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Abstract

The general block distribution of a matrix is a rectilinear partition of the matrix into orthogonal
blocks such that the maximum sum of the elements within a single block is minimized. This
corresponds to partitioning the matrix onto parallel processors so as to minimize processor load
while maintaining regular communication patterns. Applications of the problem include various
parallel sparse matrix computations, compilers for high-performance languages, particle in cell
computations, video and image compression, and simulations associated with a communication
network. We analyze the performance guarantee of a natural and practical heuristic based on
iterative re5nement, which has previously been shown to give good empirical results. When p2

is the number of blocks, we show that the tight performance ratio is �(
√
p). When the matrix

has rows of large cost, the details of the objective function of the algorithm are shown to be
important, since a naive implementation can lead to a �(p) performance ratio. Extensions to
more general cost functions, higher-dimensional arrays, and randomized initial con5gurations are
also considered. c© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

A fundamental task in parallel computing is the partitioning and subsequent distri-
bution of data among processors. The problem one faces in this operation is how to
balance two often contradictory aims: 5nding an equal distribution of the computational
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work and at the same time minimizing the imposed communication. In a data parallel
computing environment, the running time is dominated by the processor with the max-
imal load, thus one seeks a distribution where the maximum load is minimized. On the
other hand, blindly optimizing this factor, may lead to worse results if communication
patterns are ignored.
We assume we are given data in the form of a matrix, with communication only

involving adjacent items. This is typical for a large class of scienti5c computational
problems. The partition that minimizes communication load is the uniform partition,
or simple block distribution, where the n × n matrix is tiled by n=p × n=p squares.
For instance, this improves on the one-dimensional partition, where n=p2 columns are
grouped together. However, workload, which we typically measure as the number of
non-zero entries in a block, may be arbitrarily unbalanced, as non-zero entries may be
highly clustered.
A partition that yields greatly improved workload is the general block distribution,

where the blocks are arranged in an orthogonal, but unevenly spaced, grid. It can be
viewed as an ordinary block partitioning of an array where one allows the dividers
for one column (or row) block to be moved simultaneously. The advantage of this
distribution is that it preserves both the locality of the matrix and the array-structured
communication of the block distribution while at the same time allowing for diDerent
sized blocks.
If the underlying problem has a structure such that communication is local, using a

rectilinear partitioning gives a simple and well-structured communication pattern that
5ts especially well on grid connected computers. The simplicity of the general block
distribution also makes it possible for compilers to schedule the communication e>-
ciently. It has therefore been included as an approved extension for data mapping in
High Performance Fortran HPF2 [5].
Applications of the general block distribution include various parallel sparse matrix

computations, compilers for high-performance languages, particle in cell computations,
video and image compression, and simulations associated with a communication net-
work [1, 7, 8, 5, 11]. See [9] for a discussion of other rectilinear partitioning schemes.
Computing the optimal general block distribution was shown to be NP-hard by Grigni

and Manne [4]. In fact, their proof shows that the problem is NP-hard to approximate
within any factor less than 2. Khanna et al. [7] have shown the problem to be constant-
factor approximable. They did not give a bound on the value of the constant attained
by their algorithm, but an examination of their analysis appears to give a bound of 127.
They also did not try to analyze the complexity of the algorithm, but it is speci5ed in
terms of a collection of submatrices that can be of size �(n4) or square of the size of
the input. They additionally indicated a simple O(log2 n)-approximate algorithm, also
de5ned on a quadratic size collection.
The subject of the current paper is a heuristic that has been considered repeatedly

in the applied literature. The iterative re5nement algorithm was given by Nicol [11],
and independently by Mingozzi et al. [10] and Manne and SIrevik [9]. It is based on
iteratively improving a given solution by alternating between moving the horizontal
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and vertical dividers until a stationary solution is obtained. The heuristic can be seen
as a hillclimbing technique, potentially applicable as a post-processing step and as a
core ingredient of a multi-start metaheuristic.
We analyze this algorithm and some of its variants and extensions and give upper

and lower bounds on the quality of the solutions produced. The measure of quality
is the performance ratio of the algorithm, which is the ratio between the cost of the
solution found by the algorithm to the cost of the optimal solution, maximized over
all instances. This guarantee depends on the number p2 of blocks in the partition.

We 5rst analyze the basic iterative re5nement algorithm 3:2, where no initial solu-
tion is given. We 5nd that it yields a performance ratio of �(√p) when the cost of
each row is not a signi5cant fraction of the whole instance. On the other hand, the
performance deteriorates in instances with very heavy rows, and becomes as poor as
�(p). In order to combat this weakness, we give two ways of modifying or constrain-
ing objective functions of the one-dimensional subproblems. Both of these lead to a
�(√p) performance ratio on all instances.
We also consider the eDect that starting con5gurations, or initial partitions, can have.

In particular, a promising idea, suggested by Nicol [11], is to use random initial parti-
tions, and possibly making multiple trials. We show this not to be bene5cial, with the
resulting performance ratio being J(p= logp).

Our analysis here indicates that the iterative re5nement algorithm has a considerably
weaker worst-case behavior than is possible by polynomial-time algorithms. Neverthe-
less, it may be valuable especially for small to moderate values of p, which is the
case in our motivating application: load balancing on parallel computers. It is also
quite e>cient, being sublinear except for a simple linear-time precomputation step. In
summary, it is conceptually simple, natural enough to be discovered independently by
at least three groups of researchers, easy to implement, and has been shown to give
good results on various practical instances and test cases [11, 9].
The rest of the paper is organized as follows. The general block distribution and

the iterative re5nement algorithm are described in Section 2. Section 3 contains per-
formance analysis of the algorithm: the pure algorithm in Section 3.2, and slightly
modi5ed versions in Section 3.3. The case of random initial partitions is evaluated in
Section 3.4. Extensions of the results to more general cost functions and to matrices
of higher dimensions are given in Section 3.5. Finally, the implementation of the al-
gorithms is given in Section 4, with some improvements in the time complexity over
previous work [11, 9].

2. The general block distribution

For integers a and b, let [a; b] denote the interval {a; a+ 1; : : : ; b}.
For integers n and p, 16p6n, a non-decreasing sequence (1= r0; r1; : : : ; rp= n+1)

of integers de5nes a partition of [1; n] into the p intervals [ri; ri+1 − 1], for 06i ¡ p.
For completeness, we allow empty intervals.
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De�nition 2.1 (General block distribution). Given an n × n matrix A and integer p
with 16p6n, a general block distribution consists of a pair of partitions of [1; n]
into p intervals. It naturally partitions A into the p2 contiguous blocks, or
submatrices.

A block is a submatrix outlined by pairs of adjacent horizontal and vertical dividers.
A column block (row block) is a set of columns (rows) between adjacent vertical
(horizontal) dividers, respectively. A row segment is an intersection of a row and a
block.
In a parallel environment the time spent on a computation is determined by the

processor taking the longest time. The natural optimization problem is then to 5nd a
general block distribution that minimizes the maximum cost over all blocks. The cost
is here taken to be the sum of of the elements in a block under the assumption that
the entries of A are non-negative. The corresponding decision problem was shown in
[4] to be NP-complete.
The iterative re5nement algorithm consists of performing the following improvement

step until none exists that further reduces the cost:

With the vertical delimiters 5xed, 5nd an optimal distribution of the horizontal
delimiters. Then, with the new horizontal delimiters 5xed, do the same for the
vertical delimiters.

Thus, the algorithm alternately performs vertical and horizontal sweeps until con-
verging to a locally optimal solution. Each sweep can be viewed as a one-dimensional
subproblem, for which e>cient algorithms are known [2, 11, 12].
Initially, no delimiters have been assigned. That is equivalent to starting with all

delimiters being identically zero. In the 5rst vertical partition, A is partitioned optimally
into p vertical intervals without the use of the horizontal delimiters. The number of
iterations needed to obtain a converged solution varied between 2 and 13 in tests
presented in [9].
For the remainder we may sometimes assume for convenience that we have p di-

viders (instead of p − 1). Clearly, this does not aDect the asymptotic behavior. Note
that the outlines of the matrix form additional dividers.

3. Performance analysis

In this section, we analyze the performance guarantees of the iterative re5nement
algorithm and simple modi5cations thereof. We begin in Section 3.1 with intermediate
results on the 1-D subproblem. We analyze in Section 3.2 the performance of the pure
iterative re5nement algorithm, which is dependent on the cost of the heaviest row of
the input matrix. We then give in Section 3.3 simple modi5cations to the algorithm
that yield better performance ratios when the input contains heavy rows. In Section 3.4
we consider strategies for the initial placement of vertical dividers, including uniform
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and random placement. We 5nally consider extensions of the problem in Section 3.5
to other cost functions and higher-dimensional arrays.

3.1. 1-D partitioning

As a tool for our studies of the general block distribution we need the following
intermediate result on the one-dimensional case, i.e. how well a sequence of n non-
negative numbers can be partitioned into p intervals. Let W be the sum of all the
elements.

Lemma 3.1. Given a positive integer p and a sequence of n non-negative numbers; a
greedy algorithm yields a partition of the sequence into p intervals such that

(i) the cost of any interval excluding its last element is at most W=p; and
(ii) any interval with cost more than 2W=p consists of a single element.

Proof. Start the algorithm at the left end, and greedily add elements to form an interval
until its cost exceeds W=p. If the cost is at most 2W=p, make this the 5rst interval, and
inductively form p−1 intervals on the remaining array of total cost at most Wp− 1=p.
If the cost exceeds 2W=p, place a divider on both sides of the last element, forming
two intervals. Then, inductively form p − 2 intervals on the remaining array of cost
at most Wp− 2=p. The only intervals that can have cost exceeding 2W=p are those
formed by the last element added to a group, as in the second case.

Note that this gives an easy 2-approximation to the 1-D case by this greedy algo-
rithm; in fact, it is optimally within a factor of 2 from the absolute lower bound on
the optimal solution of the larger of W=p and the weight of the largest single element.

3.2. Pure iterative re5nement

The performance ratio attained by the iterative re5nement algorithm turns out to be
highly dependent on the maximum cost of a row. If this cost is small, the performance
is good, while it reduces to the trivial performance bound attained by the 5nal 1-D
sweep alone when the row cost is high.
Let us 5rst notice that the cost of the optimal solution, OPT , is at least W=p2, where

W is the total cost of the matrix, since the number of blocks is p2.

Theorem 3.2. Let R denote the cost of the heaviest row; R= maxi
∑

j A[i; j]. Then;
the performance ratio of the pure iterative re5nement algorithm equals �(p); when
R= �(W=p); but only �(√p) when R=O(W=p1:5).

The theorem is established by the following three lemmas, along with the trivial
O(p) ratio obtained by a single 1-D sweep.
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Lemma 3.3. The performance ratio of pure iterative re5nement is J(p) as a function
of p alone.

Proof. Consider the p2 × p2 matrix A=(ai; j); where

ai;j =




p2 if i = 1 and (p− 1)p+ 36j6p2; or

j = 1 and (p− 1)p+ 36i6p2;

1 if p+ 16i; j6p(p− 1);

0 otherwise:

Observe that the cost of the 5rst column and the cost of the 5rst row are
(p − 2)p2 =W=p. The iterative re5nement algorithm will 5rst assign the vertical di-
viders to be the multiples of p. One choice compatible with the de5nition of the
algorithm for the assignment of the horizontal dividers assigns them also the multiples
of p. The cost of this partition is the cost of the heavy row, or W=p=(p− 2)p2; and
no improvements are possible that involve either horizontal or vertical dividers but not
both.
The optimal partition consists of the vertical and horizontal dividers p(p − 1) +

4; p(p− 1)+6; : : : ; p2− 2; followed by 3p; 5p; : : : ; (p− 1)p. The cost of this partition
is 4p2; for an approximation ratio of p− 2=4. For the upper bound, recall that a vertical
(or horizontal) partition alone achieves a performance ratio p+ 1.

When the cost of each row is bounded, the algorithm performs considerably better.

Lemma 3.4. Following the 5rst (vertical) sweep of the algorithm; there exists a place-
ment of horizontal dividers such that the cost of blocks excluding the heaviest row
segments within them is at most 2(

√
p+ 1)OPT .

Proof. We show the existence of a set of horizontal dividers that achieves the bound.
The algorithm, which performs optimally under the given situation, will then perform
no worse.
Let O denote the set of dividers, horizontal and vertical, in some optimal 2-D so-

lution. We say that a column block is thick, if at least
√
p vertical dividers from O

go through it. Otherwise, a column block is thin. The solution we construct uses the
even-numbered horizontal dividers from O; as well as

√
p=2 dividers for each of the

thick column block to minimize the cost of its blocks.
Each block from a thin column block has at most one optimal horizontal divider

and
√
p− 1 vertical dividers from O crossing the block. Hence, the cost of the block

is at most 2
√
pOPT; or within the desired bound.

Each thick column block is of cost at most W=p plus a single column. The cost
of each column segment is bounded by 2OPT; given the even-numbered horizontal
dividers from O. The cost of the rest of the block, excluding the cost of the heaviest
row segment, is at most W=p divided by

√
p=2; or 2W=p1:5. Since OPT¿W=p2; this
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Fig. 1. The array used for showing the lower bound.

is at most 2
√
pOPT . Thus, blocks in thick column blocks, excluding the heaviest row

segment, are of cost at most (2
√
p+ 2)OPT .

The lemma holds in particular for the iterative algorithm, thus we get good bounds
when row cost is small.

Corollary 3.5. When each row is of cost at most O(W=p1:5) the iterative re5nement
algorithm achieves a performance ratio of O(

√
p) in two sweeps.

For the case of small row cost, we get lower bounds that match within a constant
factor.

Lemma 3.6. The performance ratio of the iterative re5nement algorithm is at least√
p=4; even when the cost of each row is less than W=p2.

Proof. Consider the matrix A in Fig. 1. We assume that p is a square number, and let
�=

√
p. The matrix A consists of a large block of dimension �(�2−�+1)×�(�2−�+1)

in the upper-left corner. The value of each element in this block is 1=(�2 − �+1). On
the diagonal below the large block there are �−1 blocks each of size �×�. The value
of each element in these blocks is 1.
The total cost W of A is p2 = �4. The cost of each row is at most one, or W=p2.

That can be arbitrarily reduced further by making repeated copies of each column and
row.
With these values the columns can be divided into p= �2 column blocks each con-

sisting of � columns and of cost �2. This is indicated by the dotted lines in Fig.
1. Since each column interval has the same weight this is the initial partition that
will be returned by the iterative re5nement algorithm. When performing the horizontal
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partitioning the large block will now be regarded as having cost �2. Thus, from the
horizontal point of view there are � blocks each of cost �2. Dividing each small di-
agonal block into � intervals will give a cost of � for each block. Similarly using �
intervals on the large block divides this into blocks of cost �. Note that it is possible to
achieve this bound exactly since the number of rows in the large block is �(�2�+ 1).
In this way we have used �2 row blocks and achieved a solution where each block
costs �=W=p1:5 giving a perfect load balance. Thus, this is the partition the algorithm
will return after the 5rst two sweeps. Returning to the vertical delimiters we cannot
improve the solution further since each column block contains a block of cost �. Thus,
the algorithm now terminates.
In contrast, consider a solution where the large block is partitioned into blocks of size

at most 2�×2�. Then the cost of each block is at most 4(�2 − �+ 1=4)=(�2 − �+ 1)¡
4. Using �2=2 column and row blocks one is able to cover �3 − �2=2 rows=columns,
which is less than the dimension of the large block. We now have at least �2=2 row and
column blocks left to use on the �− 1 small diagonal blocks. By using �=2 horizontal
and vertical delimiters on each of these we get 4 × 4 blocks of cost 4. Thus, we see
that there exists a solution of overall cost at most 4= 4W=p2.

This bound holds even when p is as large as n=2. Lemmas 3.4 and 3.6 leave a
gap of a factor 8. We estimate that the tight bound lies nearer the lower bound. More
involved analysis could be used to decrease the constant factor of the upper bound,
e.g. by showing that OPT¿2W=p2 (or greater) in a worst-case instance.

3.3. Modi5ed iterative re5nement algorithms

The lesson learned from Lemma 3.3 is that one should not blindly focus only on
the heaviest column=row segment in each sweep; it is essential to balance also those
segments that aren’t immediately causing problems. In particular, although single heavy
elements (or columns=rows) can cause the maximum block cost to be large, this should
not be a carte blanche for the remaining partition to be arbitrarily out of balance.
We present two approaches for modifying the pure iterative re5nement method,

which both achieve a bound of O(
√
p). One approach involves a simple modi5ca-

tion to the objective function, and yields the desired guarantee in three sweeps. The
other requires only two sweeps to obtain an O(

√
p)-approximate solution, but diverges

slightly more from the original script.
A three sweep version: We use a three sweep variant of the algorithm, where the

5rst and the third sweep are as before, but the second sweep uses the following slightly
modi5ed objective function:

The cost of a block is the sum of all the elements in the block, excluding the
heaviest row segment.

Lemma 3.7. The above modi5ed algorithm attains a performance ratio of 4
√
p+ 4.
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Proof. By Lemma 3.4, the cost of any block after the second sweep is at most
(2
√
p + 1)OPT plus the cost of a single row segment. We then only need to en-

sure that we reduce the cost of unusually heavy row segments in the third sweep,
without aDecting much the cost of the main parts of the blocks.
An assignment that contains every other of our previous vertical dividers, and every

other of the vertical dividers from some optimal 2-D solution, ensures both: the cost
of each block excluding the heaviest row segment at most doubles, while the cost of
a row segment will be bounded by 2OPT . Hence, the total cost of a block is at most
(2(2

√
p+1)+2)OPT6(4

√
p+4)OPT . Since such an assignment exists for the third

sweep, the optimal 1-D subroutine will 5nd a solution whose cost is no worse.

A two-sweep version: We now consider an algorithm that works in two sweeps, as
follows:

Step 1: Find the following two sets of vertical dividers independently:
(a) The p=2 dividers that minimize the maximum cost of any row segment.
(b) Use p=2 dividers that minimize the maximum cost of a column block.

Step 2: Find an optimal set of horizontal dividers.

We extend the analysis of the algorithm to its performance function. While the
performance ratio of an algorithm is only a single value, describing the worst-case
ratio between the heuristic and the optimal values, the performance function �(OPT )
indicates the cost of the worst solution obtained by the algorithm for each possible
optimal solution cost. In many cases, this yields a more informative analysis.
First, recall that OPT¿W=p2; and thus �(OPT ) is de5ned only for those values of

OPT . Second, consider the case when OPT¿2W=p. There is an assignment of vertical
dividers so that any column block of cost more than 2W=p will consists of a single
column. A second sweep of horizontal dividers will then slice these separated columns
optimally. Hence, �(OPT )= 1 when OPT¿2W=p.
We can generalize our analysis to show that �(OPT)=O(

√
(W=p)=OPT ) for OPT

in the range [4W=p2; 2W=p], providing a smoothly improving approximation bound.

Theorem 3.8. The two-sweep algorithm has a performance function

�(OPT ) = max

(
O

(√
W=p
OPT

)
; 1

)

for each value of OPT¿4W=p2.

Proof. As before, we present a particular set of horizontal dividers that achieve the
bound, and thus claim that the algorithm performs no worse.
Part (a) of step one ensures that each row segment is of cost at most 2OPT . Part

(b) ensures that each column block is of cost at most 2W=p plus the cost of a single
column (by Lemma 3.1).
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Let t=
√
(W=p)=OPT . We now say that a column block is thick, if at least t of the

optimal vertical dividers go through it, and otherwise thin. Observe that t is at most√
p since OPT¿W=p2.
We analyze the following set of horizontal dividers: Every other optimal horizontal

divider, plus
√
p=2 dividers to minimize each of the at most

√
p thick column blocks.

Using every other optimal horizontal dividers ensures that the cost of each column
segment is at most 2OPT , and that the cost of each thin block is at most 2tOPT .
Using t dividers to minimize the cost of blocks within each of the at most p=t thick
column blocks ensures that those blocks are of cost at most 2=t times the cost of a
column block, plus the cost of a column segment and the cost of a row segment. This
is at most

2
t
2W
p

+ 2OPT + 2OPT = (4t + 4)OPT :

In particular, this is at most (4
√
p+ 4)OPT .

This bound on the performance function can also be shown to be asymptotically
tight.

3.4. Initial placement strategies

The iterative improvement method leaves open the possibility of using additional
strategies for the initial placement of the vertical dividers. One approach would be to
start with a uniform placement, with dividers at n=p; 2n=p; : : : ; (p− 1)n=p. Nicol [11]
suggests using random placement, where each divider is assigned a uniformly random
value from 1 to n. He found this to give empirically good results. Random assignment
also leaves open the possibility of repeating the whole improvement procedure, retaining
the best of the resulting solutions.
Unfortunately, this approach does not improve the performance guarantee of the im-

provement method. In fact, with high probability, the performance ratio is decidedly
worse, or J(p= log p), which holds even if the procedure is repeated often. Basically,
it suggests that any division strategy that is primarily based on the number of columns
in each block is bound to fail. The strategy must rely on the weight of the columns. On
the whole, however, we are led to the conclusion that partitioning methods that com-
pute the horizontal and vertical dividers independently, cannot yield close to optimal
approximations.

Theorem 3.9. Random initial placement followed by iterative improvement has per-
formance ratio J(p= log p), expected and with high probability.
Uniform initial placement followed by iterative improvement has performance ratio

P(p).

The success of the algorithm on the example we shall construct depends on the size
of the largest horizontal block in the initial partition. The following lemma bounds this
value. Let ln denote the natural logarithm.
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Lemma 3.10. For a random partition of the sequence 1; 2; : : : ; n into p intervals; the
probability that the largest interval contains at least �(n−1)lnp=(p−1)+1 numbers
is at most p−(�−1).

Proof. Consider any 5xed interval k, 16k6p, and let Xk be the random variable
denoting its length. We have

Prob(Xk¿d) =
(
n− 1− (d− 1))

p− 1

)/(
n− 1
p− 1

)

=
p∏
i=0

(
1− d− 1

n− 1− i

)
6
(
1− d− 1

n− 1

)p−1

:

Let d�= �(n− 1)lnp=(p− 1) + 1, where �¿1. Then

Prob(Xk¿d�)6
(
1− � lnp

p− 1

)p−1

6e−�ln p=p−�

using the fact that 1− x6e−x. The probability that the largest of the p intervals is at
least d� is thus at most p×Prob(Xk¿d�)6p−(�−1).

Let En be the expected length of the largest of the p intervals for 5xed p. The
above lemma shows that En62n lnp=p. A more precise bound is known:

lim
n→∞

En
n

=
Hp
p
;

where Hp=
∑p

i=1 1=i= lnp+O(1) is the pth harmonic number. (Goulden and Rich-
mond [3] posed this limiting identity as a problem in the American Mathematical
Monthly with a solution submitted by Tak)acs [13], and others. Holst [6] obtains the
proof from a more general treatment of discrete spacings.) Thus, for 5xed p the ex-
pected length of the largest interval is Hp times the length of an interval in the uniform
partition.
We now prove the theorem.

Proof. We assume that p=o(
√
n). Let C =

√
n.

Consider the n× n 0/1 matrix in Fig. 2. Let us refer to the rightmost C columns
as the thick vertical block, and the lowest C rows as the thick horizontal block.
Only the elements in the symmetric diDerence between the two thick blocks have a
cost one; the rest are zero elements. The cost of either block, denoted by Z , is thus
C(n− C)= n3=2 − n.

Now consider the eDect of a random assignment of vertical dividers. It is easy to
deduce that with high probability no divider will hit the vertical heavy block. Let B
denote the cost of the heaviest column block CB. Let b satisfy b=B(p − b)=Z . We
round b to the nearest integer.
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Fig. 2. An example for which a uniform or random initial assignment leads to poor performance.

After this 5rst sweep, the algorithm proceeds deterministically. The second sweep
must use b horizontal dividers on the thick horizontal block and p − b on the thick
vertical block. The cost of each block in the former is B=b ≈ Z=(p−b), while the cost
of the latter is clearly Z=(p− b).
On the third sweep, the algorithm must similarly use b vertical dividers on the thick

vertical block and p− b on the thick horizontal block. The cost of each block is then
about Z=b(p− b). No signi5cant changes can then be made to either the horizontal or
the vertical dividers independently to decrease this value.
We have skipped over the detail of the “joint block”, the only block that con-

tains elements from both thick blocks. Its size may bias the assignment of dividers
somewhat, resulting in small oscillations. None of them can make signi5cant diDer-
ence, and in fact, cannot change the number of dividers used to partition either heavy
block.
To wrap up this analysis, compare the algorithm’s solution to the solution that on

each side uses one divider to separate the heavy blocks and p=2− 1 dividers on each
of the them. The cost of this solution is then Z=p2, and the ratio between the two
solutions p2=(p− b)b≈p=b. From Lemma 3.10, with high probability, the value of b
is O(lnp). Hence, the performance ratio is at least J(p=lnp), expected and with high
probability.
The proof of the lower bound for the uniform partition is left as an exercise.

We can also observe that for any number of repetitions of this random procedure,
within any polynomial of p, yields a performance ratio of at least J(p= log p). We
also remark that the ratio can be shown to be �(p= log p).

Remark. Recall that our basic iterative improvement algorithm starts with an optimal
vertical partition without any horizontal dividers. We might view this as starting with
a totally degenerate initial partition of the rows. On a random initial partition the
algorithm initially performs more like on a uniform partition than when started with
no horizontal dividers.
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3.5. Extensions

Other cost functions: While the sum of the elements within a block is usually
the most natural measure, other cost functions may be more appropriate in certain
applications, (for some examples, see [12]). The results of this paper can easily be
extended to other reasonable cost functions, in particular the following class.

Corollary 3.11. General block partitioning can be approximated within O(
√
p) for

any subadditive cost function; i.e. if  (B)6q (B1) +  (B2) whenever B=B1 ∪B2.

Higher dimensions: Our analysis of the 2-D case extends straightforward to higher
dimensional matrices.

Claim 1. The iterative re5nement algorithm attains a performance ratio �(p) on
three-dimensional matrices.

This generalizes to a ratio of pd=2 for d-dimensional matrices. Matching lower bounds
are straightforward generalizations of the 2-D case.
While this bound may appear weak, it is a considerable improvement over the al-

ternatives. An oblivious assignment, where we assign dividers in each dimension inde-
pendently, only guarantees a W=p bound, or a pd−1 ratio. And the simplest partition
– uniform assignment – can be as much as pd away from optimal.

4. Implementation

We sketch in this section a complexity analysis of the iterative re5nement algorithm.
The bounds obtained improve on those claimed in the previous papers of Nicol [11]
and Manne and SIrevik [9]. To begin with, we generalize a result of Nicol [11] on
1-D solutions to a more general class of cost functions in order to handle the special
requirements of the modi5ed algorithms.

4.1. 1-D computation

The 1-D case has been considered quite frequently in the literature. Olstad and
Manne [12] gave a O(pn) algorithm that holds for all monotone cost functions that
are invertive, i.e. where one can add or subtract a single element in constant time.
Frederickson [2] studied parameterized range searching, which solves the problem in
linear time O(n) for a range of cost functions that includes the standard additive func-
tion. In practice, however, the algorithm is likely to be both too slow and complicated.
Nicol [11] gave a bottleneck search algorithm, which solves the case of the standard
cost function in time O(n+ (p log n)2).
We describe here how Nicol’s approach can be extended to any modular cost func-

tion, with no added time complexity.
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Lemma 4.1. Let  be a cost function where  (B1 ∪B2) can be computed in time t
using  (B1) and  (B2). Then; the optimal column partitioning with respect to  can
be computed in time O(t(p log n)2), given O(n) preprocessing.

Proof. The preliminary part of our approach is to precompute the cost of segments of
size that is a power of two and end at some multiple of that power of two. Namely, we
precompute the cost of each segment [k · 2l−1 + 1; (k + 1)2l], for each l and k within
the range. This allows us to compute the cost of any segment in logarithmic time.
This precomputation need only be done once, even if this 1-D algorithm is executed
multiple times.
A key subroutine used by the main algorithm is greedy partition, which is given a

5xed value Q and attempts to partition into p blocks of cost at most Q. This algorithm
can be performed in time p log n when the precomputed values are available. For each
block i=1; : : : ; p, the algorithm performs a binary search on the set of remaining values
for an index z such that the cost of the segment up to but not including element z is
at most the given bottleneck value Q while the cost would exceed Q if the element z
is included. This binary search can be performed in such a way that in each step we
compute a new segment from a previous segment and a precomputed segment of size
power of two. This takes time at most log n, given a modular cost function.
If we have covered all the n elements in the p partitions, then the value Q succeeds;

if Q does not succeed, then there is no partitioning of cost at most Q. Hence, if we
are given the optimal cost OPT , the greedy partitioning will 5nd an optimal partition.
The value OPT must be the cost of some segment in the array, but the issue remains
how to 5nd that e>ciently.
We then proceed as Nicol. Set start to be the starting index, 1. First 5nd an index z

such that the cost of [start; : : : ; z− 1] is insu>cient as bottleneck cost (i.e. that greedy
partitioning fails for this value) while the cost of [start; : : : ; z] su>ces. We can again
use binary search, adding in each step a power-of-two-sized set to a previous segment,
to 5nd this in log n calls to greedy. The optimal solution must have [start; : : : ; z] as
its 5rst block. We then recurse, for the remaining p − 1 blocks, on the array su>x
starting at index z.

In particular, the above argument applies to the cost function consisting of the sum
of the elements in a block excluding the heaviest, which we used in a segmented
form in the second sweep of the 3-sweep algorithm. For this, we store with each
computed block the cost of the heaviest element. Note that none of the previously
studied algorithms (beyond the trivial ones) treat this case.

4.2. 2-D computation

In our 2-D algorithms, we used four diDerent objectives for sweeps:

• The 5rst sweep is the simplest, and amounts to a plain 1-D sweep on a fully
preprocessed instance. Time complexity is (p log n)2 given n2 preprocessing
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• Other sweeps of the pure iterative re5nement algorithm involve p segments, for a
cost of p per operation. Time complexity is thus p3 log 2n.

• The segmented sweep that excludes the cost of the heaviest row segment, as in
the second step of the three-sweep algorithm, also takes p time per operation, or
p3 log 2n in total.

• Minimizing the cost of a row segment, or a column segment, is equivalent to a
segmented sweep when the number of segments is n. Thus, the time complexity
is n(p log n)2. (Note, however, that this could be decreased by considering only
rows of high cost.)

It follows that the pure iterative re5nement method runs in time O(n2 +Tp3 log 2n),
where T is the number of sweeps. This improves on the bound of O(n2 + p4 log 2n)
obtained by Nicol.
The three sweep variation runs in time O(n2 + p3 log 2n), while the two

sweep method takes time O(n2 + n(p log n)2). The former is linear in the size of
the input whenever p=O((n= log n)2=3), while the latter is linear whenever
p6

√
n= log n.

The case when p is a constant or a slow-growing function w.r.t. n is of special inter-
est, especially in the applications to load-balancing parallel computers. Then, the time
complexity of the algorithm is poly-logarithmic in n, given the O(n2) preprocessing
step (which is e.g. trivially parallelizable.)
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