
Balanced Greedy Colorings of Sparse Random
Graphs

Fredrik Manne
∗ Erik Boman†

Abstract

We investigate the computation of a coloring of the vertices of a graph
so that each color class is close to equal in size. For sparse random
graphs we show that there is a fairly sharp transition phase on the
number of available colors such that if one uses fewer colors than the
transition phase it is highly unlikely that a greedy algorithm will succeed
in producing a well balanced coloring, while if one uses more colors the
probability of success is close to 1. A formula is given for predicting
where this transition phase will occur.

When the number of available colors is less than that of the
aforementioned transition phase, we show that it is possible to fairly
accurately predict how balanced one can make a coloring using the First
Fit algorithm.

A number of computer experiments validate the accuracy of our
results.

1 Introduction
There are several settings where it might be useful to compute a coloring of the
vertices of a graph so that each color class is of roughly equal size. In a number of
papers dealing with parallel graph coloring it is shown that computing a balanced
coloring will reduce the overall running time of the algorithm [2, 3, 5]. Another
application where balanced colorings have been used is in channel assignment for
various types of communication networks [1, 10].

In the current paper we investigate how greedy algorithms can be used to produce
various types of balanced colorings on sparse random graphs. Greedy algorithms
have the advantage that a coloring can be computed fast and as is often needed
in the frequency assignment problem, using an online algorithm. Although random
graphs are idealized compared to real world problems they still give an indication
of the trends one can expect in real applications.

We first show that there exists a fairly sharp transition phase on the number of
available colors such that if one uses less colors than the transition phase it is very
unlikely that a greedy algorithm will succeed in producing a well balanced coloring,

∗University of Bergen, Bergen, Norway Fredrik.Manne@ii.uib.no

On sabbatical leave at the Computer Science Research Institute of the Sandia National Laboratories
†Sandia National Laboratories, NM, USA egboman@sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company,

for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-

AC04-94AL85000.

while if one uses more the probability of success is close to 1. We also show how one
can predict where this transition phase will occur.

The most common objective in graph coloring is to color the graph using as
few colors as possible. This reflects the fact that the colors in some sense represent
resources. Thus we next consider how to compute a balanced coloring when the
number of available colors is less than that of the aforementioned transition phase.

One of the most studied algorithms for coloring random graphs is the greedy
algorithm employing the First Fit strategy (FF) [7], i.e. for each vertex select the
smallest available color. We consider two problems related to computing a balanced
coloring using the FF algorithm. The first is to predict the number of colors and the
color distribution when there is a limit on the number of vertices in any one color
class. Secondly, we consider the problem of predicting how well one can balance
the color classes when using the FF algorithm and there is a limit on the maximum
number of colors one can use.

In both cases we show that it is possible to fairly accurately predict how the
algorithm will behave and how many vertices there will be in each color class. In
doing so we also develop a new formula for predicting the number of color classes
used by the unrestricted FF algorithm on sparse random graphs. Through examples
we show that this is more accurate than previously suggested formulas.

The remaining paper is organized as follows. In Section 2 we present the notation
and algorithms that will be used throughout the paper. In Section 3 we investigate
greedy algorithms specifically designed for producing balanced colorings, in Section
4 we consider how well one can use the First Fit strategy for producing balanced
colorings, and finally in Section 5 we conclude.

2 Preliminaries
Here we review terminology and the algorithms that will be used throughout this
paper.

Let G(V, p) be a random unordered graph with |V | = n vertices and edge
probability p, 0 < p ≤ 1. That is, for every unordered pair vi, vj ∈ V the probability
that the edge (vi, vj) exists in G is p. When dealing with a sparse graph we will
write G(n, c

n
) where c is a (small) constant. We denote the vertex degree of vertex

vi by δi and the maximum vertex degree by ∆. The open neighborhood of a vertex
v is is denoted by N(v). Note that the average vertex degree of G(n, c

n
) is c(n−1)

n
≈ c

and the expected number of edges is c(n−1)
2

.
A graph coloring of the vertices of a graph G is an assignment of numbers (colors)

from a set {1, 2, . . . , k} to the vertices such that two adjacent vertices are assigned
different colors. The largest color gives the cardinality of the coloring.

A greedy algorithm for the graph coloring problem proceeds by coloring the
vertices of the graph according to some predetermined order, and for each vertex v
choosing a color different from the already colored vertices in N(v). How the actual
color is chosen and in what order the vertices are processed gives rise to different
greedy coloring algorithms. The outline of the general algorithm is as shown in
Algorithm 1.

The most common use of this algorithm is to achieve a coloring using the fewest
possible colors. In this case the color of v would typically be chosen as the lowest
possible color that does not conflict with any already colored vertices in N(v) (that
is, the neighbors of v). This is what is known as the First Fit algorithm.

Algorithm 1 The Greedy Coloring Algorithm

1: procedure Greedy(G = (V, E))
2: for each v ∈ V do

3: color(v) = k ∈ {l ∈ Z+, ∀w ∈ N(v), color(w) 6= l}
4: end for

5: end procedure

We will also study two other greedy coloring algorithms. These are the Least

Used (LU) and the Random algorithm. In the LU algorithm the current color k is
chosen as a least used legal color in the interval [1, γ] where γ is the largest color
used so far. Only when there is no legal color available in [1, γ] can color γ + 1 be
chosen. The only difference between the Random algorithm and the LU algorithm
is that instead of choosing the least used legal color one chooses a random color
among the legal ones. Note that it is possible to set the initial value of γ to a value
larger than 1. The algorithms would then start with the colors [1, γ] being equally
likely to be used.

There has been extensive work in trying out different kinds of orderings of the
vertices. Such orderings include among others, ordering the vertices in a random
manner, by decreasing vertex degree, and by the number of unique color classes a
vertex is incident to. In the following we will only study random orderings. This is of
interest since it is the fastest method with the least amount of overhead. Moreover,
a random ordering also models the online coloring problem where the algorithm only
knows about the part of the graph colored so far.

To generate random graphs for the experiments presented in the paper we have
used the package described in [6]. This takes a number of vertices and edges as input
and outputs a corresponding graph with each edge equally likely to appear. Thus to
generate an instantiation of a particular random graph we have used the number of
vertices and the expected number of edges as input parameters. For each experiment
presented in the paper we have generated 10 random graphs. In addition each graph
has been colored 10 times using different random orderings. The presented numbers
are then the average over these.

3 Completely Balanced Colorings
In a completely balanced coloring we want each resulting color class to be of almost
equal size, with only a relatively small variance between the size of each color
class. Of the greedy algorithms considered in Section 2 only the LU and Random

algorithms are expected to be able to produce such colorings.
In the following we show how to predict the minimum initial value of γ such that

either the LU or the Random algorithm is likely to compute a completely balanced
coloring using exactly γ colors. As it turns out this number is very close to the
number of colors used by either algorithm if the algorithm starts with γ = 1.

Knowing the value of γ in advance is of importance in parallel graph coloring
where one would like to have a large initial spectrum of color available in order
to reduce the possibility that two vertices colored on different processors receive
the same color [2]. For other applications being able to predict the number of
colors needed might be used to predict the amount of resources the application will
require. Moreover, one is also likely to obtain a more even color distribution when

using the LU or the Random algorithm if all the colors are available at the start of
the algorithm.

We let γr, 0 ≤ r ≤ 1, denote the least value such that both the LU and the
Random algorithms are expected to produce a completely balanced coloring with
probability at least r. As input we use the random graph G(n, p).

Predicting γr

We now proceed to construct a formula that can be used for predicting γr for the LU

and the Random algorithms. In the following we will not distinguish between these
two algorithms but merely refer to a generic “algorithm” and assume that it tries
to balance the distribution of the first γ color classes, where γ is a predetermined
number of colors available.

If the algorithm requires more than γ colors we say that the algorithm fails.
We will assume that if the algorithm does not fail then the resulting coloring is
completely balanced. This will be shown later to be true.

Let F be the actual number of colors used by the algorithm. Then for a given
value γ we first wish to bound the probability that F ≤ γ.

Let fi be the color of vertex i. It then follows that

P (F ≤ γ) = Πi∈V P (fi ≤ γ) (1)

where P (fi ≤ γ) is the probability that vertex i will receive a color ≤ γ given that
vertices 1 through i − 1 has also received a color ≤ γ.

For increasing values of i the value of P (fi ≤ γ) is a non-increasing function.
This follows since as i increases the number of vertices in each of the γ first color
classes will not decrease. Thus the probability that vertex i + 1 has an edge to at
least one vertex in each of the γ first color classes is no less than that of vertex i.
We therefore have P (fi+1 ≤ γ) ≤ P (fi ≤ γ).

We use this observation to bound P (F ≤ γ) as follows. Starting with vertex 2γ+1
we select every γ vertex vγ×j+1, j ≥ 2. Then P (fγ×j+1 ≤ γ) ≤ P (fγ×j+1−l ≤ γ)
for l ≥ 0. Taking the product of the γ equations obtained by varying l from 1 to
γ we obtain P (fγ×j+1 ≤ γ)γ ≤ Πγ

l=1P (fγ×j+1−l ≤ γ). Assuming that γ divides n
and adding in a dummy n + 1st vertex we see in the upper part of Figure 1 how a
particular colored vertex is compared against each of the γ previous vertices. Note
that P (fi ≤ γ) = 1 for i ≤ γ.

γ 2γ n

n

Lower bound

Upper bound

γ 2γ

Figure 1: Vertices used for computing lower and upper bounds

Taking the product over all values of j we get the following lower bound on
P (F ≤ γ)

Π
n
γ

j=2P (fj×γ+1 ≤ γ)γ ≤ Πi∈V P (fi ≤ γ) (2)

In a similar fashion we can obtain an upper bound on P (F ≤ γ) by noting that
Πγ

l=1P (fγ×j+l ≤ γ) ≤ P (fγ×j+1 ≤ γ)γ for l ≥ 1. This is as shown in the lower part
of Figure 1. Again by taking the product over all values of j, j ≥ 1, we get

Πi∈V P (fi ≤ γ) ≤ Π
n
γ
−1

j=1 P (fj×γ+1 ≤ γ)γ (3)

We now continue to expand P (fj×γ+1 ≤ γ). To do so we look at the expected
color distribution at the time when vertex vj×γ+1 is being colored. As stated initially
we assume that our algorithm strives to balance the γ first color classes in each step.
To see that it is reasonable to assume that this is possible note that as soon as one
color class starts to get fewer vertices than the others, the probability that the next
vertex can use this color will be higher than for the other color classes. Thus over
time we expect each color class to receive roughly the same amount of vertices.
Based on this we make the assumption that when we are coloring vertex vj×γ+1

there are j vertices in each of the γ first color classes. Thus the probability that
vj×γ+1 can or cannot use one of the first γ color classes is the same for each color
class. From this we can deduce

P (fj×γ+1 ≤ γ) = 1 − P (fj×γ+1 > γ)

= 1 − Πγ
l=1P (fj×γ+1 6= l)

= 1 − P (fj×γ+1 6= 1)γ (4)

Since we expect there to be j vertices in color class 1 it follows that P (fj×γ+1 6= 1)
is equal to the probability that vertex vj×γ+1 has an edge to at least one of the j
vertices in color class 1. This again is equal to one minus the probability that the
vertex has no edges to any vertex in color class 1. Thus we get

P (fj×γ+1 6= 1) = 1 − (1 − p)j (5)

Setting q = (1 − p) in Eq. 5 and combining Eq. 1 through Eq. 5 we now get

Lemma 3.1

Π
n
γ

j=2(1 − (1 − qj)γ)γ ≤ P (F ≤ γ) ≤ Π
n
γ
−1

j=1 (1 − (1 − qj)γ)γ (6)

If γ does not divide n the formulas for the lower and upper bound in Eq. 6 should
run to dn

γ
e and dn

γ
e − 1 respectively. The outermost power of γ for the last term of

both bounds should also be replaced by n mod γ. Thus the only difference between
the lower and upper bound is in the first term and at most the last two terms.

Ideally, in order to determine γr from Eq. 6 for a given graph G(V, p) and value of
r, one would replace P (F ≤ γ) with r and then solve both inequalities for γ. Since
we do not know how to do this we instead have to resort to some kind of search
method to find the value of γr. This is further elaborated on in the next section.

Experiments

To test if the bounds given by Lemma 3.1 are accurate and useful for determining
γr we have performed several experiments where we compare the predictions given
by Eq. 6 with the LU and Random algorithms.

Figure 2 displays the values given by Eq. 6 for G(1000, p) with p = 0.01, 0.1, and
0.5 as γ is varied. These values are plotted together with the fraction of the number
of times that the LU and Random algorithms were successful in coloring the given
graph using γ colors.

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of colors

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss

G(1000,0.01)

Low bound
High bound
Random
LU

35 40 45 50 55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of colors

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss

G(1000,0.1)

Low bound
High bound
Random
LU

150 160 170 180 190 200 210 220 230 240 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of colors

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss

G(1000,0.5)

Low bound
High bound
Random
LU

Figure 2: Probability of achieving a balanced coloring for G(1000, p) for p = 0.01, 0.1,
and 0.5

It is interesting to note that there is a fairly limited transition phase where
the probability of success changes from close to 0 to close to 1, and it is only in
this phase that there is some discrepancy between the predicted and the observed
values. As can be seen from the figures the empirical data almost always stays within
the predicted bounds and for small values of p the bounds accurately predicts the
behavior of the algorithms. However, the upper and lower limits separate as p is
increased. This is as expected since as p is increased the lowest value of γ for which
one can achieve a balanced coloring will also increase, and thereby make the bounds
coarser.

The Random algorithm has a slightly higher success rate than the LU algorithm,
however this comes at the expense of a less smooth color distribution. We have
computed the variance in the color distribution for the first value of γ when each of
the algorithms succeeded in at least half of their attempts and then only using data
from the successful attempts. This showed that the variance remained below 0.1 in
all experiments except for the Random algorithm with p = 0.01 when the variance
was 2.6.

As stated in Section 3 to determine the actual value of γr requires some kind
of search process such as binary search. We note that this can be accelerated by

using the secant method as follows. For fixed values of p, r, and γ let n′ be the
maximum number of vertices such that there exists a completely balanced coloring
of G(n′, p) with probability at least r. This can be calculated by applying the lower
bound of Eq. 6 until just before the probability of success drops below r. Note
that this might result in n < n′. Starting from two such points (γ1, n1) and (γ2, n2)
we use the straight line between these to estimate γ3 so that we will be able to
accommodate the actual number of vertices. Again using the lower bound of Eq. 6
we then calculate the actual maximum number of vertices we expect to be able to
color using γ3 colors. This process is then repeated with the two last data points
until convergence. As an example if we set r = 0.5 for G(1000, 0.1) and start with
the values 666 and 333 for γ1 and γ2 this will generate the following subsequent
values for γ: 92, 58, 47, 47.

We have also performed experiments using values of γ < γr. These showed that
one always needs close to γr colors. As an example, setting γ = 1 for G(1000, 0.01)
and G(1000, 0.1) resulted in the LU algorithm using 10.6 and 40.5 colors while the
Random algorithm used 11.8 and 44.1 colors. As γ was increased the number of
colors increased only very slowly. For all of these colorings the last couple of color
classes contained significantly less vertices than the average.

4 The First Fit algorithm
In the following we consider using the First Fit (FF) algorithm to obtain a balanced
coloring of a random sparse graph. As discussed in Section 1 this is a viable approach
if the number of available colors is less than what is needed for an even color
distribution as described in Section 3. In particular we consider the following two
problems; (1) What is the expected number of colors that FF will use if no color
class can contain more than l vertices and (2) What is the lowest limit one can have
on each color class while still ensuring that FF does not use more than γ colors.

However, before we address these questions we first need to consider the expected
behavior of FF on sparse random graphs when there are no restrictions on the
coloring.

The Unrestricted FF Algorithm

Let χFF (G) denote the expected number of colors used by the FF algorithm on graph
G. Grimmet and McDiarmid [4] showed that the number of colors used by the FF

algorithm when applied to G(n, p) is given by

Lemma 4.1 Almost surely

(1 − ε)n

logbn
≤ χFF (G(n,p)) ≤

(1 + ε)n

logbn

for any fixed ε, where b = 1/(1 − p).

Although this is an asymptotically tight bound, it is not a very accurate
approximation for sparse graphs and Pittel and Weishaar subsequently gave the
following result showing that the expected number of colors used by the greedy
algorithm on G(n, c

n
) is concentrated on at most two values [9].

Lemma 4.2 Let j(c) = min{j : cj ≤
1
2
} where c1 = c and cj = cj−1 − log(cj−1 + 1).

Further let f1(c) = log2(log 2
c∗

+ c∗) and f2(c) = log2 log 2
c∗

− 1, where c∗ = cj(c).

Then almost surely

log2 log n + j(c) − f1(c) < χFF (G(n, c
n

)) < log2 log n + j(c) − f2(c)

Finally, sup(f1(c)−f2(c)) ≤ 1.5, so that the number of colors used is concentrated

on at most two values almost surely.

This result was based on the following earlier result also due to Pittel [8] giving
the expected number of vertices in an independent set when using a greedy algorithm
on G(n, c

n
).

Lemma 4.3 The expected number of vertices in an independent set when using the

greedy algorithm on G(n, c
n
) is about n log(c+1)

c
.

Based on this result we now give a new lemma for predicting the number of
vertices in each color class when using the FF algorithm.

Lemma 4.4 When using the FF algorithm on G(n, c
n
) the expected number of

vertices in color class i is n
c
log(αi) where α1 = c + 1 and αi = αi−1 − log(αi−1).

Proof. Note first that for any subset V ′ ⊆ V the graph induced by V ′ is G(V ′, c
n
).

This follows since the edge probability between vertices of V ′ is unaffected by vertices
in V −V ′. Thus if ni is the number of vertices remaining after removing the vertices
and adjacent edges of the i− 1 first color classes, we expect that the i’th color class
of G(n, c

n
) will contain as many vertices as the first color class of G(ni,

c
n
).

We now prove by induction on the number of color classes that the expected
value of ni is n

c
(αi − 1). For i = 1 we have the original graph with n vertices. Since

n
c
(α1 − 1) = n this proves that the induction hypothesis holds for i = 1.

For the induction step assume that nk = n
c
(αk − 1), k ≥ 1. Then the expected

number of vertices in the k’th color class is equal to the expected number of vertices
in the first color class of G(nk,

c
n
). By the induction hypothesis nk = n

c
(αk − 1) and

thus n = nkc
αk−1

. Substituting this expression for n we get G(nk,
c
n
) = G(nk,

αk−1
nk

).
Using Lemma 4.3 it follows that the expected number of vertices in color class k
is nk

log(αk)
αk−1

. Again, by applying the induction hypothesis on nk this simplifies to
n
c
log(αk).

Thus the expected value of nk+1 is

nk+1 = nk −
n

c
log(αk)

=
n

c
(αk − 1) −

n

c
log(αk)

=
n

c
(αk − log(αk) − 1)

=
n

c
(αk+1 − 1)

which proves the induction hypothesis.
Since the induction hypothesis is true the above argument on the expected

number of vertices in color class k is true which again proves the lemma.

We can use Lemma 4.4 to generate a simple formula for χFF (G(n, c
n

)).

Corollary 4.5 Let λ = min{j : n
c
log(αj) ≥ 0.5. Then

λ ≤ χFF (G(n, c
n

)) ≤ λ + 1 (7)

Proof. We wish to show that the cumulative number of vertices in color classes
larger than λ is small. First let f(x) = x− log(x). Then from the Taylor expansion
of f(x) at the point a = 1 it follows that f(1 + t) < 1 + 1

2
t2. Thus setting

αλ+1 = 1 + t we get αλ+2 = f(t + 1) < 1 + 1
2
t2. Since log(1 + t) ≤ t it follows

that log(αλ+2) < log(1 + 1
2
t2) < 1

2
t2 and in general that log(αλ+1+i) < t2

i

2(2i
−1)

, i ≥ 0.
Thus the cumulative number of vertices in all color classes larger than λ is bounded

by n
c
Σ∞

i=0
t2

i

2(2i
−1)

.
Now consider the first term n

c
t in this sum. This bounds the number of vertices

in color class λ + 1. Since n
c
log(1 + t) < 0.5 it follows that t < e

c
2n − 1 which shows

that n
c
t < n

c
(e

c
2n −1) < e

1
2 −1 < 0.65. It follows that n

c
Σ∞

i=0
t2

i

2(2i
−1)

< 0.65Σ∞

i=0(
t
2
)2i

−1.
Since n

c
t < 0.65 and n

c
≤ 1 we have t < 0.65. Using this it is easy to show that the

total number of vertices in color classes larger than λ is less than 1.0.

Note that in the proof of Corollary 4.5 we made the pessimistic assumption that
n
c

= 1. For graphs where c � n the cumulative number of vertices in color classes
larger than λ will be much smaller than what is projected in the proof. Thus if
x = n

c
log(αλ+1) we expect that λ.x will be a good estimate of the expected number

of color classes used by the FF algorithm.
In the two topmost graphs of Figure 3 we compare the presented equations for

predicting the behavior of the FF algorithm with empirical values from coloring
graphs with 1000 vertices and with increasing edge probability. The lines marked
FF give the empirical data, the lines marked Cor. 1 gives the expected value derived
from Corollary 4.5, GM gives the expected value from Lemma 4.1, while PW low

and PW high show the bounds given by Lemma 4.2.
As can be seen from the graphs the expected value given by Corollary 4.5 is

almost identical with the empirical data as long as the graph is sufficiently sparse,
but diverges as the edge probability increases. The bounds given by Lemma 4.2 also
behave asymptotically similar to the expected value from Corollary 4.5 although
these bounds seem to be consistently high compared with the FF algorithm on
sparse graphs. Moreover, this difference seems to increase as the graph becomes
sparser. As expected, the value given by Lemma 4.1 does not become accurate until
the graph gets sufficiently dense.

In the bottom graph of Figure 3 we show the predicted color distribution for
G(1000, 0.1) as given by Lemma 4.4 plotted together with that given by the FF

algorithm.
To verify that the FF algorithm uses less colors than the LU or Random algorithm

we note that these algorithm required more than 40 colors to color G(1000, 0.1) while
FF only needs about 31 colors.

Restricted FF

We now use the results from Section 4 to show how one can predict the number of
colors used by the FF algorithm when there is an upper limit l on how many vertices
any color class can contain.

What happens in this setting is that color classes starting with the smallest
numbered ones will start to fill up and become unavailable for the algorithm. If k

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

5

10

15

20

25

30

Edge probability

Nu
m

be
r o

f c
ol

or
s

G(1000,p)
FF
Cor. 1
PW low
PW high
GM

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50

100

150

200

250

300

Edge probability

Nu
m

be
r o

f c
ol

or
s

G(1000,p)
FF
Cor. 1
PW low
PW high
GM

5 10 15 20 25 30 35
0

10

20

30

40

50

60

Color class

Nu
m

be
r o

f v
er

tic
es

Color distribution for G(1000,0.1)

Predicted
FF

Figure 3: G(1000, p): Predicting the behavior of the FF algorithm

classes fill up completely then the remaining graph will consist of n1 = n − k × l
vertices. Since the edge probability between these vertices is unaffected by the filled
color classes they will be colored as if one was applying the regular FF algorithm.
In the following we show how to predict k.

We now have the graph G(n1,
c
n
) = G(n1,

cn1/n
n1

) = G(n1,
c1
n1

). The first color
class of this graph will receive n1

c1
log(c1 + 1) vertices. Since this color class is the

first color class smaller than l we see that k must be the smallest number such that
n1

c1
log(c1 + 1) < l.

Substituting c1 = cn1/n
n1

and n1 = n − k × l and then solving for k we obtain

k > n
l
(1 − 1

c
(el c

n − 1)). Since k is an integer we get:

Lemma 4.6 The restricted FF algorithm where no color class can have more than

l vertices will have the first k = dn
l
(1 − 1

c
(el c

n − 1))e color classes completely filled,

while the remaining n1 = n− k × l vertices will be distributed like in the regular FF

algorithm.

Note that we allow equality in Lemma 4.6. In this case the first color class of
the n1 remaining vertices will contain exactly l vertices.

To show that Lemma 4.6 gives an accurate estimate we present Figure 4. The
left graph shows the predicted number of colors used versus the actual number when
using the restricted FF algorithm on the graph G(1000, 0.01) for varying maximum
size of any color class. The graph on the right side shows both the predicted and
actual color distribution in detail for the case when the maximum color size is set
to 150. The two curves overlap almost perfectly.

Finally we briefly discuss how to solve the problem where one is given a maximum
number of colors γ and want to know what the minimum limit one can impose on
the size of any color class without the FF algorithm using more than γ colors.

40 60 80 100 120 140

10

15

20

25

30

Limit
Nu

m
be

r o
f c

ol
or

 c
la

ss
es

G(1000,0.01)

FF w/limit
Predicted

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

Color class

Nu
m

be
r o

f v
er

tic
es

Color distribution for G(1000,0.01)

Predicted
FF

Figure 4: Number of colors used versus limit (left) and color distribution for a limit
of 150 (right)

One immediate way of solving this problem is to use binary search on the limit
and then applying Corollary 4.5 and Lemma 4.6 to predict the number of color
classes needed.

A more analytic approach is obtained if one processes the color classes in reverse
order starting with color class γ and asks for the maximum number of vertices nγ

one can have and still only use one color class. This is then continued recursively
as follows. Assume that one knows the maximum number of vertices nk one can
have without the FF algorithm using more than γ − k + 1 color classes. From this
number one can find the maximum number of vertices nk−1 that can be colored
using at most γ − k color classes as follows. Let f(nk−1) = n

c
log(cnk−1

n
+ 1) be the

number of vertices that FF would assign to the first color class given nk−1 vertices.
The value of nk−1 is then the maximal value such that nk−1 − f(nk−1) = nk. This
process is then repeated until (n − nk)/k ≤ f(nk) at which point there are n − nk

vertices remaining that can be evenly distributed among the remaining k − 1 color
classes. The exact minimum limit is found by solving (n − nk)/k = f(nk) for nk.

Note that this way of solving the problem requires that one repeatedly solves
the non-linear equation nk−1 −

n
c
log(cnk−1

n
+ 1) = nk for nk−1. However, this should

be fairly simple using a standard iterate method such as a Newton iteration.
As one example how this can be used we note that while the regular FF algorithm

on G(1000, 0.01) will assign approximately 240 vertices to the first color class while
using 8 color classes, it is possible to achieve a restricted FF coloring where no color
class contains more than 187 vertices while still being more likely to use 8 color
classes than 9.

5 Conclusion
As a continuation of this work we are currently working on showing how the
presented results can be used to predict the expected behavior of different parallel
graph coloring algorithms.

Finally we mention some open problems:

• Both the bound given by Pittel and Weishar and the one given in the current
paper for χFF (G(n, c

n
)) relies on a recursion of the form αi+1 = αi − log(αi). It

would be interesting to know if one can predict for a given value of α0 and
constant c, what is the smallest value of i such that αi ≤ c.

• The given formula for predicting the number of colors needed for a balanced
coloring requires some computation before an estimate is obtained. Is it
possible to obtain a closed formula for this?

• It would be of interest to study to what extent real world graphs also behave
in a manner similar to the one described here.

References
[1] K. I. Aardal, S. P. V. Hoesel, A. M. Koster, C. Mannino, and

A. Sassano, Models and solution techniques for the frequency assignment

problem, tech. report, Konrad-Zuse-Zentrum fur Informationstechnik, Berlin,
2001.

[2] I. Finocchi, A. Panconesi, and R. Silvestri, Experimental analysis

of simple, distributed vertex coloring algorithms, in Proc. 13th ACM-SIAM
symposium on Discrete Algorithms (SODA 02), 2002.

[3] A. Gebremedhin, F. Manne, and T. Woods, Speeding up parallel graph

coloring, in Para’04 Workshop on state-of-the art in scientific computing,
Lecture Notes in Computer Science, Springer, 2004.

[4] G. Grimmett and C. McDiarmid, On coloring random graphs, Math. Proc.
Cam. Phil, Soc., 77 (1975), pp. 313–324.

[5] Ö. Johansson, Simple distributed δ + 1-coloring of graphs, Inf. Proc. Letters,
70 (1999), pp. 229–232.

[6] R. Johnsonbaugh and M. Kalin, A graph generation software package,
ACM SIGCSE Bulletin, 23 (1991), pp. 151 – 154.

[7] M. Krivelevich, Coloring random graphs - an algorithmic perspective, in
Proc. MathInfo’2002, the 2nd Colloquium on Mathematics and Computer
Science, Birkhauser, 2002, pp. 175–195.

[8] B. Pittel, On the probable behavior of some algorithms for finding the stability

number of a graph, Math. Proc. Cambridge Philos. Soc., 92 (1982), pp. 511–526.

[9] B. Pittel and R. S. Weishaar, On-line coloring of sparse random graphs

and random trees, J. Alg., 23 (1997), pp. 195–205.

[10] H. Zang, J. P. Jue, and B. Mukherjee, A review of routing and

wavelength assignment approaches for wavelength-routed optical wdm networks,
SPIE Optical Networks Magazine, 1 (2000), pp. 47–60.

