On the Complexity of the Generalized Block
Distribution

Michelangelo Grigni' and Fredrik Manne?

! Department of Mathematics and Computer Science, Emory University,
Atlanta, Georgia 30322, USA
2 Department of Informatics, University of Bergen,
N-5020 Bergen, Norway

Abstract. We consider the problem of mapping an array onto a mesh
of processors in such a way that locality is preserved. When the compu-
tational work associated with the array is distributed in an unstructured
way the generalized block distribution has been recognized as an efficient
way of achieving an even load balance while at the same time imposing
a simple communication pattern.

In this paper we consider the problem of computing an optimal general-
ized block distribution. We show that this problem is NP-complete even
for very simple cost functions. We also classify a number of variants of
the general problem.

Keywords: Load balancing, parallel data structures, scheduling and
mapping

1 Introduction

A basic task in parallel computing is the partitioning and subsequent
distribution of data among processors. The problem one faces in this op-
eration is how to balance two often contradictory aims; finding an equal
distribution of the computational work and at the same time minimizing
the imposed communication.

For data stored in an array several high performance computing lan-
guages allow the user to specify a partitioning and distribution of data
onto a logical set of processors. The compiler then maps the data onto the
physical processors and determines the communication pattern. An ex-
ample of such a scheme is the block distribution found in languages such
as Vienna Fortran [1] and HPF [7]. This mapping results in equal size
blocks and therefore cannot adapt to any load imbalance which might
be present.

More general partitioning schemes which have been proposed for these
kinds of problems include the generalized and semi-generalized block
distribution [2, 12, 13, 14]. The generalized block distribution preserves
the array-structured communication of the block distribution while at
the same time allowing for different sized blocks.

In [10] a number of algorithms were described for computing a well-
balanced generalized block distribution. These were compared with other
distribution schemes which showed that in many cases the generalized
block distribution can give a good load balance while at the same time
maintaining a simple communication pattern.

In this paper we show that the problem of computing a generalized block
distribution of cost less than some constant K is NP-complete, even for
very simple cost functions. This implies that one cannot generally expect
to compute an optimal generalized block distribution.

The outline of this paper is as follows: In Section 2 we give a formal
definition of the problem, in Section 3 we show that the problem of
determining whether there exists a solution of cost less than K is NP-
complete, and finally in Section 4 we discuss variants of this problem and
point to some open problems.

2 The Generalized Block Distribution

For integers a and b, let [a,b] denote the interval of integers {a,a +
1,...,b} (empty if a > b). Let [a] denote [1,a].

Given A € R™*"™ and integers p and ¢ such that p € [m] and q € [n]. Let
R = (ro,71,...,7p) be a sequence of integers such that 1 = rg < r; <
... <rp =m+ 1. Then R defines a partition of [m] into the p intervals
[ri,riq1 — 1], for 4 in [0,p — 1]. We denote each interval by R;. Note that
some intervals may be the empty interval.

Definition 1 General Block Distribution. Given A, p and q as above,
a generalized block distribution consists of a partition of [m] into p inter-
vals and of [n] into ¢ intervals, so that A partitions into p X ¢ contiguous
blocks. For ¢ € [p] and j € [g], we denote the ijth block by Aj;.

See Fig. 1 for an example of the generalized block distribution.

The generalized block distribution was first discussed by Fox et al. [4]
and implemented as part of Superb environment [14] and later in Vienna
Fortran [3]. It is also a candidate to be included as part of the ongoing
HPF?2 effort [8]. See [2] and [9] for examples of how the generalized block
distribution can be used in areas such as sparse-matrix and particle-in-
cell computations.

In a parallel environment the time spent on a computation is determined
by the processor taking the longest time. To estimate the time needed to
process each block we define a non-negative cost function ¢ on contiguous
blocks of A. We assume that if a and b are blocks of A such that a is
contained in b then ¢(a) < ¢(b), and that ¢(a) = 0 if and only if a is
the empty block. For reasonable functions ¢ we also expect that if the
value of ¢(a) (or ¢(b)) is known then the value of ¢(b) (or ¢(a)) can be
computed in O(|b| — |a|) time. An example of ¢ might be the number of
non-zero elements, or the sum of the absolute values of the elements in
a block.

Then the natural optimization problem is to find a generalized block dis-
tribution that minimizes the maximum ¢ over all blocks. The equivalent
decision problem is the following:

(GBD) Instance: A, p, ¢ and ¢ as above, and an integer K.
Question: Does there exist a generalized block distribution on A
such that

max (ﬁ(AZ]) S K.
i€[pl,j€lal

8/1 3/7 1 1
313 1.2 0 1
1/2 00 1 1
24 2.3 1 2
31 0/3 1 2
66 2.2 3 1

Fig. 1. An example of the generalized block distribution

3 GBD is NP-Complete

In this section we show that GBD is NP-complete. First we note that a
solution to GBD can be verified efficiently, so GBD is in NP. To show that
GBD is NP-complete we will reduce the NP-complete problem “Balanced
Complete Bipartite Subgraph” [5, GT24] to GBD.

[Problem GT24] Balanced Complete Bipartite Subgraph (BCBS)

Instance: Given a bipartite graph G = (V1, V2, E), and a positive

integer K.

Question: Are there subsets U3 C Vi and Us C V> such that

|Ui| = |Uz2] = K, and such that v € U; and v € Uz imply

(u,v) € E (that is, Uy x Uz C E)?
Note that we may add isolated vertices above to assure that |Vi| = |Va].
We now transform BCBS to a problem on the bipartite complement of
G. That is, graph G’ has the same vertex sets and the edge set E' =
Vi x Vo — E. Also let K' = |Vi| — K. We now have a problem equivalent
to BCBS:

Balanced Bipartite Cover (BBC)

Instance: Given a bipartite graph G' = (V1, Va2, E') with |Vi| =

|V2| and a positive integer K.

Question: Are there subsets U; C Vi and Uz C V2 such that

|Ui| = |Uz| = K, and such that each edge (u,v) € E' has either

u € Uy or v € Us?
It is clear from the construction of G’ that BBC is NP-complete. Note
that a solution for BBC leaves no “uncovered” edges between Vi — U;
and Vo — Us. Thus BBC may be formulated in terms of the adjacency
matrix of G":

Is it possible to choose K rows and K columns of a matrix so

that these rows and columns contain all the non-zero entries?
We now show how to reduce an instance (G', K') of BBC to a particular
instance (A,p,q, K,$) of GBD. In fact we will have K = 1 and ¢ equal
to the number of non-zero elements in a block.

Let n = |V1| = |V2| in the given instance of BBC. We construct a 2(n +
1) x 2(n+1) zero-one matrix A as part of the GBD instance. The rows of
A are labeled (in order) {s0,0,80,1,51,0,81,1, - - Sn,0,n,1}, and similarly
the columns are labeled {to,0,%0,1,¢1,0,¢1,1,---tn,0,tn,1}.- The following
entries of A are set to one:

80,0,%0,0)

So o,tgz 1) and (So 0,t2,+1 0) for 0 <1< |—’I’L/2-|

So 1,t21+1 1) and (So 1,t21+2 0) for 0 <i < |_n/2J
S$2i 1,t0 0) and (821+1 o,to 0) for 0 <1< |—m/2'|
S2i+1, 1,t0 1) and (Szz+2 o,to 1) for 0 <i < |_m/2J
si,0,t5,0) and (si 1,t;,1), for all (i,5) € E'.

A

(

(

(

(

(
6. (
All other entries of A are set to zero. The first two rows and columns
of the matrix in Fig. 2 illustrate how rules 1 through 5 effect A. If we
are to find a solution to GBD with K = 1, these elements force us to at
least place n+ 1 horizontal and n + 1 vertical delimiters as shown by the
dotted lines. Setting p = ¢ = n+ K’ +2, this leaves us with K’ horizontal
delimiters and K’ vertical delimiters to partition the remaining matrix.
For each edge in G’, rule 6 constructs a 2 x 2 block in A with ones on
the diagonal as shown in Fig. 2. Each such block must be split by either
a horizontal or a vertical line (or both) if we are to achieve a cost of at
most 1. Splitting such a block with a horizontal delimiter corresponds
to choosing a vertex from Vi in BBC, and splitting it with a vertical
delimiter corresponds to choosing a vertex in V2. It is clear from the
construction of this matrix that there exists a solution to this GBD
problem if and only if the corresponding BBC problem has a solution.
Thus we can state our main result:

Theorem 2. GBD is NP-Complete.

1'1'1 0'o0 1,1 0! !
100 1'1 0,0 1'1 0'0 0
B
0,1 0 1, ! !
IR U T
1,0 ! 0 1, !
170'1 0/ 1 7 10
ol1lo0 1! } ! 'o 1
oy 1 i1 oj1o)
[110 L1010 1}
1,0 10, | |
0,0 [0 1, ! !

Fig. 2. Forcing the delimiters to create 2 x 2 squares

4 Conclusion

We have shown that GBD is NP-complete with ¢ equal to the number
of elements in a block. This implies that GBD remains NP-complete for
any derived cost function such as the sum of the elements in a block.
Thus we have to settle for approximation algorithms to achieve an even
load balance for this distribution. In a recent development [6] it has been
shown that if p = ¢ with ¢ equal to the sum of the elements in a block
then one of the algorithms in [10] gives a solution that is guaranteed to
be within a bound of 4,/p of the optimal.

We note that the following three variants of GBD can be solved in poly-
nomial time:

— n = ¢ = 1. The problem now becomes to partition a vector of length
m into p segments. This problem has been studied extensively and
the current fastest algorithm for computing an optimal solution runs
in time O(p(m — p)) [11].

— pis fixed. Assume that we are given a fixed horizontal partition. The
cost of a vertical interval is now defined to be the maximum cost of
the p blocks inside this interval. Using this cost function this problem
becomes equivalent to the one dimensional case. Since there are only
polynomial many placements of the p — 1 horizontal delimiters this
problem is also solvable in polynomial time.

— If we relax how the partitioning is done in one dimension we get the
semi-generalized block distribution where the interval [m] is parti-
tioned into p consecutive intervals R;, 1 <4 < p without restrictions
on the size of r;41 — r; and for each horizontal interval R;, the in-
terval [n] is partitioned into ¢ intervals. In [10] an algorithm is given
to computes an optimal semi-generalized block distribution in time
O(pgm(m — p)(n — q)).

If, instead of |Vi| = |V2| = K, we have the restriction |Vi| + |V2| = K
then the BCBS problem is in P [5], by reduction to matching. We note
that the corresponding problem for the generalized block distribution
is of no immediate practical interest. This is because the number of
processors p X g usually is fixed. Thus the more relevant question is if
given the number of processors r, is it possible to find a factorization of
r = p X q that solves the GBD problem. However, as the following shows
this problem still remains NP-complete. Given an instance of GBD with
cost matrix A, K = 1, and ¢ equal to the number of elements in a block.
Let g be the smallest prime such that ¢ > max{p,q} and let r = g%
We construct a new matrix C' with A and a matrix B on the diagonal
where B consists of a (g — p) x (g — q) block of all ones. In addition
we set ¢gn = Cm,g = 1. All other elements of C are set to zero. Any
solution to this problem requires that B is separated from A and that
B is completely partitioned using g — p horizontal delimiters and g — ¢
vertical ones. Since the only factorizations of r are r = 1x g%, r = g% x 1,
and 7 = g x g it follows that r must be factored into g x g if we are
to obtain a positive solution. This leaves p — 1 horizontal delimiters and
q— 1 vertical ones to partition A. Thus this problem can be solved if and
only if we can solve the corresponding GBD problem as well.

Another case of interested is the symmetric generalized block distribu-
tion. Here we assume that m = n and p = ¢ and we add the extra re-
striction to any solution that p; = ¢; for 1 < ¢ < p. This means that the
diagonal blocks will be square and the diagonal elements of the matrix
will lie on the diagonal processors. This is very convenient if one wants
to gather a vector along the rows and then distribute the result along
the columns. This is a typical situation in iterative linear solvers where
one is performing series of matrix-vector multiplications. This problem
appears simpler than the general problem since the number of possible

solutions is reduces from <7£> x [™) to 7:) However, we do not

q
know the complexity of this problem.

References

1. B. CHAPMAN, P. MEHROTRA, AND H. ZIMA, Programming in Vi-
enna Fortran, Sci. Prog., 1 (1992), pp. 31-50.

2. ——, High performance Fortran languages: Advanced applications
and their implementation, Future Generation Computer Systems,
(1995), pp. 401-407.

3. ——, Extending HPF for advanced data parallel applications, IEEE
Trans. Par. Dist. Syst., (Fall 1994), pp. 59-70.

4. G. Fox, M. JonNsoN, G. LyzeENGA, S. OTTO, J. SALMON, AND
D. WALKER, Solving Problems on Concurrent Processors, vol. 1,
Prentice-Hall, Englewood Cliffs, NJ, 1988.

5. M. R. GAREY AND D. S. JOoHNSON, Computers and Intractability,
Freeman, 1979.

6. M. HALLDORSSON AND F. MANNE. Private communications.

7. HiGH PERFORMANCE FORTRAN FORUM, High performance language
specification. Version 1.0, Sci. Prog., 1-2 (1993), pp. 1-170.

8. High Performance Fortran Forum Home Page.
http://www.crpc.rice.edu/HPFF /home.html.

9. F. MANNE, Load Balancing in Parallel Sparse Matriz Computations,
PhD thesis, University of Bergen, Norway, 1993.

10. F. MANNE AND T. S@REVIK, Structured partitioning of arrays, Tech.
Rep. CS-96-119, Department of Informatics, University of Bergen,
Norway, 1996.

11. B. OLsTAD AND F. MANNE, Efficient partitioning of sequences,
IEEE Trans. Comput., 44 (1995), pp. 1322-1326.

12. M. UJALDON, S. D. SHARMA, J. SALTZ, AND E. ZAPATA, Run-time
techniques for parallelizing sparse matriz problems, in Proceedings
of 1995 Workshop on Irregular Problems, 1995.

13. M. UsaLpon, E. L. ZapAaTA, B. M. CHAPMAN, AND H. P. ZivA,
Vienna-Fortran/HPF extensions for sparse and irregular problems
and their compilation. Submitted to IEEE Trans. Par. Dist. Syst.

14. H. ZimaA, H. BAsT, AND M. GERNDT, Superb: A tool for semi-
automatic MIMD/SIMD parallelization, Parallel Comput., (1986),
pp- 1-18.

This article was processed using the ITEX macro package with LLNCS

style

