
Partitioning an Array onto a Mesh of ProcessorsFredrik Manne and Tor S�revikDepartment of Informatics, University of Bergen,N-5020 Bergen, Norwayemail: ffredrikm,torsg@ii.uib.noAbstract. Achieving an even load balance with a low communicationoverhead is a fundamental task in parallel computing. In this paper weconsider the problem of partitioning an array into a number of blockssuch that the maximum amount of work in any block is as low as pos-sible. We review di�erent proposed schemes for this problem and thecomplexity of their communication pattern. We present new approxima-tion algorithms for computing a well balanced generalized block distribu-tion as well as an algorithm for computing an optimal semi-generalizedblock distribution. The various algorithms are tested and compared ona number of di�erent matrices.1 IntroductionA basic task in parallel computing is the partitioning and subsequent distributionof data to processors. The problem one faces in this operation is how to balancetwo often contradictory aims; �nding an equal distribution of the computationalwork and at the same time minimizing the imposed communication.In the data parallel model this can be modeled as a graph partitioning prob-lem where the vertices represents data and the edges indicate that results ob-tained from processing one data unit will be needed for further processing ofthe other. Finding an optimal solution is know to be NP-hard [8], and henceimpossible to solve to optimum for large instances.In settings where locality is of importance the partitioning and resultingmapping should as far as possible be done such that adjacent nodes are mappedto the same processor. Thus the dataset should be partitioned into connectedcomponents. If the data is stored in an array these components might for reasonsof both e�ciency and simplicity be restricted to be rectangular blocks of thearray. Several high-performance computing languages include the possibility forthe user to specify such a partitioning and distribution of data onto a logicalset of processors. The compiler then maps the data onto the physical processorsand determines the communication pattern. An example of one such scheme isthe block distribution found in languages such as Vienna Fortran [4] and HPF[10].In general the block distribution will result in equal size blocks and thereforecannot adapt to load imbalance that might be present. Consider ocean model-ing where the presence of land gives irregular areas for which no computationsare needed. As demonstrated in [2] a block distribution that takes this into

account reduces the time spent on a parallel computation. More general parti-tioning schemes that have been proposed for these kinds of problems include thegeneralized and semi-generalized block distribution [5, 15, 16, 17].In this paper we discuss a number of di�erent partitioning schemes. In partic-ular, we describe an e�cient iterative algorithm that computes a well balancedgeneralized block distribution. We also show how an optimal semi-generalizedblock distribution can be found. The performance of these algorithms are com-pared with other orderings such as the uniform block distribution and the binaryrecursive decomposition [1, 3]. The algorithms presented extend earlier work forone dimensional arrays [13, 14].The paper is organized as follows: Section 2 gives formal de�nitions of thedi�erent partitioning schemes and relate these to each other. Section 3 presentsnew algorithms for computing the di�erent distributions and Section 4 reportson the performance of these. Finally, in Section 5 we conclude and point to areasof further work.2 Structured DistributionsIn this section we de�ne and relate the di�erent types of distributions and discusswhat kind of communication pattern they impose. One measurement of thecommunication complexity is the maximum number of neighbors a block canhave. In this paper we only consider arrays of dimension two. All results, however,may easily be extended to arrays of higher dimensions.Let A 2 <m�n and let p and q be integers such that 1 � p � m and 1 � q � n.Let R = fro; r1; :::; rpg be integers such that 1 = r0 � r1 � ::: � rp = m + 1.Then R de�nes a partitioning of [1::m] into p consecutive intervals [ri; :::; ri+1�1],0 � i < p. We denote this interval by [ri; :::; ri+1]. A partitioning of [1::m] intop intervals and of [1::n] into q intervals de�nes a partitioning of A into p � qblocks.We now de�ne the di�erent types of distributions of A. The distributions aregiven in increasing order of complexity.2.1 Non Recursive DistributionsThe most simple distribution we consider is the uniform distribution:De�nition 1 Uniform Block Distribution. The interval [1::m] is partitionedinto p consecutive intervals of size dmp e with the possible exception of the lastinterval. Similarly [1::n] is partitioned into q intervals of size dnq e.The uniform distribution divides A into p�q equally sized blocks. See Figure1a for an example. In certain applications the amount of data that needs to becommunicated is proportional to the perimeter of each block. In this settingthe uniform distribution minimizes the time needed for communication. If thework associated with each element of A is equal it also gives a perfectly balanced

workload. But being �xed a priori it has no possibility to adapt to load imbalanceif the computational work varies throughout A. This might be mitigated bymoving any of the p + q � 2 interior delimiters. By doing so we allow more
exibility in the size of the blocks while at the same time keeping the regularcommunication pattern of the uniform block distribution.De�nition 2 Generalized Block Distribution (GBD). The interval [1::m]is partitioned into p consecutive intervals without restrictions on the size of eachinterval. Similarly [1::n] is partitioned into q intervals.See Figure 1b for an example of the GBD. The GBD was discussed by Foxet. al. [7] and implemented as part of Superb environment [17] and later in Vi-enna Fortran [6]. It is also a candidate to be included as part of the ongoingHPF2 e�ort [11]. For examples of how the GBD can be used in areas such assparse-matrix and particle-in-cell computations see [5] and [12].While the GBD has the same structured communication pattern as the uni-form distribution the blocks sizes vary. The time spent on communication istherefore likely to be higher than with the uniform distribution.In some cases it is only necessary to have a structured distribution in onedimension. If this is the horizontal direction we may relax the partitioning condi-tions in the vertical direction. One would thus allow for an individual partitioningof the columns in each row segment given by the horizontal distribution.De�nition 3 Semi-Generalized Block Distribution (SBD). The interval[1::m] is partitioned into p consecutive intervals [ri; ri+1], 1 � i � p withoutrestrictions on the size of ri+1 � ri. For each horizontal interval [ri; ri+1] theinterval [1::n] is partitioned into q intervals.See Figure 1c for an example of the SBD. Ujaldon et. al. proposed a parti-tioning scheme called Multiple recursive decomposition which results in a SBD[15, 16]. It was designed for solving problems from sparse linear algebra on par-allel computers.The SBD has a possibility to adapt better to load imbalance than the GBD.But since a block may have as many as 2q + 2 neighbors the communicationpattern becomes less structured.In a parallel environment the time spent on a computation is determined bythe processor taking the longest time. To estimate the time needed to processeach block we de�ne a non-negative cost function � on contiguous blocks of A.The assumptions on � are that if a and b are blocks of A such that a � b then�a � �b, and �a = 0 if and only if a is the empty block. For most reasonablefunctions � we expect that if the value of a (or b) is known then the value ofb (or a) can be computed in O(jbj � jaj) time. An example of � might be thenumber of non-zero elements or the sum of the absolute values of the elementsin a block.We now get the following optimization problem:Partition A in such a way that maxi=1:p;j=1:q �i;j is minimized.

a. Uniform distribution b. General block
 distribution

c. Semi-general
 block distributionFig. 1. Examples of the di�erent distributions with p = q = 4The relationship between the optimal values for each of the di�erent distributionsis captured in the following:Theorem4. Let A; p; q, and � be de�ned as above. Let further S be the set ofall SBDs on A, R the set of all GBDs, and U the uniform distribution. Thenthe following is true:min8S maxi=1:p;j=1:q �i;j � min8R maxi=1:p;j=1:q �i;j � max(i;j)2U �i;j (1)Proof: The result follows trivially from the fact that U 2 R � S. 2As is evident from Theorem 4 the more unstructured the distribution is themore even we can get the load balance, but as discussed above, the more complexand time consuming the communication becomes.2.2 Recursive DistributionsIt is possible to generalize De�nitions 2 and 3 to make the distributions recursive.The partitioning would then recursively be applied to each block for a numberof d levels. Thus A is partitioned into pd � qd blocks. The relationships givenby Theorem 4 still holds true for the recursive distributions. Note also that forboth the GBD and the SBD the minimum cost of the recursive distribution islower than the minimum cost of the non-recursive version partitioned into pd�qdblocks.The maximum number of neighbors any block can have above or below andto the right or left is qd�1 and pd�1 for the recursive GBD and qd and pd�1 forthe recursive SBD. Thus the recursive orderings give more complicated commu-nication patterns than their non-recursive counterparts.For p = q = 2 the recursive SBD gives the well known binary recursivedecomposition [1]. Figure 2 shows examples of the recursive GBD and the binaryrecursive decomposition.Less restricted block distributions than the ones presented here may lead to abetter load balance but are likely to give more irregular communication patternsthat would be di�cult to implement e�ciently.

 Recursive General
 block distribution

 Binary recursive
 decompositionFig. 2. Recursive distributions with p = q = d = 23 AlgorithmsIn this section we describe an e�cient iterative algorithm for computing a wellbalanced GBD. The solution obtained is shown to be a local optimum. We alsoshow how an optimal SBD can be found. For completeness we describe a numberof proposed approximation algorithms.All presented algorithms extend previous results on partitioning a one dimen-sional array. We therefore start by recapturing this problem and its solution.The problem is identical to the generalized partitioning problem discussedso far but with n = q = 1. Thus we are partitioning a vector of length m intop consecutive intervals. The current fastest algorithm for solving this problemis based on dynamic programming and runs in time O(p(m � p)) [14]. This isbased on the same assumptions on � as for the general problem. Thus the costfunction can be computed in time O(1) when the size of an interval changes byone. Every function evaluation in the algorithm is of this type. Thus if the timeto calculate the cost function is c the time complexity becomes O(p(m � p)c).3.1 The Generalized Block DistributionConsider �rst the problem of partitioning [1::n] into q intervals when the par-titioning of [1::m] into p intervals has been �xed. The placement of verticaldelimiters i and i + 1 then de�nes p blocks of cost �i;j , 1 � j � p. We de�ne anew cost function �i = max1�j�p �i;j . The function � has the same monotoneproperties as �. Thus we can reduce the placement of the vertical delimitersto solving the one-dimensional case with cost function �. Using the dynamicprogramming algorithm we can now �nd an optimal placement of the verticaldelimiters. This is also true if the vertical delimiters are �xed and an optimalplacement of the horizontal ones is desired.We suggest an algorithm where this step is applied iteratively: The delimitersare �xed in one direction and placed optimally in the other. This is then repeatedwhile alternating which delimiters are �xed until no decrease in the maximumcost is obtained. At this stage a local optimum has been reached, where moving

0 4 10 3

6 12 3 24

0 15 20 30

15 24 20 6Fig. 3. A local optimum which is not globally optimal.any set of either horizontally or vertically delimiters will not decrease the overallcost of the partition.However, as the example in Figure 3 shows, the solution obtained might notbe globally optimal. Here p = q = 2 and the cost function is the sum of theelements. The indicated solution of cost 76 cannot be improved by moving anyone of the delimiters, whereas the optimal solution has the lower right handblock of size one and is of cost 70.With the assumptions made on � in Section 2 the time complexity of cal-culating � when the size of an interval changes by one is O(m). Thus the timecomplexity of one iteration of algorithm becomes O(qm(n� q) + pn(m� p)).For most natural cost functions it is possible to improve the time complexityby collapsing parts of the array in each iteration. The assumption we make isthat the contribution to the cost function from one column (or row) of a blockcan be reduced to one number. Given a partition of the rows we can then collapseeach column segment to one number. This reduces the size of the matrix fromm�n to p�n and the time complexity becomes O(mn+ pq(n� q)+ pq(m� p))where the mn term comes from the collapsing step.We note that if the contribution from a single row or column segment [i; j]can be calculated as �(1::j) � �(1::i) then the rows can be collapsed in O(pn)time and the columns in O(qm). This is done by pre-computing �(1::i) for everyvalue of i for every row and column. The expense for this speedup is that we needan O(mn) pre-computational step and extra storage to hold the values from thisstep.A more simple approximation algorithm for computing a GBD was presentedin [12]. In this algorithm the rows and columns are collapsed and partitionedseparately giving a time complexity of O(p(m � p) + q(n� q) +mn).3.2 The Semi-Generalized Block DistributionIn this section we show that the dynamic programming algorithm can be ex-tended to compute an optimal SBD.

Consider the row interval [ri; ri+1] in a SBD. Let
 be the value of an optimalq-partition of the column segments in this interval. Since � is monotone it followsthat
 is also monotone and � = 0 if and only if
 = 0. Thus we can use thedynamic programming algorithm to compute an optimal p-partition of [1::m]using
 as cost function resulting in an optimal SBD.The time complexity of �nding the optimal q-partition of [ri; ri+1] is O(q(n�q)(ri+1 � ri)). The function
 needs to be evaluated O(p(m � p)) times andtherefore the overall time complexity becomes O(pqm(m� p)(n� q)).This result can be improved if it is possible to collapse the columns of A.Recall that in the dynamic programming algorithms the function value of aninterval is always obtained after one of the delimiters of the interval has beenmoved exactly one place. Thus if we performed a collapsing of the columns theprevious time we evaluated
 we can update this in time O(n) to the valueneeded in the current evaluation. This reduces the time complexity of evaluating
 to O(n+ q(n� q)) and the overall time complexity becomes O(p(m � p)(n+q(n� q))) = O(pq(m� p)(n� q)).An approximation algorithm for computing a SBD can be obtained by �rstdetermining an optimal partition on the collapsed rows of A. The columns ofeach row segment are then collapsed and optimally q partitioned. The timecomplexity of this algorithm is O(mn+ p(m� p) + pq(n� q)).For completeness we also describe the Multiple recursive decomposition [16].Let p1; p2; :::; pk be the prime factorization of p in descending order of magnitude.The rows are �rst partitioned into p1 intervals such as to minimize the cost ofthe most expensive interval. Each interval is then further partitioned into p2intervals and so on until p intervals have been obtained. This process is thenrepeated for each row segment using the prime factors of q. We note that if pand q are powers of 2 and it is possible to collapse the columns and rows of A,the time complexity of this algorithm is O(m log p+ pn log q +mn).4 Numerical experimentsWe have implemented the algorithms of Section 3, and performed a number ofexperiments in order to investigate how well they partition an array with respectto load balance. The cost function we have used is the sum of the elements. Foreach data set we report the results from the following algorithms:{ SBD The optimal SBD distribution as described in Section 3.2.{ ASD The approximation algorithm described in Section 3.2.{ MRD The Multiple recursive decomposition as described in Section 3.2.{ GBD The iterative algorithm from Section 3.1 for computing a GBD.{ GBA The simple approximation algorithm mentioned in Section 3.1.{ UD The uniform distribution.{ BRD The binary recursive decomposition [1].To illustrate the behavior of the algorithms we tried them on 3 di�erent typesof test matrices. The function rand() generates numbers from a uniform randomsequence of non-negative integers less than 215 � 1.

1. Skewed matrix: The weights of the elements are skewed to the bottomright of the array. The matrix elements are: aij = (rand() mod 7)(i+ j)2. Peak matrix: The matrix has a distinct peak, randomly chosen at (r; c).The matrix elements are: aij = (rand() mod 127)=((j r� i j)(j c� j j) + 1:0)3. Diagonal dominant matrix: The matrix elements are: aij = (rand() mod127)=((j i� j j) + 2:0)For each type of matrix we have performed three series of experiments. Firstwe keep the size of the matrix and the value of q �xed, while p is increased. Wethen increase both p and q while keeping the size of matrix �xed and �nally wekeep both p and q �xed while changing the size of the matrix. The results fromthe tests are presented in Table 1 through 3. For all test matrices the results arenormalized relative to (Pi;j ai;j)=(pq) which is the theoretical lower bound forany distribution.The algorithm for computing the GBD distribution has been initialized inthree di�erent ways: (i) Starting with the delimiters as far left as possible, (ii)as far right as possible, and (iii) the Uniform distribution. The results obtaineddi�er only marginally from each other. We therefore only report the best resultfor each test case. The number of iterations needed before a converged solutionis obtained varies from 3 to 25 with an average of 6. The number of iterations isthe sum of the number of vertical and horizontal partitionings performed. Theredoes not appear to be any correlation between the number of iterations and thegoodness of the obtained solution.Problem size Semi-general dist. General dist.m n p q SBD ASD MRD GBD GBA UD BRD256 256 2 2 1.01 1.01 1.01 1.06 1.06 1.50 1.00256 256 4 2 1.01 1.01 1.01 1.06 1.11 1.64256 256 8 2 1.02 1.02 1.02 1.07 1.17 1.66256 256 16 2 1.04 1.04 1.06 1.09 1.24 1.72256 256 32 2 1.06 1.07 1.12 1.13 1.20 1.78256 256 64 2 1.12 1.12 1.25 1.18 1.28 1.75256 256 4 4 1.01 1.02 1.01 1.09 1.15 1.73 1.02256 256 8 8 1.04 1.04 1.05 1.11 1.23 1.88 1.04256 256 16 16 1.06 1.07 1.08 1.18 1.32 1.93 1.10256 256 32 32 1.16 1.17 1.23 1.32 1.55 2.15 1.23256 256 64 64 1.30 1.30 1.66 1.65 1.92 2.50 1.50256 32 16 16 1.27 1.35 1.41 1.35 1.44 2.40 1.42256 64 16 16 1.16 1.19 1.24 1.27 1.42 2.19 1.26256 128 16 16 1.10 1.11 1.13 1.20 1.39 1.95 1.12256 256 16 16 1.07 1.07 1.12 1.18 1.32 1.93 1.10Table 1. Results from test using skewed matrices.As expected the SBDs give a better load balance than the GBD.

Problem size Semi-general dist. General dist.m n p q SBD ASD MRD GBD GBA UD BRD256 256 2 2 1.01 1.01 1.02 1.01 1.04 1.50 1.01256 256 4 2 1.02 1.01 1.03 1.11 1.14 2.25256 256 8 2 1.02 1.07 1.02 1.18 1.33 3.16256 256 16 2 1.04 1.07 1.07 1.24 1.57 4.50256 256 32 2 1.10 1.10 1.27 1.31 1.37 6.44256 256 64 2 1.19 1.21 1.53 1.26 1.37 4.87256 256 4 4 1.02 1.06 1.02 1.23 1.40 4.41 1.04256 256 8 8 1.04 1.07 1.05 1.35 2.27 6.94 1.06256 256 16 16 1.12 1.21 1.34 1.65 3.15 16.00 1.48256 256 32 32 1.39 1.58 1.70 1.75 3.33 23.43 2.19256 256 64 64 9.93 9.93 9.93 9.93 9.93 25.16 9.93256 32 16 16 1.40 1.63 1.96 1.68 2.11 9.32 1.63256 64 16 16 1.27 1.54 1.54 1.67 2.16 8.73 1.41256 128 16 16 1.16 1.26 1.33 1.48 3.34 9.27 1.32256 256 16 16 1.12 1.27 1.55 1.55 2.73 14.05 1.24Table 2. Results from tests using peak matrices.Problem size Semi-general dist. General dist.m n p q SBD ASD MRD GBD GBA UD BRD256 256 2 2 1.00 1.01 1.00 1.66 1.67 1.69 1.00256 256 4 2 1.01 1.01 1.02 1.68 1.76 1.68256 256 8 2 1.03 1.04 1.03 1.68 1.80 1.79256 256 16 2 1.04 1.04 1.06 1.68 1.80 1.79256 256 32 2 1.09 1.09 1.11 1.75 1.87 1.86256 256 64 2 1.12 1.17 1.18 1.81 1.98 1.92256 256 4 4 1.02 1.02 1.02 2.02 2.91 2.74 1.03256 256 8 8 1.06 1.06 1.09 3.22 4.98 4.31 1.07256 256 16 16 1.14 1.17 1.26 5.02 8.15 6.47 1.20256 256 32 32 1.50 1.70 1.87 7.63 13.07 9.40 1.61256 256 64 64 3.93 4.72 4.94 11.08 18.71 14.34 3.02256 32 16 16 1.81 2.59 2.59 2.68 5.33 9.17 1.68256 64 16 16 1.37 1.51 1.86 3.51 5.47 7.74 1.65256 128 16 16 1.21 1.22 1.44 4.08 6.69 6.71 1.41256 256 16 16 1.13 1.13 1.30 5.26 8.03 6.58 1.25Table 3. Results from tests using diagonal dominant matrices.For almost every test problem the optimal SBD is fairly close to the lowerbound given by the average cost. The most noticeable exception is the peakmatrix of size 256� 256 with p = q = 64. In this case the most expensive blockconsists of one single matrix element for the optimal SBD as well as for theiterative GBD. Thus the load imbalance we see here is inherit in the problem.The ASD distribution is never far from the lower bound given by the optimalSBD. Compared with the lower time-complexity of the ASD this might make

it a good choice. It also gives better load balance than the MRD distribution.While the binary recursive decomposition places in between ASD and MRD.The GBD distribution outperforms the GBA distribution. This must, how-ever, be compared with the higher time complexity of computing the GBD dis-tribution.For both the skewed and the peak matrices the GBD distribution is fairlyclose to the optimal SBD. From Theorem 4 it follows that for these matrices thepresented GBD must be close to optimal. For the diagonally dominant matricesthe di�erence is larger. However, we believe this to be a feature inherit in thede�nition of the GBD and not a consequence of our algorithm.In general we see that it becomes harder to obtain a well balanced distributionas the ratios mp and nq become smaller.It follows from the test results for both the SBD and the GBD that the moretime one is willing to spend on obtaining a good distribution the better the loadbalance becomes.As expected the results con�rm that the uniform distribution is not suitablefor matrices with non-uniform load.5 ConclusionWe have presented an e�cient iterative algorithm that computes a well bal-anced GBD. We have also developed an algorithm that computes an optimalSBD. These were tried on a number of test problems and compared with otherapproximation algorithms. This showed that the SBDs in general gave a moreeven load balance than the GBDs. This must, however, be compared with themore complicated communication pattern given by the SBD.When choosing a distribution one must �rst determine what kind of commu-nication needs one has. Based on this and the criticality of achieving an evenload balance one can decide which type of distribution to use. Then dependingon how much time one is willing to spend on calculating a distribution one candecide which algorithm to use.An advantage of the GBD is that it is easy to specify, only requiring twovectors of length q and p whereas the SBD requires p+ p � q data elements.In a resent development it has been shown that computing the optimal GBDis NP-hard for certain cost functions [9].As a continuation of this work we are currently implementing several sparsematrix algorithms on a parallel computer. The object is to investigate how wellthe di�erent partitioning schemes behave on real-world problems where bothload balance and communication in
uence the overall time.References1. M. J. Berger and S. H. Bokhari, A partitioning strategy for nonuniform prob-lems on multiprocessors, IEEE Trans. Comput., C-36 (1987), pp. 570{580.

2. R. Bleck, S. Dean, M. O'Keefe, and A. Sawdey, A comparison of data-parallel and message-passing versions of the Miami Isopycnic Coordinate OceanModel (MICOM), Parallel Comput., 21 (1995), pp. 1695{1720.3. S. H. Bokhari, T. W. Crockett, and D. M. Nicol, Parametric binary dissec-tion, Tech. Rep. ICASE Report No. 93-39, Nasa Langley Research Center, 1993.4. B. Chapman, P. Mehrotra, and H. Zima, Programming in Vienna Fortran, Sci.Prog., 1 (1992), pp. 31{50.5. , High performance Fortran languages: Advanced applications and their im-plementation, Future Generation Computer Systems, (1995), pp. 401{407.6. , Extending HPF for advanced data parallel applications, IEEE Trans. Par.Dist. Syst., (Fall 1994), pp. 59{70.7. G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker,Solving Problems on Concurrent Processors, vol. 1, Prentice-Hall, EnglewoodCli�s, NJ, 1988.8. M. R. Garey and D. S. Johnson, Computers and Intractability, Freeman, 1979.9. M. Grigni and F. Manne, On the complexity of the generalized block distribution.To appear in the proceedings of 1996 Workshop on Irregular Problems, 1996.10. High Performance Fortran Forum, High performance language speci�cation.Version 1.0, Sci. Prog., 1{2 (1993), pp. 1{170.11. High Performance Fortran Forum Home Page.http://www.crpc.rice.edu/HPFF/home.html.12. F. Manne, Load Balancing in Parallel Sparse Matrix Computations, PhD thesis,University of Bergen, Norway, 1993.13. F. Manne and T. S�revik, Optimal partitioning of sequences, J. Alg., 19 (1995),pp. 235{249.14. B. Olstad and F. Manne, E�cient partitioning of sequences, IEEE Trans. Com-put., 44 (1995), pp. 1322{1326.15. M. Ujaldon, S. D. Sharma, J. Saltz, and E. Zapata, Run-time techniques forparallelizing sparse matrix problems, in Proceedings of 1995 Workshop on IrregularProblems, 1995.16. M. Ujaldon, E. L. Zapata, B. M. Chapman, and H. P. Zima, Vienna-Fortran/HPF extensions for sparse and irregular problems and their compilation.Submitted to IEEE Trans. Par. Dist. Syst.17. H. Zima, H. Bast, and M. Gerndt, Superb: A tool for semi-automaticMIMD/SIMD parallelization, Parallel Comput., (1986), pp. 1{18.

This article was processed using the LATEX macro package with LLNCS style

