Partitioning an Array onto a Mesh of Processors

Fredrik Manne and Tor Sgrevik

Department of Informatics, University of Bergen,
N-5020 Bergen, Norway
email: {fredrikm,tors}@ii.uib.no

Abstract. Achieving an even load balance with a low communication
overhead is a fundamental task in parallel computing. In this paper we
consider the problem of partitioning an array into a number of blocks
such that the maximum amount of work in any block is as low as pos-
sible. We review different proposed schemes for this problem and the
complexity of their communication pattern. We present new approxima-
tion algorithms for computing a well balanced generalized block distribu-
tion as well as an algorithm for computing an optimal semi-generalized
block distribution. The various algorithms are tested and compared on
a number of different matrices.

1 Introduction

A basic task in parallel computing is the partitioning and subsequent distribution
of data to processors. The problem one faces in this operation is how to balance
two often contradictory aims; finding an equal distribution of the computational
work and at the same time minimizing the imposed communication.

In the data parallel model this can be modeled as a graph partitioning prob-
lem where the vertices represents data and the edges indicate that results ob-
tained from processing one data unit will be needed for further processing of
the other. Finding an optimal solution is know to be NP-hard [8], and hence
impossible to solve to optimum for large instances.

In settings where locality is of importance the partitioning and resulting
mapping should as far as possible be done such that adjacent nodes are mapped
to the same processor. Thus the dataset should be partitioned into connected
components. If the data is stored in an array these components might for reasons
of both efficiency and simplicity be restricted to be rectangular blocks of the
array. Several high-performance computing languages include the possibility for
the user to specify such a partitioning and distribution of data onto a logical
set of processors. The compiler then maps the data onto the physical processors
and determines the communication pattern. An example of one such scheme is
the block distribution found in languages such as Vienna Fortran [4] and HPF
[10].

In general the block distribution will result in equal size blocks and therefore
cannot adapt to load imbalance that might be present. Consider ocean model-
ing where the presence of land gives irregular areas for which no computations
are needed. As demonstrated in [2] a block distribution that takes this into



account reduces the time spent on a parallel computation. More general parti-
tioning schemes that have been proposed for these kinds of problems include the
generalized and semi-generalized block distribution [5, 15, 16, 17].

In this paper we discuss a number of different partitioning schemes. In partic-
ular, we describe an efficient iterative algorithm that computes a well balanced
generalized block distribution. We also show how an optimal semi-generalized
block distribution can be found. The performance of these algorithms are com-
pared with other orderings such as the uniform block distribution and the binary
recursive decomposition [1, 3]. The algorithms presented extend earlier work for
one dimensional arrays [13, 14].

The paper is organized as follows: Section 2 gives formal definitions of the
different partitioning schemes and relate these to each other. Section 3 presents
new algorithms for computing the different distributions and Section 4 reports
on the performance of these. Finally, in Section 5 we conclude and point to areas
of further work.

2 Structured Distributions

In this section we define and relate the different types of distributions and discuss
what kind of communication pattern they impose. One measurement of the
communication complexity is the maximum number of neighbors a block can
have. In this paper we only consider arrays of dimension two. All results, however,
may easily be extended to arrays of higher dimensions.

Let A € R™*™ and let p and ¢ be integers such that 1 <p <mand1 < g < n.
Let R = {ro,r1,...,7p} be integers such that 1 =rg <7 < ... <r, =m+ L
Then R defines a partitioning of [1..m] into p consecutive intervals [r;, ..., 41— 1],
0 <4 < p. We denote this interval by [r;,...,7i+1]. A partitioning of [1..m] into
p intervals and of [1..n] into q intervals defines a partitioning of A into p X ¢
blocks.

We now define the different types of distributions of A. The distributions are
given in increasing order of complexity.

2.1 Non Recursive Distributions

The most simple distribution we consider is the uniform distribution:

Definition 1 Uniform Block Distribution. The interval [1..m] is partitioned
into p consecutive intervals of size f%] with the possible exception of the last
interval. Similarly [1..n] is partitioned into ¢ intervals of size [Z].

The uniform distribution divides A into p x ¢ equally sized blocks. See Figure
la for an example. In certain applications the amount of data that needs to be
communicated is proportional to the perimeter of each block. In this setting
the uniform distribution minimizes the time needed for communication. If the
work associated with each element of A is equal it also gives a perfectly balanced



workload. But being fixed a priori it has no possibility to adapt to load imbalance
if the computational work varies throughout A. This might be mitigated by
moving any of the p + ¢ — 2 interior delimiters. By doing so we allow more
flexibility in the size of the blocks while at the same time keeping the regular
communication pattern of the uniform block distribution.

Definition 2 Generalized Block Distribution (GBD). The interval [1..m)]
is partitioned into p consecutive intervals without restrictions on the size of each
interval. Similarly [1..n] is partitioned into g intervals.

See Figure 1b for an example of the GBD. The GBD was discussed by Fox
et. al. [7] and implemented as part of Superb environment [17] and later in Vi-
enna Fortran [6]. It is also a candidate to be included as part of the ongoing
HPF2 effort [11]. For examples of how the GBD can be used in areas such as
sparse-matrix and particle-in-cell computations see [5] and [12].

While the GBD has the same structured communication pattern as the uni-
form distribution the blocks sizes vary. The time spent on communication is
therefore likely to be higher than with the uniform distribution.

In some cases it is only necessary to have a structured distribution in one
dimension. If this is the horizontal direction we may relax the partitioning condi-
tions in the vertical direction. One would thus allow for an individual partitioning
of the columns in each row segment given by the horizontal distribution.

Definition 3 Semi-Generalized Block Distribution (SBD). The interval
[1..m] is partitioned into p consecutive intervals [r;,ri+1], 1 < i < p without
restrictions on the size of r;11 — r;. For each horizontal interval [r;,r;y1] the
interval [1..n] is partitioned into ¢ intervals.

See Figure 1c for an example of the SBD. Ujaldon et. al. proposed a parti-
tioning scheme called Multiple recursive decomposition which results in a SBD
[15, 16]. It was designed for solving problems from sparse linear algebra on par-
allel computers.

The SBD has a possibility to adapt better to load imbalance than the GBD.
But since a block may have as many as 2g + 2 neighbors the communication
pattern becomes less structured.

In a parallel environment the time spent on a computation is determined by
the processor taking the longest time. To estimate the time needed to process
each block we define a non-negative cost function ¢ on contiguous blocks of A.
The assumptions on ¢ are that if ¢ and b are blocks of A such that a C b then
da < ¢p, and ¢, = 0 if and only if a is the empty block. For most reasonable
functions ¢ we expect that if the value of a (or b) is known then the value of
b (or a) can be computed in O(|b] — |a|) time. An example of ¢ might be the
number of non-zero elements or the sum of the absolute values of the elements
in a block.

We now get the following optimization problem:

Partition A in such a way that max;—1.p j=1:¢ ¢;,; is minimized.



' '
iy A
' ' '
' ' '

' ' '
....... L iy N p

.....1...--1-........
.
e R A,
e N A,

----------- R SRR E EEEEEEEE I . . .
L L JJ
a. Uniformdistribution b. General bl ock c. Semi -general
di stribution bl ock distribution

Fig. 1. Examples of the different distributions with p =¢ =4

The relationship between the optimal values for each of the different distributions
is captured in the following:

Theorem4. Let A,p,q, and ¢ be defined as above. Let further S be the set of
all SBDs on A, R the set of all GBDs, and U the uniform distribution. Then
the following is true:

min  max ¢;; <min max ¢;; < max ¢;; (1)
q

VS i=1:p,j=1l:q ~ VYR i=l:p,j=1: T (i,))eUu

Proof: The result follows trivially from the fact that / € R C S. O

As is evident from Theorem 4 the more unstructured the distribution is the
more even we can get the load balance, but as discussed above, the more complex
and time consuming the communication becomes.

2.2 Recursive Distributions

It is possible to generalize Definitions 2 and 3 to make the distributions recursive.
The partitioning would then recursively be applied to each block for a number
of d levels. Thus A is partitioned into p? x g? blocks. The relationships given
by Theorem 4 still holds true for the recursive distributions. Note also that for
both the GBD and the SBD the minimum cost of the recursive distribution is
lower than the minimum cost of the non-recursive version partitioned into p? x g%
blocks.

The maximum number of neighbors any block can have above or below and
to the right or left is ¢! and p?~! for the recursive GBD and ¢¢ and p?~! for
the recursive SBD. Thus the recursive orderings give more complicated commu-
nication patterns than their non-recursive counterparts.

For p = g = 2 the recursive SBD gives the well known binary recursive
decomposition [1]. Figure 2 shows examples of the recursive GBD and the binary
recursive decomposition.

Less restricted block distributions than the ones presented here may lead to a
better load balance but are likely to give more irregular communication patterns
that would be difficult to implement efficiently.



Recursive General Bi nary recursive
bl ock distribution deconposi tion

Fig. 2. Recursive distributions with p =¢=d =2

3 Algorithms

In this section we describe an efficient iterative algorithm for computing a well
balanced GBD. The solution obtained is shown to be a local optimum. We also
show how an optimal SBD can be found. For completeness we describe a number
of proposed approximation algorithms.

All presented algorithms extend previous results on partitioning a one dimen-
sional array. We therefore start by recapturing this problem and its solution.

The problem is identical to the generalized partitioning problem discussed
so far but with n = ¢ = 1. Thus we are partitioning a vector of length m into
p consecutive intervals. The current fastest algorithm for solving this problem
is based on dynamic programming and runs in time O(p(m — p)) [14]. This is
based on the same assumptions on ¢ as for the general problem. Thus the cost
function can be computed in time O(1) when the size of an interval changes by
one. Every function evaluation in the algorithm is of this type. Thus if the time
to calculate the cost function is ¢ the time complexity becomes O(p(m — p)c).

3.1 The Generalized Block Distribution

Counsider first the problem of partitioning [1..n] into ¢ intervals when the par-
titioning of [1..m] into p intervals has been fixed. The placement of vertical
delimiters ¢ and ¢ 4+ 1 then defines p blocks of cost ¢; ;, 1 < j < p. We define a
new cost function §; = maxi<j<p ¢; ;. The function ¢ has the same monotone
properties as ¢. Thus we can reduce the placement of the vertical delimiters
to solving the one-dimensional case with cost function 6. Using the dynamic
programming algorithm we can now find an optimal placement of the vertical
delimiters. This is also true if the vertical delimiters are fixed and an optimal
placement of the horizontal ones is desired.

We suggest an algorithm where this step is applied iteratively: The delimiters
are fixed in one direction and placed optimally in the other. This is then repeated
while alternating which delimiters are fixed until no decrease in the maximum
cost is obtained. At this stage a local optimum has been reached, where moving



0 4 ; 10 3

6 12 i 3 24
0 1520 30

15 24 ; 20 6

Fig. 3. A local optimum which is not globally optimal.

any set of either horizontally or vertically delimiters will not decrease the overall
cost of the partition.

However, as the example in Figure 3 shows, the solution obtained might not
be globally optimal. Here p = ¢ = 2 and the cost function is the sum of the
elements. The indicated solution of cost 76 cannot be improved by moving any
one of the delimiters, whereas the optimal solution has the lower right hand
block of size one and is of cost 70.

With the assumptions made on ¢ in Section 2 the time complexity of cal-
culating 6§ when the size of an interval changes by one is O(m). Thus the time
complexity of one iteration of algorithm becomes O(gm(n — q) + pn(m — p)).

For most natural cost functions it is possible to improve the time complexity
by collapsing parts of the array in each iteration. The assumption we make is
that the contribution to the cost function from one column (or row) of a block
can be reduced to one number. Given a partition of the rows we can then collapse
each column segment to one number. This reduces the size of the matrix from
m X n to p x n and the time complexity becomes O(mn + pg(n — q) + pg(m — p))
where the mn term comes from the collapsing step.

We note that if the contribution from a single row or column segment [é, 5]
can be calculated as ¢(1..5) — ¢(1..7) then the rows can be collapsed in O(pn)
time and the columns in O(gm). This is done by pre-computing ¢(1..i) for every
value of i for every row and column. The expense for this speedup is that we need
an O(mn) pre-computational step and extra storage to hold the values from this
step.

A more simple approximation algorithm for computing a GBD was presented
in [12]. In this algorithm the rows and columns are collapsed and partitioned
separately giving a time complexity of O(p(m — p) + q(n — q) + mn).

3.2 The Semi-Generalized Block Distribution

In this section we show that the dynamic programming algorithm can be ex-
tended to compute an optimal SBD.



Consider the row interval [r;, 7;+1] in a SBD. Let y be the value of an optimal
g-partition of the column segments in this interval. Since ¢ is monotone it follows
that v is also monotone and ¢ = 0 if and only if v = 0. Thus we can use the
dynamic programming algorithm to compute an optimal p-partition of [1..m)]
using v as cost function resulting in an optimal SBD.

The time complexity of finding the optimal g-partition of [r;, r;y1] is O(g(n —
q)(rix1 — ). The function vy needs to be evaluated O(p(m — p)) times and
therefore the overall time complexity becomes O(pgm(m — p)(n — q)).

This result can be improved if it is possible to collapse the columns of A.
Recall that in the dynamic programming algorithms the function value of an
interval is always obtained after one of the delimiters of the interval has been
moved exactly one place. Thus if we performed a collapsing of the columns the
previous time we evaluated v we can update this in time O(n) to the value
needed in the current evaluation. This reduces the time complexity of evaluating
v to O(n + q(n — q)) and the overall time complexity becomes O(p(m — p)(n +
a(n —q))) = O(pg(m — p)(n — q)).

An approximation algorithm for computing a SBD can be obtained by first
determining an optimal partition on the collapsed rows of A. The columns of
each row segment are then collapsed and optimally ¢ partitioned. The time
complexity of this algorithm is O(mn + p(m — p) + pg(n — q)).

For completeness we also describe the Multiple recursive decomposition [16].
Let p1,pa, ..., pr be the prime factorization of p in descending order of magnitude.
The rows are first partitioned into p; intervals such as to minimize the cost of
the most expensive interval. Each interval is then further partitioned into po
intervals and so on until p intervals have been obtained. This process is then
repeated for each row segment using the prime factors of ¢q. We note that if p
and ¢ are powers of 2 and it is possible to collapse the columns and rows of A,
the time complexity of this algorithm is O(mlogp + pnlogq + mn).

4 Numerical experiments

We have implemented the algorithms of Section 3, and performed a number of
experiments in order to investigate how well they partition an array with respect
to load balance. The cost function we have used is the sum of the elements. For
each data set we report the results from the following algorithms:

— SBD The optimal SBD distribution as described in Section 3.2.

— ASD The approximation algorithm described in Section 3.2.

— MRD The Multiple recursive decomposition as described in Section 3.2.
— GBD The iterative algorithm from Section 3.1 for computing a GBD.

— GBA The simple approximation algorithm mentioned in Section 3.1.
UD The uniform distribution.

— BRD The binary recursive decomposition [1].

To illustrate the behavior of the algorithms we tried them on 3 different types
of test matrices. The function rand() generates numbers from a uniform random
sequence of non-negative integers less than 215 — 1.



1. Skewed matrix: The weights of the elements are skewed to the bottom
right of the array. The matrix elements are: a;; = (rand() mod 7)(i + j)

2. Peak matrix: The matrix has a distinct peak, randomly chosen at (r,c).
The matrix elements are: a;; = (rand() mod 127)/((| r —4 |)(| ¢—j |) + 1.0)

3. Diagonal dominant matrix: The matrix elements are: a;; = (rand() mod
127)/((|i - j |) +2.0)

For each type of matrix we have performed three series of experiments. First
we keep the size of the matrix and the value of ¢ fixed, while p is increased. We
then increase both p and ¢ while keeping the size of matrix fixed and finally we
keep both p and ¢ fixed while changing the size of the matrix. The results from
the tests are presented in Table 1 through 3. For all test matrices the results are
normalized relative to (3 ; ; aij)/(pg) which is the theoretical lower bound for
any distribution.

The algorithm for computing the GBD distribution has been initialized in
three different ways: (i) Starting with the delimiters as far left as possible, (ii)
as far right as possible, and (iii) the Uniform distribution. The results obtained
differ only marginally from each other. We therefore only report the best result
for each test case. The number of iterations needed before a converged solution
is obtained varies from 3 to 25 with an average of 6. The number of iterations is
the sum of the number of vertical and horizontal partitionings performed. There
does not appear to be any correlation between the number of iterations and the
goodness of the obtained solution.

Problem size |[Semi-general dist.| General dist.

m n p q[SBD ASD MRD|GBD GBA UDBRD
256 256 2 2|1.01 1.01 1.01 1.06 1.06 1.50| 1.00
256 2566 4 2|1.01 1.01 1.01| 1.06 1.11 1.64
2566 256 8 2/1.02 1.02 1.02( 1.07 1.17 1.66
256 256 16 2(1.04 1.04 1.06| 1.09 1.24 1.72
2566 256 32 2| 1.06 1.07 1.12 1.13 1.201.78
256 256 64 2|1.12 1.12  1.25 1.18 1.28 1.75
2566 2566 4 4(1.01 1.02  1.01] 1.09 1.151.73| 1.02

256 256 8 8|1.04 1.04 1.05] 1.11 1.23 1.88| 1.04
256 256 16 16| 1.06 1.07  1.08| 1.18 1.321.93| 1.10
256 256 32 32| 1.16 1.17  1.23| 1.32 1.55 2.15| 1.23
256 256 64 64| 1.30 1.30  1.66| 1.65 1.92 2.50| 1.50
256 3216 16(1.27 1.35  1.41| 1.35 1.44 2.40| 1.42
2566 6416 16/ 1.16 1.19  1.24| 1.27 1.42 2.19| 1.26
256 128 16 16| 1.10 1.11 1.13| 1.20 1.39 1.95| 1.12
256 256 16 16| 1.07 1.07  1.12] 1.18 1.321.93| 1.10

Table 1. Results from test using skewed matrices.

As expected the SBDs give a better load balance than the GBD.



Problem size |Semi-general dist.| General dist.

m n p q|SBD ASD MRD|GBD GBA UD|BRD
256 256 2 2|1.01 1.01 1.02| 1.01 1.04 1.50( 1.01
256 266 4 2|1.02 1.01 1.03| 1.11 1.14 2.25
256 256 8 2|1.02 1.07 1.02] 1.18 1.33 3.16
256 256 16 2|1.04 1.07 1.07| 1.24 1.57 4.50
256 2566 32 2(1.10 1.10 1.27| 1.31 1.37 6.44
256 256 64 2|1.19 1.21 1.53| 1.26 1.37 4.87
256 266 4 4(1.02 1.06 1.02| 1.23 1.40 4.41| 1.04

256 2566 8 8(1.04 1.07  1.05| 1.35 2.27 6.94| 1.06
256 256 16 16| 1.12 1.21 1.34| 1.65 3.15 16.00| 1.48
256 256 32 32| 1.39 1.58  1.70] 1.75 3.33 23.43| 2.19
256 256 64 64| 9.93 9.93  9.93| 9.93 9.93 25.16| 9.93
256 3216 16/ 1.40 1.63  1.96| 1.68 2.11 9.32| 1.63
256 64 16 16| 1.27 1.54  1.54| 1.67 2.16 8.73| 1.41
2566 128 16 16/ 1.16 1.26  1.33| 1.48 3.34 9.27| 1.32
256 256 16 16| 1.12 1.27  1.55| 1.55 2.73 14.05| 1.24

Table 2. Results from tests using peak matrices.

Problem size |Semi-general dist.| General dist.

m n p q|SBD ASD MRD|GBD GBA UD|BRD
256 256 2 2|1.00 1.01 1.00| 1.66 1.67 1.69| 1.00
256 266 4 2|1.01 1.01 1.02| 1.68 1.76 1.68
2566 2566 8 2(1.03 1.04 1.03| 1.68 1.80 1.79
256 256 16 2|1.04 1.04 1.06| 1.68 1.80 1.79
256 256 32 2/1.09 1.09 1.11f 1.75 1.87 1.86
2566 256 64 2|1.12 1.17 1.18 1.81 1.98 1.92
256 266 4 4(1.02 1.02 1.02| 2.02 2.91 2.74| 1.03

256 2566 8 8(1.06 1.06 1.09| 3.22 4.98 4.31| 1.07
256 256 16 16| 1.14 1.17  1.26| 5.02 8.15 6.47| 1.20
256 256 32 32| 1.50 1.70  1.87| 7.63 13.07 9.40| 1.61
256 256 64 64| 3.93 4.72  4.94|11.08 18.71 14.34| 3.02
2566 3216 16| 1.81 2.59  2.59| 2.68 5.33 9.17| 1.68
256 64 16 16| 1.37 1.51 1.86| 3.51 5.47 7.74| 1.65
256 128 16 16| 1.21 1.22  1.44| 4.08 6.69 6.71| 1.41
256 256 16 16| 1.13 1.13  1.30| 5.26 8.03 6.58| 1.25

Table 3. Results from tests using diagonal dominant matrices.

For almost every test problem the optimal SBD is fairly close to the lower
bound given by the average cost. The most noticeable exception is the peak
matrix of size 256 x 256 with p = ¢ = 64. In this case the most expensive block
consists of one single matrix element for the optimal SBD as well as for the
iterative GBD. Thus the load imbalance we see here is inherit in the problem.

The ASD distribution is never far from the lower bound given by the optimal
SBD. Compared with the lower time-complexity of the ASD this might make



it a good choice. It also gives better load balance than the MRD distribution.
While the binary recursive decomposition places in between ASD and MRD.

The GBD distribution outperforms the GBA distribution. This must, how-
ever, be compared with the higher time complexity of computing the GBD dis-
tribution.

For both the skewed and the peak matrices the GBD distribution is fairly
close to the optimal SBD. From Theorem 4 it follows that for these matrices the
presented GBD must be close to optimal. For the diagonally dominant matrices
the difference is larger. However, we believe this to be a feature inherit in the
definition of the GBD and not a consequence of our algorithm.

In general we see that it becomes harder to obtain a well balanced distribution
as the ratios & and 2 become smaller.

It follows from the test results for both the SBD and the GBD that the more
time one is willing to spend on obtaining a good distribution the better the load
balance becomes.

As expected the results confirm that the uniform distribution is not suitable
for matrices with non-uniform load.

5 Conclusion

We have presented an efficient iterative algorithm that computes a well bal-
anced GBD. We have also developed an algorithm that computes an optimal
SBD. These were tried on a number of test problems and compared with other
approximation algorithms. This showed that the SBDs in general gave a more
even load balance than the GBDs. This must, however, be compared with the
more complicated communication pattern given by the SBD.

When choosing a distribution one must first determine what kind of commu-
nication needs one has. Based on this and the criticality of achieving an even
load balance one can decide which type of distribution to use. Then depending
on how much time one is willing to spend on calculating a distribution one can
decide which algorithm to use.

An advantage of the GBD is that it is easy to specify, only requiring two
vectors of length ¢ and p whereas the SBD requires p + p * ¢ data elements.

In a resent development it has been shown that computing the optimal GBD
is NP-hard for certain cost functions [9].

As a continuation of this work we are currently implementing several sparse
matrix algorithms on a parallel computer. The object is to investigate how well
the different partitioning schemes behave on real-world problems where both
load balance and communication influence the overall time.

References

1. M. J. BERGER AND S. H. BOKHARI, A partitioning strategy for nonuniform prob-
lems on multiprocessors, IEEE Trans. Comput., C-36 (1987), pp. 570-580.



10.

11.

12.

13.

14.

15.

16.

17.

R. BLECK, S.DEAN, M. O’KEEFE, AND A. SAWDEY, A comparison of data-

parallel and message-passing versions of the Miami Isopycnic Coordinate Ocean
Model (MICOM), Parallel Comput., 21 (1995), pp. 1695-1720.

. S. H. BokHARI, T. W. CROCKETT, AND D. M. NicoL, Parametric binary dissec-

tion, Tech. Rep. ICASE Report No. 93-39, Nasa Langley Research Center, 1993.

. B. CHAPMAN, P. MEHROTRA, AND H. ZIMA, Programming in Vienna Fortran, Sci.

Prog., 1 (1992), pp. 31-50.
, High performance Fortran languages: Advanced applications and their im-
plementation, Future Generation Computer Systems, (1995), pp. 401-407.

. ——, Extending HPF for advanced data parallel applications, IEEE Trans. Par.

Dist. Syst., (Fall 1994), pp. 59-70.

. G. Fox, M. JonnsoN, G. LyzeEnNGgA, S. OrTO, J. SALMON, AND D. WALKER,

Solving Problems on Concurrent Processors, vol. 1, Prentice-Hall, Englewood
Cliffs, NJ, 1988.

M. R. GAREY AND D. S. JounsoN, Computers and Intractability, Freeman, 1979.
M. GRIGNI AND F. MANNE, On the complexity of the generalized block distribution.
To appear in the proceedings of 1996 Workshop on Irregular Problems, 1996.
Hica PERFORMANCE FORTRAN FORrRUM, High performance language specification.
Version 1.0, Sci. Prog., 1-2 (1993), pp. 1-170.

High Performance Fortran Forum Home Page.
http://www.crpc.rice.edu/HPFF /home.html.

F. MANNE, Load Balancing in Parallel Sparse Matriz Computations, PhD thesis,
University of Bergen, Norway, 1993.

F. MANNE AND T. S@OREVIK, Optimal partitioning of sequences, J. Alg., 19 (1995),
pp. 235-249.

B. OLsTAD AND F. MANNE, Efficient partitioning of sequences, IEEE Trans. Com-
put., 44 (1995), pp. 1322-1326.

M. UJALDON, S. D. SHARMA, J. SALTZ, AND E. ZAPATA, Run-time techniques for
parallelizing sparse matriz problems, in Proceedings of 1995 Workshop on Irregular
Problems, 1995.

M. UjaLpoN, E. L. Zapata, B. M. CHAPMAN, AND H. P. ZiMA, Vienna-
Fortran/HPF extensions for sparse and irregular problems and their compilation.
Submitted to IEEE Trans. Par. Dist. Syst.

H. Zima, H. BasT, AND M. GERNDT, Superb: A tool for semi-automatic
MIMD/SIMD parallelization, Parallel Comput., (1986), pp. 1-18.

This article was processed using the ITEX macro package with LLNCS style



