1
g(Z, k) = mln{f(l,j),g(j,k - 1)}7
if g(i, k) = g(j, k — 1)
J=J—-1
end-else
end-do
end-do

Figure 1: The new algorithm for solving the MinMax problem

only exception occurs when calculating f(7,) in (8) for i < n—k—1 and (12) was true
for i+ 1. Then f(i+ 1,j + 1) was calculated in (11) prior to (8). Since the argument
of f is shifted only by two elements from (11) to (8) we can still calculate f(4,7) in (8)
using only O(1) time. (Note also that in this case f(i + 1, j) was calculated in (10)).
From this we see that we can calculate each needed value of f in O(1) time.

Now we turn our attention to the overall time complexity of the algorithm. The
initialization in (6) can be done in O(n — p) time. In the innermost for-loop the only
statement that cannot be executed in O(1) time is the while-loop (10). We argue that
for a fixed value of k, (10) is not true more than n — p — 1 times. The value of j is
initially set to n — k. Whenever (10) is reached the value of j is reduced in steps of one
until j = s; 4. Since s;; > i it follows that j will never be reduced below i + 1 in (10).
For fixed k the lowest value ¢ can have is p — k. Thus for each value of &, (10) can at
most be true n — p — 1 times.

If we ignore (10) then the time complexity of the innermost for-loop is O(n — p).
Thus by amortizing the time spent on (10) over the time spent on the innermost for-
loop we see that (10) can be regarded as taking constant time. The for-loop involving &
is executed p — 1 times giving a total time complexity of O(p(n — p)) for the algorithm.
We observe that the algorithm degenerates to an O(n) algorithm for p = 1 and p = n.

As stated earlier this is an improvement by a factor of log p compared to the Manne
and Sgrevik algorithm [10]. It should be noted that the algorithm presented in this
paper has time complexity Q(p(n—p)) on every input. The highest known lower bound
for the Manne and Sgrevik algorithm is also 2(p(n — p)) but for an actuall set of values
it might take less time.

In order to compute g(i, k) for fixed values of ¢ and k, we need only g(j,k — 1),
i < j<mn-—k+1, and the length of the first interval implied by g(i + 1, k). Thus
our algorithm like that of Anily and Federgruen can be implemented using only O(n)

space.

4 Related problems

In [10] a number of problems related to the MinMax problem were described. In this
section we show how each of these problems can be solved by slight modifications of
our main algorithm. Some of these problems are solved asymptotically faster by the
present algorithms for all values of p, whereas in other cases the value of p determines

which algorithm is asymptotically fastest.

4.1 Bounded intervals

When scheduling jobs to processors each processor might have limited storage for its
job queue. In this section we will show how the MinMax problem can be solved with
a size function on each interval and when we demand that the size of each interval be
smaller than some preset limit.

Let s(2) be the size of element o; where s is a function defined on consecutive inter-
vals of {0y, 01, ..., 0,_1 } such that s satisfies (1) and (2). We also assume that the time

complexity of computing s is similar to that of f. We now have the following problem:

Bounded MinMax Given p positive real numbers Uy, Uy, ..., Up_1, find an optimal
partition for the MinMax problem with the constraint that s(r;,rj4y1 — 1) < Uj for
0<j<np.

We will first demonstrate how the bounded MinMax problem can be viewed as a

special case of the following generalized MinMax problem:

Generalized MinMax Find a partition R such that maxi_g{fi(0,,, .-, Or;py-1)} is

minimum over all partitions of {0y, ..., 0,1}

Note that the generalized MinMax problem is defined with different cost functions
for each of the intervals in the partition. This could be convenient if we were to
distribute data on a sequence of processors where the processors operated at different
speeds. We will require that each of the f; functions satisfy the properties required by
f in the original MinMax problem. We can now think of the bounded MinMax problem

as a generalized MinMax problem where the cost functions are defined as follows:

T} is a threshold operator that encodes the constraints in the bounded MinMax prob-

lem:

Ty(z) = (14)

oo ifx>U
0 otherwise

Both in practical implementations and in the theoretical discussion one should rede-

fine infinity in the threshold operators to a fixed high value (with respect to the possible

10

for k£ :=2 to p do
g(n, k) :==0;
ji=n-—1;

for i :=n —1 down to 0 do

if £, 1(6,7) < g(j + Lk —1)
g(i, k) :==g(j + 1,k —1);

else
while f, (i, — 1) > g(j,k — 1) do

J=J—1

g(i k) == min{fp*k(iaj)ag(j’ k—1)}
if g(i, k) = 9(j, k — 1)

J=J—-1
end-else
end-do
end-do

Figure 2: The algorithm for solving the generalized MinMax problem

range of f(i,j) values). A ¢(7, k) value exceeding “co0” indicates that the corresponding
bounded MinMax problem is unsolvable. If this is the case then the value of g(I, k) will

also exceed “oc0” for 0 <1 < 1.

We observe that the bounded MinMax problem can be solved with the original
MinMax algorithm if Uy is independent of k. The cost function must in this case be

updated according to (13).

The algorithm for solving the generalized MinMax problem is given in Figure 2. We
have not included the computations needed to calculate g(i,1) since it is obvious how
(6) must be changed to reflect the new conditions. Different cost functions can give
solutions with empty intervals. Therefore the i-loop must be repeated n times. Since
we might need g(i,k — 1) in order to compute g(i, k) the if-test in (9) is not included

in the algorithm in Figure 2.

The asymptotic time complexity of the algorithm is O(np). This is still an improve-
ment of a factor of logp compared to the algorithm presented by Manne and Sgrevik
for the bounded MinMax problem.

11

4.2 Circular list

We now consider the case where the data is given as a circular list. In this case we
need only p delimiters to partition [0,n — 1] into p intervals and we do not require
that 7o = 0. The pth interval will now be [r,_1,7]. We call this problem the circular
MinMazx problem.

Suppose that there exists an optimal partition where some delimiter is placed in
position [. Then if we start our ordinary algorithm with o; as the first element, it will
produce an optimal solution. To find such an [we divide [0,n — 1] into p intervals
such that no interval contains more than [7] elements. Let [4, j] be the most expensive
interval in this partition of cost f(i,7) = 7. It follows that a partition of minimum
cost must be of cost < 7. A partition that contains no delimiter in the interval [i, j|
will be of cost > v. Thus at least one delimiter must be placed in this interval. From
this we see that if we start our algorithm from each place in the interval [z, j| then the
solution with the minimum value is an optimal partition. Since [7, j] contains at most
[5] elements and each application of the algorithm takes O(p(n — p)) time, we see that
the total time to find an optimal solution is O(n(n—p)). This should be compared with
the Manne and Sgrevik algorithm that solves this problem in time O(p(n — p) logp).

It is possible to speed up the algorithm in the case of a circular list by applying the

following observation:

Lemma 6 Let [i,j| be as above and let [i,1], | < j be the places from which we have
started the algorithm. Let v;; be the cost of the best partition found so far. If f(i —
1,14+ 1) > ;,; then v, is optimal.

Proof: Let ymin be the cost of an optimal partitioning. Assume that f(i—1,1+1) >
and that ymin < 7. Since «;; is not optimal then in an optimal partitioning there can
be no delimiters in the interval [i,/]. Thus in an optimal partitioning some interval
must contain [—1,{+1]. This shows that v > f(¢—1,0+1) > 7,;; which contradicts
the assumption that ymin < i;. Thus we can conclude that «;; must be an optimal
solution if f(: — 1,04+ 1) > 7,;;. O

As noted in Section 4.1 the bounded MinMax problem with Uy independent of &
can be solved by the original MinMax algorithm. Thus we can also solve this bounded

MinMax problem in the circular case.

12

4.3 Other problems

As noted in [10] one may wish to solve the MinMax problem for each value of p. When
solving the problem for p it is also possible to generate g(0,k) for 1 < k < p. This
would increase the time complexity to O(np). Thus the time complexity of solving the
problem for each p, 1 < p < n, is O(n?). This is an improvement of a factor of logn
over the algorithm presented in [10]. To solve the circular problem for each value of p,
1 < p < n, one can start this algorithm with p = n from each place in [0,n — 1]. This
gives a time complexity of O(n®). This is also an improvement by a factor of logn over
the previously best algorithm [10].

Finally, we mention a similar problem to the MinMax problem called the MaxMin
problem where the object is to find a partion such that the cost of the least expensive
interval is mazimized. This can be solved by a method analogous to that presented in

Section 3 to solve the MinMax problem.

5 Parallel sparse matrix-vector multiplication

We will in this section show how the partitioning algorithms presented in Sections 3
and 4 can be used to speed up sparse matrix-vector multiplication on a parallel SIMD-
computer. In particular we have implemented a method due to Ogielski and Aiello
[11] to do sparse matrix-vector multiplication, on a MasPar MP-2 computer. We start
by giving a short description of the MP-2 computer followed by a description of the
matrix-vector multiplication algorithm. Finally we demonstrate how the partitioning

algorithm can be used to speed up the matrix-vector multiplication algorithm.

5.1 The MasPar MP-2 system

The MasPar MP-2 system is a massively parallel SIMD computer. It is an upgrade
of the older MP-1 system [3], incorporating more powerful processor elements while
using the same communication subsystem. The MP-2 consists of two parts: a high-
performance work station, which acts as a front-end for the system, and a data parallel
unit (DPU). The DPU contains between 1024 (1K) and 16384 (16K) processor elements.
They are arranged in a 2-dimensional, toroidal-wrapped grid called the processor ar-
ray. The DPU also contains an array control unit (ACU), which provides an interface
between the front-end and the processor elements.

All the processor elements receive the same instruction from the ACU at the same

13

time and execute it on their local data. However, individual processor elements can
disable themselves based on logical expressions and they can also use indirect references
when referring to local data.

The MP-2 provides two types of communication between the processor elements
called Xnet and Router. Xnet communication is the faster, but more restricted pro-
cedure. It follows the grid lines of the processor array. Processor elements can send
data any distance to the north, south, west, and east, as well as to the northwest,
northeast, southwest, and southeast. The grid lines wrap around, so each processor
element always has a neighbor in each of these eight directions.

Router communication allows each processor to send data to any other processor in
the processor array. This makes it more flexible than the Xnet, but slower.

Each processor element is a 32-bit load/store arithmetic processor with 40 32-bit
registers and 64Kb of RAM. There is no floating point hardware and all floating point
operations are thus implemented in software. If we define the average time of a floating
point operation (flop) as @ = $(Mult + Add), the peak speed of a single processor
element is 0.1412 Mflops for 64-bit arithmetic. A 16K processor machine would thus
have the peak performance of 2314 Mflops.

Comparing the speed of arithmetic to communication on the MP-2, we obtain the

ratio
Xnet[l]

(07

0.8.

Thus floating point arithmetic is actually more expensive (by 20%) than sending the

value to the nearest neighbor in the processor array.

5.2 The algorithm

Let A be M x N sparse matrix and x a vector of length N. We have implemented an
algorithm for calculating the matrix-vector product Az = y on a rectangular processor
array of dimension m x n. We assume that m < M and n < N. The algorithm
presented here is based on an algorithm due to Ogielski and Aiello [11]. It operates in
three stages: In the first stage the entries of x are spread across the processor array. In
the second stage each element q; ; is multiplied by z;, and in the final stage the result
of the multiplications are accumulated across the processor array to form y.

First we describe how A is mapped to the processor array. Let R = {rg, 1, ..., 7}

14

define a partitioning of the rows of A into m intervals such that |M/m| < r; —r;_; <
[M/m], 0 < i< m. Similarly let C = {co, c1, ..., ¢, } define a partitioning of the columns
of A into n intervals such that |N/n| < ¢; —¢;—1 < [N/n], 0 < ¢ < m. This gives
rise to a block partitioning of A into mn blocks each of size at most [M/m] x [N/n].
We denote the ¢, jth block by A; ;. The non-zeros of A; ; are mapped to processor (z, j)
and stored in a one dimensional array elem. Only the local row and column indices of
each non-zero a;; are stored. They are computed relative to the number of rows and

columns from A that are mapped to each processor row and column.

With this mapping of A the elements z., , Z, 41, ..., T, , —1 are needed on each proces-
sor in column k£ in order to perform the multiplications. The element
ZTers, 0 < I < cpy1 — ¢k, is stored in position |I/m| of the array z_local on the
processor (I mod m, k). Thus in effect the elements of x which are needed on each
processor column are wrapped cyclically around the processors in that column. The
segment, of z which is mapped to each processor column is padded with zeros so that
each processor stores [N/(mn)]| elements from z. The reason for using this storage
scheme for z is that it requires little space and as we shall describe, the values of =
can now be spread efficiently across each processor column. The vector y is stored in a
similar row-oriented way: Element y,, 1, 0 <1 < rg41 — 7, is stored in position |I/n|
of the array y_local on the processor (k,! mod n). Just as it did for z each processor

stores [M/(mn)| elements from y.

Before the multiplications are performed each processor in column k receives a copy
of the elements ., T¢, 11, ..., Te,,,—1. To do this each processor starts by copying the
value of z_local[0] into a temporary variable z. Thus the processor in row [of column
k will have z = z.,4;. The variable z is then copied into the array temp before it
is sent to the nearest neighbor to the north. The storing and sending of z into the
array temp is repeated m — 1 times until z., , ¢, 11, ---; T, +m—1 has been spread across
processor column k. The entire process is then repeated for each consecutive value
in z_local (i.e. [M/m] times) at which point each processor has a complete copy of
T, Tegtly oo Tegyy—1 10 temp. The elements from z in each processor column arrive at
different times on different processors. The effect of this is that the element z, ; will

on processor (s, k) be stored in position
(I—s)mod M + |I/M| « M (15)

of temp.

Each processor now forms its local contribution to y. This is done by multiply-

15

ing each element of A;; with the appropriate element in temp. The result of each
multiplication is accumulated in the array answer.

When the multiplications are done the values in answer are accumulated across each
processor row to form y. This is done in a similar way to spreading z. To assure that
the value of y,, +; is stored on processor (k,! mod n) the processor (k,) accumulates

its contribution to y,,4; in position
(l—t—1)mod N+ |I/N|*xN (16)

of answer.

In the algorithm presented here we have not included the calculation of the pointers
into the arrays z_local and y_local as given by (15) and (16). The reason for this is that
before the algorithm can be executed the local indices on each processor have to be
computed. So instead of storing the local indices we apply (15) and (16) at once. It
is also the case in many applications where matrix-vector multiplication is used, that
the same structural matrix is multiplied many times. If this is so then the indices have
only to be calculated before the first time.

The complete algorithm is shown in Figure 3. In the algorithm the variables ¢y and
iz contain the row and column index of each processor. The statment sendE[1].z =
z is the use of the Xnet primitive, where E gives the direction of sending (in this case

east).

5.3 Load balancing

The expected execution time of the program in Figure 3 is given by the following

formula:

v xm* [N/(mn)] + vo * nzggx |Aij| + 73 xn* [M/(mn)] (17)

The first term accounts for the distribution of z, the second for the multiplications
and the last for setting answer to zero and for performing the row-sums. On the MP-2
we found that 73 = 8 , 79 = 54 and 3 = 17 measured in micro-seconds.

If A contains blocks of non-zeros then the number of nonzeros assigned to each
processor might be uneven giving a large value of max; ;|A4;;|. In order to circumvent
this problem, Ogielski and Aiello [11] suggested that one initially permutes the rows
and columns of A randomly. Thus in effect we compute PAQTQx = z where P and Q

are permutation matrices and z = Py. The values of y can easily be derived from z.

16

/* Distribute z along the processor-columns */

for i := 0to [N/(mn)] —1 do
z = x_localli];
templi * n] := z;
for j:=1tom—1do
sendN[1].z := z;
temp[j + i * n] := z;
end-do
end-do

/* Set answer to zero */

for i :=0to [M/(mn)| xm —1do
answerl[i| := 0.0;

/* Perform the multiplications */

for i := 0 to |A;y .| — 1 do

a := rowli];

b := columnli];

answer[a] := answer[a] + temp[b] * elem[i];
end-do

/* Sum y along the processor-rows */

for i := 0 to [M/(mn)] —1 do
z := answer[i x m];
for j:=1ton—1do
sendE[l].z := z;
z := z + answer[j+i * m];
end-do
y-localli] := z;
end-do

Figure 3: Parallel matrix-vector multiplication

17

To avoid confusion we assume that P =17 and Q) = 1.

The quotient ¢ = 75/(71 + 3) gives an indication of the relative importance of
reducing max |4;;| in terms of the total execution time of the algorithm. We note
that in our implementation ¢ = 2.16 where as Ogielski and Aiello [11] on an MP-1
have ¢ = 2.87. How well a reduction of max |A;;| translates into total speedup of the
algorithm, is thus dependent on the speed of arithmetic compared to communication.

We now discuss how the partitioning algorithm described in Sections 3 and 4 can
be used to speed up this code. Consider a partitioning of the columns of A such that
no processor column gets more than ! columns from A. Then if I < m[N/(mn)] the
time to spread x across the processor columns will not increase. To see what this
means consider the case where N = 50,000, m = 128 and n = 128. Then with the
Ogielski and Aiello partitioning scheme each processor column will get |N/n| = 390
or [N/n] = 391 columns from A and [N/(mn)]| = 4 iterations are needed to spread z
across the processor columns. However, as long no processor column gets assigned more
than m[N/(mn)| = 512 columns we still only need 4 iterations to spread z. Similarly
any partitioning of the rows of A where no interval is larger than n[M/(mn)]| will
spend the same amount of time on summing the values of y along the processor rows.

Thus if mn does not divide M and N there is a certain degree of freedom as to how
A is partitioned into blocks without increasing the time spent on distributing z and
summing y. We take advantage of this fact to try to reduce max; ; |A;;|, i.e. the middle
term of (17).

We form a vector containing the number of elements in each column. Since a
random permutation has been performed of the rows of A we can expect the non-zeros
in each column of A to be evenly distributed. Thus by partitioning the vector into n
intervals such that the sum of the elements of the most expensive interval is low we
can expect max; ; |A;;| to be reduced. We partition the vector with the constraint that
no interval contains more than m|[N/(mn)] elements. This is the bounded MinMax
problem with Uj independent of k. Thus we can use the algorithm in Figure 1 with
f modified according to (13). We perform a similar partition of the rows of A with
the restriction that no interval contains more than n[M/(mn)] elements. We will
demonstrate the efficiency of this method on a number of test problems. Note also that
since the processors on the MP-2 are toroidally wrapped, it is possible to perform a
circular partitioning of the rows and columns of A.

Most matrices from finite element and finite difference applications tend to be very
sparse with only a small constant number of nonzeros in each column. For very sparse

problems there is not much to gain from trying different partitionings since the time

18

Matrix Dim | Density | LB | Rand | RMF | BA | BMF
16-3D 4096 3.5% | 36 100 | 135.03 | 59 | 182.89
21-3D 9261 2.3% | 118 273 | 215.40 | 176 | 302.66
besstk31 | 35588 0.5% | 369 683 | 259.85 | 450 | 355.03
besstk33 | 8738 3.5% | 163 337 | 249.63 | 219 | 354.79
33 no-fill | 8738 0.4% | 19 371 113.89 | 37| 113.89

Table 1: Results for the 16K processor MasPar MP-2

will be dominated by spreading z along the processor columns and summing y along
the processor rows. Also if each row and column is sparse the random permutation of
A tend to give a good load balance.

To demonstrate the efficiency of the partitioning method we use symmetric matrices
on which symbolic permutation has been performed. This increases the density of the
matrices. We note that these matrices might not be typical of the kind of matrices that
one would want to perform matrix-vector multiplication with. Still as we show, they
indicate that the method is potentially helpful whenever the matrix is not very sparse
and contains dense rows and columns.

To generate test matrices we have used three-dimensional k£ X k X k twenty-seven
point grids on which we have performed symbolic factorization. They were preordered
by Sparspak’s automatic nested dissection [7]. We also include results on matrices from
the Harwell-Boeing test collection [5]. These have been preordered by the minimum
degree algorithms from Sparspak.

The results are shown in Table 1. The matrix “33 no-fill” contain the lower tri-
angular structure of “bcsstk33” before adding the fill elements. The reported results
are the median improvement given by the partitioning algorithm on 11 initial random
permutations of each matrix. “Dim” gives the dimension of each matrix and “Density”
gives the percentage of the elements that are nonzero. “LB” gives [|A|/(nm)]| which
is a theoretical lower bound for max;;|A4;;|. “Rand” gives max,; |A; ;| after A has
been randomly permuted and partitioned into even size blocks. “RMF” is the number
of MFlops achieved on the MP-2 with this layout of A. “BA” gives max; ; |A; ;| after
the partitioning algorithm has been used and “BMF” gives the MFlop rate with this
layout.

We note that on the filled matrices the MFlop rate increases between 35% and 43%
by performing a balanced partitioning of A. On the matrix without fill no increase
occurred. As can be seen by comparing the matrices besstk31 and besstk33 without fill

it is not only the density of the matrices that determines if the balanced partition gives

19

a positive effect. Other factors that might influence this is the dimension of the matrix
compared to the size of the processor array and the presence of rows and columns that
are relatively more dense than the rest of the matrix.

We have also tried a cyclical partitioning of the rows and columns of A. However,
this did not result in any significant speed-up compared to the ordinary partitioning
algorithms.

The improvement that can be achieved with this method must be compared to the
time taken by the partitioning algorithm. For iterative methods such as the conjugate
gradient method [8] one has to multiply the same matrix with a dense vector many
times. Thus the time to perform the partitioning can be distributed over the number
of matrix-vector operations that need to be performed.

Another application where sparse matrix-vector multiplication is needed, is when
solving sparse triangular systems by the means of partitioned inverses [1]. This method
involves repeated multiplications of a series of lower triangular sparse matrices and a

dense vector.

6 Conclusion

We have in this paper shown how the complexity of the dynamic programming method
used by Anily and Federgruen to solve the MinMax problem can be reduced from
O(n?p) to O(p(n — p)). We obtain the improvement by taking advantage of the mono-
tone properties of the cost functions. Where applicable, this technique seems to be a
useful way of reducing the complexity of dynamic programming algorithms. We have
shown how our algorithm can be modified to solve a number of variants of the Min-
Max problem. Based on these algorithms we demonstrated how sparse matrix-vector
multiplication on a SIMD computer can be made more efficient.

We note that the bounded MinMax problem can be solved by the algorithm for the
generalized MinMax problem even if we had used an independent size function s; as
long as each s; satisfies (1) and (2).

In the matrix-vector code presented in Section 5 we performed a random permu-
tation of A prior to the partitioning. This in itself gives relatively good load balance.
For other problems where it is not possible to perform such a permutation we believe
that one can expect greater speed-up from the partitioning algorithm.

We note that other methods than the one presented in this paper could have been

used to speed up the sparse matrix-vector multiplication algorithm. Instead of using

20

a randomized permutation of the rows and columns of A, one could use some more
sophisticated way to determine permutations to even out the number of nonzeros al-
located to each processor. Also, our algorithm only gives an approximation to the 2
dimensional partitioning problem. It would be of interest to know if it was possible
to find an optimal solution to this problem. The partitioning problem can also be

generalized to higher dimensions than 2.

7 Acknowledgment

The authors thank Andrew Ogielski for help with implementing the matrix-vector mul-
tiplication algorithm in Section 5. They also thank Bengt Aspvall and Tor Sgrevik for

constructive comments.

References

[1] F. L. ALVARADO AND R. SCHREIBER, Optimal parallel solution of sparse trian-
gular systems, SIAM J. Sci. Statist. Comput., 14 (1993).

[2] S. ANILY AND A. FEDERGRUEN, Structured partitioning problems, Operations
Research, 13 (1991), pp. 130-149.

3] T. BLANK, The MasPar MP-1 architecture, in Proceedings of IEEE Compcon
Spring 1990, IEEE, February 1990.

[4] S. H. BOKHARI, Partitioning problems in parallel, pipelined, and distributed com-
puting, IEEE Trans. Comput., 37 (1988), pp. 48-57.

[5] I. DurF, R. GRIMES, AND J. LEWIS, Sparse matriz test problems, ACM Trans.
Math. Software, 15 (1989), pp. 1-14.

6] M. R. GAREY AND D. S. JoHNSON, Computers and Intractability, Freeman,
1979.

[7] A. GEORGE AND J. W. H. Liu, Computer Solutions of Large Sparse Positive
Definite Systems, Prentice-Hall, 1981.

8] G. H. GoLuB AND C. F. V. LoAN, Matriz Computations, North Oxford Aca-
demic, 2 ed., 1989.

9] P. HANSEN AND K.-W. LiH, Improved algorithms for partitioning problems in
parallel, pipelined, and distributed computing, IEEE Trans. Comput., 41 (1992),
pp. 769-771.

21

[10] F. MANNE AND T. S@REVIK, Optimal partitioning of sequences, Tech. Report
(CS-92-62, University of Bergen, Norway, 1992.

[11] A. T. OGIELSKI AND W. AIELLO, Sparse matriz computations on parallel pro-
cessor arrays, SIAM J. Sci. Comput., 14 (1993), pp. 519-530.

[12] B. OLsTAD AND H. E. TYSDAHL, Improving the computational complezity of
active contour algorithms, in Proceedings of the 8th Scandinavian Conferance on
Image Analysis, Tromsg, Norway, 1993.

[13] F. F. Yao, Speed-up in dynamic programming, SIAM J. Alg. Discrete Meth., 3
(1982), pp. 532-540.

22

