
On the Complexity of the Generalized BlockDistributionMichelangelo Grigni1 and Fredrik Manne21 Department of Mathematics and Computer Science, Emory University,Atlanta, Georgia 30322, USA2 Department of Informatics, University of Bergen,N-5020 Bergen, NorwayAbstract. We consider the problem of mapping an array onto a meshof processors in such a way that locality is preserved. When the compu-tational work associated with the array is distributed in an unstructuredway the generalized block distribution has been recognized as an e�cientway of achieving an even load balance while at the same time imposinga simple communication pattern.In this paper we consider the problem of computing an optimal general-ized block distribution. We show that this problem is NP-complete evenfor very simple cost functions. We also classify a number of variants ofthe general problem.Keywords: Load balancing, parallel data structures, scheduling andmapping1 IntroductionA basic task in parallel computing is the partitioning and subsequentdistribution of data among processors. The problem one faces in this op-eration is how to balance two often contradictory aims; �nding an equaldistribution of the computational work and at the same time minimizingthe imposed communication.For data stored in an array several high performance computing lan-guages allow the user to specify a partitioning and distribution of dataonto a logical set of processors. The compiler then maps the data onto thephysical processors and determines the communication pattern. An ex-ample of such a scheme is the block distribution found in languages suchas Vienna Fortran [1] and HPF [7]. This mapping results in equal sizeblocks and therefore cannot adapt to any load imbalance which mightbe present.More general partitioning schemes which have been proposed for thesekinds of problems include the generalized and semi-generalized blockdistribution [2, 12, 13, 14]. The generalized block distribution preservesthe array-structured communication of the block distribution while atthe same time allowing for di�erent sized blocks.In [10] a number of algorithms were described for computing a well-balanced generalized block distribution. These were compared with otherdistribution schemes which showed that in many cases the generalizedblock distribution can give a good load balance while at the same timemaintaining a simple communication pattern.



In this paper we show that the problem of computing a generalized blockdistribution of cost less than some constant K is NP-complete, even forvery simple cost functions. This implies that one cannot generally expectto compute an optimal generalized block distribution.The outline of this paper is as follows: In Section 2 we give a formalde�nition of the problem, in Section 3 we show that the problem ofdetermining whether there exists a solution of cost less than K is NP-complete, and �nally in Section 4 we discuss variants of this problem andpoint to some open problems.2 The Generalized Block DistributionFor integers a and b, let [a; b] denote the interval of integers fa; a +1; : : : ; bg (empty if a > b). Let [a] denote [1; a].Given A 2 <m�n and integers p and q such that p 2 [m] and q 2 [n]. LetR = (r0; r1; : : : ; rp) be a sequence of integers such that 1 = r0 � r1 �: : : � rp = m+ 1. Then R de�nes a partition of [m] into the p intervals[ri; ri+1� 1], for i in [0; p� 1]. We denote each interval by Ri. Note thatsome intervals may be the empty interval.De�nition 1 General Block Distribution. GivenA, p and q as above,a generalized block distribution consists of a partition of [m] into p inter-vals and of [n] into q intervals, so that A partitions into p� q contiguousblocks. For i 2 [p] and j 2 [q], we denote the ijth block by Aij .See Fig. 1 for an example of the generalized block distribution.The generalized block distribution was �rst discussed by Fox et al. [4]and implemented as part of Superb environment [14] and later in ViennaFortran [3]. It is also a candidate to be included as part of the ongoingHPF2 e�ort [8]. See [2] and [9] for examples of how the generalized blockdistribution can be used in areas such as sparse-matrix and particle-in-cell computations.In a parallel environment the time spent on a computation is determinedby the processor taking the longest time. To estimate the time needed toprocess each block we de�ne a non-negative cost function � on contiguousblocks of A. We assume that if a and b are blocks of A such that a iscontained in b then �(a) � �(b), and that �(a) = 0 if and only if a isthe empty block. For reasonable functions � we also expect that if thevalue of �(a) (or �(b)) is known then the value of �(b) (or �(a)) can becomputed in O(jbj � jaj) time. An example of � might be the number ofnon-zero elements, or the sum of the absolute values of the elements ina block.Then the natural optimization problem is to �nd a generalized block dis-tribution that minimizes the maximum � over all blocks. The equivalentdecision problem is the following:(GBD) Instance: A, p, q and � as above, and an integer K.Question: Does there exist a generalized block distribution on Asuch that maxi2[p];j2[q]�(Aij) � K :
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6 6 2 2 3 1Fig. 1. An example of the generalized block distribution3 GBD is NP-CompleteIn this section we show that GBD is NP-complete. First we note that asolution to GBD can be veri�ed e�ciently, so GBD is in NP. To show thatGBD is NP-complete we will reduce the NP-complete problem \BalancedComplete Bipartite Subgraph" [5, GT24] to GBD.[Problem GT24] Balanced Complete Bipartite Subgraph (BCBS)Instance: Given a bipartite graph G = (V1; V2; E), and a positiveinteger K.Question: Are there subsets U1 � V1 and U2 � V2 such thatjU1j = jU2j = K, and such that u 2 U1 and v 2 U2 imply(u; v) 2 E (that is, U1 � U2 � E)?Note that we may add isolated vertices above to assure that jV1j = jV2j.We now transform BCBS to a problem on the bipartite complement ofG. That is, graph G0 has the same vertex sets and the edge set E0 =V1 � V2 �E. Also let K0 = jV1j �K. We now have a problem equivalentto BCBS:Balanced Bipartite Cover (BBC)Instance: Given a bipartite graph G0 = (V1; V2; E0) with jV1j =jV2j and a positive integer K0.Question: Are there subsets U1 � V1 and U2 � V2 such thatjU1j = jU2j = K0, and such that each edge (u; v) 2 E0 has eitheru 2 U1 or v 2 U2?It is clear from the construction of G0 that BBC is NP-complete. Notethat a solution for BBC leaves no \uncovered" edges between V1 � U1and V2 � U2. Thus BBC may be formulated in terms of the adjacencymatrix of G0:Is it possible to choose K rows and K columns of a matrix sothat these rows and columns contain all the non-zero entries?We now show how to reduce an instance (G0; K0) of BBC to a particularinstance (A; p; q;K; �) of GBD. In fact we will have K = 1 and � equalto the number of non-zero elements in a block.



Let n = jV1j = jV2j in the given instance of BBC. We construct a 2(n +1)�2(n+1) zero-one matrix A as part of the GBD instance. The rows ofA are labeled (in order) fs0;0; s0;1; s1;0; s1;1; : : : sn;0; sn;1g, and similarlythe columns are labeled ft0;0; t0;1; t1;0; t1;1; : : : tn;0; tn;1g. The followingentries of A are set to one:1. (s0;0; t0;0)2. (s0;0; t2i;1) and (s0;0; t2i+1;0) for 0 � i < dn=2e3. (s0;1; t2i+1;1) and (s0;1; t2i+2;0) for 0 � i < bn=2c4. (s2i;1; t0;0) and (s2i+1;0; t0;0) for 0 � i < dm=2e5. (s2i+1;1; t0;1) and (s2i+2;0; t0;1) for 0 � i < bm=2c6. (si;0; tj;0) and (si;1; tj;1), for all (i; j) 2 E0.All other entries of A are set to zero. The �rst two rows and columnsof the matrix in Fig. 2 illustrate how rules 1 through 5 e�ect A. If weare to �nd a solution to GBD with K = 1, these elements force us to atleast place n+1 horizontal and n+1 vertical delimiters as shown by thedotted lines. Setting p = q = n+K0+2, this leaves us with K0 horizontaldelimiters and K0 vertical delimiters to partition the remaining matrix.For each edge in G0, rule 6 constructs a 2 � 2 block in A with ones onthe diagonal as shown in Fig. 2. Each such block must be split by eithera horizontal or a vertical line (or both) if we are to achieve a cost of atmost 1. Splitting such a block with a horizontal delimiter correspondsto choosing a vertex from V1 in BBC, and splitting it with a verticaldelimiter corresponds to choosing a vertex in V2. It is clear from theconstruction of this matrix that there exists a solution to this GBDproblem if and only if the corresponding BBC problem has a solution.Thus we can state our main result:Theorem2. GBD is NP-Complete.
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Fig. 2. Forcing the delimiters to create 2� 2 squares



4 ConclusionWe have shown that GBD is NP-complete with � equal to the numberof elements in a block. This implies that GBD remains NP-complete forany derived cost function such as the sum of the elements in a block.Thus we have to settle for approximation algorithms to achieve an evenload balance for this distribution. In a recent development [6] it has beenshown that if p = q with � equal to the sum of the elements in a blockthen one of the algorithms in [10] gives a solution that is guaranteed tobe within a bound of 4pp of the optimal.We note that the following three variants of GBD can be solved in poly-nomial time:{ n = q = 1. The problem now becomes to partition a vector of lengthm into p segments. This problem has been studied extensively andthe current fastest algorithm for computing an optimal solution runsin time O(p(m� p)) [11].{ p is �xed. Assume that we are given a �xed horizontal partition. Thecost of a vertical interval is now de�ned to be the maximum cost ofthe p blocks inside this interval. Using this cost function this problembecomes equivalent to the one dimensional case. Since there are onlypolynomial many placements of the p� 1 horizontal delimiters thisproblem is also solvable in polynomial time.{ If we relax how the partitioning is done in one dimension we get thesemi-generalized block distribution where the interval [m] is parti-tioned into p consecutive intervals Ri, 1 � i � p without restrictionson the size of ri+1 � ri and for each horizontal interval Ri, the in-terval [n] is partitioned into q intervals. In [10] an algorithm is givento computes an optimal semi-generalized block distribution in timeO(pqm(m� p)(n� q)).If, instead of jV1j = jV2j = K, we have the restriction jV1j + jV2j = Kthen the BCBS problem is in P [5], by reduction to matching. We notethat the corresponding problem for the generalized block distributionis of no immediate practical interest. This is because the number ofprocessors p � q usually is �xed. Thus the more relevant question is ifgiven the number of processors r, is it possible to �nd a factorization ofr = p� q that solves the GBD problem. However, as the following showsthis problem still remains NP-complete. Given an instance of GBD withcost matrix A, K = 1, and � equal to the number of elements in a block.Let g be the smallest prime such that g > maxfp; qg and let r = g2.We construct a new matrix C with A and a matrix B on the diagonalwhere B consists of a (g � p) � (g � q) block of all ones. In additionwe set cg;n = cm;g = 1. All other elements of C are set to zero. Anysolution to this problem requires that B is separated from A and thatB is completely partitioned using g � p horizontal delimiters and g � qvertical ones. Since the only factorizations of r are r = 1�g2, r = g2�1,and r = g � g it follows that r must be factored into g � g if we areto obtain a positive solution. This leaves p� 1 horizontal delimiters andq�1 vertical ones to partition A. Thus this problem can be solved if andonly if we can solve the corresponding GBD problem as well.
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