
Theoretical Computer Science 410 (2009) 1336–1345

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

A new self-stabilizing maximal matching algorithmI

Fredrik Manne a, Morten Mjelde a,∗, Laurence Pilard b, Sébastien Tixeuil c
a University of Bergen, Norway
b University of Franche Comté, France
c LIP6 & INRIA Grand Large, Université Pierre et Marie Curie - Paris 6, France

a r t i c l e i n f o

Keywords:
Self-stabilizing algorithms
Maximal matching

a b s t r a c t

The maximal matching problem has received considerable attention in the self-stabilizing
community. Previous work has given several self-stabilizing algorithms that solve the
problem for both the adversarial and the fair distributed daemon, the sequential adversarial
daemon, as well as the synchronous daemon. In the following we present a single self-
stabilizing algorithm for this problem that unites all of these algorithms in that it has the
same time complexity as the previous best algorithms for the sequential adversarial, the
distributed fair, and the synchronous daemon. In addition, the algorithm improves the
previous best time complexities for the distributed adversarial daemon from O(n2) and
O(δm) to O(m) where n is the number of processes,m is the number of edges, and δ is the
maximum degree in the graph.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Amatching in an undirected graph is a subset of edges in which no pair of edges are adjacent. A matchingM ismaximal
if no proper superset of M is also a matching. Matchings are typically used in distributed applications when pairs of
neighboring processes have to be set up (e.g. between a server and a client). As current distributed applications usually
run continuously, it is expected that the system is dynamic (processes may leave or join the network), so an algorithm for
the distributed construction of a maximal matching should be able to reconfigure on the fly. Self-stabilization [4,5] is an
elegant approach to forward recovery from transient faults as well as initializing a large-scale system. Informally, a self-
stabilizing systems is able to recover from any transient fault in finite time, without restricting the nature or the span of
those faults.
The environment of a self-stabilizing algorithm is modeled by the notion of a daemon. The use of a daemon allows for

reasoning about how the algorithm behaves under different executions models, where various daemons correspond to
different environments. There are two main characteristics for the daemon: it can be either sequential (or central, meaning
that exactly one eligible process is scheduled for execution at a given time) or distributed (meaning that any subset of eligible
processes can be scheduled for execution at a given time), and in an orthogonal way, it can be fair (meaning that in any
execution, every eligible processor is eventually scheduled for execution) or adversarial (meaning that the daemon only
guarantees global progress, i.e. some eligible process is eventually scheduled for execution). An extreme example of a fair
daemon is the synchronous daemon, where all eligible processes are scheduled for execution at every time step. Of course,
any algorithm that works under the distributed daemon will also work with the sequential daemon or the synchronous

I Support for this work was given by the Aurora program for collaboration between France and Norway.
∗ Corresponding author. Tel.: +47 5 558 4294.
E-mail addresses: fredrikm@ii.uib.no (F. Manne), mortenm@ii.uib.no (M. Mjelde), laurence.pilard@iut-bm.univ-fcomte.fr (L. Pilard), tixeuil@lri.fr

(S. Tixeuil).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.12.022

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:fredrikm@ii.uib.no
mailto:mortenm@ii.uib.no
mailto:laurence.pilard@iut-bm.univ-fcomte.fr
mailto:tixeuil@lri.fr
http://dx.doi.org/10.1016/j.tcs.2008.12.022

F. Manne et al. / Theoretical Computer Science 410 (2009) 1336–1345 1337

daemon, and any algorithm that can handle the adversarial daemon can be used with a fair daemon, but the converse is not
true in either case.
There exist several self-stabilizing algorithms for computing a maximal matching in an unweighted general graph.

Hsu and Huang [13] gave the first such algorithm and proved a bound of O(n3) on the number of moves assuming an
adversarial daemon. This analysis was later improved to O(n2) by Tel [15] and finally to O(m) by Hedetniemi et al. [12]. The
original algorithm assumes an anonymous network and operates therefore under the sequential daemon in order to achieve
symmetry breaking. We will show in Section 2 that in some anonymous symmetric networks there exists no deterministic
self-stabilizing solution to the maximal matching problem.
By using randomization, Gradinariu and Johnen [10] proposed a scheme to give processes a local name that is unique

within distance 2, and used this scheme to run Hsu and Huang’s algorithm under an adversarial distributed daemon.
However, only a finite stabilization time was proved. Using the same technique of randomized local symmetry breaking,
Chattopadhyay et al. [3] later gave a maximal matching algorithm with O(n) round complexity, but assuming the weaker
fair distributed daemon. It is straightforward to show that this algorithm could use Ω(n2) moves on a path graph with n
processeswhere the processes are numbered consecutively andwhere each process is initialized to attempt amatchingwith
it highest numbered neighbor. Using a combination of other results we believe that it is possible to show that the correct
upper bound for the step complexity of this algorithm under the adversarial distributed daemon is O(mn). However, as this
result is non-trivial we do not include it in the current paper.
In [8] Goddard et al. describe a synchronous version of Hsu and Huang’s algorithm and show that it stabilizes in O(n)

rounds. Although not explicitly proved in the paper, it can be shown that their algorithm also copes with the adversarial
distributed daemonusing θ(n2) steps. Here, symmetry is broken using unique identifiers at every process. In [11], Gradinariu
and Tixeuil provide a general scheme to transform an algorithm using the sequential adversarial daemon into an algorithm
that works under the distributed adversarial daemon. Using this scheme with Hsu and Huang’s algorithm yields a step
complexity of O(δm), where δ denotes the maximum degree of the network. Recently, Manne and Mjelde [14] presented a
self-stabilizing algorithm for computing a 12 -approximation to themaximumweightedmatching problem in general graphs.
The algorithm is analyzed both when run under the distributed adversarial daemon and the distributed fair daemon.
Our contribution is a new self-stabilizing algorithm that stabilizes after O(m) steps under the distributed adversarial

daemon. Under a distributed fair daemon the algorithm stabilizes after O(n) rounds. Thus, this algorithm meets the step
complexities of the previous best algorithms for the sequential daemon (which is a special case of the distributed adversarial
daemon) and the round complexity for the distributed fair daemon. It also improves the previous best step complexity for
the distributed adversarial daemon. As a side effect, we improve the best known algorithm for the adversarial daemon by
lowering the environment requirements (distributed instead of sequential). To break symmetry, we assume that process
identifiers are unique within distance two. That is, no process has two or more neighbors with identical identifier. The
following table compares features of the aforementioned algorithms and ours (best feature for each category is underlined).

Reference Daemon Step complexity Round complexity Structural information
[12,13,15] Sequential adversarial O(m) Anonymous
[10] Distributed adversarial finite Distance 2
[3] Distributed fair Ω(n2) O(n) Distance 2
[8] Synchronous O(n2) O(n) Unique ID
[11] Distributed adversarial O(δm) Unique ID
This paper Distributed adversarial O(m) O(n) Distance 2

As seen in the table, the algorithm presented in [13] has the currently best step complexity, while [3] gives the algorithm
with the best round complexity with the most relaxed structural requirement (IDs unique at distance two).
Similar to the algorithms given in [3] and [13], the algorithmwe present in this paper uses a variable on each process for

pointing to a neighbor (requiring log δ bits). By doing so a process indicates that it wants to match with the process being
pointed to, and if this process is pointing back to the first process then the processes are considered matched. However, our
algorithm has two distinctions compared to [3] and [13].
First, we employ a boolean variable at each process that is used to communicate to the neighbors of this process whether

or not it is matched. This allows us, contrary to [13], to avoid cases where a process retracts its pointer before the neighbor
to which it was pointing, has settled on a match. Note that the introduction of this variable does not significantly increase
the memory requirement of our algorithm compared to either [3] and [13] (a single additional bit per process is sufficient).
The algorithm given in [3] uses a scheme in which every process tries to match with the neighbor with smallest ID. This

has the effect that even if two neighboring processes agree that they arematched, one or both of themmay chose to leave the
matching at a later point in the execution. In the algorithm presented here, if two neighboring processes become matched,
they remain matched for the duration of the algorithm.
The rest of this paper is organized as follows. In Section 2 we give a short introduction to self-stabilizing algorithms

and the computational environment we use. In Section 3 we describe our algorithm and prove its correctness and speed of
convergence in Section 4. Finally, in Section 5 we conclude.

1338 F. Manne et al. / Theoretical Computer Science 410 (2009) 1336–1345

2. Model

A system consists of a set of processes where two adjacent processes can communicate with each other. The
communication relation is typically represented by a graph G = (V , E) where |V | = n and |E| = m. Each process
corresponds to a node in V and two processes i and j are adjacent if and only if (i, j) ∈ E. As mentioned in Section 1,
we assume that each process has an identifier that is unique at distance two. At the end of this section we will justify this
requirement. In the following we will not distinguish between a process and its identifier.
The set of neighbors of a process i ∈ V is denoted by N(i). The neighbors of a set of processes A ⊆ V is defined as

N(A) = {j ∈ V − A, ∃i ∈ A s.t. (i, j) ∈ E}. A process maintains a set of local variables that make up the local state of the
process. Each variable ranges over a fixed domain of values. Every process executes the same algorithm, which consists of
one or more rules. A rule has the form 〈name〉: if 〈guard〉 then 〈command〉. A guard is a boolean predicate over the variables
of both the process and those of its neighbors. A command is a sequence of statements assigning new values to the variables
of the process.
An assignment of a value to every variable of each process from its corresponding domain defines a configuration of the

system. A rule is enabled in some configuration if the guard is true with the current assignment of values to variables. A
process is eligible if it has at least one enabled rule. A computation is a maximal sequence of configurations such that for each
configuration si, the next configuration si+1 is obtained by executing the command of at least one rule that is enabled in si
(a process that executes such a rule makes amove). A configuration is stable if there are no eligible processes in the system.
A daemon is a predicate on executions.Wedistinguish several kinds of daemons: the sequential daemonmakes the system

move from one configuration to the next by executing exactly one enabled rule, the synchronous daemonmakes the system
move from one configuration to the next one by executing exactly one rule on all eligible processes, the distributed daemon
makes the system move from one configuration to the next one by allowing any non-empty set of eligible processes to
execute exactly one rule. Note that the sequential and synchronous daemons are instances of the more general (i.e. less
constrained) distributed daemon. Also, a daemon is fair if any rule that is continuously enabled is eventually executed, and
adversarial if it may execute any enabled rule at every step. Again, the adversarial daemon is more general than the fair
daemon.
A system is self-stabilizing for a given specification if it in finite time converges to a stable configuration that conforms

to this specification, independently of its initial configuration and without external intervention.
We consider two measures for evaluating complexity of self-stabilizing algorithms. A step is the minimum unit of

time such that a process can perform any one of its moves. For a distributed daemon there can be several processes that
makes simultaneous moves during one step, thus the step complexity investigates the maximum number of steps that are
needed to reach a configuration that conforms to the specification (i.e. a legitimate configuration), for all possible starting
configurations. The round complexity considers that executions are observed in rounds: a round is the smallest sub-sequence
of an execution in which every process eligible for at least one move at the start of a round has either executed one of these
moves during the round, or has become ineligible to do so. Note that both of these types of analysis focus on communication
and not on computation, as it is assumed that a process can perform any type of necessary local computation during one
move.
We justify our assumption of process identifiers by observing that the simultaneous hypotheses of a distributed unfair

daemon and anonymous processes results in a model where it is impossible to solve the maximal matching problem using
a deterministic self-stabilizing algorithm. The proof technique is similar to that of [1].

Lemma 2.1. There exists no deterministic self-stabilizing algorithm for the maximal matching problem that can simultaneously
work under the synchronous daemon and perform in arbitrary anonymous networks.

Proof. Assume that for every process in the network, the local state is either unmatched or proposed matched with one
specific neighbor. A particular configuration is a valid matching if every pair of processes is consistent in their mutual
relationship (i.e. every pair of processes either agrees on being matched or not). We now consider a network that is a ring of
size at least 3. Initially, each process has the same state, and since the local view of every process is identical, it follows that
their moves (if any) will also be identical. Observe that every process has exactly two neighbors, and a process’ proposed
matching may either be directed clockwise or counter-clockwise. Thus, each process is either (1) unmatched, (2) clockwise
proposed matched, or (3) counter-clockwise proposed matched. Since the local state of every process is identical and no
process is matched, the initial configuration is not a maximal matching.
Thus, the view of each process is identical and it follows that the processes will change between the three mentioned

cases in a lockstep fashion and neither reach a stable state nor a maximal matching. �

3. The algorithm

In the following we present and motivate our algorithm for computing a maximal matching. The algorithm is self-
stabilizing and does not make any assumptions on the network topology. A set of edges M ⊆ E is a matching if and only if
edges x, y ∈ M implies that x and y do not share a common end point. A matchingM ismaximal if no proper superset ofM
is also a matching.

F. Manne et al. / Theoretical Computer Science 410 (2009) 1336–1345 1339

Algorithm 1 A self-stabilizing maximal matching algorithm

Variables of process i:
mi ∈ {true, false}
pi ∈ {null} ∪ N(i)

Predicate:
PRmarried(i) ≡ ∃j ∈ N(i) : (pi = j and pj = i)

Rules:
Update:

ifmi 6= PRmarried(i)
thenmi := PRmarried(i)

Marriage:
ifmi = PRmarried(i) and pi = null and ∃j ∈ N(i) : pj = i
then pi := j

Seduction:
ifmi = PRmarried(i) and pi = null and ∀k ∈ N(i) : pk 6= i

and ∃j ∈ N(i) : (pj = null and j > i and¬mj)
then pi := max{j ∈ N(i) : (pj = null and j > i and ¬mj)}

Abandonment:
ifmi = PRmarried(i) and pi = j 6= null and pj 6= i and (mj or j ≤ i)
then pi := null

Each process i has a variable pi pointing to one of its neighbors or to null. Processes i and j aremarried to each other if and
only if i and j are neighbors and pi = j and pj = i. In this case we will also refer to i as being married without specifying j.
However, we note that if i is married then j = pi is well defined. A process that is not married is unmarried.
In addition to pi, process i has a variablemi that is used to let neighboring processes know if i is married or not. The value

of mi is determined by a predicate PRmarried(i). This evaluates to true if and only if i is married. Thus, PRmarried(i) allows
process i to know if it is currently married and the variable mi allows neighbors of i to determine if i is married. Note that
the value ofmi is not necessarily always equal to PRmarried(i).
If pi /∈ N(i) ∪ {null}, then we define ppi 6= i andmpi = true. As we shall see later, this will cause i to become eligible for a

move if it is pointing to a process not in its neighborhood.
Our self-stabilizing scheme is given in Algorithm 1. It is composed of four mutual exclusive guarded rules as described

below.
The Update rule updates the value of mi if this is incorrect, while the three other rules can only be executed if the value

of mi is correct. In the Marriage rule, an unmarried process that is currently being pointed to by a neighbor j tries to marry
j by setting pi = j. In the Seduction rule, an unmarried process that is not being pointed to by any neighbor, points to an
unmarried neighbor with the objective of marriage. Note that the identifier of the chosen neighbor has to be larger than that
of the current process. This is enforced to avoid the creation of cycles of pointer values. In the Abandonment rule, a process
i resets its pi value to null. This is done if the process j, to which i is pointing, does not point back to i and if either (1) j is
apparentlymarried, or (2) j has a lower identifier than i. Condition (1) allows a process to stopwaiting for an alreadymarried
process while the purpose of Condition (2) is to break a possible initial cycle of p-values.
We note that if PRmarried(i) is true at some point of time then it will remain true throughout the execution of the

algorithm.Moreover, the algorithmwill never actively create a cycle of pointing values since the Seduction rule enforces that
j > i before process iwill point to process j. Also, all initial cycles are eventually broken since the guard of the Abandonment
rule requires that j ≤ i.
Fig. 1 gives a short example of the execution of the algorithm. The initial configuration is as shown in Fig. 1a, where

i > j > k. Here, both processes j and k are attempting to become married to i. In Fig. 1b process i has executed a Marriage
move, and i and j are nowmarried. In Fig. 1c both i and j execute an Updatemove, setting theirm-values to true. And finally,
in Fig. 1d process k executes an Abandonmentmove.

4. Proof of correctness

In the following we will first show that when Algorithm 1 has reached a stable configuration then this also defines
a maximal matching. We will then bound the number of steps the algorithm needs to stabilize both for the adversarial

1340 F. Manne et al. / Theoretical Computer Science 410 (2009) 1336–1345

Fig. 1. Example of an execution of Algorithm 1.

Fig. 2. Examples where the four predicates PRwaiting(i), PRcondemned(i), PRdead(i), and PRfree(i) are true.

distributed daemon and for the fair distributed daemon. Note that the sequential daemon is a subset of the distributed one,
thus any result for the latter also applies to the former.

4.1. Correct stabilization

We now proceed to show that if Algorithm 1 reaches a stable configuration then the p- and m-values define a maximal
matchingM where (i, j) ∈ M if and only if (i, j) ∈ E, pi = j, and pj = i while bothmi andmj are true. Recall from Section 2
that a configuration is stable if no process is eligible to execute amove. In order to perform the proof, we define the following
six mutual exclusive predicates, similar to what was done in [13]:

PRinvalid(i) ≡ (pi 6= null) and (pi /∈ N(i))
PRmarried(i) ≡ ∃j ∈ N(i) : (pi = j and pj = i)
PRwaiting(i) ≡ ∃j ∈ N(i) : (pi = j and pj 6= i and ¬PRmarried(j))
PRcondemned(i) ≡ ∃j ∈ N(i) : (pi = j and pj 6= i and PRmarried(j))
PRdead(i) ≡ (pi = null) and (∀j ∈ N(i) : PRmarried(j))
PRfree(i) ≡ (pi = null) and (∃j ∈ N(i) : ¬PRmarried(j)).

Note first that each process will evaluate exactly one of these predicates to true. Moreover, also note that PRmarried(i) is
the same as in Algorithm 1.
Fig. 2 gives an example where each of the predicates PRwaiting(i), PRcondemned(i), PRdead(i), and PRfree(i) is true. An

example where PRmarried(i) is true was shown in Fig. 1d. PRinvalid(i) is not shown.
We now show that in a stable configuration each process i evaluates either PRmarried(i) or PRdead(i) to true, and when

this is the case, the p-values define amaximal matching. To do so, we first note that in any stable configuration them-values
reflects the current status of the processes.

Lemma 4.1. In a stable configuration mi = PRmarried(i) for each i ∈ V .

Proof. This follows directly since ifmi 6= PRmarried(i) then i is eligible to execute the Update rule. �

We next show in the following four lemmas that no process will evaluate neither PRinvalid(i), PRwaiting(i),
PRcondemned(i), nor PRfree(i) to true in a stable configuration.

Lemma 4.2. In a stable configuration PRinvalid(i) is false for each i ∈ V .

F. Manne et al. / Theoretical Computer Science 410 (2009) 1336–1345 1341

Proof. First note that if there exists a process i such that PRmarried(i) 6= mi, then i is eligible for an Updatemove. Assume
therefore that this is not the case, and that PRinvalid(i) = true. Recall that if pi /∈ N(i) ∪ {null}, then by definition ppi 6= i
and mpi = true. Thus, it follows from the guard of the Abandonment rule that if PRinvalid(i) = true, then imust be eligible
for an Abandonment move. �

Lemma 4.3. In a stable configuration PRcondemned(i) is false for each i ∈ V .

Proof. If there exists at least one process i in the current configuration such that PRcondemned(i) is true then pi is pointing
to a process j ∈ N(i) that is married to a process kwhere k 6= i. From Lemma 4.1 it follows that in a stable configuration we
have mi = PRmarried(i) and mj = PRmarried(j). Thus, if this is the case then the predicate (mi = PRmarried(i) and pi = j
and pj 6= i and mj) evaluates to true. But then process i is eligible to execute the Abandonment rule and it follows that the
current configuration cannot be stable. �

Lemma 4.4. In a stable configuration PRwaiting(i) is false for each i ∈ V .

Proof. Assume that the current configuration is stable and that there exists at least one process i such that PRwaiting(i) is
true. Then it follows that pi is pointing to a process j ∈ N(i) such that pj 6= i and j is unmarried. Note first that if pj = null
then process j is eligible to execute aMarriagemove. Also, if j < i then process i can execute an Abandonmentmove.
Assume therefore that pj 6= null and that j > i. From Lemma 4.2 we have that PRinvalid(j) = false and from Lemma 4.3

that PRcondemned(j) = false. Since j is not married we also have PRmarried(j) = false. Thus, PRwaiting(j)must be true. By
repeating the same argument for j as we just did for i, it follows that if both i and j are ineligible for any move then there
must exist a process k such that pj = k, k > j, and PRwaiting(k) also evaluates to true. This sequence of processes satisfying
the PRwaiting predicate cannot be extended indefinitely since each processmust have a higher identifier than the preceding
one. Thus, there must exist some process in V that is eligible for a move and the assumption that the current configuration
is stable is incorrect. �

Lemma 4.5. In a stable configuration PRfree(i) is false for each i ∈ V .

Proof. Assume that the current configuration is stable and that there exists at least one process i such that PRfree(i) is true.
Then it follows that pi = null and that there exists at least one process j ∈ N(i) such that j is not married.
Next, we look at the value of the different predicates for the process j. Since j is not married it follows that PRmarried(j)

evaluates to false. Also, from Lemmas 4.2–4.4 we have that PRinvalid(j), PRwaiting(j), and PRcondemned(j)must evaluate to
false. Finally, since i is not married we cannot have PRdead(j). Thus, we must have PRfree(j). But then the process with the
smaller identifier of i and j is eligible to propose to the other by executing a Seductionmove, contradicting the assumption
that the current configuration is stable. �

From Lemmas 4.2–4.5 we immediately get the following corollary.

Corollary 4.6. In a stable configuration either PRmarried(i) or PRdead(i) holds for every i ∈ V .

We can now show that a stable configuration also defines a maximal matching.

Theorem 4.7. In any stable configuration the p- and m-values define a maximal matching.

Proof. From Corollary 4.6 we know that in a stable configuration either PRmarried(i) or PRdead(i) holds for every i ∈ V .
Also, from Lemma 4.1 it follows that mi is true if and only if i is married. It is then straightforward to see that the p-values
define a matching.
To see that this matching is also maximal, assume to the contrary that it is possible to add one more edge (i, j) to the

matching while it still remains a legal matching. For this to be possible we must have pi = null and pj = null. Thus, we have
¬PRmarried(i) and ¬PRmarried(j) which again implies that both PRdead(i) and PRdead(j) evaluates to true. But according
to the PRdead predicate two adjacent processes cannot be dead at the same time. It follows that the current matching is
maximal. �

4.2. Convergence for the distributed adversarial daemon

In the following we will show that Algorithm 1 will reach a stable configuration after at most 4 · n + 2 · m steps when
executed under the distributed adversarial daemon.
First, we note that as soon as two processes are married they will remain so for the rest of the execution of the algorithm.

Lemma 4.8. If processes i and j are married in a configuration C, i.e. pi = j and pj = i, then they will remain married in any
ensuing configuration C ′.

Proof. Assume that pi = j and pj = i in some configuration C . Then process i can neither execute the Marriage nor the
Seduction rule since these require that pi = null. Similarly, i cannot execute the Abandonment rule since this requires that
pj 6= i. The exact same argument for process j shows that j also cannot execute any of the three rules Marriage, Seduction,
and Abandonment. Thus, the only rule that processes i and j can execute is Update but this will not change the values of pi or
pj. �

1342 F. Manne et al. / Theoretical Computer Science 410 (2009) 1336–1345

Fig. 3. The four series of i, j-moves used in Lemma 4.11.

A process signals that it is married through executing the Update rule. Thus, this is the last rule a married process will
execute in the algorithm. This is reflected in the following.

Corollary 4.9. If a process i executes an Updatemove and sets mi = true then i will not move again.

Proof. From the predicate of theUpdate rule it follows that if process i setsmi = true then theremust exist a process j ∈ N(i)
such that pi = j and pj = i. From Lemma 4.8 process i cannot make any subsequent move that changes the value of pi. Thus,
the only subsequent move i can make is another Update move. But since the value of mi is correct and since pi and pj will
not change again, this will not happen. �

Because a married process cannot become ‘‘divorced’’ we also have the following restriction on the number of times the
Update rule can be executed by any process.

Corollary 4.10. Any process executes at most two Updatemoves.

We now progress to bound the number of moves from the setMSA= {Marriage, Seduction, Abandonment}. Recall that for
the distributed adversarial daemon we measure complexity in steps, where one step is a non-empty set of moves executed
simultaneously. Note that eachMSAmove is performed by a process i in relation to a neighbor j. We denote any such move
made by either i or jwith respect to the other as an i, j-move. Furthermore, we define an i, j-step as containing an i, j-move.
Thus, for a particular edge (i, j) ∈ E every i, j-step contains either one or two i, j-moves.

Lemma 4.11. For any edge (i, j) ∈ E, there can at most be three i, j-steps.

Proof. Let (i, j) ∈ E be an edge such that i < j. Initially we can have pi = j or pi 6= j and similarly pj = i or pj 6= i. In the
following we consider each such combination, as illustrated in the left column of Fig. 3. In the figure, the case where the
arrow of process i is pointing away from process j illustrates that pi 6= j (which also includes pi = null).
Case (1): pi 6= j and pj 6= i (Fig. 3.1a). Since i < j the first i, j-step cannot contain process j executing a Seductionmove. Also,

as long as pi 6= j, process j cannot execute aMarriagemove. Thus, process j cannot execute an i, j-move until after process i
has first made an i, j-move. It follows that the first possible i, j-step consists of i executing a Seductionmove (Fig. 3.1b). Note
that at the starting configuration of this step we must have¬mj.
If the second i, j-step only involves j then this must be a Marriage move which results in pi = j and pj = i (Fig. 3.1c).

Then by Lemma 4.8 there will be nomore i, j-steps. However, if the second i, j-step contains process i executing an i, j-move
(independently of what process j does) then this must be an Abandonmentmove (not shown in Fig. 3). But this requires that
the value of mj has changed from false to true. Then by Corollary 4.9 process j will not make any more i, j-moves and since
pj 6= null and pj 6= i for the rest of the algorithm, it follows that process i cannot execute any future i, j-moves. Thus, at most
two i, j-steps are performed.
Case (2): pi = j and pj 6= i (Fig. 3.2a). If the first i, j-step only involves process j then this must be a Marriage move

resulting in pi = j and pj = i (Fig. 3.2b). Then from Lemma 4.8 neither i nor j will make any future i, j-moves. If the first
i, j-step involves process i then this must be an Abandonment move. Thus, in the configuration prior to this step we must
have mj = true. It follows that either mj 6= PRmarried(j) or pj 6= null. In either case process j cannot make an i, j-move
simultaneously as imakes its move. Thus, following the Abandonmentmove by process iwe are at Case (1) and there can at
most be two more i, j-steps. Hence, there can at most be a total of three i, j-steps.
Case (3): pi 6= j and pj = i (Fig. 3.3a). If the first i, j-step only involves process i then i must execute a Marriage move

resulting in pi = j and pj = i and from Lemma 4.8 neither i nor jwill make any future i, j-moves. If the first i, j-step involves
process j then this must be an Abandonmentmove. If the same i, j-step does not involve process i then this will result in Case
(1) and there can at most be two more i, j-steps for a total of three i, j-steps.
If the first i, j-step contains two i, j-moves then thesemust be an Abandonment move by process j and aMarriagemove by

process i (Fig. 3.3b). We are now at a similar configuration as Case (2) but with¬mj. If the second i, j-step involves process i

F. Manne et al. / Theoretical Computer Science 410 (2009) 1336–1345 1343

then thismust be an Abandonmentmove implying thatmj has changed to true. It then follows fromCorollary 4.9 that process
j (and therefore also process i) will not make any future i, j-moves leaving a total of two i, j-steps. If the second i, j-step does
not involve i then it must consist of a Marriage move performed by process j resulting in pi = j and pj = i (Fig. 3.3c) and
from Lemma 4.8 neither i nor jwill make any future i, j-moves.
Case (4): pi = j and pj = i (Fig. 3.4a). In this case it follows from Lemma 4.8 that neither process i nor process jwill make

any future i, j-moves. �

It should be noted in the proof of Lemma 4.11 that only an edge (i, j)where we initially have either pi = j or pj = i (but
not both) can result in three i, j-steps, otherwise the limit is two i, j-steps per edge. When we have three i, j-steps across an
edge (i, j) we can charge these steps to the processor that was initially pointing to the other. In this way each process will
at most be incident on one edge to which it is charged three steps for.
Furthermore, for a process i, the initial statemay be such that pi /∈ N(i)∪{null} . In such an event, iwill become eligible for

an Abandonment move after at most one Updatemove. Note that this type of move is not an i, j-move, as the edge (i, pi) /∈ E.
Since there does not exist a move that can set pi /∈ N(i) ∪ {null}, it follows that this case can occur at most once for every
process. From these two observations we can now give the following bound on the total number of steps needed to obtain
a stable solution.

Theorem 4.12. Algorithm 1 will stabilize after at most 4 · n+ 2 ·m steps under the distributed adversarial daemon.

Proof. From Corollary 4.9 we know that there can be at most 2 · n Updatemoves, each which can occur in a separate step.
In addition each process can execute at most one Abandonment move due to an invalid initial p-value. From Lemma 4.11 it
follows that there can at most be three i, j-steps per edge. But as observed, there is at most one such edge incident on each
process i for which process i is charged for, otherwise the limit is two i, j-steps. Thus, the total number of i, j-steps is at most
n+ 2 ·m and the result follows. �

From Theorem 4.12 it follows that Algorithm 1 will use O(m) steps on any systemwhen assuming a distributed daemon.
Since the distributed daemon encompasses the sequential daemon this result also holds for the latter.
To see that O(m) is a tight bound for the stabilization time, consider a complete graph in which each process i1, i2, . . . , in

has a unique identifier such that i1 < i2 < · · · < in. We will now show that there exists an initial configuration and a
sequence of moves such thatΩ(m)moves are executed before the system reaches a stable configuration.
Assume that every process is initially unmarried and pointing to null. Then the processes i1, . . . , in−1 are eligible to

execute Seduction moves and point to in. Following this, in may now execute a Marriage move, and become married to
in−1. Thus, the processes i1, . . . , in−2 are now eligible to execute Abandonment moves. Observe that following these moves,
two moves have been executed for every edge incident to in, and the processes i1, . . . , in−2 are once again pointing to null.
Furthermore, by Lemma 4.8 we know that neither in−1 nor in will execute any furtherMSAmoves (note that no moves were
executed for any edge incident on in−1, with the exception of the edge (in−1, in)). In the same manner, we can now reason
that in addition to the above, two moves are executed for every edge incident on in−2 (with the exception of those incident
on processes with larger identifiers than in−2). Repeating this argument for every in−2k where 1 < k < n

2 shows thatΩ(m)
MSAmoves can be executed before the system reaches a stable configuration.
Finally, we note that Algorithm 1 is very resilient to sporadic faults or to the introduction or deletion of a small number

of processes. This follows from Lemma 4.8 which showed that two married processes will remain married for the duration
of the algorithm. Thus, a fault in one particular process i will only effect i, the process j that i might have been married to,
and also any unmarried neighbors of i and j. Together these processes induce a subgraph containing at most |N(i)| + |N(j)|
processes and |N(i)| + |N(j)| − 1 edges. From Theorem 4.12 it follows that the system will re-stabilize in O(|N(i)| + |N(j)|)
moves and without affecting any other married processes apart from i and j.

4.3. Convergence for the distributed fair daemon

Next we consider Algorithm 1when analyzed under the distributed fair daemon. The execution of the algorithm remains
unchanged but instead of counting steps we now count the number of rounds. One round may encompass several steps,
and we only require that every process eligible for at least one move at the start of a round has either executed one of these
moves during the round, or has become ineligible to do so (note however that a process may also execute moves for which
it becomes eligible over the course of the round). Since we are assuming a distributed daemon, moves made in the same
roundmay be simultaneous. The fair distributed daemon is a subset of the adversarial distributed daemon and therefore any
results that were shown in Section 4.2 also apply here. We will now show that Algorithm 1 converges after at most 2 · n+ 1
rounds for this daemon.
We define a process i ∈ V as inactive if either PRmarried(i) or PRdead(i) is true, and active otherwise. From Corollary 4.9

it follows that any process i ∈ V where PRmarried(i) is true will not become active again for the remainder of the execution.
This also applies to PRdead(i), since if PRdead(i) = true every process in N(i) is married.
Let A ⊆ V be a maximal connected set of active processes in some arbitrary configuration of the algorithm. We now

show that if A contains at least two processes then the size of Amust be reduced by at least two within at most four rounds.
We show this by contradiction, i.e. by assuming that the size of A remains unchanged over the course of four rounds. Note

1344 F. Manne et al. / Theoretical Computer Science 410 (2009) 1336–1345

that if A contains only a single process, it does not have any unmarried neighbors, and thus it may only execute a constant
number of moves.
In the following we let E = {E1, E2, E3, E4} denote four consecutive rounds. We assume that |A| ≥ 2 prior to E and that

A remains unchanged throughout E , implying that no processes in A become married.

Lemma 4.13. Following E1 we have for every i ∈ A and j ∈ N(A):

(i) mi = PRmarried(i) = false;
(ii) mj = PRmarried(j) = true;
(iii) No m-value will change during E ;

Proof. If a process i ∈ A has mi = true prior to E , then since PRmarried(i) = false (by definition) i will execute an Update
move during E1 and setmi = false.
A process j ∈ N(A) cannot have PRdead(j) = true since it must have a neighbor i ∈ A where PRmarried(i) = false. Thus,

PRmarried(j) = true and ifmj = false prior to E then it will be set to true in E1.
Since no process in A will become married during E (by assumption) and no process in N(A) will become ‘‘divorced’’

(from Corollary 4.9) it follows that them-values of processes in A and N(A)will not change during E2, E3, and E4. �

From Lemma 4.13 we get the following corollary.

Corollary 4.14. Following E1, no inactive process executes a move.

In the following, we consider when the Abandonment moves can be executed in E .

Lemma 4.15. No Abandonment moves can be executed in E3 or E4.

Proof. Assume that i ∈ A is eligible for an Abandonmentmove in either round E3 or E4. Then prior to this round pi = j 6= null,
pj 6= i, and either (1) mj = true or (2) j < i. We look at each case separately.
In Case (1) ifmj = true then it follows from Lemma 4.13 that j ∈ N(A). Thus, in order for pi to point to j, this must either

have been true before E , or i has executed aMarriage or Seductionmove in E . However, for i to execute aMarriagemove we
must have pj = i and for i to execute a Seduction move pj = null is required. Since PRmarried(j) = true during E , neither
of these can be true and we must have pi = j prior to E . With mj = true, at least after E1, it follows that i would have been
eligible for the Abandonment move no later than at the start of E2, and the move should have been executed no later than
during this round.
For Case (2), where j < i, then if the predicate is true prior to E , iwould have been eligible for an Abandonment move no

later than at the start of E2. Thus, we assume that i sets pi = j in E1, E2, or E3 which can only happen if i executed aMarriage
move. But thenwemust have pj = i prior to this event, and since i and j do not becomemarried (by assumption), jmust have
executed a simultaneous Abandonment move and set pj 6= i. Process j can only execute an Abandonment move if mi = true
(since j < i). This can only happen during E1 and would force i to execute an Updatemove instead of aMarriagemove. �

As was observed in the proof of Lemma 4.15, if we assume that no processes become married, then any Marriage
move must be executed simultaneously with a corresponding Abandonment move. From Lemma 4.15 we know that no
Abandonment moves are executed after E2, and thus we get the following corollary.

Corollary 4.16. If no processes in A become married, then no process can execute a Marriage move in E3 or E4.

At this point we have shown that Update, Abandonment, and Marriage moves cannot occur after E2. Now consider a
maximal path of processes i1, i2, . . . , ik (where k > 0) such that pix = ix+1 and ix < ix+1 for 1 ≤ x < k. Since each process
can only occur once on this path, it must be of finite length. If such a path exists at the start of E3 it follows that ik must be
eligible for aMarriagemove. This move must then be executed in E3, after which ik and one of the processes that points to
it are married.
Assume therefor that such a path does not exist at the start of E3. Since no process is eligible for an Abandonment move

following E2, this implies that pi = null for every process i ∈ A. Hence, every process in A that has a neighbor in A with a
larger identifier than itself must be eligible for a Seductionmove. There must exist at least one such process since |A| ≥ 2.
These Seduction moves will then be executed in E3, after which the above path must exist, and it follows that at least two
processes become married in E4.
This contradicts our initial assumption that no processes become married in E , and we get the following lemma.

Lemma 4.17. Let A ⊆ V be a maximal connected set of active processes in some configuration of the algorithm. If |A| ≥ 2 then
after at most four rounds the size of A has decreased by at least 2.

Obviously |A| ≤ |V |, and from Lemma 4.8 we know that once married, a process will remain married for the remainder
of the execution of Algorithm 1. From this we get that at most 2 · n rounds are needed to compute the maximal matching.
However, after the matching has been found every process that was married in the last roundmay execute an Updatemove,
and every remaining unmarried process may execute an Abandonment move. Both of these will be performed in the same
round. Note that it is not necessary for a process i that is unmarried when the algorithm terminates to execute a final Update
move asmi = false after the first round and remains false throughout the algorithm. From thiswe get the following theorem.

F. Manne et al. / Theoretical Computer Science 410 (2009) 1336–1345 1345

Fig. 4. Example execution of Algorithm 1.

Theorem 4.18. Algorithm 1 will stabilize after at most 2 · n+ 1 rounds under the fair distributed daemon.

To see that O(n) is a tight bound, consider a graph that is a path as illustrated in Fig. 4. We assume that each process has
a unique identifier, such that i1 < i2 < · · · < in. If initially no processes are married or pointing to any other process, then
following the first round, ix will be pointing to ix+1 for every 1 ≤ x < n− 1, as shown in Fig. 4a. In the second round, in will
execute aMarriagemove and become married to in−1. In round three in−2 will execute an Abandonment move (Fig. 4b), and
then aMarriagemove in round four (Fig. 4c). Repeating this argument, we see that one pair of processes are married every
other round, which implies that the algorithm needsΩ(n) rounds to stabilize.

5. Conclusion

Wehavepresented anewself-stabilizing algorithm for themaximalmatching problem that improves the step complexity
of the previous best algorithm for the distributed adversarial daemon, while at the same time meeting the bounds of the
previous best algorithms for the sequential and the distributed fair daemons.
It iswell known that amaximalmatching is a 12 -approximation to themaximummatching,where themaximummatching

is a matching such that no other matching with strictly greater size exists in the network. In [9], Goddard et al. provide a 23 -
approximation for a particular class of networks (trees and rings of size not divisible by 3). Also, in particular networks such
as trees [2,7] or bipartite graphs [3], self-stabilizing algorithms have been proposed for computing a maximum matching.
However, no self-stabilizing solution with a better approximation ratio than 1

2 currently exists for general graphs. It is
possible to collect the graph topology on each process using a self-stabilizing topology update protocol [6] and then run a
sequential maximummatching algorithm on each process. This would yield a self-stabilizing maximummatching protocol
for general graphs, but at the expense of huge memory and communication consumption. Thus, it would be of interest to
know if it is possible to create a memory and time efficient self-stabilizing algorithm for general graphs that achieves a
better approximation ratio than 12 .

References

[1] Dana Angluin, Local and global properties in networks of processors (extended abstract), in: STOC’80: Proceedings of the twelfth annual ACM
symposium on Theory of computing, ACM Press, New York, NY, USA, 1980, pp. 82–93.

[2] Jean R.S. Blair, Fredrik Manne, Efficient self-stabilizing algorithms for tree networks, in: ICDCS ’03: Proceedings of the 23rd International Conference
on Distributed Computing Systems, IEEE Computer Society, Washington, DC, USA, 2003, p. 20.

[3] Subhendu Chattopadhyay, Lisa Higham, Karen Seyffarth, Dynamic and self-stabilizing distributed matching, in: PODC’02: Proceedings of the twenty-
first annual symposium on Principles of distributed computing, ACM, New York, NY, USA, 2002, pp. 290–297.

[4] Edsger W. Dijkstra, Self-stabilizing systems in spite of distributed control., Commun. ACM 17 (11) (1974) 643–644.
[5] Shlomi Dolev, Self-stabilization, MIT Press, 2000.
[6] Shlomi Dolev, Ted Herman, Superstabilizing protocols for dynamic distributed systems, Chicago J. Theor. Comput. Sci. 1997 (1997).
[7] Sukumar Ghosh, Arobinda Gupta, Mehmet H. Karaata, Sriram V. Pemmaraju, A self-stabilizing algorithm for maximal matching on trees, Technical
Report TR-94-06, Department of Computer Science, The University of Iowa, Iowa City, 1994.

[8] Wayne Goddard, Stephen T. Hedetniemi, David P. Jacobs, Pradip K. Srimani, Self-stabilizing protocols formaximalmatching andmaximal independent
sets for adhoc networks, in: IPDPS’03: Proceedings of the 17th International SymposiumonParallel andDistributed Processing, IEEEComputer Society,
Washington, DC, USA, 2003, p. 162.2.

[9] Wayne Goddard, Stephen T. Hedetniemi, Zhengnan Shi, An anonymous self-stabilizing algorithm for 1-maximal matching in trees, in: PDPTA
2006: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications & Conference on Real-Time
Computing Systems and Applications, vol. 2, CSREA Press, 2006, pp. 797–803.

[10] Maria Gradinariu, Colette Johnen, Self-stabilizing neighborhood unique naming under unfair scheduler., in: Euro-Par, in: Lecture Notes in Computer
Science, vol. 2150, Springer, 2001, pp. 458–465.

[11] Maria Gradinariu, Sébastien Tixeuil, Conflict managers for self-stabilization without fairness assumption, in: ICDCS 2007: Proceedings of the
International Conference on Distributed Computing Systems, IEEE, 2007.

[12] Stephen T. Hedetniemi, David Pokrass Jacobs, Pradip K. Srimani, Maximal matching stabilizes in time o(m)., Inf. Process. Lett. 80 (5) (2001) 221–223.
[13] Su-Chu Hsu, Shing-Tsaan Huang, A self-stabilizing algorithm for maximal matching., Inf. Process. Lett. 43 (2) (1992) 77–81.
[14] FredrikManne, MortenMjelde, A self-stabilizingweightedmatching algorithm, in: 9th International Symposium on Stabilization, Safety, and Security

of Distributed Systems, SSS’07, in: Lecture Notes in Computer Science, vol. 4838, Springer, 2007, pp. 383–393.
[15] Gerard Tel, Maximal matching stabilizes in quadratic time., Inf. Process. Lett. 49 (6) (1994) 271–272.

	A new self-stabilizing maximal matching algorithm
	Introduction
	Model
	The algorithm
	Proof of correctness
	Correct stabilization
	Convergence for the distributed adversarial daemon
	Convergence for the distributed fair daemon

	Conclusion
	References

