Parallel Graph Coloring Algorithms
Using OpenMP

Extended Abstract

Assefaw Hadish Gebremedhin*

1 Introduction

The graph coloring problem (GCP) deals with as-
signing labels (called colors) to the vertices of a
graph such that adjacent vertices do not get the
same color. The primary objective is to minimize
the number of colors used. The GCP arises in
a number of scientific computing and engineering
applications. Examples include time tabling and
scheduling [11], frequency assignment [6], register
allocation [3], printed circuit testing [8], parallel nu-
merical computation [1], and optimization [4]. Col-
oring a general graph with the minimum number of
colors is known to be an NP-hard problem [7], thus
one often relies on heuristics to compute a solution.

In a parallel application a graph coloring is usu-
ally performed in order to partition the work asso-
ciated with the vertices into independent subtasks
such that the subtasks can be performed concur-
rently. Depending on the amount of work associ-
ated with each vertex there are basically two color-
ing strategies one can use. The first strategy em-
phasizes on minimizing the number of colors and
the second on speed. As to which is more appro-
priate depends on the underlying problem one is
trying to solve.

If the task associated with each vertex is compu-
tationally expensive then it is crucial to use as few
colors as possible. There exist several computation
intensive local improvement heuristics for address-
ing this need. Some of these heuristics are also
highly parallelizable [11].

If on the other hand, the task associated with
each vertex is fairly small and one repeatedly has

*Both authors: Department of Informatics, University of
Bergen, N-5020 Bergen, Norway, email:assefaw@ii.uib.no
tFredrik.Manne@ii.uib.no

Fredrik Manne!

to find new graph colorings then the overall time
to perform the colorings might take up a significant
portion of the entire computation. See [13] for an
example of this case. In such a setting it is impor-
tant to compute a coloring fast and minimizing the
number of colors used becomes less important. For
this purpose there exist several linear time, or close
to linear time, sequential greedy coloring heuristics.
These heuristics have been found to be effective in
coloring graphs that arise from a number of appli-
cations [4, 10].

This paper deals mainly with the latter problem
of developing fast sublinear parallel coloring algo-
rithms. Previous work on developing such algo-
rithms has been performed on distributed memory
computers using explicit messsage-passing. The
speedup obtained so far has been discouraging [1].
The main justification for using these algoritms has
been access to more memory and thus the poten-
tial to store large graphs. We note that the current
availability of shared memory computers where the
entire memory can be accessed by any processor
makes this argument less significant now.

With the development of shared memory com-
puters have also followed new programming
paradigms of which OpenMP has become one of
the most succesfull and widely used [15].

In this paper we present a fast and scalable paral-
lel graph coloring algorithm suitable for the shared
memory programming model. Our algorithm is
based on first performing a parallel pseudo-coloring
of the graph. This coloring might contain adja-
cent vertices that are colored with the same color.
To remedy this we perform a second parallel step
where any inconsistencies in the coloring are de-
tected. These are then resolved in a final sequen-
tial step. An analysis on the PRAM model shows

that the expected number of conflicts from the first
stage is low and for p = o(\/im) the algorithm is ex-
pected to provide a nearly linear speedup, where p
is the number of processors used and n and m are
the number of vertices and edges respectively. We
also extend this idea and present a parallel algo-
rithm that improves on a given coloring.

The presented algorithms have been imple-
mented using OpenMP on a Cray Origin 2000. Ex-
perimental results on a number of very large graphs
show that the algorithms yield good speedup and
produce colorings of comparable quality to that of
their sequential counterparts. The fact that we are
using OpenMP to parallelize our program makes
our implementation much simpler and easier to ver-
ify than if we had used a distributed memory pro-
gramming environment such as MPI.

The rest of this paper is organized as follows. In
Section 2 we give some background on the graph
coloring problem and previous efforts to parallelize
it. In Section 3 we describe our new parallel graph
coloring algorithms and analyze their performance
on the PRAM model. In Section 4 we present and
discuss results from experiments performed on the
Cray Origin 2000. Finally, in Section 5 we give
concluding remarks.

2 Background

In this section we give a brief overview of previ-
ous work on developing fast sequential and parallel
coloring algorithms. We also introduce some graph
notations used in this paper.

For a graph G = (V, E), we denote |V| by n,
|E| by m, and the degree of vertex v; by deg(v;).
Moreover, the maximum, minimum, and average
degree in a graph G are denoted by A, 6, and ¢
respectively.

As mentioned in Section 1 there exist several fast
sequential coloring heuristics that are very effective
in practice. These algorithms are all based on one
general greedy framework: A vertex is selected ac-
cording to some predefined criterion and then col-
ored with the smallest valid color. The selection
and coloring continues until all the vertices in the
graph are colored.

Some of the suggested coloring heuristics
under this general framework include Largest
degree-First-Ordering (LFO) [16], Saturation-

Algorithm 1

ParallelColoring(G = (V, E))
begin
U+V
G« G
while (G' is not empty) do in parallel
Find an independent set I in G’
Color the vertices in I
U+U\I
G' + graph induced by U
end-while
end

Figure 1: A parallel coloring heuristic

Degree-Ordering (SDO) [2], and Incidence-Degree-
Ordering (IDO) [4]. These heuristics choose at each
step a vertex v with the maximum “degree” of some
form among the set of uncolored vertices. In LFO,
the standard definition of degree of a vertex is used.
In IDO, incidence degree is defined as the number
of already colored adjacent vertices whereas in SDO
one only considers the number of differently colored
adjacent vertices. First Fit (FF) is yet another,
simple variant of the general greedy framework. In
FF, the next vertex from some arbitrary ordering is
chosen and colored. Intuitively, in terms of quality
of coloring, these heuristics can roughly be ranked
in an increasing order as FF, LFO, IDO, and SDO.
Note that for a graph G the number of colors used
by any sequential greedy algorithm is bounded from
above by A+ 1. On the average, it has been shown
that for random graphs FF is expected to use no
more than 2x(G) colors, where x(G) is the chro-
matic number of G [9]. In terms of run time, FF is
clearly O(m), LFO and IDO can be implemented to
run in O(m) time, and SDO in O(n?) time [10, 2].
When it comes to parallel graph coloring, a num-
ber of the existing fast heuristics are based on the
observation that an independent set of vertices can
be colored in parallel. Algorithm 1 outlines a gen-
eral parallel heuristic based on this observation.
Depending on how the independent set is cho-
sen and colored, Algorithm 1 specializes into a
number of variants. The Parallel Maximal Inde-
pendent set (PMIS) coloring is one variant. This
is a heuristic based on Luby’s maximal indepen-
dent set finding algorithm [12]. Other variants

are the asynchronous parallel heuristic by Jones
and Plassmann (JP) [10], and the Largest-Degree-
First(LDF) heuristic by Allwright et al. [1].

All of these algorithms are developed for dis-
tributed memory parallel computers. Allwright et
al. made an experimental, comparative study by
implementing the PMIS, JP, and LDF coloring al-
gorithms on both SIMD and MIMD parallel archi-
tectures [1]. They report that they did not get any
speedup for any of the algorithms.

Jones and Plassmann [10] do not report on ob-
taining speedup for their algorithms either. They
state that “the running time of the heuristic is only
a slowly increasing function of the number of pro-
cessors used”.

3 New Parallel Graph Color-
ing Heuristics

In this section we present two new parallel graph
coloring heuristics and analyze their performance
on the PRAM model. Our heuristics are based on
block partitioning — dividing the vertex set (given in
an arbitrary order) into p successive blocks of equal
size. No effort is made to minimize the number of
crossing edges i.e., edges whose end points belong
to different blocks. Obviously, because of the ex-
istence of crossing edges, the coloring subproblems
defined by each block are not independent.

3.1 A New Parallel Algorithm

The strategy we employ consists of three phases.
In the first phase, the input vertex set V of
graph G = (V,E) is partitioned into p blocks
as {V1,V2,...,Vp} such that [2] < |[Vi| < [2],
1 < i < p. The vertices in each block are then
colored in parallel using p processors. When col-
oring a vertex, all its previously colored neighbors,
both the local ones and those found on other blocks,
are taken into account. In the concurrent coloring,
two processors may simultaneously be attempting
to color vertices that are adjacent to each other. If
these vertices are given the same color, the result-
ing coloring becomes invalid and hence we call the
coloring obtained a pseudo coloring. In the second
phase, each processor p; checks whether vertices in
V; are assigned valid colors by comparing the color
of a vertex against all its neighbors, both local and

Algorithm 2

BlockPartitionBasedColoring(G, p)
begin
1. Partition V into p equal blocks V; ...
where | 2| < [Vi| < 7]
for i = 1 to p do in parallel
for each v; € V; do
assign the smallest legal color
to vertex v;
end-for
end-for
2. for i =1 to p do in parallel
for each v; € V; do
for each neighbor u of v; do
if color(v;) = color(u) then
store min {u,v;} in the array A
end-if
end-for
end-for
end-for
3. Color the vertices in A sequentially
end

Figure 2: Block partition based coloring

non-local. This checking step is also done in paral-
lel. If a conflict is discovered, one of the endpoints
of the edge in conflict is stored in a table. Finally,
in the third phase, the vertices stored in this table
are colored sequentially. Algorithm 2 provides the
details of this strategy.

3.1.1 Analysis

Our anaysis is based on the PRAM model where
we assume that processors involved in the parallel
computation operate in locksteps. In Algorithm 2,
this amounts to saying that at each time unit ¢;,
processor p; colors vertex v; € V;, 1 < j < [n/p].

Our first result gives an upper bound on the ex-
pected number of conflicts (denoted by K) obtained
at the end of Phase 2 of Algorithm 2.

Lemma 3.1 The expected number of conflicts at
the end of Phase 2 of Algorithm 2 is at most o(dp)

Proof: Consider a vertex £ € V that is col-
ored at time unit ¢;, 1 < j < n/p. Assuming that

the neighbors of z are randomly distributed, the
ezpected number of neighbors of z that are concur-
rently colored at time unit ¢; is given by

-1
——deg(a) M)
If we sum (1) over all vertices in G we count each
potential conflict twice. The expected number of
conflicts is therefore bounded as follows.

E[K] < (1/2)) 1= p= deg 2)
:cEV

= /92 em) 3)
= (1/23p-D(n/n-1) (4
= o(op) (5)

In going from (3) to (4), the identity

d= %eg(v) = 2™ g used.

O

We note that the result from Lemma 3.1 is pes-
imistic. For two adjacent vertices and y colored at
time £; to get the same color ¢; they must both have
already colored neighbors with colors ¢; through
¢;—1 but not c¢;.

We now look at the expected! run time. To do
so, we introduce a graph attribute called relative
sparsity r, defined as r = %2 The attribute r
indicates how sparse the graph is, the higher the
value of r, the sparser the graph is. The following
Lemma states that for most sparse graphs and re-
alistic choices of p, Algorithm 2 provides an almost
linear speedup compared to the sequential First Fit
algorithm.

Lemma 3.2 On o CREW PRAM, Algorithm 2
colors the input graph consistently in EO(An/p)
time when p = O(,/r) and in EO(Adp) time when
p=w(VTr).

Proof: Note first that since Phase 3 resolves all
the conflicts that are inherited from Phase 2, the
coloring at the end of Phase 3 is a valid one. Both
Phase 1 and 2 require concurrent read capability
and thus the required PRAM is CREW. We then

IExpected time complexity expressions are identified by
the prefix E.

look at the run time. The overall time required by
Algorithm 2is T' = Ty +T5+T3, where Tj is the time
required by Phase ¢. Both Phase 1 and 2 consist
of n/p parallel steps. The number of operations
in each parallel step is proportional to the degree
of the vertex under investigation. The degree of
each vertex is bounded from above by A. Thus,
T, = T» = EO(An/p). The time required by the
sequential step (Phase 3) is 75 = EO(AK) where
K is the number of conflicts at the end of Phase
2. From Lemma 3.1, E[K] = o(dp). Substituting
yields,

T=T +Ts+Ts = EO(An/p+ Adp) (6)
We now investigate two cases depending on the
value of p.

Case I p = O(y/7)
Using the definition r = %—2
stated as

this case can be re-

2
n
p® < c—
m

(7)

where c is a constant. Multiplying both side of (7)
by 2m/np we get

2mp/n < 2en/p (8)
Using the identity 6 = 22, (8) can be written as
&p = O(n/p) (9)

In this case the first term in (6) dominates, and
thus T = EO(An/p) as claimed.

Case II: p = w(4/r)
Similar steps as in Case I can be used to reduce
this condition to

dp = w(n/p) (10)

In this case the second term in (6) dominates, and
thus T'= EO(Adp) as claimed. This completes our
proof.

O

3.2 Reducing the Number of Colors

In this section we show how Algorithm 2 can be
modified to use fewer colors. This is motivated by
the idea behind Culberson’s Iterated Greedy (IG)
coloring heuristic [5]. IG is based on the following
result, stated here without proof.

Lemma (Culberson) 3.3 Let C be a k-coloring
of a graph G, and 7™ a permutation of the wver-
tices such that if C(vyi)) = C(vx(m)) = ¢, then
C(vr(j)) = ¢ for i < j < m. Then, applying the
First Fit algorithm to G where the vertices have
been ordered by m will produce a coloring using k or
fewer colors.

From Lemma 3.3, we see that if FF is reapplied
on a graph where the vertex set is ordered such
that vertices belonging to the same color class? in
a previous coloring are listed consecutively, the new
coloring is better or at least as good as the previ-
ous coloring. There are many ways in which the
vertices of a graph can be arranged satisfying the
condition of Lemma 3.3. One such ordering is the
reverse color class ordering [5]. In this ordering,
the color classes are listed in reverse order of their
introduction. This has a potential for producing
an improved coloring since the new one proceeds
by first coloring vertices that could not be colored
with low values previously.

The improved coloring heuristic has one more
phase than Algorithm 2. The first phase is the
same as Phase 1 of Algorithm 2. Let the color-
ing number used by this phase be ColNum. Dur-
ing the second phase, the pseudo coloring of the
first phase is used to get a reverse color class or-
dering of the vertices. The second phase consists of
ColNum steps. In each step i, the vertices of color
class Col Num — i —1 are colored afresh in parallel.
The remaining two phases are the same as Phases
2 and 3 of Algorithm 2. The method just described
is outlined in Algorithm 3.

Each color class at the end of Phase 1 is a pseudo
independent set. Hence block partitioning of the
vertices of each color class results in only a few
crossing edges. In other words, the number of con-
flicts expected at the end of Phase 2 (K3) should
be smaller than the number of conflicts at the end
of Phase 1 (K1). Thus, in addition to improving
the quality of coloring, Phase 2 should also provide
a reduction in the number of conflicts. Note that
a conflict removing step is included in Phase 4 to
ensure that any remaining conflicts are removed.

The following result shows that Phase 2 reduces
the upper bound on the number of conflicts from
Phase 1 by a factor of @(Ap/n).

2Vertices of the same color constitute a color class

Algorithm 3

ImprovedBlockPartition BasedColoring(G, p)
begin
1. As Phase 1 of Algorithm 2
{At this point we have the pseudo independent
sets ColorClass(1) ... ColorClass(ColNum) }
2. for k = ColNum down to 1 do
Partition ColorClass(k) into p
equal blocks V{ ...V,
for i = 1 to p do in parallel
for j =1 to |ColorClass(k)|/p do
assign the smallest legal color
to vertex v; € V}
end-for
end-for
end-for
3. As Phase 2 of Algorithm 2
4. As Phase 3 of Algorithm 2
end

Figure 3: Modified block partition based coloring

Lemma 3.4 The upper bound on the expected
number of conflicts at the end of Phase 2 of Al-
gorithm 3 is reduced by a factor of ©(Ap/n) com-
pared with the upper bound on the number of con-
flicts from Phase 1.

Proof: The proof is similar to that of Lemma
3.1 and omitted here to save space.

4 Experimental Results

In this section, we experimentally demonstrate the
performance of the algorithms developed in Sec-
tion 3. The experiments have been performed on
the shared memory parallel computer Cray Origin
2000. The new algorithms have been implemented
in Fortran 90 and parallelized using OpenMP[15].
We have also implemented the sequential versions
of FF and IDO to use as benchmarks for comparing
the number of colors used by our parallel coloring
heuristics.

Synchronous mode of operation was assumed in
the analysis in Section 3. In our implementation,
however, no synchronization was made.

The test graphs used in our experiments arise
from practical applications. They are divided into
three categories as Problem Set I, IT, and IIT (corre-
sponding to the partitioning in Table 1). Problem
Sets I and II consist of graphs (matrices) that arise
from finite element methods [14]. Problem Set III
consists of matrices that arise in eigenvalue compu-
tations [13].

Table 1 provides some statistics about the test
graphs and the number of colors required to color
them using sequential FF and IDO (shown under
columns xrr and x1po respectively).

Table 2 lists results obtained using our first par-
allel coloring heuristic(Algorithm 2). The number
of blocks (processors) used is given in column p.
Columns x; and x3 give the number of colors used
at the end of Phases 1 and 3 respectively. The
number of conflicts that arise in Phase 1 are listed
under the column labeled K. The column labeled
d(p — 1) indicates the theoretically expected up-
per bound on the number of conflicts as predicted
by Lemma 3.1. The time in milliseconds required
by the different phases are listed under Ti, T%,
Ts, and the last column T3, gives the total time
used. The column labeled Sy, lists the speedup
obtained compared to the time used by running Al-
gorithm 2 on 1 processor (Spqr(p) = %::EB) The
last column, SseqrF, gives the speedup obtained by

comparing against a straight forward sequential FF

(Sseqrr(p) = T:,F;((11)7))-

The results in column K of Table 2 show that in
general, the number of conflicts that arise in Phase
1 is small and grows as a function of the number of
blocks (or processors) p. This agrees well with the
result from Lemma 3.1. We see that for the rela-
tively dense graphs the actual number of conflicts
is much less than the bound given by Lemma 3.1.

The run times obtained show that Algorithm 2
performs as predicted by Lemma, 3.2. Particularly,
the time required for recoloring incorrectly colored
vertices is observed to be practically zero for all
our test graphs. This is not surprising as the ob-
tained value of K is negligibly small compared to
the number of vertices in a given graph.

As results in columns 77 and 75 indicate, the
time used to detect conflicts is approximately the
same as the time used to do the initial coloring.
This makes the running time of the algorithm us-
ing one processor approximately double that of the

sequential FF. This in turn reduces the speedup
obtained compared to the sequential FF by a fac-
tor of 2. The speedup obtained compared to the
parallel algorithm using one processor obtains its
best values for the two largest graphs mrng3 and
dense2.

Table 3 lists results of Algorithm 3. The num-
ber of colors used at the end of Phases 1 and 2 are
listed in columns x; and 2, respectively. The col-
oring at the end of Phase 2 is not guaranteed to be
conflict-free. Phases 3 and 4 detect and resolve any
remaining conflicts. Column x4 lists the number
of colors used at the end of Phase 4. The number
of conflicts at the end of Phases 1 and 2 are listed
under K; and Ko, respectively. The time elapsed
(in milliseconds) at the various stages are given in
columns 71, Ts, T3, Ty, and Ty, Speedup values
in column Sy, are calculated as in the correspond-
ing column of Table 2. The column Sseqrr gives
speedups as compared to a two-run of sequential
FF (Saseqrp = T1TT2L) %):(:22)(1))-

Results in column ys confirm that Phase 2 of
Algorithm 3 reduces the number of colors used by
Phase 1. This is especially true for test graphs from
Problem Sets II and III, which contain relatively
denser graphs than Problem Set I. It is interesting
to compare the results in column 2 with the results
in the xrpo column of Table 1. We see that in
general the quality of the coloring obtained using
Algorithm 3 is comparable with that of the IDO
algorithm. IDO is known to be one of the most
effective coloring heuristics [4].

From column K> we see that the number of con-
flicts that remain after Phase 2 of Algorithm 3 is
zero for almost all test graphs and values of p. The
only occasion where we obtained a value other than
zero for Ky was using p = 12 for the graphs densel
and dense2. These results agree well with the claim
in Lemma 3.4.

5 Conclusion

We have presented a new parallel coloring heuris-
tic suitable for shared memory programming. The
heuristic is fast and simple and yields good speedup
for graphs of practical interest and on a realistic
number of processors. We have also introduced a
second heuristic that can improve on the quality of
coloring obtained from the first one. Experimental

results conducted on both heuristics using OpenMP
validate the theoretical analysis performed using
the PRAM model.

One of the main arguments against using
OpenMP to parallelize code has been that it does
not give as good speedup as a more dedicated mes-
sage passing implementation using MPI. The re-
sults in this paper show an example where the op-
posite is true, the OpenMP algorithms have better
speedup than existing message passing based algo-
rithms. Moreover, implementing the presented al-
gorithms in a message passing environment would
have required a considerable effort and it is not
clear if this would have led to efficient algorithms.
It has been a relativly straight forward task to im-
plement these algorithms using OpenMP as all the
communication is hidden from the programmer.

We believe that the method used in these col-
oring heuristics can be applied to develop parallel
algorithms for other graph problems and we are
currently investigating this in problems related to
sparse matrix computations.

References

[1] J. R. Allwright, R. Bordawekar, P. D. Cod-
dington, K. Dincer, and C. L. Martin. A
comparison of parallel graph coloring algo-
rithms. Technical Report Tech. Rep. SCCS-
666, Northeast Parallel Architecture Center,
Syracuse University, 1995.

D. Brelaz. New methods to color the vertices
of a graph. Comm. ACM, 22(4), 1979.

G.J. Chaitin, M. Auslander, A.K. Chandra,
J.Cocke, M.E Hopkins, and P.Markstein. Reg-
ister allocation via coloring. Computer Lan-
guages, 6:47-57, 1981.

T.F. Coleman and J.J. More. Estimation of
sparse jacobian matrices and graph coloring
problems. SIAM Journal on Numerical Anal-
ysis, 20(1):187-209, 1983.

[4]

Joseph C. Culberson. Iterated greedy graph
coloring and the difficulty landscape. Tech-
nical Report TR 92-07, Department of Com-
puting Science, The University of Alberta, Ed-
monton, Alberta, Canada, June 1992.

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

Andreas Gamst. Some lower bounds for a
class of frequency assignment problems. IEEE
transactions of Vehicular Technology, 35(1):8—
14, 1986.

M.R. Garey and D.S. Johnson. Computers and
Intractability. W.H. Freeman, New York, 1979.

M.R. Garey, D.S. Johnson, and H.C. So. An
application of graph coloring to printed circuit
testing. IEEE trans. on Circuits and Systems,
23:591-599, 1976.

G.R. Grimmet and C.J.H. McDiarmid. On
coloring random graphs. Mathematical Pro-
ceedings of the Cambridge Philsophical Soci-
ety, 77:313-324, 1975.

Mark T. Jones and Paul E. Plassmann. A par-
allel graph coloring heuristic. SIAM journal
of scientific computing, 14(3):654-669, May
1993.

Gary Lewandowski. Practical Implementa-
tions and Applications Of Graph Coloring.
PhD thesis, University of Wisconsin-Madison,
August 1994.

M. Luby. A simple parallel algorithm for
the maximal independent set problem. SIAM
Journal on computing, 15(4):1036-1053, 1986.

Fredrik Manne. A parallel algorithm for
computing the extremal eigenvalues of very
large sparse matrices (extended abstract). In
proceedings of Para98, volume 1541, pages
332-336. Lecture Notes in Computer Science,
Springer, 1998.

na. ftp://ftp.cs.umn.edu/users/kumar/Graphs/.

OpenMP. A proposed industry stan-
dard api for shared memory programming.

http://www.openmp.org/.

D.J.A. Welsh and M.B. Powell. An upper
bound for the chromatic number of a graph
and its application to timetabling problems.
Computer Journal, (10):85-86, 1967.

Problem n m A) & VT | xXFF XIDO
mrng2 | 1,017,253 2,015,714 2 2 3 716 5 5
mrng3 | 4,039,160 8,016,848 4 2 3 | 1426 5 5
598a 110,971 741,934 26 5 13 128 11 9
mldb 214,765 1,679,018 40 4 15 | 165 13 10
Jensel 19,703 3,048,477 | 504 | 116 | 309 i1 | 122 122
dense2 218,849 121,118,458 1,640 332 1,106 20 377 376
Table 1: Test Graphs
Problem p X1 X3 K | é6(p—1) T T, | T3 Tiot | Spar | SseqrF
mrng2 1 5 5 0 0 1190 1010 0 2200 1 0.6
mrng2 2 5 5 0 3 1130 970 0 2100 1.1 0.6
mrng2 4 5 5 0 9 430 280 0 710 3.1 1.7
mrng2 8 5 5 8 21 260 200 0 460 4.8 2.6
mrng2 12 5 5 18 33 200 130 0 330 6.7 3.6
mrng3 1 5 5 0 0 4400 3400 0 7800 1 0.6
mrng3 2 5 5 2 3 2250 1600 0 3850 2 1.1
mrng3 4 5 5 4 9 1300 1000 0 2300 3.4 1.9
mrng3 8 5 5 0 21 630 800 0 1430 5.5 3.1
mrng3 12 5 5 12 33 430 480 0 910 8.6 4.8
598a 1 11 11 0 0 100 80 0 180 1 0.6
598a 2 12 12 4 13 55 40 0 95 2 1.1
598a 4 12 12 12 39 40 20 0 60 3 1.7
598a 8 12 12 36 91 28 15 0 43 4.2 2.3
598a 12 12 12 42 143 20 15 0 35 5.2 2.9
m14b 1 13 13 0 0 200 180 0 380 1 0.5
ml4b 2 13 13 2 15 130 120 0 250 1.5 0.8
m1l4b 4 14 14 14 45 80 50 0 130 3 1.5
ml4b 8 13 13 16 105 48 26 0 74 5 2.7
m1l4b 12 13 13 36 165 40 20 0 60 6.4 3.3
densel 1 122 122 0 0 200 290 0 490 1 0.4
densel 2 142 142 30 309 110 140 0 250 2 0.8
densel 4 137 137 94 927 69 72 0 141 3.5 1.4
densel 8 129 129 94 2163 53 44 1 97 5.6 2.1
densel 12 121 124 78 3399 55 90 1 145 3.4 1.4
dense2 1 377 377 0 0 9200 13200 0 22400 1 0.4
dense2 2 382 382 68 1106 5160 8040 3 13203 1.7 0.7
dense2 4 400 400 98 3318 2600 4080 4 6684 3.4 1.4
dense2 8 407 407 254 7742 1590 2280 11 3881 5.8 2.4
dense2 12 399 399 210 12166 1090 1420 8 2518 9 3.7

Table 2: Experimental results for Algorithm 2

Problem P X1 X2 X4 K1 | Ko T P T3 | Ty Tiot
mrng2 1 5 5 5 0 0 1050 1700 820 0 3570
mrng2 2 5 5 5 0 0 950 1350 650 0 2650
mrng2 4 5 5 5 2 0 470 840 310 0 1620
mrng2 8 5 5 5 16 0 300 500 200 0 1000
mrng2 12 5 5 5 12 0 250 400 170 0 820
mrng3 1 5 5 5 0 0 3700 9500 2600 0 15800
mrng3 2 5 5 5 0 0 1890 4100 1200 0 7190
mrng3 4 5 5 5 0 0 1100 2700 750 0 4550
mrng3 8 5 5 5 4 0 540 1800 450 0 2790
mrng3 12 5 5 5 24 0 450 1900 300 0 2650

598a 1 11 10 10 0 0 100 200 75 0 375
598a 2 12 10 10 14 0 65 105 37 0 207
598a 4 11 10 10 22 0 35 90 20 0 145
598a 8 12 11 11 40 0 30 99 25 0 154
598a 12 12 11 11 50 0 30 110 15 0 155
m14b 1 13 11 11 0 0 200 520 190 0 910
m1l4b 2 13 12 12 2 0 105 240 80 0 425
ml4b 4 14 12 12 6 0 70 160 40 0 270
m1l4b 8 13 12 12 12 0 45 120 25 0 190
ml4b 12 13 11 11 22 0 53 150 20 0 223
densel 1 122 122 122 0 0 180 250 180 0 610
densel 2 135 122 122 26 0 100 180 140 0 420
densel 4 132 122 122 40 0 80 100 70 0 250
densel 8 126 122 122 104 0 70 80 30 0 180
densel 12 123 121 122 150 2 40 760 30 0 830
dense2 1 377 376 376 0 0 9920 13700 7500 0 31120
dense2 2 376 376 376 66 0 5200 6220 4200 0 15620
dense2 4 394 376 376 112 0 2700 3600 2100 0 8400
dense2 8 398 376 376 164 0 2000 2000 1800 0 5800
dense2 12 399 376 376 232 2 1100 1700 900 0 3700

Table 3: Experimental results for Algorithm 3

