
EÆ
ient Self-stabilizing Algorithmsfor Tree NetworksJean R. S. Blair� Fredrik ManneyAbstra
tMany proposed self-stabilizing algorithms require an exponentialnumber of moves before stabilizing on a global solution, in
ludingsome rooting algorithms for tree networks [1, 2, 3℄. These results arevastly improved upon in [6℄ with tree rooting algorithms that requireonly O(n3 + n2 �
h) moves, where n is the number of nodes in thenetwork and
h is the highest initial value of a variable. In the
urrentpaper, we des
ribe a new set of tree rooting algorithms that bringsthe
omplexity down to O(n2) moves. This not only redu
es the �rstterm by an order of magnitude, but also redu
es the se
ond term byan unbounded fa
tor. We further show a generi
 mapping that
an beused to instantiate an eÆ
ient self-stabilizing tree algorithm from anytraditional sequential tree algorithm that makes a single bottom-uppass through a rooted tree. The new generi
 mapping improves onthe
omplexity of the te
hnique presented in [8℄.Keywords: Self-stabilizing, tree, root, median,
enter, bottom-up.1 Introdu
tionA distributed system
an be modeled as an undire
ted graph G = (V;E),where V is the set of n systems, or nodes, and E is the set of links, or�Department of Ele
tri
al Engineering and Computer S
ien
e, United States MilitaryA
ademy, West Point, NY, 10996, USA, Jean-Blair�usma.eduyDepartment of Informati
s, University of Bergen, N-5020 Bergen, Norway,Fredrik.Manne�ii.uib.no 1

edges, inter
onne
ting the systems together. In the self-stabilizing algorith-mi
 paradigm, ea
h node
an only see its neighbors and itself, yet the systemof simultaneously running algorithms must
onverge to a global state satisfy-ing some desired property. In the next se
tion we des
ribe more
ompletelythe self-stabilizing algorithmi
 paradigm.Numerous results in the literature address the issue of self-stabilizingalgorithms for rooting a tree. In [1℄, [2℄ and [3℄ the authors des
ribe tree al-gorithms for leader ele
tion,
enter-�nding and median-�nding, respe
tively.All three algorithms appear to require an exponential number of moves in theworst
ase. These results are vastly improved upon by the
enter-�nding andmedian-�nding algorithms in [6℄, both of whi
h require only O(n3 + n2 �
h)moves, where
h is the highest initial value of the variables used in the
om-putation. We improve further on these results by des
ribing a generi
 self-stabilizing tree rooting algorithm that requires only O(n2) moves. This newgeneri
 algorithm
an be used to solve, among others, the problems of ele
t-ing a leader in a tree, �nding the
enter of a tree and �nding the median ofa tree. Se
tion 3 de�nes these and other graph properties, gives the generi
tree rooting algorithm and shows how to
hoose a leader based on various
riteria.There are numerous graph problems that
an be solved on a tree on
e thetree is rooted. Many self-stabilizing algorithms in the literature rely on this,augmenting an arbitrary tree rooting algorithm to solve one or another prob-
2

lem. See, for example, [4, 10, 12, 13℄. In a seminal work, the authors of [8℄1present a uni�ed approa
h to translating linear-time bottom-up sequentialdynami
 programming tree algorithms into self-stabilizing tree algorithms.Their te
hnique
an easily be applied to improve the results of [4, 12, 13℄.The analysis in [8℄ uses round
omplexity, showing that the resulting treealgorithms require 2r+3 rounds, for a tree of radius r. It is easy to see thata single round
ould require as mu
h as O(n2+n�
h) moves, where
h is againthe highest initial value. Thus, they have des
ribed a set of self-stabilizingtree algorithms that run in O(n3 + n2 �
h) moves. In Se
tion 4 we presentan improved generi
 mapping from sequential bottom-up one-pass tree al-gorithms to self-stabilizing tree algorithms that require only O(n2) moves.In
luded in that se
tion is an example of instantiating a self-stabilizing algo-rithm, in this
ase to �nd a maximum independent set in a tree.The fundamental idea used for all of the results in this paper is the time-honored
on
ept of using a little additional storage in order to drasti
allyredu
e the
omputation time. Where previous algorithms would have used nvariables, one per node in the network, we use 2n� 2 variables, two per edgein the network. Our algorithms have the added bene�t of greatly simpli�edproofs of
orre
tness. Se
tion 5
ontains a brief dis
ussion of the fundamentaldi�eren
e between our self-stabilizing algorithmi
 approa
h and that of thepreviously published tree algorithms.1Also to appear as [11℄.
3

2 The Self-Stabilizing ParadigmA distributed system is modeled as undire
ted graph G = (V;E), where Vis a set of n nodes and E is a set of m edges. If i is a node, then N(i), itsopen neighborhood, denotes the set of nodes to whi
h i is adja
ent. Everynode j 2 N(i) is
alled a neighbor of node i. The set N [i℄ = N(i) [fig isthe
losed neighborhood of i. The indu
ed subgraph G� i is the subgraph ofG indu
ed by the nodes in V � fig.In a self-stabilizing algorithm, ea
h node
an
hange the value of its lo
alvariables based only on the value of the lo
al variables in its
losed neigh-borhood. The
ontents of a node's lo
al variables
onstitute its lo
al state.The system's global state is the union of all lo
al states. No assumptions
anbe made about the initial global state; that is, the initial value of every lo
alvariable is arbitary. A node i
hanges its lo
al state by making a move, i.e.,
hanging the value of one or more of its lo
al variables.Self-stabilizing algorithms are often given as a set of rules of the form\if p(i) then m(i)," where p(i) is a predi
ate and m(i) is a move. Thepredi
ate p(i) is de�ned in terms of the lo
al state of i and the lo
al statesof its neighbors j 2 N(i). Every node in the system G runs the same setof rules. A node i is privileged if at least one of its rule-predi
ates is true.When a node is privileged, it may exe
ute one of its privileged moves. Noassumptions
an be made about whi
h privileged move is made when morethan one exists. We say the system has stabilized if no nodes are privileged.4

Analysis of a self-stabilizing algorithm is slightly di�erent than that ofa sequential algorithm. For self-stabilizing algorithms it is not the overalltime-
omplexity that is of
on
ern, but rather the number of moves made bythe algorithm. That is, the time required to perform
he
ks for predi
ates orto make updates to lo
al variable values does not matter. The self-stabilizingalgorithm is evaluated based only on the number of rules that are �red, orequivalently the number of moves made.As is
ommon for self-stabilizing algorithms, we will assume that ea
hnode has a unique identi�er. We will dis
uss in the
on
lusion how ouralgorithms
an be modi�ed to not require unique identi�ers.Many self-stabilizing algorithms work
orre
tly only in the presen
e ofa
entral daemon that serializes the moves made by privileged nodes [7℄.Our algorithms do not rely on this restri
tion. We only assume read-writeatomi
ity. Thus, two or more nodes
an make simultaneous moves, as longas no node is a

essing a value that is being written by another node.3 A Generi
 Leader Ele
tion AlgorithmAn important problem in distributed
omputing is that of ele
ting the leaderin a graph. When the graph is a tree this is equivalent to designating theroot of a tree. We will assume throughout the remainder of this paper thatthe graph G is a tree. In this se
tion we des
ribe a generi
 self-stabilizingleader ele
tion algorithm for trees. 5

The generi
 algorithm
an be instantiated with any rooting property thatis based on a distan
e-from-the-leaves property of the nodes in the tree, aslong as a tree
an have only one \winner" (or two \winners", if the two
anea
h dete
t the presen
e of a se
ond) with the best distan
e-from-the-leaves.The following is a partial list of su
h properties.� Maximum distan
e to a leaf. The
enter of a tree is a node whose max-imum distan
e to a leaf is minimum. A tree has either a unique
enteror two adja
ent
enters[9℄.� Sum of distan
es to all other nodes. The median of a tree is a node forwhi
h the sum of the distan
es from it to all other nodes is minimum.A tree has either a unique median or two adja
ent medians[9℄.� Size of largest dis
onne
ted
omponent after removal. An n2 -separatorof a tree is a node whose removal results in two or more dis
onne
ted
omponents, ea
h of whi
h has no more than n2 nodes in it. A tree haseither a unique n2 -separator or two adja
ent n2 -separators[9℄.The generi
 leader ele
tion algorithm
an be viewed as
onsisting of twoseparate phases. In the �rst phase ea
h node i determines, for ea
h j 2 N(i),the parti
ular distan
e property for the node i in the
omponent of G � jthat
ontains i. In the se
ond phase ea
h node determines if it is the onenode (or if it and a neighbor of its are the two nodes) in the tree with thedesired property. The \output" of the algorithm is that exa
tly one node6

will have designated itself as the leader, and all other nodes will know whi
hneighbor of theirs is
loser to the leader than they are.In the following two subse
tions we des
ribe the two phases of a self-stabilizing algorithm that �nds an n2 -separator of a tree. Note that for a tree,a n2 -separator is also a median. Thus, as presented the algorithm solves themedian-�nding problem. In the third subse
tion we dis
uss how to modifythe rules presented here for a generi
 self-stabilizing rooting tree algorithmand how to instantiate a
enter-�nding tree algorithm.3.1 Phase one { determining distan
es from leavesFor this presentation, the distan
e-from-the-leaves property is the size of thelargest subtree. To that end, ea
h node i maintains an array sizei of integervariables. The array
ontains one value sizei(j) for ea
h j 2 N(i). On
e thesystem stabilizes, sizei(j) will
ontain the number of nodes in the
onne
ted
omponent of G� j
ontaining i. Note that only the lo
al variable sizei(j)in node i will be a

essed by node j 2 N(i), and thus, as is assumed in theself-stabilizing paradigm, no node needs to have knowledge of the existen
eof nodes that are a distan
e of two or more from it.The algorithm des
ribed by the rule R1 below runs on ea
h node of thenetwork. We will later show that on
e the network has stabilized, ea
h nodei
an determine the number of nodes in the entire network by
omputingsizei(j) + sizej(i) for any neighbor j 2 N(i). Ea
h node interprets the ruleby substituting itself in pla
e of i. 7

R1: if (9j 2 N(i) su
h that sizei(j) 6= 1 +Pk2N(i)�fjg sizek(i))then sizei(j) 1 +Pk2N(i)�fjg sizek(i))Note that if i is a leaf, then sizei(j) will be set to 1 by R1.The proof of
orre
tness of this algorithm uses several straight-forwardindu
tive arguments to show that the number of times that the value ofsizei(j)
hanges is no more than the number of nodes in the
omponent ofG� j that
ontains i. Due to spa
e limitations, the four lemmas leading tothe following theorem and their proofs of
orre
tness are omitted here. Theinterested reader is refered to [5℄ for these and other proofs omitted from thispaper.Theorem 3.1 For any given tree network, the distributed algorithm R1 sta-bilizes in no more than n(n� 1) moves with sizei(j) equal to the number ofnodes in the
omponent of G � j that
ontains i for every pair of adja
entnodes i and j.Lemma 3.2 The bound of n(n� 1) moves for R1 is tight.3.2 Phase two { rooting the treeThe algorithm for rooting the tree is based on ea
h node having determinedits position relative to a n2 -separator in G. To a

omplish this, rule R1(de�ned in the previous subse
tion) is used so that \�rst" every node willknow the size of the entire tree. A node i will make the \subsequent" movesof determining its position relative to an n2 -separator of the tree only when,from its lo
al perspe
tive, it believes it knows the
orre
t size of the tree.The following predi
ate is evaluated for this purpose:8

sizeCorre
ti = (8j 2 N(i); sizei(j) = 1 +Pk2N(i)�fjg sizek(i))Note that when sizeCorre
ti is true rule R1
annot be applied at node i.The following result shows how a node i
an determine the number of nodesin the graph on
e sizeCorre
ti evaluates to true.Lemma 3.3 If sizeCorre
ti is true then sizei(j) + sizej(i) = sizei(k) +sizek(i) = n for all pairs of nodes j; k 2 N(i).Thus when node i stabilizes lo
ally it
an
al
ulate the number of nodes itassumes that the graph
ontains as ni = sizei(j)+ sizej(i) for any j 2 N(i).Note that Lemma 3.3 impli
itly proves that when R1 has globally stabilizedni = n for ea
h node i. In this
ase it is straightforward for node i todetermine if it is an n2 -separator and if not to determine its position relativeto the separator by lo
ating its neighbor j with the largest sizej(i) value.In addition to the array sizei of integer variables, ea
h node also maintainsa parent pointer pi. When the algorithm terminates, the value of pr for theroot node r will be r, while the value of pi for ea
h node i 6= r will be theneighbor of i that is
losest to r.The algorithm is given by rule R1 together with rules R2{R5 below. TheR2{R5 predi
ates all require that sizeCorre
ti be true; thus they
an beapplied only if R1
annot be applied. The purpose of these rules are asfollows. R2 is used to identify the n2 -separator if a unique one exists, and tomake the unique separator be the root. R3 is used by nodes that are notn2 -separators to set their pointer to their
losest-to-the-separator neighbor.R4 and R5 are used in the
ase where there are two n2 -separators. R4 sele
ts9

as the root the n2 -separator with higher unique ID, while R5 sets the pointerof the n2 -separator with lower unique ID to point to its n2 -separator neighbor.The value sizei(j) + sizej(i) for an arbitrary j 2 N(i) is used for ni.R2: if (sizeCorre
ti)and(8j 2 N(i) sizej(i) < ni=2)and(pi 6= i)then (pi i)R3: if (sizeCorre
ti)and(9j 2 N(i) su
h that sizej(i) > ni=2)and(pi 6= j)then (pi j)R4: if (sizeCorre
ti)and(9j 2 N(i) su
h that sizej(i) = ni=2)and(IDi > IDj)and(pi 6= i)then (pi i)R5: if (sizeCorre
ti)and(9j 2 N(i) su
h that sizej(i) = ni=2)and(IDi < IDj)and(pi 6= j)then (pi j)Again, the reader is refered to [5℄ for statement of the lemmas and proofsthat lead to the following result.Theorem 3.4 For any given tree network, the distributed algorithm R1{R5stabilizes in no more than 2n2 � n moves with the values of pi for all nodesi de�ning a rooted tree with an n2 -separator as the root.
10

3.3 Other
riteria for leadersIn this subse
tion we outline a generi
 version of our rooting algorithm andthen brie
y dis
uss how the n2 -separator algorithm
an be modi�ed to �ndthe
enter of a tree.In the generi
 version of the rooting algorithm we maintain, at ea
h nodei, an array disti rather than the array sizei. The value disti(j) for ea
hj 2 N(i) will
ontain the value of the distan
e-from-the-leaves property inthe
onne
ted
omponent ofG�j
ontaining i, on
e the system has stabilized.Let the fun
tion dfl([k2N(i)�fjgdistk(i)) be one that
al
ulates the value ofthe distan
e-from-the-leaves property for a node i based on the value ofthe distan
e-from-the-leaves property of all \
hildren" neighbors (i.e., allneighbors k 6= j). Then rule R1
an be re-written as follows.R1: if (9j 2 N(i) su
h that disti(j) 6= dfl([k2N(i)�fjgdistk(i))then disti(j) dfl([k2N(i)�fjgdistk(i))It is easy to see that the n2 -separator algorithm given in Subse
tion 3.1is this generi
 algorithm instantiated with dfl([k2N(i)�fjgdistk(i)) = 1 +Pk2N(i)�fjg distk(i). Furthermore, the algorithm given in [6℄ for �nding themedian of a tree makes this same
al
ulation. The di�eren
e is that thealgorithm in [6℄
al
ulates only one dfl value for the
urrently assumed parentof node i, rather than
al
ulating a dfl value for every possible parent. Sin
eour algorithm stabilizes with ea
h node having full knowledge of whi
h nodeis its parent, our algorithm
learly
al
ulates also the median of a tree. It isworth highlighting the di�eren
e between the two median-�nding algorithms:11

our algorithm maintains more values than does the algorithm in [6℄, but doesso in only O(n2) moves as
ompared to the O(n3 + n2 �
h) moves requiredby the algorithm in [6℄.In a similar fashion we
an utilize the
riteria in [6℄ that �nds the
enterof a tree inorder to instantiate an O(n2) self-stabilizing algorithm. Herethe parameter fun
tion dfl([k2N(i)�fjgdistk(i)) = 1+maxk2N(i)�fjgfdistk(i)gfor both leaves and internal nodes2 results in our rule R1 giving a similar
enter �nding algorithm to that given in [6℄. The di�eren
e is again thatour algorithm
al
ulates a dfl for every possible parent, but does so in fewermoves in the worst
ase.The rooting algorithms in [6℄
ontain only their version of rule R1. Theyprove that then the node (or two nodes) that is (are) the leader(s), eithermedian or
enter,
an determine its (their) leader-status by
omparing itsdistan
e-from-the-leaves property with that of all of its (their) neighbors. Wehave gone further in Subse
tion 3.2 by expli
itly a

omplishing this determi-nation of who the leader is as well as setting pointers for the
orrespondingrooted tree with rules R2 through R5. These rules
an be generalized inthe same way that we have generalized rule R1 above by de�ning generi
parameter fun
tions for determining whether or not a node is the leader andsubstituting those generi
 parameter fun
tions in for the se
ond
onditionof ea
h of rules R2 through R5. In the interest of spa
e, we omit thesegeneralizations here.2This assumes the fun
tion maxk2N(i)�fjg distk(i) evaluates to zero when N(i) = fjg.12

4 A Generi
 Bottom-Up AlgorithmMany graph problems
an be solved eÆ
iently on trees in a bottom-up fash-ion. The main idea is to �rst root the tree at some node r, and then topropagate
omputation from the leaf nodes towards r as follows. Let
hild(i)be the set of node i's
hildren in the rooted tree. We assume that a fun
tionf(j) has been
omputed for ea
h j 2
hild(i). Then f(i) = g([j2
hild(i)f(j))for some fun
tion g. If i is a leaf then g() =
 where
 is an appropriate
onstant. If g
an be
omputed in O(1) time then the sequential time of thisalgorithm is O(n). The solution is given by the union of all f values.There exists several examples of self-stabilizing algorithms for solvingsu
h problems. The broad
lass of algorithms in [8℄ solve these problems inO(n3+n2
h) moves, where
h is the maximum initialized value of a variable.In [4℄ a self-stabilizing algorithm is given for �nding a maximum mat
hingin a tree. Their algorithm requires O(n2 �h(n)) moves, where h(n) moves areneeded to root the tree. Thus,
ombined with our rooting algorithm theiralgorithm uses O(n4) moves. In this se
tion we will show how all of theseproblems
an be solved by a self-stabilizing algorithm in only O(n2) time.The main idea behind our algorithm is to simultaneously solve the prob-lem with ea
h possible node as the root, storing the results for ea
h nodei in an array fi. As with the sizei array, the value of fi(j) for j 2 N(i)
ontains the desired result for node i, assuming j is the parent of i in arooted tree. Independently and simultaneously we run both the bottom-up13

algorithm to
al
ulate the fi values and also an instantiated generi
 rootingalgorithm. Combined, the two algorithms will stabilize in O(n2) time. Whenthe
ombined algorithm stabilizes ea
h node knows its relative position tothe root and
an use its f values together with the f values of its neighborsto determine whi
h of its f values is its solution.We are now ready to begin des
ribing the new algorithm. Assume that Gis rooted and that j is the parent of node i. We �rst observe that the valueof f(i) is independent of whi
h node is the root of G as long as it is situatedin the
omponent of G� i that
ontains j.Initially G is not rooted, but we know that for any edge (i; j) we musteither have pi = j or pj = i. Thus if for ea
h edge (i; j) we
al
ulate both f(i)under the assumption that pi = j and similarly f(j) assuming that pj = iwe will, on
e the tree is rooted, have all the f values needed to
ompute aglobal solution. Note that for the root we must set f(i) = g([k2N(i)fk(i)).We de�ne for ea
h edge (i; j) 2 E variables fi(j) and fj(i) asso
iatedwith node i and j respe
tively. We also de�ne a variable solutioni for ea
hnode whi
h
ontains node i's �nal f value. Our algorithm
onsists of rulesR1 through R5 of the n2 -separator algorithm
ombined with the followingthree rules.R6: if (9j 2 N(i) su
h that fi(j) 6= g([k2N(i)�fjgfk(i))then fi(j) g([k2N(i)�fjgfk(i))R7: if (pi = i)and solutioni 6= g([j2N(i)fj(i))then (solutioni g([j2N(i)fj(i))14

R8: if (pi 6= i)and (solutioni 6= fi(pi))then (solutioni fi(pi))Note that in rule R6 we assume that a node
an dete
t if it is a leaf and inthis
ase we de�ne g() =
 for some appropriate
onstant
.Theorem 4.1 Algorithm R1 { R8 stabilizes after O(n2) moves.Proof. Note �rst that R6 is a generalization of R1 with the dfl fun
tionrepla
ed by g. Thus, the number of times an R6 move is made is the sameas R1. Rules R7 and R8 may �re on
e initially and then at most on
e afterea
h
hange in pi or some neighboring f value. From the above dis
ussionand Theorem 3.4 it follows that the total number of rule R7 and R8 movesis O(n2).Theorem 4.2 On
e the distributed algorithm R1 { R8 has stabilized on atree network, the values of solutioni solve the asso
iated graph problem.Proof. The
orre
tnes of the algorithm follows from the fa
t that R6 behavesin the same way as R1. Thus after R1 through R6 have stabilized only oneof rules R7 and R8 may �re on
e for ea
h node to set solutioni to its
orre
tvalue.As an example of how this algorithm
an be used to solve a parti
ularproblem, we
onsider the problem of �nding a maximum independent set ina tree. A sequential algorithm to solve this was given in [14℄. The algo-rithm e�e
tively roots the tree at its
enter and then pro
esses the nodes15

starting from the leaves, working towards the root. Ea
h node is in
ludedin the independent set if none of its
hildren are in the set. To
onvert thisto a self-stabilizing algorithm, we simply
onsider fi to be the appropriateboolean value, de�ning the algorithm with the fun
tion set g() = true andg([j2set(i)fj(i)) = ^j2set(i)(:fj(i)) where set(i) =
hild(i) for non-root nodesand set(i) = N(i) for the root. The
orre
tness of this algorithm followsdire
tly from the
orre
tness of the sequential algorithm.5 Con
luding RemarksThe main idea behind our more eÆ
ient algorithms is to have rules for whi
hupdates propagate along dire
ted a
y
li
 paths in an undire
ted tree. In thisway one avoids
y
les in the updates and thus obtains fast
onvergen
e.All of the previously-published self-stabilizing tree algorithms mentionedin Se
tion 1 have the
hara
teristi
 that they lo
ally
ompute a requiredvalue at ea
h node based on a
urrent view of whi
h neighbor is the node'sparent. Ea
h time the parent
hanges, as it does frequently up until sta-bilization of the rooting algorithm, the value is re
omputed. It is at thispoint that information may in fa
t be lost. If later the lo
al view of theparent is swit
hed ba
k, then the required value must be re
omputed evenif nothing has
hanged other than the view of who the parent is. The al-gorithms presented in this paper avoid this unne
essary re-
omputation ofvalues by lo
ally maintaining values for ea
h possible parent (e.g., sizei(j)16

for all j 2 N(i)). Ea
h value is
omputed in exa
tly the same way that it is
omputed in a sequential algorithm to solve the same problem in a dire
teda
y
li
 fashion. In the self-stabilizing paradigm, however, we
ompute valuesbased on all possible rooted tree views. On
e the a
tual root is known, ea
hnode
an easily sele
t its
orre
t required value (e.g., sele
t the j for whi
hsizej(i) is maximum).The use of an array of lo
al variables for ea
h node
ould
ause a prob-lem in the self-stabilizing paradigm be
ause a

ess to the entire array by aneighbor might
onstitute the neighbor having to know of the existen
e ofnodes that are not its neighbors (i.e., nodes that are a distan
e two awayfrom it). This is not a problem for our algorithms sin
e using our algorithmsea
h neighbor a

esses exa
tly one of the values in the array (e.g., neighborj will a

ess sizei(j), but will not a

ess any other values in the sizei array).Our algorithms assumed the existen
e of a stati
 unique identi�er i forea
h node. Note, however, that in the
ase where it is not ne
essary todistinguish between two possible adja
ent roots, our algorithms
an easilybe adapted to work without unique identi�ers, as was done in [6℄. In this
ase, we would simply
hange the predi
ate for rule R3 in the generi
 rootingalgorithm to
he
k for all possible roots (e.g., sizej(i) � ni=2), rather thana unique root. Rules R4 and R5 would not be needed then.Referen
es[1℄ G. Antonoiu and P. K. Srimani, A self-stabilizing leader ele
tion algorithm fortree graphs, Journal of Parallel and Distributed Computing, 34 (1996), pp. 227{232.17

[2℄ , A self-stabilizing distributed algorithm to �nd the
enter of a tree graph, ParallelAlgorithms and Appli
ations, 10 (1997), pp. 237{248.[3℄ , A self-stabilizing distributed algorithm to �nd the median of a tree graph, J.Comput. Sys. S
i., 58 (1999), pp. 215{221.[4℄ J. R. S. Blair, S. M. Hedetniemi, S. T. Hedetniemi, and D. P. Ja
obs,Self-stabilizing maximum mat
hings, Congressus Numerantium, 153 (2001), pp. 1521{1529.[5℄ J. R. S. Blair and F. Manne, EÆ
ient self-stabilizing algorithms for tree networks,Te
h. Report 232, Department of Informati
s, University of Bergen, Norway, 2002.Available at http://www.ii.uib.no/publikasjoner/texrap/index.shtml.[6℄ S. C. Bruell, S. Ghosh, M. H. Karaata, and S. V. Pemmaraju, Self-stabilizingalgorithms for �nding
enters and medians of trees, SIAM Journal on Computing, 29(1999), pp. 600{614.[7℄ E. W. Dijkstra, Self-stabilizing systems in spite of distributed
ontrol, CACM, 17(1974), pp. 643{644.[8℄ S. Ghosh, A. Gupta, M. H. Karaata, and S. V. Permmaraju, Self-stabilizingdynami
 programming algorithms on trees, in Pro
eedings of the Se
ond Workshopon Self-Stabilizing Systems, 1995, pp. 11.1{11.15.[9℄ F. Harary, Graph Theory, Addison-Wesley, 1972.[10℄ T. C. Huang, J. C. Lin, and H. J. Chen, A self-stabilizing algorithm whi
h�nds a 2-
enter of a tree, Computers and Mathemati
s with Appli
ations, 40 (2000),pp. 607{624.[11℄ M. H. Karaata, S. V. Permmaraju, S. Ghosh, and A. Gupta, Self-stabilizingalgorithms and dynami
 programming, Journal of Parallel and Distributed Comput-ing, (under revision).[12℄ M. H. Karaata and K. A. Saleh, A self-stabilizing algorithm for maximum mat
h-ing in trees, in Pro
eedings of the Joint Conferen
e of Informaiton S
ien
es, 1996,pp. 113{116.[13℄ , A distributed self-stabilizing algorithm for maximum mat
hing, Computer Sys-tems S
ien
e and Engineering, (2000), pp. 175{180.[14℄ S. Mit
hell, E. Co
kayne, and S. Hedetniemi, Linear algorithms on re
ursiverepresentations of trees, J. Comput. Systems S
i., 18 (1979), pp. 76{85.
18

