Automating the Debugging of
Large Numerical Codes

Fredrik Manne

Svein Olav Andersen!

ABSTRACT The development of large numerical codes is usually carried
out in an incremental fashion and over a long period of time. In this process,
a segment of code might, for reasons of speed or accuracy, be replaced with
a new code segment. If the resulting program contains a fault or generates
a completely different result than the old one, it is crucial to find the place
where the discrepancy first occurs. Finding this place might be a very
tedious and time-consuming operation.

We present a framework called comparative debugging specifically designed
to aid the programmer in debugging such situations. In this setting, the
programmer can run both the old and the new program simultaneously,
while comparing the execution flow and the values of certain variables in the
two codes. If any discrepancy is discovered between the two programs, this
is automatically reported back to the user who can then take appropriate
action. The presented ideas have been implemented in a debugging tool.
We believe this to be a simple yet powerful way of automating the de-
bugging process that can easily be incorporated into existing debugging
progras.

1 Introduction

It has been estimated that 25-50 % of the total cost and time in system de-
velopment may be spent on software testing and debugging [Boe81, Zel78],
and as much as 95 % of the time spent on debugging may again be spent
on fault-location [Mye79]. Therefore it is important to automate and speed
up the process of locating where an error occurs in the code.

For this purpose programmers apply debugging tools such as the generic
Unix debugger dbz, the GNU debugger gdb [SP94], and other vendor-
specific debuggers. These tools let the programmer keep track of the state
of the program and the values of certain variables while stepping through
the execution. Even with these tools the debugging process can be time con-
suming since the programmer must inspect values manually to determine
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where an error occurs.

In order to automate the process most debuggers can set conditional
breakpoints (watch-points). In this way, the debugger stops only when some
condition is evaluated to be true. For example, one might know the expected
range of a variable. However, if the computation is “almost” correct such
information will be of little help in determining where the error occurs.

Program slicing [Agr91, Pan93, Wei82] is a way of determining which
lines of code affect a certain variable. Thus if one knows that a certain
variable is incorrect this method gives an overview of the other variables
that affect it.

One must, however, know in which variables the error occurs and also
when it first occurs. An incorrect end result might be the result of a long
chain of events in the program. For this reason execution backtracking
[Agr91] has been suggested. This method lets the user backtrack through
the execution of the program recreating the different states of the execution.
For memory intensive programs with long execution time this is not a
practical procedure as it would require storing vast amounts of data. A
limited time window, in which one can backtrack will save memory but
might not be sufficient to backtrack to where the error originates. Moreover,
this process still requires the user to inspect the program manually.

The motivation for the current work comes from debugging large time-
stepped simulation codes. Examples of such codes are fluid dynamics com-
putations, oil reservoir modeling, weather forecasting, etc. These codes have
in common that they try to simulate the behavior of a complex system over
time. The simulation is broken down into shorter time steps on which the
model is able to predict the outcome within reasonable accuracy. Such sim-
ulations tend to be computationally intensive and may run for hours and
even for several days. These codes are also often very large involving up to
several hundred thousands of code lines. If an error should occur in such a
program, the task of locating it might be very difficult and time-consuming,.

The development of large numerical codes is usually carried out in an
incremental fashion and over a long period of time. Hence it is not unlikely
that if parts of the code are changed and an error occurs one would have two
versions of the program, one giving the correct answer and a new version
giving the wrong one. In this case, it could be argued that the programmer
has sufficient knowledge of what has been changed in the program in order
to locate the error. But adding new features and capabilities to a program
might initiate an error in the old parts of the code that have already been
tested. Moreover, if the error only occurs for specific data sets the code
might have continued developing for some time before one realizes that it
contains an error.

We present a framework called comparative debugging that automates
this particular debugging situation. In this framework, the programmer
runs the old and the new versions of the program simultaneously, while
monitoring the values of a set of selected variables. If the values of any
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variable differs between the two programs the programmer is automatically
notified. This will direct the programmer to the first instance where an error
occurs. It is also possible to trace the execution and ensure that the same
statements are executed in the two programs.

We believe this to be a novel approach to automating and thus speeding
up the debugging process that can easily be incorporated into existing
debugging tools. In order to illustrate this we present a prototype tool called
the Wizard that realizes the presented methods. This tool is developed using
standard software components thus making it easily portable.

Apart from speeding up the debugging process the Wizard can also be
used to verify that two programs that reach the same answer do so through
the same set of computations.

The rest of the paper is organized as follows. In Section 2 we set up
the the theoretical framework for comparative debugging. In Section 3 we
point to some situations where this might be of use. The Wizard itself is
presented in Section 4 before we conclude in Section 5.

2 Comparative Debugging

Based on the observation that most of the work in debugging is in locating
where the error first occurs we suggest the following approach to automate
the debugging process.

It is assumed that the user has two programs available: An old program A
giving the correct answer and a new program B giving the incorrect answer.
The task we wish to solve is to determine where the error first occurs in the
new program. It is also conceivable that instead of an old program one has
access through a file to the correct values of certain variables at different
stages of the computation.

2.1 Comparative Breakpoints

We start by defining a comparative breakpoint (E4,l4),(EB,I5). Here E4
is an expression involving variables from program A and [ 4 is a line number
in A defining where E4 is to be evaluated. The variables used in E4 must
be in scope in line [4. The expression Ep and line number /g is defined
similarly for program B.

Each time program A executes line [ 4 the value of E4 is evaluated using
the current values of the variables in A. The value of E4 is then stored
in a queue. Similarly when program B executes line /p the value of Ep
is evaluated and stored in a separate queue. Whenever both queues are
non-empty the first elements of the queues are compared for equality and
deleted. Thus the value of E4 and Ep at the k’th time lines l4 and Ip
are executed will be compared. This is true even if the programs should
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execute asynchronously.

We define two types of comparative breakpoints: blocking and non-
blocking. When a program encounters a blocking breakpoint the program
halts after storing its value to the queue. When both programs have stored
their associated values and the comparison has been performed the pro-
grams are notified of the outcome. If E4 = Ep both programs continue
execution, but if £4 # Ep they halt. Figure 1 illustrates the data-flow for
a blocking breakpoint.

FIGURE 1. A blocking breakpoint

The rationale for this behavior is that if A and B are running inside two
separate debuggers, control is passed back to the debuggers. So that in the
event of a halt message the programmer can perform traditional debugging
on the two programs before deciding on whether to terminate or continue
the execution.

When a non-blocking breakpoint is encountered the program does not
wait for the result of the comparison, but continues execution as soon as
the associated value has been stored in the queue. If a mismatch is found
when comparing the values in the queues an error message is output to
the user. Consequently non-blocking breakpoints are mainly for detection
of where an error occurs.

The main reason for including non-blocking breakpoints is speed of ex-
ecution. A blocking breakpoint will cause the programs to synchronize at
each breakpoint, slowing down the overall execution. Also if E4 and Ep
are matrix values, or if breakpoints are encountered frequently, it may take
a significant amount of time to transmit the necessary values and perform
the comparison.

Apart from speeding up the execution, non-blocking breakpoints are
slightly more flexible than the blocking ones. If A encounters a blocking
breakpoint fewer times than B, this would cause A to hang indefinitely.
Also as shown in Figure 2 if two blocking breakpoints have been defined
such that {4 < Iy and I35 < Ip, a deadlock might occur with program A
waiting for input at l4 and program B waiting for input at ;. Both of
these situations can be avoided by using non-blocking breakpoints.

Comparative breakpoints should preferably be used in such a manner
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FIGURE 2. Blocking breakpoints may cause a deadlock

that deadlocks are avoided. It is, however, the responsibility of the user to
ensure this.

In Section 3 we present some examples to motivate where comparative
breakpoints can be of use.

2.2  Execution Tracing

The idea of comparative debugging can be extended to other areas in addi-
tion to comparing variables. We define a special type of comparative break-
point called a logical breakpoint that can be used to trace and compare the
execution of two programs.

A logical breakpoint is basically defined in the same way as the blocking
and non-blocking breakpoints. The main difference is that when a program
encounters a logical breakpoint only the identity of the breakpoint is used
for comparison. So instead of associating an expression with each break-
point we use an identifier ¢ that is the same in both program A and B but
is unique for each breakpoint. The formal definition of a logical breakpoint
then becomes (3,14), (¢,[p).

The only thing being compared during the execution of the two programs
is the order in which the logical breakpoints are encountered. If program
A encounters logical breakpoint i before breakpoint i’ while program B
encounters i’ before 7, an error will be reported.

To see how this might be used consider the following code segment:

while (sum < limit) {
sum = sum + al[il;
i=1i+1;}
return;

Assume that this particular segment of code is in both programs and that
the user wants to know if it is being executed the same number of times
in the two programs. This can be done by adding two logical breakpoints
to the codes, the first attaching the two summation lines to each other
and the second attaching the return statements to each other. Then an
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error will be reported if the programs execute the loop a different number
of times. If a blocking logical breakpoint has been used, the program that
executes the loop the fewest times will halt on the return statement, while
the other program will halt on the summation statement. If non-blocking
logical breakpoints are used an error will be reported but the programs
will continue their execution. Note that in the above example, it is not
sufficient to add a comparative breakpoint that compares the values ¢ in
the two programs. This is because the initial values of ¢ might differ between
the two programs.

Logical breakpoints should only be used where the execution flow of
a program can branch. The obvious place being inside a loop or in an
if statement. Other settings might be a subroutine with multiple return
statements or a case statement.

To ensure that any discrepancy is discovered, each possible branch of
execution that one wants to trace must be tagged by a logical breakpoint.
This means that in a loop one should tag both a statement inside the loop
as well as the first line following the loop. Similarly in an if statement,
both the then and the else statement should be tagged. If there is no
else statement the first line of code following the if statement should be
tagged.

If one avoids tagging a certain branch of execution one of the programs
can escape through this and later return to execute the necessary logical
breakpoint, thus avoiding the detection of an error. A basic block of code is
a sequence of source lines such that if the first line is executed the program
cannot branch until the last source line has been executed. Thus it is only
necessary to add logical breakpoints to the first statement of a basic block
in each program.

We note that in some cases it is possible to simulate a logical breakpoint
by the use of comparative breakpoints. This can be done by adding com-
parative breakpoints that compares the logical expressions that govern the
branching of the execution flow. This is, however, more cumbersome and
not as flexible as using a logical breakpoint. In particular, this is true if
one is comparing two code segments where the structure of the governing
logical expressions are different.

2.8 Floating Point Comparisons

The exact value of a floating point value might vary depending on issues
such as the order of the operands, the machine precision, the implemen-
tation of standard numerical functions, etc. For these reasons it is seldom
meaningful to compare two floating point values to determine if their values
are exactly equal. To circumvent this problem we introduce a user speci-
fied value e which is the largest tolerated difference when comparing two
floating point values before an error is reported.
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3 Examples of Use

In this section, we give a few examples where comparative breakpoints
might aid the programmer both in verification of code and in the debugging
process. In general, it is possible to use comparative debugging in any
setting where a secondary program can generate the expected answer of a
code segment.

3.1  Matriz Multiplication

The core of many block algorithms used in linear systems solvers, is a ma-
trix multiplication routine. The time complexity of calculating the matrix
product C = AB, where A, B, and C are n x n matrices, using traditional
matrix multiplication, is O(n?). Strassen’s matrix multiplication algorithm
is able to perform this calculation in time O(n?-#97) [GL89, Str69]. Thus one
might be able to speed up the code by using Strassen’s algorithm instead of
the traditional algorithm. Both IBM and Cray support routines for fast ma-
trix multiplications using Strassen’s algorithm. See also [Bai88, BMSV92]
for examples of implementations of Strassen’s algorithm. However, the error
bound given by Strassen’s algorithm is weaker than that of the traditional
algorithm [Bre60, Hig90]. Therefore the two approaches might give differ-
ent answers. If one suspects that this is the case one can use comparative
breakpoints to determine if and when the result of Strassen’s algorithm
differs significantly from that of the ordinary algorithm.

3.2 Order of Ezecution (Sequential - Parallel)

For our second example we consider parallel computing. It is well known
that the order of the operands in a computation can have significant impact
upon the end result. See [Esp95] for a discussion of floating-point summa-
tions. A particularly computational intensive segment of code might be
rewritten to run in parallel. If the end results of the sequential and parallel
codes differ, one might wonder if this is the result of a coding error or of
performing the computations in a different order. In this case, comparative
debugging can be used to determine the magnitude and the first instance
where the codes produce different results.

3.8  Different Input

If the input data to a program has been slightly perturbed the program
might perform other actions then what it did previously. The user might
then want to catch the first instance where the program behaves differently
on the two datasets. This can easily be accomplished with the use of logical
breakpoints.
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3.4 Cross-platform Debugging

Finally, we note that if an error occurs only on a particular computer
platform it is possible to use comparative debugging while running the
same program simultaneously on two different computers and performing
the communication between the two programs through the net.

4 The Wizard

To illustrate that the concept of comparative debugging is feasible and
useful, we have implemented the features described in Section 2 in a de-
bugging tool called the Wizard. The Wizard lets the user run two programs
simultaneously, each running inside a debugger extended with comparative
breakpoints.

4.1 Implementation

The Wizard is comprised of a monitor program and two debuggers. These
are again merged inside a graphical user interface. The two debuggers are
slightly modified version of the GNU debugger gdb [SP94]. The gdb de-
bugger has been extended with comparative breakpoints as described in
Section 2. These breakpoints are constructed in a similar way as the or-
dinary breakpoints only that the required expression has to be evaluated
and transmitted to the monitor program. The comparative breakpoints use
gdb’s own internal representation of variables. With this implementation it
is possible to use all the ordinary debugging features included in gdb. It
is also possible to make the evaluation of a comparative breakpoint condi-
tional.

The monitor program is implemented in C and performs the actual com-
parisons of data transmitted from the two debuggers. The communication
between the two debuggers and the monitor program is done using the
PVM message-passing system [GBD'93]. The programs are assembled in-
side a user interface implemented using TCL/TK [Ous93, Wel94] and Ex-
pect [Lib94]. By using software that is available on most Unix platforms
there is no major problem in porting the tool to new systems. Figure 3
illustrates the design of the Wizard.

4.2 The User Interface

When the Wizard is started, the user first specifies on which computers
the programs are to run. The two programs to be executed are then loaded
into the debuggers. Figure 4 shows the main view of the program.

There are four menus at the top of the screen. Their functions are as
follows:
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Debugger Debugger
running running
program A program B
Networked
communication

Monitor program

FIGURE 3. The design of the Wizard

File, This menu is used to specify the executable programs to run
in the debuggers.

Pvm, This menu lets the user specify on which computers the programs
are to be run. It is also possible to configure PVM through this menu.

Views, This allows for pop-up windows containing graphical inter-
faces to a number of gdb commands.

Help, Displays various help messages.

There are two windows listing the source codes of the two programs.
Below these are two interactive windows used for input to the programs
and for displaying messages from gdb. Below these windows are five push-
buttons. The effect of these are as follows:

continue, After a mismatch has been found at a blocking breakpoint
both gdb processes halt. With this button the user can continue exe-
cution of the two programs.

delete, This button deletes a comparative breakpoint (from both
programs). One may thus be assured that both programs contain the
same number of comparative breakpoints.

run, This button starts the execution of the two programs.

e blocking, This button lets the user specify a blocking comparative

breakpoint. The user gives the line numbers of the breakpoint and
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specifies if this is a logical breakpoint or not. If not the user gives the
expressions to be evaluated in each of the two programs.

e non-blocking, This button is similar to the “blocking” button only
that a non-blocking comparative breakpoint is specified.

At the bottom of the user interface is a window displaying the output of
the monitor program. Whenever a comparison of the values from a com-
parative breakpoint results in a discrepancy an error message is printed
in the bottom-most window specifying the line-numbers of the breakpoint
and the values that caused the mismatch.

Below the top-most menus there are three push-buttons, the left-most
containing an image of a wizard and the two others displaying “GDB1”
and “GDB2”. The “GDB1” button is used only to view the first of the two
programs. The user interface then changes so that the second program is
no longer shown and a number of new push-buttons appear. These buttons
display standard debugging commands for gdb. In this setting, the Wizard
functions like a standard gdb debugger. Similarly “GDB2” displays only
the second program, while the wizard button resets the display to that of
Figure 4.

Since the Wizard has been implemented using explicit message passing
it is possible to execute the two programs to be debugged on different
computers. As mentioned in Section 3 this is advantageous if the error only
occurs on a particular computer platform or if the memory requirements of
the program are such that two versions cannot be executed simultaneously
on the same computer.

5 Conclusion

We have introduced the notion of comparative debugging for automating
the debugging process on large numerical codes. Comparative breakpoints
were implemented in the Wizard thus showing the feasibility of this idea.

Tests performed so far indicate that the Wizard can be used to detect a
number of errors. It can also be used to compare and verify the results of a
segment of code continuously through a computation. Although this work
is motivated from debugging numerical codes, the described methods can
be applied to any debugging situation where it is possible to generate the
expected answer to be produced by a segment of code.

The main obstacle to using comparative debugging is that one must have
access to two very similar programs. Although this might not be a common
situation for most programmers, we believe that when this does happen,
using a tool like the Wizard will be worthwhile.

One of the main objectives of this study has been to show that com-
parative debugging can be incorporated in existing debugging tools. We
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believe that this has been achieved. Several debuggers have the possibility
to control multiple threads or programs from one debugging session. Thus
it should be fairly easy to extend these with comparative breakpoints.

A similar effort to the one described here has been presented by Abram-
son et. al [AFMR95, SA]. They describe a software system that can be
attached to and control two existing debuggers. In this way they supply
the user with comparative breakpoints similar to those described in Sec-
tion 2.1. Their approach to comparative debugging requires the use of an
software system in addition to the debuggers. Thus to run their system on
a new platform requires porting the software system while the approach
presented here uses a debugger that already exists on several platforms.

There are several extensions to the current work that would be useful in
a future more complete tool. We mention some of these here:

e The current version of the program can only be used to debug codes
written in C. We are currently working on extending the program to
also handle Fortran programs.

e As of now the program is restricted to only compare scalars. One
should allow for sending of whole arrays and array-segments.

e A comparative breakpoint inside a tight loop will generate a large
number of data packages to be sent to the monitor program. This
overhead will slow down the Wizard. One way this could be remedied
is by specifying that data should only to be sent every n’th time a
breakpoint is executed. The extra data could then either be packed
into larger messages or discarded.

e Currently we do not allow for running a program against data stored
in a file.

e The tolerance € used in comparisons is the same for every breakpoint.
It might be useful to have the option to specify an individual tolerance
for each breakpoint.

It is our intention to make the Wizard available to other users. There is
currently an extended web-presentation available on the Internet [A w].
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FIGURE 4. Main view of the Wizard



