Efficient Self-stabilizing Algorithms
for Tree Networks

Jean R. S. Blair* Fredrik Manne!

Abstract

Many proposed self-stabilizing algorithms require an exponential
number of moves before stabilizing on a global solution, including
some rooting algorithms for tree networks [1, 2, 3]. These results are
vastly improved upon in [6] with tree rooting algorithms that require
only O(n?® + n? - ¢;) moves, where n is the number of nodes in the
network and ¢y, is the highest initial value of a variable. In the current
paper, we describe a new set of tree rooting algorithms that brings
the complexity down to O(n?) moves. This not only reduces the first
term by an order of magnitude, but also reduces the second term by
an unbounded factor. We further show a generic mapping that can be
used to instantiate an efficient self-stabilizing tree algorithm from any
traditional sequential tree algorithm that makes a single bottom-up
pass through a rooted tree. The new generic mapping improves on
the complexity of the technique presented in [8].

Keywords: Self-stabilizing, tree, root, median, center, bottom-up.

1 Introduction

A distributed system can be modeled as an undirected graph G = (V, E),

where V' is the set of n systems, or nodes, and FE is the set of links, or

*Department of Electrical Engineering and Computer Science, United States Military
Academy, West Point, NY, 10996, USA, Jean-Blair@usma.edu

'Department of Informatics, University of Bergen, N-5020 Bergen, Norway,
Fredrik.Manne@ii.uib.no

edges, interconnecting the systems together. In the self-stabilizing algorith-
mic paradigm, each node can only see its neighbors and itself, yet the system
of simultaneously running algorithms must converge to a global state satisfy-
ing some desired property. In the next section we describe more completely
the self-stabilizing algorithmic paradigm.

Numerous results in the literature address the issue of self-stabilizing
algorithms for rooting a tree. In [1], [2] and [3] the authors describe tree al-
gorithms for leader election, center-finding and median-finding, respectively.
All three algorithms appear to require an exponential number of moves in the
worst case. These results are vastly improved upon by the center-finding and
median-finding algorithms in [6], both of which require only O(n?® + n? - ¢;)
moves, where ¢, is the highest initial value of the variables used in the com-
putation. We improve further on these results by describing a generic self-
stabilizing tree rooting algorithm that requires only O(n?) moves. This new
generic algorithm can be used to solve, among others, the problems of elect-
ing a leader in a tree, finding the center of a tree and finding the median of
a tree. Section 3 defines these and other graph properties, gives the generic
tree rooting algorithm and shows how to choose a leader based on various
criteria.

There are numerous graph problems that can be solved on a tree once the
tree is rooted. Many self-stabilizing algorithms in the literature rely on this,

augmenting an arbitrary tree rooting algorithm to solve one or another prob-

lem. See, for example, [4, 10, 12, 13]. In a seminal work, the authors of [8]'
present a unified approach to translating linear-time bottom-up sequential
dynamic programming tree algorithms into self-stabilizing tree algorithms.
Their technique can easily be applied to improve the results of [4, 12, 13].
The analysis in [8] uses round complexity, showing that the resulting tree
algorithms require 2r 4+ 3 rounds, for a tree of radius r. It is easy to see that
a single round could require as much as O(n?+n-c;,) moves, where ¢, is again
the highest initial value. Thus, they have described a set of self-stabilizing
tree algorithms that run in O(n® + n? - ¢;) moves. In Section 4 we present
an improved generic mapping from sequential bottom-up one-pass tree al-
gorithms to self-stabilizing tree algorithms that require only O(n?) moves.
Included in that section is an example of instantiating a self-stabilizing algo-
rithm, in this case to find a maximum independent set in a tree.

The fundamental idea used for all of the results in this paper is the time-
honored concept of using a little additional storage in order to drastically
reduce the computation time. Where previous algorithms would have used n
variables, one per node in the network, we use 2n — 2 variables, two per edge
in the network. Our algorithms have the added benefit of greatly simplified
proofs of correctness. Section 5 contains a brief discussion of the fundamental
difference between our self-stabilizing algorithmic approach and that of the

previously published tree algorithms.

LAlso to appear as [11].

2 The Self-Stabilizing Paradigm

A distributed system is modeled as undirected graph G = (V, E), where V
is a set of n nodes and F is a set of m edges. If 7 is a node, then N(i), its
open neighborhood, denotes the set of nodes to which i is adjacent. Every
node j € N(i) is called a neighbor of node i. The set N[i] = N(i) U {i} is
the closed neighborhood of i. The induced subgraph G — i is the subgraph of
G induced by the nodes in V' — {i}.

In a self-stabilizing algorithm, each node can change the value of its local
variables based only on the value of the local variables in its closed neigh-
borhood. The contents of a node’s local variables constitute its local state.
The system’s global state is the union of all local states. No assumptions can
be made about the initial global state; that is, the initial value of every local
variable is arbitary. A node 7 changes its local state by making a move, i.e.,
changing the value of one or more of its local variables.

Self-stabilizing algorithms are often given as a set of rules of the form
“if p(i) then m(i),” where p(i) is a predicate and m(i) is a move. The
predicate p(i) is defined in terms of the local state of ¢ and the local states
of its neighbors j € N(i). Every node in the system G runs the same set
of rules. A node i is privileged if at least one of its rule-predicates is true.
When a node is privileged, it may execute one of its privileged moves. No
assumptions can be made about which privileged move is made when more

than one exists. We say the system has stabilized if no nodes are privileged.

Analysis of a self-stabilizing algorithm is slightly different than that of
a sequential algorithm. For self-stabilizing algorithms it is not the overall
time-complexity that is of concern, but rather the number of moves made by
the algorithm. That is, the time required to perform checks for predicates or
to make updates to local variable values does not matter. The self-stabilizing
algorithm is evaluated based only on the number of rules that are fired, or
equivalently the number of moves made.

As is common for self-stabilizing algorithms, we will assume that each
node has a unique identifier. We will discuss in the conclusion how our
algorithms can be modified to not require unique identifiers.

Many self-stabilizing algorithms work correctly only in the presence of
a central daemon that serializes the moves made by privileged nodes [7].
Our algorithms do not rely on this restriction. We only assume read-write
atomicity. Thus, two or more nodes can make simultaneous moves, as long

as no node is accessing a value that is being written by another node.

3 A Generic Leader Election Algorithm

An important problem in distributed computing is that of electing the leader
in a graph. When the graph is a tree this is equivalent to designating the
root of a tree. We will assume throughout the remainder of this paper that
the graph G is a tree. In this section we describe a generic self-stabilizing

leader election algorithm for trees.

The generic algorithm can be instantiated with any rooting property that
is based on a distance-from-the-leaves property of the nodes in the tree, as
long as a tree can have only one “winner” (or two “winners”, if the two can
each detect the presence of a second) with the best distance-from-the-leaves.

The following is a partial list of such properties.

e Maximum distance to a leaf. The center of a tree is a node whose max-

imum distance to a leaf is minimum. A tree has either a unique center

or two adjacent centers[9].

e Sum of distances to all other nodes. The median of a tree is a node for

which the sum of the distances from it to all other nodes is minimum.

A tree has either a unique median or two adjacent medians[9].

e Size of largest disconnected component after removal. An Z-separator

of a tree is a node whose removal results in two or more disconnected
components, each of which has no more than 7 nodes in it. A tree has

either a unique F-separator or two adjacent F-separators[9].

The generic leader election algorithm can be viewed as consisting of two
separate phases. In the first phase each node i determines, for each j € N (i),
the particular distance property for the node ¢ in the component of G — j
that contains ¢. In the second phase each node determines if it is the one
node (or if it and a neighbor of its are the two nodes) in the tree with the

desired property. The “output” of the algorithm is that exactly one node

will have designated itself as the leader, and all other nodes will know which
neighbor of theirs is closer to the leader than they are.

In the following two subsections we describe the two phases of a self-
stabilizing algorithm that finds an §-separator of a tree. Note that for a tree,
a g-separator is also a median. Thus, as presented the algorithm solves the
median-finding problem. In the third subsection we discuss how to modify
the rules presented here for a generic self-stabilizing rooting tree algorithm

and how to instantiate a center-finding tree algorithm.

3.1 Phase one — determining distances from leaves

For this presentation, the distance-from-the-leaves property is the size of the
largest subtree. To that end, each node 7 maintains an array size; of integer
variables. The array contains one value size;(j) for each j € N(i). Once the
system stabilizes, size;(j) will contain the number of nodes in the connected
component of G — j containing i. Note that only the local variable size;(j)
in node ¢ will be accessed by node j € N(i), and thus, as is assumed in the
self-stabilizing paradigm, no node needs to have knowledge of the existence
of nodes that are a distance of two or more from it.

The algorithm described by the rule R1 below runs on each node of the
network. We will later show that once the network has stabilized, each node
¢ can determine the number of nodes in the entire network by computing
size;(j) + size;(i) for any neighbor j € N(i). Each node interprets the rule

by substituting itself in place of 7.

R1: if (35 € N(i) such that size;(§) # 1 + Xren)—(j sizer(i))

then size;(j) < 14 Xieni)- g5y sizer(i))
Note that if ¢ is a leaf, then size;(j) will be set to 1 by R1.

The proof of correctness of this algorithm uses several straight-forward
inductive arguments to show that the number of times that the value of
size;(j) changes is no more than the number of nodes in the component of
G — j that contains ;. Due to space limitations, the four lemmas leading to
the following theorem and their proofs of correctness are omitted here. The

interested reader is refered to [5] for these and other proofs omitted from this
paper.

Theorem 3.1 For any given tree network, the distributed algorithm R1 sta-
bilizes in no more than n(n — 1) moves with size;(j) equal to the number of
nodes in the component of G — j that contains i for every pair of adjacent
nodes i and j.

Lemma 3.2 The bound of n(n — 1) mowves for R1 is tight.

3.2 Phase two — rooting the tree

The algorithm for rooting the tree is based on each node having determined
its position relative to a g-separator in G. To accomplish this, rule R1
(defined in the previous subsection) is used so that “first” every node will

know the size of the entire tree. A node i will make the “subsequent” moves

of determining its position relative to an F-separator of the tree only when,
from its local perspective, it believes it knows the correct size of the tree.

The following predicate is evaluated for this purpose:

sizeCorrect; = (Vj € N (i), size;(j) = 1+ Zieng)—j) Sizer(7))
Note that when sizeCorrect; is true rule R1 cannot be applied at node 1.
The following result shows how a node ¢ can determine the number of nodes

in the graph once sizeCorrect; evaluates to true.

Lemma 3.3 If sizeCorrect; is true then size;(j) + sizej(i) = size;(k) +
size(i) = n for all pairs of nodes j, k € N (7).

Thus when node ¢ stabilizes locally it can calculate the number of nodes it
assumes that the graph contains as n; = size;(j) + size;(i) for any j € N(37).
Note that Lemma 3.3 implicitly proves that when R1 has globally stabilized
n; = n for each node i. In this case it is straightforward for node 7 to
determine if it is an F-separator and if not to determine its position relative
to the separator by locating its neighbor j with the largest size;(i) value.

In addition to the array size; of integer variables, each node also maintains
a parent pointer p;. When the algorithm terminates, the value of p, for the
root node r will be r, while the value of p; for each node ¢ # r will be the
neighbor of 7 that is closest to 7.

The algorithm is given by rule R1 together with rules R2-R5 below. The
R2-R5 predicates all require that sizeCorrect; be true; thus they can be
applied only if R1 cannot be applied. The purpose of these rules are as
follows. R2 is used to identify the 3-separator if a unique one exists, and to
make the unique separator be the root. R3 is used by nodes that are not
5-separators to set their pointer to their closest-to-the-separator neighbor.

R4 and R5 are used in the case where there are two $-separators. R4 selects

9

as the root the F-separator with higher unique ID, while R5 sets the pointer

of the F-separator with lower unique ID to point to its §-separator neighbor.

The value size;(j) + size;(i) for an arbitrary j € N(i) is used for n,.

R2:

R3:

R4:

R5:

if (sizeCorrect;)
and (Vj € N (i) sizej(i) < n;/2)
and (p; # i)

then (p; < 14)

if (sizeCorrect;)
and(3j € N(i) such that size;(i) > n;/2)
and (p; # j)

then (p; « j)

if (sizeCorrect;)
and (3j € N(i) such that size;(i) = n;/2)

and(ID > IDj)
and (p; # i)
then (p; «+ 1)

if (sizeCorrect;)
and(3j € N(i) such that size;(i) = n;/2)

and (ID < ID;)
and (p; # j)
then (p; < j)

Again, the reader is refered to [5] for statement of the lemmas and proofs

that lead to the following result.

Theorem 3.4 For any given tree network, the distributed algorithm R1-R5
stabilizes in no more than 2n® — n moves with the values of p; for all nodes
i defining a rooted tree with an 3-separator as the root.

10

3.3 Other criteria for leaders

In this subsection we outline a generic version of our rooting algorithm and
then briefly discuss how the Z-separator algorithm can be modified to find
the center of a tree.

In the generic version of the rooting algorithm we maintain, at each node
i, an array dist; rather than the array size;. The value dist;(j) for each
J € N(i) will contain the value of the distance-from-the-leaves property in
the connected component of G—j containing 2, once the system has stabilized.
Let the function dfl(Ugen()—(;3disti(i)) be one that calculates the value of
the distance-from-the-leaves property for a node i based on the value of
the distance-from-the-leaves property of all “children” neighbors (i.e., all

neighbors k& # j). Then rule R1 can be re-written as follows.

R1: if (35 € N(i) such that dist;(j) # dfl(UkeN(i)_{j}diStk(i))
then disti(j) dfl(UkeN(i)_{j}diStk(i))

n_
2

It is easy to see that the Z-separator algorithm given in Subsection 3.1
is this generic algorithm instantiated with dfl(Upeng)—gjydisty(i)) = 1 +
Y ken(i)—{;} dist(i). Furthermore, the algorithm given in [6] for finding the
median of a tree makes this same calculation. The difference is that the
algorithm in [6] calculates only one df[value for the currently assumed parent
of node 7, rather than calculating a df[value for every possible parent. Since
our algorithm stabilizes with each node having full knowledge of which node

is its parent, our algorithm clearly calculates also the median of a tree. It is

worth highlighting the difference between the two median-finding algorithms:

11

our algorithm maintains more values than does the algorithm in [6], but does
so in only O(n?) moves as compared to the O(n? + n? - ¢;) moves required
by the algorithm in [6].

In a similar fashion we can utilize the criteria in [6] that finds the center
of a tree inorder to instantiate an O(n?) self-stabilizing algorithm. Here
the parameter function dfl(Upen()—13dists(2)) = 1+maxpen)i {disty (i)}
for both leaves and internal nodes? results in our rule R1 giving a similar
center finding algorithm to that given in [6]. The difference is again that
our algorithm calculates a df[for every possible parent, but does so in fewer
moves in the worst case.

The rooting algorithms in [6] contain only their version of rule R1. They
prove that then the node (or two nodes) that is (are) the leader(s), either
median or center, can determine its (their) leader-status by comparing its
distance-from-the-leaves property with that of all of its (their) neighbors. We
have gone further in Subsection 3.2 by explicitly accomplishing this determi-
nation of who the leader is as well as setting pointers for the corresponding
rooted tree with rules R2 through R5. These rules can be generalized in
the same way that we have generalized rule R1 above by defining generic
parameter functions for determining whether or not a node is the leader and
substituting those generic parameter functions in for the second condition
of each of rules R2 through R5. In the interest of space, we omit these

generalizations here.

>This assumes the function maxye n(i)— ;3 disty (i) evaluates to zero when N (i) = {j}.

12

4 A Generic Bottom-Up Algorithm

Many graph problems can be solved efficiently on trees in a bottom-up fash-
ion. The main idea is to first root the tree at some node r, and then to
propagate computation from the leaf nodes towards r as follows. Let child(i)
be the set of node ¢’s children in the rooted tree. We assume that a function
f(j) has been computed for each j € child(i). Then f(i) = g(Ujccnita)f(j))
for some function g. If i is a leaf then g() = ¢ where ¢ is an appropriate
constant. If g can be computed in O(1) time then the sequential time of this
algorithm is O(n). The solution is given by the union of all f values.

There exists several examples of self-stabilizing algorithms for solving
such problems. The broad class of algorithms in [8] solve these problems in
O(n?®+ n’c,) moves, where ¢, is the maximum initialized value of a variable.
In [4] a self-stabilizing algorithm is given for finding a maximum matching
in a tree. Their algorithm requires O(n*- h(n)) moves, where h(n) moves are
needed to root the tree. Thus, combined with our rooting algorithm their
algorithm uses O(n') moves. In this section we will show how all of these
problems can be solved by a self-stabilizing algorithm in only O(n?) time.

The main idea behind our algorithm is to simultaneously solve the prob-
lem with each possible node as the root, storing the results for each node
i in an array f;. As with the size; array, the value of f;(j) for j € N(i)
contains the desired result for node i, assuming j is the parent of 7 in a

rooted tree. Independently and simultaneously we run both the bottom-up

13

algorithm to calculate the f; values and also an instantiated generic rooting
algorithm. Combined, the two algorithms will stabilize in O(n?) time. When
the combined algorithm stabilizes each node knows its relative position to
the root and can use its f values together with the f values of its neighbors
to determine which of its f values is its solution.

We are now ready to begin describing the new algorithm. Assume that G
is rooted and that j is the parent of node i. We first observe that the value
of f(i) is independent of which node is the root of G as long as it is situated
in the component of G — i that contains j.

Initially G is not rooted, but we know that for any edge (i,7) we must
either have p; = j or p; = i. Thus if for each edge (i, j) we calculate both f(7)
under the assumption that p; = j and similarly f(j) assuming that p; =i
we will, once the tree is rooted, have all the f values needed to compute a
global solution. Note that for the root we must set f(i) = g(Ureng)fi(%)).

We define for each edge (i,j) € E variables f;(j) and f;(i) associated
with node 7 and j respectively. We also define a variable solution; for each
node which contains node ¢’s final f value. Our algorithm consists of rules
R1 through R5 of the F-separator algorithm combined with the following

three rules.

R6: if (35 € N(i) such that fi(j) # 9(Uren(-{5)fk(9))
then f;(j) « 9(Upen(i)—g51fx (7))

R7: if (p =1i)
and solution; # Q(UjeN(i)fj(
then (solution; < g(Ujen()f;

i)
(4))

14

R8: if (p;i #1)
and (solution; # f;(p;))
then (solution; < fi(p;))

Note that in rule R6 we assume that a node can detect if it is a leaf and in

this case we define g() = ¢ for some appropriate constant c.
Theorem 4.1 Algorithm R1 — RS stabilizes after O(n*) moves.

Proof. Note first that R6 is a generalization of R1 with the dfl function
replaced by g. Thus, the number of times an R6 move is made is the same
as R1. Rules R7 and R8 may fire once initially and then at most once after
each change in p; or some neighboring f value. From the above discussion
and Theorem 3.4 it follows that the total number of rule R7 and R8 moves
is O(n?). =

Theorem 4.2 Once the distributed algorithm R1 — R8 has stabilized on a
tree network, the values of solution; solve the associated graph problem.

Proof. The correctnes of the algorithm follows from the fact that R6 behaves
in the same way as R1. Thus after R1 through R6 have stabilized only one
of rules R7 and R8 may fire once for each node to set solution; to its correct

value. n

As an example of how this algorithm can be used to solve a particular
problem, we consider the problem of finding a maximum independent set in
a tree. A sequential algorithm to solve this was given in [14]. The algo-

rithm effectively roots the tree at its center and then processes the nodes

15

starting from the leaves, working towards the root. Each node is included
in the independent set if none of its children are in the set. To convert this
to a self-stabilizing algorithm, we simply consider f; to be the appropriate
boolean value, defining the algorithm with the function set g() = TRUE and
9(Ujeset(iy fi(1)) = Njesersy(—f;(2)) where set(i) = child(i) for non-root nodes
and set(i) = N(i) for the root. The correctness of this algorithm follows

directly from the correctness of the sequential algorithm.

5 Concluding Remarks

The main idea behind our more efficient algorithms is to have rules for which
updates propagate along directed acyclic paths in an undirected tree. In this
way one avoids cycles in the updates and thus obtains fast convergence.

All of the previously-published self-stabilizing tree algorithms mentioned
in Section 1 have the characteristic that they locally compute a required
value at each node based on a current view of which neighbor is the node’s
parent. Each time the parent changes, as it does frequently up until sta-
bilization of the rooting algorithm, the value is recomputed. It is at this
point that information may in fact be lost. If later the local view of the
parent is switched back, then the required value must be recomputed even
if nothing has changed other than the view of who the parent is. The al-
gorithms presented in this paper avoid this unnecessary re-computation of

values by locally maintaining values for each possible parent (e.g., size;(j)

16

for all j € N(i)). Each value is computed in exactly the same way that it is
computed in a sequential algorithm to solve the same problem in a directed
acyclic fashion. In the self-stabilizing paradigm, however, we compute values
based on all possible rooted tree views. Once the actual root is known, each
node can easily select its correct required value (e.g., select the j for which
size;j(i) is maximum).

The use of an array of local variables for each node could cause a prob-
lem in the self-stabilizing paradigm because access to the entire array by a
neighbor might constitute the neighbor having to know of the existence of
nodes that are not its neighbors (i.e., nodes that are a distance two away
from it). This is not a problem for our algorithms since using our algorithms
each neighbor accesses exactly one of the values in the array (e.g., neighbor
7 will access size;(j), but will not access any other values in the size; array).

Our algorithms assumed the existence of a static unique identifier ¢ for
each node. Note, however, that in the case where it is not necessary to
distinguish between two possible adjacent roots, our algorithms can easily
be adapted to work without unique identifiers, as was done in [6]. In this
case, we would simply change the predicate for rule R3 in the generic rooting
algorithm to check for all possible roots (e.g., size;(i) < n;/2), rather than

a unique root. Rules R4 and R5 would not be needed then.

References

[1] G. AnTONOIU AND P. K. SRIMANI, A self-stabilizing leader election algorithm for
tree graphs, Journal of Parallel and Distributed Computing, 34 (1996), pp. 227-232.

17

2]
[3]

[4]

8]

[9]
[10]

[11]

[12]

[13]

[14]

—, A self-stabilizing distributed algorithm to find the center of a tree graph, Parallel
Algorithms and Applications, 10 (1997), pp. 237-248.

—, A self-stabilizing distributed algorithm to find the median of a tree graph, J.
Comput. Sys. Sci., 58 (1999), pp. 215-221.

J. R. S. Brair, S. M. HEpETNIEMI, S. T. HEDETNIEMI, AND D. P. JACOBS,
Self-stabilizing mazimum matchings, Congressus Numerantium, 153 (2001), pp. 1521—
1529.

J. R. S. BLAIR AND F. MANNE, Efficient self-stabilizing algorithms for tree networks,
Tech. Report 232, Department of Informatics, University of Bergen, Norway, 2002.
Available at http://www.ii.uib.no/publikasjoner /texrap/index.shtml.

S. C. BRUELL, S. GHOSH, M. H. KARAATA, AND S. V. PEMMARAJU, Self-stabilizing
algorithms for finding centers and medians of trees, SIAM Journal on Computing, 29

(1999), pp. 600-614.

E. W. DUKSTRA, Self-stabilizing systems in spite of distributed control, CACM, 17
(1974), pp. 643-644.

S. GHosH, A. GurTA, M. H. KARAATA, AND S. V. PERMMARAJU, Self-stabilizing

dynamic programming algorithms on trees, in Proceedings of the Second Workshop
on Self-Stabilizing Systems, 1995, pp. 11.1-11.15.

F. HARARY, Graph Theory, Addison-Wesley, 1972.

T. C. Huang, J. C. LiNn, aAND H. J. CHEN, A self-stabilizing algorithm which
finds a 2-center of a tree, Computers and Mathematics with Applications, 40 (2000),
pp- 607-624.

M. H. KARAATA, S. V. PERMMARAJU, S. GHOSH, AND A. GUPTA, Self-stabilizing
algorithms and dynamic programming, Journal of Parallel and Distributed Comput-
ing, (under revision).

M. H. KARAATA AND K. A. SALEH, A self-stabilizing algorithm for mazimum match-
ing in trees, in Proceedings of the Joint Conference of Informaiton Sciences, 1996,
pp. 113-116.

—, A distributed self-stabilizing algorithm for mazimum matching, Computer Sys-
tems Science and Engineering, (2000), pp. 175-180.

S. MITCHELL, E. COCKAYNE, AND S. HEDETNIEMI, Linear algorithms on recursive
representations of trees, J. Comput. Systems Sci., 18 (1979), pp. 76-85.

18

