
Approximations for the General Block Distribution of a Matrix�Bengt Aspvall y Magn�us M. Halld�orssonz Fredrik MannexMay 31, 1999AbstractThe general block distribution of a matrix is a rectilinear partition of the matrix intoorthogonal blocks such that the maximum sum of the elements within a single block is mini-mized. This corresponds to partitioning the matrix onto parallel processors so as to minimizeprocessor load while maintaining regular communication patterns. Applications of the prob-lem include various parallel sparse matrix computations, compilers for high-performancelanguages, particle in cell computations, video and image compression, and simulations as-sociated with a communication network.We analyze the performance guarantee of a natural and practical heuristic based oniterative re�nement, which has previously been shown to give good empirical results. Whenp2 is the number of blocks, we show that the tight performance ratio is �(pp). When thematrix has rows of large cost, the details of the objective function of the algorithm areshown to be important, since a naive implementation can lead to a
(p) performance ratio.Extensions to more general cost functions, higher-dimensional arrays, and randomized initialcon�gurations are also considered.1 IntroductionA fundamental task in parallel computing is the partitioning and subsequent distribution ofdata among processors. The problem one faces in this operation is how to balance two oftencontradictory aims: �nding an equal distribution of the computational work and at the sametime minimizing the imposed communication. In a data parallel computing environment, therunning time is dominated by the processor with the maximal load, thus one seeks a distributionwhere the maximum load is minimized. On the other hand, blindly optimizing this factor, maylead to worse results if communication patterns are ignored.We assume we are given data in the form of a matrix, with communication only involvingadjacent items. This is typical for a large class of scienti�c computational problems. The par-tition that minimizes communication load is the uniform partition, or simple block distribution,where the n by n matrix is tiled by n=p by n=p squares. For instance, this improves on the one-dimensional partition, where n=p2 columns are grouped together. However, workload, which wetypically measure as the number of non-zero entries in a block, may be arbitrarily unbalanced,as non-zero entries may be highly clustered.�Research supported by the Norwegian Research Council.yDepartment of Software Engineering and Computer Science University of Karlskrona/Ronneby S-371 79Karlskrona, Sweden. bia@hk-r.se. Research done while the author was a full-time faculty member of theUniversity of Bergen.zScience Institute, University of Iceland, IS-107 Reykjavik, Iceland. mmh@hi.is. Adjunct a�liation: Universityof Bergen.xDepartment of Informatics, University of Bergen, N-5020 Bergen, Norway. fFredrik.Manneg@ii.uib.no.1

A partition that yields greatly improved workload is the general block distribution, where theblocks are arranged in an orthogonal, but unevenly spaced, grid. It can be viewed as an ordinaryblock partitioning of an array where one allows the dividers for one column (or row) block to bemoved simultaneously. The advantage of this distribution is that it preserves both the localityof the matrix and the array-structured communication of the block distribution while at thesame time allowing for di�erent sized blocks.If the underlying problem has a structure such that communication is local, using a rectilinearpartitioning gives a simple and well structured communication pattern that �ts especially wellon grid connected computers. The simplicity of the general block distribution also makes itpossible for compilers to schedule the communication e�ciently. It has therefore been includedas an approved extension for data mapping in High Performance Fortran HPF2 [5].Applications of the general block distribution include various parallel sparse matrix com-putations, compilers for high-performance languages, particle in cell computations, video andimage compression, and simulations associated with a communication network [1, 7, 8, 5, 11].See [9] for a discussion of other rectilinear partitioning schemes.Computing the optimal general block distribution was shown to be NP-hard by Grigni andManne [4]. In fact, their proof shows that the problem is NP-hard to approximate within anyfactor less than 2. Khanna et al. [7] have shown the problem to be constant-factor approximable.They did not give a bound on the value of the constant attained by their algorithm, but anexamination of their analysis appears to give a bound of 127. They also did not try to analyzethe complexity of the algorithm, but it is speci�ed in terms of a collection of submatrices thatcan be of size �(n4) or square of the size of the input. They additionally indicated a simpleO(log2 n)-approximate algorithm, also de�ned on a quadratic size collection.The subject of the current paper is a heuristic that has been considered repeatedly in theapplied literature. The iterative re�nement algorithm was given by Nicol [11], and independentlyby Mingozzi et al. [10] and Manne and S�revik [9]. It is based on iteratively improving a givensolution by alternating between moving the horizontal and vertical dividers until a stationarysolution is obtained. The heuristic can be seen as a hillclimbing technique, potentially applicableas a post-processing step and as a core ingredient of a multi-start metaheuristic.We analyze this algorithm and some of its variants and extensions and give upper and lowerbounds on the quality of the solutions produced. The measure of quality is the performanceratio of the algorithm, which is the ratio between the cost of the solution found by the algorithmto the cost of the optimal solution, maximized over all instances. This guarantee depends onthe number p2 of blocks in the partition.We �rst analyze the basic iterative re�nement algorithm 3.2, where no initial solution is given.We �nd that it yields a performance ratio of �(pp) when the cost of each row is not a signi�cantfraction of the whole instance. On the other hand, the performance deteriorates in instanceswith very heavy rows, and becomes as poor as �(p). In order to combat this weakness, we givetwo ways of modifying or constraining objective functions of the one-dimensional subproblems.Both of these lead to a �(pp) performance ratio on all instances.We also consider the e�ect that starting con�gurations, or initial partitions, can have. Inparticular, a promising idea, suggested by Nicol [11], is to use random initial partitions, andpossibly making multiple trials. We show this not to be bene�cial, with the resulting performanceratio being
(p= log p).Our analysis here indicates that the iterative re�nement algorithm has a considerably weakerworst-case behavior than is possible by polynomial-time algorithms. Nevertheless, it may bevaluable especially for small to moderate values of p, which is the case in our motivating appli-cation: load balancing on parallel computers. It is also quite e�cient, being sublinear except fora simple linear-time precomputation step. In summary, it is conceptually simple, natural enough2

to be discovered independently by at least three groups of researchers, easy to implement, andhas been shown to give good results on various practical instances and test cases [11, 9].The rest of the paper is organized as follows. The general block distribution and the iterativere�nement algorithm are described in Section 2. Section 3 contains performance analysis of thealgorithm: the pure algorithm in Section 3.2, and slightly modi�ed versions in Section 3.3. Thecase of random initial partitions is evaluated in Section 3.4. Extensions of the results to moregeneral cost functions and to matrices of higher dimensions are given in Section 3.5. Finally,the implementation of the algorithms is given in Section 4, with some improvements in the timecomplexity over previous work [11, 9].2 The General Block DistributionFor integers a and b, let [a; b] denote the interval fa; a+ 1; : : : ; bg.For integers n and p, 1 � p � n, a non-decreasing sequence (1 = r0; r1; : : : ; rp = n + 1)of integers de�nes a partition of [1; n] into the p intervals [ri; ri+1 � 1], for 0 � i < p. Forcompleteness, we allow empty intervals.De�nition 2.1 (General Block Distribution) Given an n by n matrix A and integer p with1 � p � n, a general block distribution consists of a pair of partitions of [1; n] into p intervals.It naturally partitions A into the p2 contiguous blocks, or submatrices.A block is a submatrix outlined by pairs of adjacent horizontal and vertical dividers. A columnblock (row block) is a set of columns (rows) between adjacent vertical (horizontal) dividers,respectively. A row segment is an intersection of a row and a block.In a parallel environment the time spent on a computation is determined by the processortaking the longest time. The natural optimization problem is then to �nd a general blockdistribution that minimizes the maximum cost over all blocks. The cost is here taken to be thesum of of the elements in a block under the assumption that the entries of A are non-negative.The corresponding decision problem was shown in [4] to be NP-complete.The iterative re�nement algorithm consists of performing the following improvement stepuntil none exists that further reduces the cost:With the vertical delimiters �xed, �nd an optimal distribution of the horizontaldelimiters. Then, with the new horizontal delimiters �xed, do the same for thevertical delimiters.Thus, the algorithm alternately performs vertical and horizontal sweeps until converging to alocally optimal solution. Each sweep can be viewed as a one-dimensional subproblem, for whiche�cient algorithms are known [2, 11, 12].Initially, no delimiters have been assigned. That is equivalent to starting with all delimitersbeing identically zero. In the �rst vertical partition, A is partitioned optimally into p verticalintervals without the use of the horizontal delimiters. The number of iterations needed to obtaina converged solution varied between 2 and 13 in tests presented in [9].For the remainder we may sometimes assume for convenience that we have p dividers (insteadof p � 1). Clearly this does not a�ect the asymptotic behavior. Note that the outlines of thematrix form additional dividers.
3

3 Performance AnalysisIn this section, we analyze the performance guarantees of the iterative re�nement algorithmand simple modi�cations thereof. We begin in Section 3.1 with intermediate results on the1-D subproblem. We analyze in Section 3.2 the performance of the pure iterative re�nementalgorithm, which is dependent on the cost of the heaviest row of the input matrix. We then givein Section 3.3 simple modi�cations to the algorithm that yield better performance ratios whenthe input contains heavy rows. In Section 3.4 we consider strategies for the initial placementof vertical dividers, including uniform and random placement. We �nally consider extensions ofthe problem in Section 3.5 to other cost functions and higher-dimensional arrays.3.1 1-D PartitioningAs a tool for our studies of the general block distribution we need the following intermediateresult on the one-dimensional case, i.e. how well a sequence of n non-negative numbers can bepartitioned into p intervals. Let W be the sum of all the elements.Lemma 3.1 Given a positive integer p and a sequence of n non-negative numbers, a greedyalgorithm yields a partition of the sequence into p intervals such that:(i) the cost of any interval excluding its last element is at most W=p, and(ii) any interval with cost more than 2W=p consists of a single element.Proof. Start the algorithm at the left end, and greedily add elements to form an interval untilits cost exceeds Wp . If the cost is at most 2Wp , make this the �rst interval, and inductively formp�1 intervals on the remaining array of total cost at most W p�1p . If the cost exceeds 2Wp , placea divider on both sides of the last element, forming two intervals. Then, inductively form p� 2intervals on the remaining array of cost at most W p�2p . The only intervals that can have costexceeding 2Wp are those formed by the last element added to a group, as in the second case.Note that this gives an easy 2-approximation to the 1-D case by this greedy algorithm; infact, it is optimally within a factor of 2 from the absolute lower bound on the optimal solutionof the larger of W=p and the weight of the largest single element.3.2 Pure iterative re�nementThe performance ratio attained by the iterative re�nement algorithm turns out to be highlydependent on the maximum cost of a row. If this cost is small, the performance is good, whileit reduces to the trivial performance bound attained by the �nal 1-D sweep alone when the rowcost is high.Let us �rst notice that the cost of the optimal solution, OPT , is at least W=p2, where W isthe total cost of the matrix, since the number of blocks is p2.Theorem 3.2 Let R denote the cost of the heaviest row, R = maxiPj A[i; j]. Then, the per-formance ratio of the pure iterative re�nement algorithm equals �(p), when R = �(W=p), butonly �(pp) when R = O(W=p1:5).The theorem is established by the following three lemmas, along with the trivial O(p) ratioobtained by a single 1-D sweep.Lemma 3.3 The performance ratio of pure iterative re�nement is
(p) as a function of p alone.4

Proof. Consider the p2 by p2 matrix A = (ai;j), whereai;j = 8>>><>>>: p2; if i = 1 and (p� 1)p+ 3 � j � p2, orj = 1 and (p� 1)p+ 3 � i � p2,1; if p+ 1 � i; j � p(p� 1),0; otherwise.Observe that the cost of the �rst column and the cost of the �rst row are (p� 2)p2 = W=p.The iterative re�nement algorithm will �rst assign the vertical dividers to be the multiples of p.One choice compatible with the de�nition of the algorithm for the assignment of the horizontaldividers assigns them also the multiples of p. The cost of this partition is the cost of the heavyrow, or W=p = (p � 2)p2, and no improvements are possible that involve either horizontal orvertical dividers but not both.The optimal partition consists of the vertical and horizontal dividers p(p � 1) + 4; p(p �1) + 6; : : : ; p2 � 2, followed by 3p; 5p; : : : ; (p � 1)p. The cost of this partition is 4p2, for anapproximation ratio of p�24 . For the upper bound, recall that a vertical (or horizontal) partitionalone achieves a performance ratio p+ 1.When the cost of each row is bounded, the algorithm performs considerably better.Lemma 3.4 Following the �rst (vertical) sweep of the algorithm, there exists a placement ofhorizontal dividers such that the cost of blocks excluding the heaviest row segments within themis at most 2(pp+ 1)OPT .Proof. We show the existence of a set of horizontal dividers that achieves the bound. Thealgorithm, which performs optimally under the given situation, will then perform no worse.Let O denote the set of dividers, horizontal and vertical, in some optimal 2-D solution. Wesay that a column block is thick, if at least pp vertical dividers from O go through it. Otherwise,a column block is thin. The solution we construct uses the even-numbered horizontal dividersfrom O, as well as pp=2 dividers for each of the thick column block to minimize the cost of itsblocks.Each block from a thin column block has at most one optimal horizontal divider and pp� 1vertical dividers from O crossing the block. Hence, the cost of the block is at most 2ppOPT ,or within the desired bound.Each thick column block is of cost at most W=p plus a single column. The cost of eachcolumn segment is bounded by 2OPT , given the even-numbered horizontal dividers from O.The cost of the rest of the block, excluding the cost of the heaviest row segment, is at most W=pdivided by pp=2, or 2W=p1:5. Since OPT � W=p2, this is at most 2ppOPT . Thus, blocks inthick column blocks, excluding the heaviest row segment, are of cost at most (2pp + 2)OPT .The lemma holds in particular for the iterative algorithm, thus we get good bounds whenrow cost is small.Corollary 3.5 When each row is of cost at most O(W=p1:5) the iterative re�nement algorithmachieves a performance ratio of O(pp) in two sweeps.For the case of small row cost, we get lower bounds that match within a constant factor.5

Lemma 3.6 The performance ratio of the iterative re�nement algorithm is at least pp4 , evenwhen the cost of each row is less than W=p2.Proof. Consider the matrix A in Figure 1. We assume that p is a square number, and let� = pp. The matrix A consists of a large block of dimension �(�2 � �+ 1)� �(�2 � �+ 1) inthe upper left corner. The value of each element in this block is 1=(�2��+1). On the diagonalbelow the large block there are � � 1 blocks each of size � � �. The value of each element inthese blocks is 1.The total cost W of A is p2 = �4. The cost of each row is at most one, or W=p2. That canbe arbitrarily reduced further by making repeated copies of each column and row.

α
α

α

1

1
α − α + 12

α − α + 1 2

α − 1

blocks

blocksFigure 1: The array used for showing the lower bound.With these values the columns can be divided into p = �2 column blocks each consisting of� columns and of cost �2. This is indicated by the dotted lines in Figure 1. Since each columninterval has the same weight this is the initial partition that will be returned by the iterativere�nement algorithm. When performing the horizontal partitioning the large block will now beregarded as having cost �2. Thus from the horizontal point of view there are � blocks eachof cost �2. Dividing each small diagonal block into � intervals will give a cost of � for eachblock. Similarly using � intervals on the large block divides this into blocks of cost �. Notethat it is possible to achieve this bound exactly since the number of rows in the large block is�(�2�+ 1). In this way we have used �2 row blocks and achieved a solution where each blockcosts � = W=p1:5 giving a perfect load balance. Thus, this is the partition the algorithm willreturn after the �rst two sweeps. Returning to the vertical delimiters we cannot improve thesolution further since each column block contains a block of cost �. Thus, the algorithm nowterminates.In contrast, consider a solution where the large block is partitioned into blocks of size atmost 2�� 2�. Then the cost of each block is at most 4�2��+1=4�2��+1 < 4. Using �22 column and rowblocks one is able to cover �3 � �22 rows/columns, which is less than the dimension of the largeblock. We now have at least �22 row and column blocks left to use on the � � 1 small diagonalblocks. By using �2 horizontal and vertical delimiters on each of these we get 4�4 blocks of cost4. Thus we see that there exists a solution of overall cost at most 4 = 4W=p2.This bound holds even when p is as large as n=2. Lemmas 3.4 and 3.6 leave a gap of a factor8. We estimate that the tight bound lies nearer the lower bound. More involved analysis could6

be used to decrease the constant factor of the upper bound, e.g. by showing that OPT � 2W=p2(or greater) in a worst-case instance.3.3 Modi�ed iterative re�nement algorithmsThe lesson learned from Lemma 3.3 is that one should not blindly focus only on the heaviestcolumn/row segment in each sweep; it is essential to balance also those segments that aren'timmediately causing problems. In particular, although single heavy elements (or columns/rows)can cause the maximum block cost to be large, this should not be a carte blanche for theremaining partition to be arbitrarily out of balance.We present two approaches for modifying the pure iterative re�nement method, which bothachieve a bound of O(pp). One approach involves a simple modi�cation to the objective func-tion, and yields the desired guarantee in three sweeps. The other requires only two sweeps toobtain an O(pp)-approximate solution, but diverges slightly more from the original script.A three sweep version We use a three sweep variant of the algorithm, where the �rst andthe third sweep are as before, but the second sweep uses the following slightly modi�ed objectivefunction:The cost of a block is the sum of all the elements in the block, excluding the heaviestrow segment.Lemma 3.7 The above modi�ed algorithm attains a performance ratio of 4pp+ 4.Proof. By Lemma 3.4, the cost of any block after the second sweep is at most (2pp+ 1)OPTplus the cost of a single row segment. We then only need to ensure that we reduce the cost ofunusually heavy row segments in the third sweep, without a�ecting much the cost of the mainparts of the blocks.An assignment that contains every other of our previous vertical dividers, and every otherof the vertical dividers from some optimal 2-D solution, ensures both: the cost of each blockexcluding the heaviest row segment at most doubles, while the cost of a row segment will bebounded by 2OPT . Hence, the total cost of a block is at most (2(2pp + 1) + 2)OPT �(4pp+4)OPT . Since such an assignment exists for the third sweep, the optimal 1-D subroutinewill �nd a solution whose cost is no worse.A two-sweep version We now consider an algorithm that works in two sweeps, as follows:Step 1: Find the following two sets of vertical dividers independently:(a) The p=2 dividers that minimize the maximum cost of any row segment.(b) Use p=2 dividers that minimize the maximum cost of a column block.Step 2: Find an optimal set of horizontal dividers.We extend the analysis of the algorithm to its performance function. While the performanceratio of an algorithm is only a single value, describing the worst case ratio between the heuristicand the optimal values, the performance function �(OPT) indicates the cost of the worst solutionobtained by the algorithm for each possible optimal solution cost. In many cases, this yields amore informative analysis.First, recall that OPT � W=p2, and thus �(OPT) is de�ned only for those values of OPT .Second, consider the case when OPT � 2W=p. There is an assignment of vertical dividers so7

that any column block of cost more than 2W=p will consists of a single column. A second sweepof horizontal dividers will then slice these separated columns optimally. Hence, �(OPT) = 1when OPT � 2W=p.We can generalize our analysis to show that �(OPT) = O(q W=pOPT) for OPT in the range[4W=p2; 2W=p], providing a smoothly improving approximation bound.Theorem 3.8 The two-sweep algorithm has a performance function,�(OPT) = max(O(sW=pOPT); 1):for each value of OPT � 4W=p2.Proof. As before, we present a particular set of horizontal dividers that achieve the bound, andthus claim that the algorithm performs no worse.Part (a) of step one ensures that each row segment is of cost at most 2OPT . Part (b) ensuresthat each column block is of cost at most 2W=p plus the cost of a single column (by Lemma3.1).Let t = p(W=p)=OPT . We now say that a column block is thick, if at least t of theoptimal vertical dividers go through it, and otherwise thin. Observe that t is at most pp sinceOPT �W=p2.We analyze the following set of horizontal dividers: Every other optimal horizontal divider,plus pp=2 dividers to minimize each of the at most pp thick column blocks.Using every other optimal horizontal dividers ensures that the cost of each column segmentis at most 2OPT , and that the cost of each thin block is at most 2tOPT . Using t dividers tominimize the cost of blocks within each of the at most p=t thick column blocks ensures thatthose blocks are of cost at most 2=t times the cost of a column block, plus the cost of a columnsegment and the cost of a row segment. This is at most2t � 2Wp + 2OPT + 2OPT = (4t+ 4)OPT:In particular, this is at most (4pp+ 4)OPT .This bound on the performance function can also be shown to be asymptotically tight.3.4 Initial placement strategiesThe iterative improvement method leaves open the possibility of using additional strategies forthe initial placement of the vertical dividers. One approach would be to start with a uniformplacement, with dividers at n=p; 2n=p; : : : ; (p � 1)n=p. Nicol [11] suggests using random place-ment, where each divider is assigned a uniformly random value from 1 to n. He found this togive empirically good results. Random assignment also leaves open the possibility of repeatingthe whole improvement procedure, retaining the best of the resulting solutions.Unfortunately, this approach does not improve the performance guarantee of the improve-ment method. In fact, with high probability, the performance ratio is decidedly worse, or
(p= log p), which holds even if the procedure is repeated often. Basically, it suggests that anydivision strategy that is primarily based on the number of columns in each block is bound tofail. The strategy must rely on the weight of the columns. On the whole, however, we are ledto the conclusion that partitioning methods that compute the horizontal and vertical dividersindependently, cannot yield close to optimal approximations.8

Theorem 3.9 Random initial placement followed by iterative improvement has performanceratio
(p= log p), expected and with high probability.Uniform initial placement followed by iterative improvement has performance ratio �(p).The success of the algorithm on the example we shall construct depends on the size of thelargest horizontal block in the initial partition. The following lemma bounds this value. Let lndenote the natural logarithm.Lemma 3.10 For a random partition of the sequence 1; 2; : : : ; n into p intervals, the probabilitythat the largest interval contains at least �(n� 1)ln p=(p� 1) + 1 numbers is at most p�(��1).Proof. Consider any �xed interval k, 1 � k � p, and let Xk be the random variable denotingits length. We haveProb(Xk � d) = n� 1� (d� 1))p� 1 != n� 1p� 1! = pYi=0(1� d� 1n� 1� i) � (1� d� 1n� 1)p�1:Let d� = �(n� 1)ln p=(p� 1) + 1, where � � 1. ThenProb(Xk � d�) � (1� �ln pp� 1)p�1 � e�� ln p = p��;using the fact that 1� x � e�x. The probability that the largest of the p intervals is at least d�is thus at most p� Prob(Xk � d�) � p�(��1).Let En be the expected length of the largest of the p intervals for �xed p. The above lemmashows that En � 2n ln p=p. A more precise bound is known:limn!1 Enn = Hpp ;where Hp = Ppi=1 1i = ln p + O(1) is the p-th harmonic number. (Goulden and Richmond [3]posed this limiting identity as a problem in the American Mathematical Monthly with a solutionsubmitted by Tak�acs [13], and others. Holst [6] obtains the proof from a more general treatmentof discrete spacings.) Thus, for �xed p the expected length of the largest interval is Hp timesthe length of an interval in the uniform partition.We now prove the theorem.Proof. We assume that p = o(pn). Let C = pn.Consider the n� n 0/1 matrix in Figure 2. Let us refer to the rightmost C columns as thethick vertical block, and the lowest C rows as the thick horizontal block. Only the elements in thesymmetric di�erence between the two thick blocks have a cost one; the rest are zero elements.The cost of either block, denoted by Z, is thus C � (n� C) = n3=2 � n.Now consider the e�ect of a random assignment of vertical dividers. It is easy to deduce thatwith high probability no divider will hit the vertical heavy block. Let B denote the cost of theheaviest column block CB . Let b satisfy b = B(p� b)=Z. We round b to the nearest integer.After this �rst sweep, the algorithm proceeds deterministically. The second sweep must useb horizontal dividers on the thick horizontal block and p�b on the thick vertical block. The costof each block in the former is B=b � Z=(p� b), while the cost of the latter is clearly Z=(p � b).On the third sweep, the algorithm must similarly use b vertical dividers on the thick verticalblock and p � b on the thick horizontal block. The cost of each block is then about Z=b(p �9

1

C 1 0

0

Figure 2: An example for which a uniform or random initial assignment leads to poor perfor-mance.b). No signi�cant changes can then be made to either the horizontal or the vertical dividersindependently to decrease this value.We have skipped over the detail of the \joint block", the only block that contains elementsfrom both thick blocks. Its size may bias the assignment of dividers somewhat, resulting insmall oscillations. None of them can make signi�cant di�erence, and in fact, cannot change thenumber of dividers used to partition either heavy block.To wrap up this analysis, compare the algorithm's solution to the solution that on each sideuses one divider to separate the heavy blocks and p=2�1 dividers on each of the them. The costof this solution is then Z=p2, and the ratio between the two solutions p2=(p � b)b � p=b. FromLemma 3.10, with high probability, the value of b is O(ln p). Hence, the performance ratio is atleast
(p= ln p), expected and with high probability.The proof of the lower bound for the uniform partition is left as an exercise.We can also observe that for any number of repetitions of this random procedure, withinany polynomial of p, yields a performance ratio of at least
(p= log p). We also remark that theratio can be shown to be �(p= log p).Remark: Recall that our basic iterative improvement algorithm starts with an optimal ver-tical partition without any horizontal dividers. We might view this as starting with a totallydegenerate initial partition of the rows. On a random initial partition the algorithm initiallyperforms more like on a uniform partition than when started with no horizontal dividers.3.5 ExtensionsOther cost functions While the sum of the elements within a block is usually the mostnatural measure, other cost functions may be more appropriate in certain applications. Forsome examples, see [12]. The results of this paper can easily be extended to other reasonablecost functions, in particular the following class.Corollary 3.11 General Block Partitioning can be approximated within O(pp) for any subad-ditive cost function, i.e. if �(B) � �(B1) + �(B2) whenever B = B1 [B2.Higher dimensions Our analysis of the 2-D case extends straightforward to higher dimen-sional matrices.Claim 1 The iterative re�nement algorithm attains a performance ratio �(p) on three-dimen-sional matrices. 10

This generalizes to a ratio of pd=2 for d-dimensional matrices. Matching lower bounds arestraightforward generalizations of the 2-D case.While this bound may appear weak, it is a considerable improvement over the alternatives.An oblivious assignment, where we assign dividers in each dimension independently, only guar-antees a W=p bound, or a pd�1 ratio. And the simplest partition { uniform assignment { can beas much as pd away from optimal.4 ImplementationWe sketch in this section a complexity analysis of the iterative re�nement algorithm. The boundsobtained improve on those claimed in the previous papers of Nicol [11] and Manne and S�revik[9]. To begin with, we generalize a result of Nicol [11] on 1-D solutions to a more general classof cost functions in order to handle the special requirements of the modi�ed algorithms.4.1 1-D computationThe 1-D case has been considered quite frequently in the literature. Olstad and Manne [12] gavea O(pn) algorithm that holds for all monotone cost functions that are invertive, i.e. where onecan add or subtract a single element in constant time. Frederickson [2] studied parameterizedrange searching, which solves the problem in linear time O(n) for a range of cost functions thatincludes the standard additive function. In practice, however, the algorithm is likely to be bothtoo slow and complicated. Nicol [11] gave a bottleneck search algorithm, which solves the caseof the standard cost function in time O(n+ (p log n)2).We describe here how Nicol's approach can be extended to any modular cost function, withno added time complexity.Lemma 4.1 Let � be a cost function where �(B1 [B2) can be computed in time t using �(B1)and �(B2). Then, the optimal column partitioning with respect to � can be computed in timeO(t(p log n)2), given O(n) preprocessing.Proof. The preliminary part of our approach is to precompute the cost of segments of size thatis a power of two and end at some multiple of that power of two. Namely, we precompute thecost of each segment [k � 2l�1+1; (k+1)2l], for each l and k within the range. This allows us tocompute the cost of any segment in logarithmic time. This precomputation need only be doneonce, even if this 1-D algorithm is executed multiple times.A key subroutine used by the main algorithm is greedy partition, which is given a �xed valueQ and attempts to partition into p blocks of cost at most Q. This algorithm can be performedin time p logn when the precomputed values are available. For each block i = 1; : : : ; p, thealgorithm performs a binary search on the set of remaining values for an index z such that thecost of the segment up to but not including element z is at most the given bottleneck value Qwhile the cost would exceed Q if the element z is included. This binary search can be performedin such a way that in each step we compute a new segment from a previous segment and aprecomputed segment of size power of two. This takes time at most logn, given a modular costfunction.If we have covered all the n elements in the p partitions, then the value Q succeeds; if Qdoes not succeed, then there is no partitioning of cost at most Q. Hence, if we are given theoptimal cost OPT , the greedy partitioning will �nd an optimal partition. The value OPT mustbe the cost of some segment in the array, but the issue remains how to �nd that e�ciently.We then proceed as Nicol. Set start to be the starting index, 1. First �nd an index z suchthat the cost of [start; : : : ; z � 1] is insu�cient as bottleneck cost (i.e. that greedy partitioning11

fails for this value) while the cost of [start; : : : ; z] su�ces. We can again use binary search,adding in each step a power-of-two-sized set to a previous segment, to �nd this in log n calls togreedy. The optimal solution must have [start; : : : ; z] as its �rst block. We then recurse, for theremaining p� 1 blocks, on the array su�x starting at index z.In particular, the above argument applies to the cost function consisting of the sum of theelements in a block excluding the heaviest, which we used in a segmented form in the secondsweep of the 3-sweep algorithm. For this, we store with each computed block the cost of theheaviest element. Note that none of the previously studied algorithms (beyond the trivial ones)treat this case.4.2 2-D computationIn our 2-D algorithms, we used four di�erent objectives for sweeps:� The �rst sweep is the simplest, and amounts to a plain 1-D sweep on a fully preprocessedinstance. Time complexity is (p logn)2 given n2 preprocessing� Other sweeps of the pure iterative re�nement algorithm involve p segments, for a cost ofp per operation. Time complexity is thus p3 log2 n.� The segmented sweep that excludes the cost of the heaviest row segment, as in the secondstep of the three-sweep algorithm, also takes p time per operation, or p3 log2 n in total.� Minimizing the cost of a row segment, or a column segment, is equivalent to a segmentedsweep when the number of segments is n. Thus, the time complexity is n(p log n)2. (Note,however, that this could be decreased by considering only rows of high cost.)It follows that the pure iterative re�nement method runs in time O(n2 + Tp3 log2 n), whereT is the number of sweeps. This improves on the bound of O(n2 + p4 log2 n) obtained by Nicol.The three sweep variation runs in time O(n2 + p3 log2 n), while the two sweep methodtakes time O(n2 + n(p logn)2). The former is linear in the size of the input whenever p =O((n= log n)2=3), while the latter is linear whenever p � pn= log n.The case when p is a constant or a slow-growing function w.r.t. n is of special interest,especially in the applications to load-balancing parallel computers. Then, the time complexityof the algorithm is poly-logarithmic in n, given the O(n2) preprocessing step (which is e.g.trivially parallelizable.)References[1] B. Chapman, P. Mehrotra, and H. Zima, Extending HPF for advanced data parallelapplications, IEEE Trans. Par. Dist. Syst., (Fall 1994), pp. 59{70.[2] G. N. Frederickson, Optimal algorithms for partitioning trees and locating p-centers inin trees, in Proceedings of the Second ACM-SIAM Symposium on Discrete Algorithms,1991, pp. 168{177.[3] I. P. Goulden and L. B. Richmond, Problem 6386, American Mathematical Monthly,May 1982, p. 338.
12

[4] M. Grigni and F. Manne, On the complexity of the generalized block distribution, inProceedings of Irregular'96, the Third International Workshop on Parallel Algorithms forIrregularly Structured Problems, Lecture Notes in Computer Science 1117, Springer, 1996,pp. 319{326.[5] High Performance Fortran Language Speci�cation 2.0, January 1997. Available fromhttp://www.crpc.rice.edu/HPFF/home.html.[6] L. Holst, On discrete spacings and the Bose-Einstein distribution, in Contributions toProbability and Statistics in the Honor of Gunnar Blom, Eds J. Lanke and G. Lindgren,Department of Mathematical Statistics, Lund University, Lund, Sweden 1985 pp. 169{177.[7] S. Khanna, S. Muthukrishnan, and S. Skiena, E�cient array partitioning. Proceed-ings of the 24th International Colloquium on Automata, Languages, and Programming(ICALP), Lecture Notes in Computer Science 1256, Springer, 1997, pp. 616{626.[8] F. Manne, Load Balancing in Parallel Sparse Matrix Computations, PhD thesis, Universityof Bergen, Norway, 1993.[9] F. Manne and T. S�revik, Partitioning an array onto a mesh of processors, in Pro-ceedings of Para '96, Workshop on Applied Parallel Computing in Industrial Problems andOptimization, Lecture Notes in Computer Science 1184, Springer, 1996, pp. 467{477.[10] A. Mingozzi, S. Ricciardelli, and M. Spadoni, Partitioning a matrix to minimize themaximum cost, Disc. Appl. Math., 62 (1995), pp. 221{248.[11] D. M. Nicol, Rectilinear partitioning of irregular data parallel computations, J. Par. Dist.Comp., (1994), pp. 119{134.[12] B. Olstad and F. Manne, E�cient partitioning of sequences, IEEE Trans. Comput., 44(1995), pp. 1322{1326.[13] L. Tak�acs, Solution to Problem 6386, American Mathematical Monthly, December 1983,p. 710.

13

