
This is page 1Printer: Opaque thisAutomating the Debugging ofLarge Numerical CodesFredrik ManneSvein Olav Andersen1ABSTRACT The development of large numerical codes is usually carriedout in an incremental fashion and over a long period of time. In this process,a segment of code might, for reasons of speed or accuracy, be replaced witha new code segment. If the resulting program contains a fault or generatesa completely di�erent result than the old one, it is crucial to �nd the placewhere the discrepancy �rst occurs. Finding this place might be a verytedious and time-consuming operation.We present a framework called comparative debugging speci�cally designedto aid the programmer in debugging such situations. In this setting, theprogrammer can run both the old and the new program simultaneously,while comparing the execution 
ow and the values of certain variables in thetwo codes. If any discrepancy is discovered between the two programs, thisis automatically reported back to the user who can then take appropriateaction. The presented ideas have been implemented in a debugging tool.We believe this to be a simple yet powerful way of automating the de-bugging process that can easily be incorporated into existing debuggingprograms.1 IntroductionIt has been estimated that 25-50 % of the total cost and time in system de-velopment may be spent on software testing and debugging [Boe81, Zel78],and as much as 95 % of the time spent on debugging may again be spenton fault-location [Mye79]. Therefore it is important to automate and speedup the process of locating where an error occurs in the code.For this purpose programmers apply debugging tools such as the genericUnix debugger dbx, the GNU debugger gdb [SP94], and other vendor-speci�c debuggers. These tools let the programmer keep track of the stateof the program and the values of certain variables while stepping throughthe execution. Even with these tools the debugging process can be time con-suming since the programmer must inspect values manually to determine1Dep. of Informatics, University of Bergen, N-5020 Bergen, Norway,ffredrikm,sveinoag@ii.uib.no



2 Fredrik Manne , Svein Olav Andersenwhere an error occurs.In order to automate the process most debuggers can set conditionalbreakpoints (watch-points). In this way, the debugger stops only when somecondition is evaluated to be true. For example, one might know the expectedrange of a variable. However, if the computation is \almost" correct suchinformation will be of little help in determining where the error occurs.Program slicing [Agr91, Pan93, Wei82] is a way of determining whichlines of code a�ect a certain variable. Thus if one knows that a certainvariable is incorrect this method gives an overview of the other variablesthat a�ect it.One must, however, know in which variables the error occurs and alsowhen it �rst occurs. An incorrect end result might be the result of a longchain of events in the program. For this reason execution backtracking[Agr91] has been suggested. This method lets the user backtrack throughthe execution of the program recreating the di�erent states of the execution.For memory intensive programs with long execution time this is not apractical procedure as it would require storing vast amounts of data. Alimited time window, in which one can backtrack will save memory butmight not be su�cient to backtrack to where the error originates. Moreover,this process still requires the user to inspect the program manually.The motivation for the current work comes from debugging large time-stepped simulation codes. Examples of such codes are 
uid dynamics com-putations, oil reservoir modeling, weather forecasting, etc. These codes havein common that they try to simulate the behavior of a complex system overtime. The simulation is broken down into shorter time steps on which themodel is able to predict the outcome within reasonable accuracy. Such sim-ulations tend to be computationally intensive and may run for hours andeven for several days. These codes are also often very large involving up toseveral hundred thousands of code lines. If an error should occur in such aprogram, the task of locating it might be very di�cult and time-consuming.The development of large numerical codes is usually carried out in anincremental fashion and over a long period of time. Hence it is not unlikelythat if parts of the code are changed and an error occurs one would have twoversions of the program, one giving the correct answer and a new versiongiving the wrong one. In this case, it could be argued that the programmerhas su�cient knowledge of what has been changed in the program in orderto locate the error. But adding new features and capabilities to a programmight initiate an error in the old parts of the code that have already beentested. Moreover, if the error only occurs for speci�c data sets the codemight have continued developing for some time before one realizes that itcontains an error.We present a framework called comparative debugging that automatesthis particular debugging situation. In this framework, the programmerruns the old and the new versions of the program simultaneously, whilemonitoring the values of a set of selected variables. If the values of any



1. Automating the Debugging of Large Numerical Codes 3variable di�ers between the two programs the programmer is automaticallynoti�ed. This will direct the programmer to the �rst instance where an erroroccurs. It is also possible to trace the execution and ensure that the samestatements are executed in the two programs.We believe this to be a novel approach to automating and thus speedingup the debugging process that can easily be incorporated into existingdebugging tools. In order to illustrate this we present a prototype tool calledtheWizard that realizes the presented methods. This tool is developed usingstandard software components thus making it easily portable.Apart from speeding up the debugging process the Wizard can also beused to verify that two programs that reach the same answer do so throughthe same set of computations.The rest of the paper is organized as follows. In Section 2 we set upthe the theoretical framework for comparative debugging. In Section 3 wepoint to some situations where this might be of use. The Wizard itself ispresented in Section 4 before we conclude in Section 5.2 Comparative DebuggingBased on the observation that most of the work in debugging is in locatingwhere the error �rst occurs we suggest the following approach to automatethe debugging process.It is assumed that the user has two programs available: An old programAgiving the correct answer and a new programB giving the incorrect answer.The task we wish to solve is to determine where the error �rst occurs in thenew program. It is also conceivable that instead of an old program one hasaccess through a �le to the correct values of certain variables at di�erentstages of the computation.2.1 Comparative BreakpointsWe start by de�ning a comparative breakpoint (EA; lA); (EB ; lB). Here EAis an expression involving variables from program A and lA is a line numberin A de�ning where EA is to be evaluated. The variables used in EA mustbe in scope in line lA. The expression EB and line number lB is de�nedsimilarly for program B.Each time program A executes line lA the value of EA is evaluated usingthe current values of the variables in A. The value of EA is then storedin a queue. Similarly when program B executes line lB the value of EBis evaluated and stored in a separate queue. Whenever both queues arenon-empty the �rst elements of the queues are compared for equality anddeleted. Thus the value of EA and EB at the k'th time lines lA and lBare executed will be compared. This is true even if the programs should



4 Fredrik Manne , Svein Olav Andersenexecute asynchronously.We de�ne two types of comparative breakpoints: blocking and non-blocking. When a program encounters a blocking breakpoint the programhalts after storing its value to the queue. When both programs have storedtheir associated values and the comparison has been performed the pro-grams are noti�ed of the outcome. If EA = EB both programs continueexecution, but if EA 6= EB they halt. Figure 1 illustrates the data-
ow fora blocking breakpoint.
BA

E =EA B

lBlA

FIGURE 1. A blocking breakpointThe rationale for this behavior is that if A and B are running inside twoseparate debuggers, control is passed back to the debuggers. So that in theevent of a halt message the programmer can perform traditional debuggingon the two programs before deciding on whether to terminate or continuethe execution.When a non-blocking breakpoint is encountered the program does notwait for the result of the comparison, but continues execution as soon asthe associated value has been stored in the queue. If a mismatch is foundwhen comparing the values in the queues an error message is output tothe user. Consequently non-blocking breakpoints are mainly for detectionof where an error occurs.The main reason for including non-blocking breakpoints is speed of ex-ecution. A blocking breakpoint will cause the programs to synchronize ateach breakpoint, slowing down the overall execution. Also if EA and EBare matrix values, or if breakpoints are encountered frequently, it may takea signi�cant amount of time to transmit the necessary values and performthe comparison.Apart from speeding up the execution, non-blocking breakpoints areslightly more 
exible than the blocking ones. If A encounters a blockingbreakpoint fewer times than B, this would cause A to hang inde�nitely.Also as shown in Figure 2 if two blocking breakpoints have been de�nedsuch that lA < l0A and l0B < lB , a deadlock might occur with program Awaiting for input at lA and program B waiting for input at l0B . Both ofthese situations can be avoided by using non-blocking breakpoints.Comparative breakpoints should preferably be used in such a manner



1. Automating the Debugging of Large Numerical Codes 5
B

lA
l’
A

l’B lB

A

FIGURE 2. Blocking breakpoints may cause a deadlockthat deadlocks are avoided. It is, however, the responsibility of the user toensure this.In Section 3 we present some examples to motivate where comparativebreakpoints can be of use.2.2 Execution TracingThe idea of comparative debugging can be extended to other areas in addi-tion to comparing variables. We de�ne a special type of comparative break-point called a logical breakpoint that can be used to trace and compare theexecution of two programs.A logical breakpoint is basically de�ned in the same way as the blockingand non-blocking breakpoints. The main di�erence is that when a programencounters a logical breakpoint only the identity of the breakpoint is usedfor comparison. So instead of associating an expression with each break-point we use an identi�er i that is the same in both program A and B butis unique for each breakpoint. The formal de�nition of a logical breakpointthen becomes (i; lA); (i; lB).The only thing being compared during the execution of the two programsis the order in which the logical breakpoints are encountered. If programA encounters logical breakpoint i before breakpoint i0 while program Bencounters i0 before i, an error will be reported.To see how this might be used consider the following code segment:while (sum < limit) fsum = sum + a[i];i = i + 1; greturn;Assume that this particular segment of code is in both programs and thatthe user wants to know if it is being executed the same number of timesin the two programs. This can be done by adding two logical breakpointsto the codes, the �rst attaching the two summation lines to each otherand the second attaching the return statements to each other. Then an



6 Fredrik Manne , Svein Olav Andersenerror will be reported if the programs execute the loop a di�erent numberof times. If a blocking logical breakpoint has been used, the program thatexecutes the loop the fewest times will halt on the return statement, whilethe other program will halt on the summation statement. If non-blockinglogical breakpoints are used an error will be reported but the programswill continue their execution. Note that in the above example, it is notsu�cient to add a comparative breakpoint that compares the values i inthe two programs. This is because the initial values of imight di�er betweenthe two programs.Logical breakpoints should only be used where the execution 
ow ofa program can branch. The obvious place being inside a loop or in anif statement. Other settings might be a subroutine with multiple returnstatements or a case statement.To ensure that any discrepancy is discovered, each possible branch ofexecution that one wants to trace must be tagged by a logical breakpoint.This means that in a loop one should tag both a statement inside the loopas well as the �rst line following the loop. Similarly in an if statement,both the then and the else statement should be tagged. If there is noelse statement the �rst line of code following the if statement should betagged.If one avoids tagging a certain branch of execution one of the programscan escape through this and later return to execute the necessary logicalbreakpoint, thus avoiding the detection of an error. A basic block of code isa sequence of source lines such that if the �rst line is executed the programcannot branch until the last source line has been executed. Thus it is onlynecessary to add logical breakpoints to the �rst statement of a basic blockin each program.We note that in some cases it is possible to simulate a logical breakpointby the use of comparative breakpoints. This can be done by adding com-parative breakpoints that compares the logical expressions that govern thebranching of the execution 
ow. This is, however, more cumbersome andnot as 
exible as using a logical breakpoint. In particular, this is true ifone is comparing two code segments where the structure of the governinglogical expressions are di�erent.2.3 Floating Point ComparisonsThe exact value of a 
oating point value might vary depending on issuessuch as the order of the operands, the machine precision, the implemen-tation of standard numerical functions, etc. For these reasons it is seldommeaningful to compare two 
oating point values to determine if their valuesare exactly equal. To circumvent this problem we introduce a user speci-�ed value � which is the largest tolerated di�erence when comparing two
oating point values before an error is reported.



1. Automating the Debugging of Large Numerical Codes 73 Examples of UseIn this section, we give a few examples where comparative breakpointsmight aid the programmer both in veri�cation of code and in the debuggingprocess. In general, it is possible to use comparative debugging in anysetting where a secondary program can generate the expected answer of acode segment.3.1 Matrix MultiplicationThe core of many block algorithms used in linear systems solvers, is a ma-trix multiplication routine. The time complexity of calculating the matrixproduct C = AB, where A;B; and C are n� n matrices, using traditionalmatrix multiplication, is O(n3). Strassen's matrix multiplication algorithmis able to perform this calculation in time O(n2:807) [GL89, Str69]. Thus onemight be able to speed up the code by using Strassen's algorithm instead ofthe traditional algorithm. Both IBM and Cray support routines for fast ma-trix multiplications using Strassen's algorithm. See also [Bai88, BMSV92]for examples of implementations of Strassen's algorithm. However, the errorbound given by Strassen's algorithm is weaker than that of the traditionalalgorithm [Bre60, Hig90]. Therefore the two approaches might give di�er-ent answers. If one suspects that this is the case one can use comparativebreakpoints to determine if and when the result of Strassen's algorithmdi�ers signi�cantly from that of the ordinary algorithm.3.2 Order of Execution (Sequential - Parallel)For our second example we consider parallel computing. It is well knownthat the order of the operands in a computation can have signi�cant impactupon the end result. See [Esp95] for a discussion of 
oating-point summa-tions. A particularly computational intensive segment of code might berewritten to run in parallel. If the end results of the sequential and parallelcodes di�er, one might wonder if this is the result of a coding error or ofperforming the computations in a di�erent order. In this case, comparativedebugging can be used to determine the magnitude and the �rst instancewhere the codes produce di�erent results.3.3 Di�erent InputIf the input data to a program has been slightly perturbed the programmight perform other actions then what it did previously. The user mightthen want to catch the �rst instance where the program behaves di�erentlyon the two datasets. This can easily be accomplished with the use of logicalbreakpoints.



8 Fredrik Manne , Svein Olav Andersen3.4 Cross-platform DebuggingFinally, we note that if an error occurs only on a particular computerplatform it is possible to use comparative debugging while running thesame program simultaneously on two di�erent computers and performingthe communication between the two programs through the net.4 The WizardTo illustrate that the concept of comparative debugging is feasible anduseful, we have implemented the features described in Section 2 in a de-bugging tool called the Wizard. The Wizard lets the user run two programssimultaneously, each running inside a debugger extended with comparativebreakpoints.4.1 ImplementationThe Wizard is comprised of a monitor program and two debuggers. Theseare again merged inside a graphical user interface. The two debuggers areslightly modi�ed version of the GNU debugger gdb [SP94]. The gdb de-bugger has been extended with comparative breakpoints as described inSection 2. These breakpoints are constructed in a similar way as the or-dinary breakpoints only that the required expression has to be evaluatedand transmitted to the monitor program. The comparative breakpoints usegdb's own internal representation of variables. With this implementation itis possible to use all the ordinary debugging features included in gdb. Itis also possible to make the evaluation of a comparative breakpoint condi-tional.The monitor program is implemented in C and performs the actual com-parisons of data transmitted from the two debuggers. The communicationbetween the two debuggers and the monitor program is done using thePVM message-passing system [GBD+93]. The programs are assembled in-side a user interface implemented using TCL/TK [Ous93, Wel94] and Ex-pect [Lib94]. By using software that is available on most Unix platformsthere is no major problem in porting the tool to new systems. Figure 3illustrates the design of the Wizard.4.2 The User InterfaceWhen the Wizard is started, the user �rst speci�es on which computersthe programs are to run. The two programs to be executed are then loadedinto the debuggers. Figure 4 shows the main view of the program.There are four menus at the top of the screen. Their functions are asfollows:



1. Automating the Debugging of Large Numerical Codes 9
Debugger
running
program A

Debugger 
running
program B

Monitor program

Networked
communication

FIGURE 3. The design of the Wizard� File, This menu is used to specify the executable programs to runin the debuggers.� Pvm, This menu lets the user specify on which computers the programsare to be run. It is also possible to con�gure PVM through this menu.� Views, This allows for pop-up windows containing graphical inter-faces to a number of gdb commands.� Help, Displays various help messages.There are two windows listing the source codes of the two programs.Below these are two interactive windows used for input to the programsand for displaying messages from gdb. Below these windows are �ve push-buttons. The e�ect of these are as follows:� continue, After a mismatch has been found at a blocking breakpointboth gdb processes halt. With this button the user can continue exe-cution of the two programs.� delete, This button deletes a comparative breakpoint (from bothprograms). One may thus be assured that both programs contain thesame number of comparative breakpoints.� run, This button starts the execution of the two programs.� blocking, This button lets the user specify a blocking comparativebreakpoint. The user gives the line numbers of the breakpoint and



10 Fredrik Manne , Svein Olav Andersenspeci�es if this is a logical breakpoint or not. If not the user gives theexpressions to be evaluated in each of the two programs.� non-blocking, This button is similar to the \blocking" button onlythat a non-blocking comparative breakpoint is speci�ed.At the bottom of the user interface is a window displaying the output ofthe monitor program. Whenever a comparison of the values from a com-parative breakpoint results in a discrepancy an error message is printedin the bottom-most window specifying the line-numbers of the breakpointand the values that caused the mismatch.Below the top-most menus there are three push-buttons, the left-mostcontaining an image of a wizard and the two others displaying \GDB1"and \GDB2". The \GDB1" button is used only to view the �rst of the twoprograms. The user interface then changes so that the second program isno longer shown and a number of new push-buttons appear. These buttonsdisplay standard debugging commands for gdb. In this setting, the Wizardfunctions like a standard gdb debugger. Similarly \GDB2" displays onlythe second program, while the wizard button resets the display to that ofFigure 4.Since the Wizard has been implemented using explicit message passingit is possible to execute the two programs to be debugged on di�erentcomputers. As mentioned in Section 3 this is advantageous if the error onlyoccurs on a particular computer platform or if the memory requirements ofthe program are such that two versions cannot be executed simultaneouslyon the same computer.5 ConclusionWe have introduced the notion of comparative debugging for automatingthe debugging process on large numerical codes. Comparative breakpointswere implemented in the Wizard thus showing the feasibility of this idea.Tests performed so far indicate that the Wizard can be used to detect anumber of errors. It can also be used to compare and verify the results of asegment of code continuously through a computation. Although this workis motivated from debugging numerical codes, the described methods canbe applied to any debugging situation where it is possible to generate theexpected answer to be produced by a segment of code.The main obstacle to using comparative debugging is that one must haveaccess to two very similar programs. Although this might not be a commonsituation for most programmers, we believe that when this does happen,using a tool like the Wizard will be worthwhile.One of the main objectives of this study has been to show that com-parative debugging can be incorporated in existing debugging tools. We



1. Automating the Debugging of Large Numerical Codes 11believe that this has been achieved. Several debuggers have the possibilityto control multiple threads or programs from one debugging session. Thusit should be fairly easy to extend these with comparative breakpoints.A similar e�ort to the one described here has been presented by Abram-son et. al [AFMR95, SA]. They describe a software system that can beattached to and control two existing debuggers. In this way they supplythe user with comparative breakpoints similar to those described in Sec-tion 2.1. Their approach to comparative debugging requires the use of ansoftware system in addition to the debuggers. Thus to run their system ona new platform requires porting the software system while the approachpresented here uses a debugger that already exists on several platforms.There are several extensions to the current work that would be useful ina future more complete tool. We mention some of these here:� The current version of the program can only be used to debug codeswritten in C. We are currently working on extending the program toalso handle Fortran programs.� As of now the program is restricted to only compare scalars. Oneshould allow for sending of whole arrays and array-segments.� A comparative breakpoint inside a tight loop will generate a largenumber of data packages to be sent to the monitor program. Thisoverhead will slow down the Wizard. One way this could be remediedis by specifying that data should only to be sent every n'th time abreakpoint is executed. The extra data could then either be packedinto larger messages or discarded.� Currently we do not allow for running a program against data storedin a �le.� The tolerance � used in comparisons is the same for every breakpoint.It might be useful to have the option to specify an individual tolerancefor each breakpoint.It is our intention to make the Wizard available to other users. There iscurrently an extended web-presentation available on the Internet [A w].6 References[A w] Automating the debugging of large numerical codes.http://www.ii.uib.no fredrikm/fredrik/debug/.[AFMR95] D. Abramson, I. Foster, J. Michalakes, and Sosic R. Relativedebugging and its application to the development of large nu-merical models. In Proceedings of IEEE Supercomputing 1995,December 1995.



12 Fredrik Manne , Svein Olav Andersen[Agr91] Hiralal Agrawal. Towards Automatic Debugging of ComputerPrograms. PhD thesis, Purdue University, West Lafayette, IN,1991.[Bai88] D. H. Bailey. Extra high speed matrix multiplication on theCray-2. SIAM J. Sci. Statist. Comput., (9):603{607, 1988.[BMSV92] P. Bj�rstad, F. Manne, T. S�revik, and M. Vajter�sic. E�-cient matrix multiplication on simd computers. SIAM J. Ma-trix Anal. Appl., 13(1):386{401, 1992.[Boe81] B. W. Boehm. Software engineering economics. Prentice Hall,Englewood Cli�s, NJ, 1981.[Bre60] R. P. Brent. Algorithms for matrix multiplication. TechnicalReport CS 157, Computer Science Department, Stanford Uni-versity, Stanford, CA, 1960.[Esp95] Terje Espelid. On 
oating-point summation. SIAM Rev.,37(4):603{607, 1995.[GBD+93] G. A. Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang,Robert Manchek, and V. S. Sundaram. PVM 3 user's guideand reference manual. Oak Ridge National Laboratory, 1993.[GL89] G. H. Golub and C. F. Van Loan. Matrix Computations. NorthOxford Academic, 2 edition, 1989.[Hig90] N. J. Higham. Exploiting fast matrix multiplication within thelevel 3 BLAS. ACM Trans. Math. Software, 16:352{368, 1990.[Lib94] Don Libes. Exploring Expect. O'Reilly, 1994.[Mye79] G. J. Myer. The Art of Software Testing. Wiley-Inter-Science,New York, 1979.[Ous93] John K. Ousterhout. TCL and the TK Toolkit. Addison-Wesley, 1993.[Pan93] Hsin Pan. Software Debugging with Dynamic Instrumentationand Testbased Knowledge. PhD thesis, Purdue University, WestLafayette, IN, 1993.[SA] R. Sosic and D. A. Abramson. Guard: A relative debugger. Toappear in Software Practice and Experience.[SP94] Richard M. Stallman and Rolnd H. Pesch. Debugging withGDB, The GNU source-level debugger, 4.12 edition, 1994.



1. Automating the Debugging of Large Numerical Codes 13[Str69] V. Strassen. Gaussian elimination is not optimal. Numer.Math, 13:354{356, 1969.[Wei82] MarkWeiser. Programmers use slices when debugging. Numer.Math., 7(25):446{452, 1982.[Wel94] Brent Welch. Practical Programming in TCL and TK. PrenticeHall, Englewood Cli�s, NJ, 1994.[Zel78] Marvin V. Zelkowitz. Perspectives on software engineering.Numer. Math., 2(10):197{216, 1978.



14 Fredrik Manne , Svein Olav Andersen

FIGURE 4. Main view of the Wizard


