Efficient Self-stabilizing Graph Searching
in Tree Networks

Jean Blair!, Fredrik Manne?, and Rodica Mihai?*

! Department of EE and CS, United States Military Academy,
West Point, NY 10996, USA
Jean.Blair@usma.edu
Department of Informatics, University of Bergen, N-5020 Bergen, Norway
{fredrikm,rodica}@ii.uib.no

Abstract. The graph search problem asks for a strategy that enables a
minimum sized team of searchers to capture a “fugitive” while it evades
and potentially multiplies through a network. It is motivated by the need
to eliminate fast spreading viruses and other malicious software agents
in computer networks.

The current work improves on previous results with a self-stabilizing
algorithm that clears an n node tree network using only 1+4log n searchers
and O(nlogn) moves after initialization. Since @(logn) searchers are
required to clear some tree networks even in the sequential case, this
is the best that any self-stabilizing algorithm can do. The algorithm is
based on a novel multi-layer traversal of the network.

1 Introduction

Networks of computing devices enable fast communication, pervasive sharing
of information, and effective distributed computations that might otherwise be
infeasible. Unfortunately, this comes at the cost of fast spreading viruses and
malicious software agents. The fact that modern networks are constantly chang-
ing exacerbates the problem. Thus, it is important to regularly search a network
in order to eliminate malicious software.

This setting has been formalized as various graph search problems where one
asks for a strategy that will clear a graph of any unwanted “intruders” typically
using as few operations as possible. One can think of a searcher as a separate
software agent that must be run on the individual network devices in order
to clear it. Thus, minimizing the number of searchers is also important as each
searcher uses resources that the system could otherwise have used for productive
work. One might further want to limit the number of concurrent searchers when
there may be a cost associated with the maximum number used at any given
time, for instance due to software licences.

There is a significant body of work focused on sequential algorithms for com-
puting the minimum number of searchers required to search a graph and the

* Now, International Research Institute of Stavanger, N-5008 Bergen, Norway.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 111 [125'] 2010.
© Springer-Verlag Berlin Heidelberg 2010 -

112 J. Blair, F. Manne, and R. Mihai

corresponding searching strategy. See [4] for an annotated bibliography. Peng
et. al. and Skodinis gave linear-time sequential node and edge searching algo-
rithms for trees [9JI0] and in [6J7] it was proven that in general ©(logn) searchers
are required for tree networks. Distributed graph searching algorithms have also
received considerable attention. See [§] for a list of the most recent works. For
tree networks [3] gives a distributed algorithm to compute the minimum number
of searchers necessary to clear the edges.

The first self-stabilizing algorithm for solving the node search problem in a tree
was introduced in [8]. Given a tree T with n nodes and height h, their algorithm
stabilizes after O(n?) time steps under the distributed adversarial daemon and
the number of searchers used to clear the tree T is h.

In this paper we give an efficient self-stabilizing algorithm that improves on the
results in [§]. Our algorithm is based on integrating two existing self-stabilizing
algorithms with a new search algorithm in order to continuously search a tree
network with n > 2 nodes using only 1+ |logn] searchers and O(nlogn) moves
after initialization. As our algorithm is non-silent and self-stabilizing it will adapt
to any transient faults or changes in the configuration of the network. Moreover, if
an intruder is (re)introduced in a cleared network, the algorithm will immediately
clear the network again.

We use the leader election algorithm from [2] for rooting the tree and then ap-
ply the efficient multiwave algorithm introduced in [I] to initialize the tree. This
is then followed by our new search algorithm to clear the tree. The search algo-
rithm works by recursively splitting the graph into smaller components and then
clearing each of these. In this way the algorithm behaves as if it was composed
of a number of layered algorithms each with its own set of variables. However,
the clearing is achieved with just one efficient algorithm and with the number
of variables linear in the size of the graph.

The paper is organized as follows. In Section 2] we give preliminaries, followed
by a presentation and motivation of our algorithm in Section Bl In Section [4] we
show the correctness of our algorithm before concluding in Section

2 Preliminaries

The current focus is on a variant of the graph search problem known as node
searching. A node search strategy for a graph G = (V, E') consists of a sequence
of steps where, at each step, searchers may be both added to and removed from
the nodes of G. A node is cleared once a searcher is placed on it and an edge is
cleared when searchers occupy both of its endpoints at the same time[] A node
that has a searcher on it is guarded and cannot be recontaminated as long as
the searcher is present on that node. However, cleared edges and cleared nodes
without searchers on them are assumed to be recontaminated instantly iff there
exists a path of unguarded nodes from them to an uncleared node or edge of the

1 As will be discussed in the concluding remarks, our results can easily be adapted to
solve other graph search variants such as edge search or mixed search.

Efficient Self-stabilizing Graph Searching in Tree Networks 113

graph. The graph search problem then asks for a search strategy that ensures
that the entire graph is cleared while using as few searchers as possible.

In our distributed computational model each node of G has a unique identifier
and also stores a number of local variables which it can manipulate. A node can
read the local variables of its neighbors, i.e. the shared memory model. As is
typical, we present our self-stabilizing algorithms as a set of rules where the
predicate of each rule only depends on variables local to a node and those of
its neighbors. Further, we assume that rules can only be executed during fixed
time steps and that a distributed unfair daemon governs which node(s) get to
execute a move at any given time step. This means that any non-empty subset of
enabled rules may execute during a time step. Note that this is the most general
type of daemon. We measure complexity both in terms of the number of rules
that have been executed (moves-complexity) and also in terms of the number
of rounds, where a round is the smallest sub-sequence of an execution in which
every node that was eligible at the beginning of the round either makes a move
or has had its predicate disabled since the beginning of the round.

The goal of a self-stabilizing algorithm is for the global system to reach a
stable configuration (i.e. where no moves can be made) that conforms to a given
specification, independent of its initial configuration and without external in-
tervention. A non-silent self-stabilizing algorithm will also reach a configuration
that conforms to the specification, but will continue to execute indefinitely once
it has done so. Moreover, in the absence of transient faults, the algorithm will
continue to conform to the specification.

3 The Algorithm

The overall graph searching algorithm integrates three separate self-stabilizing
processes. Initially, we use the leader election algorithm from [2] to elect an n/2-
separator as the root r (i.e. no component of G — {r} contains more than n/2
nodes). Moreover, this algorithm ensures that each node knows in which direction
r is. Following this, r uses a variant of the multi-wave Propagate-Information-
with-Feedback (PIF) process from [I] to get the network ready for searching.
This is accomplished by r continuously iterating through a circular list of its
children, and for each iteration concurrently initiating two PIF processes. When
r sets child, to point to a node in N(r) the subtree rooted at child, transitions
to the ACTIVE state while all other subtrees are either in the SLEEP state or are
in the process of transitioning to SLEEP. Only nodes in the ACTIVE state can
participate in the ensuing search process. When child, signals that the search
of its subtree is complete and the next node in r’s neighbor list signals that it is
SLEEP, r will advance child, and repeat the process.

The overall process is outlined in Algorithm [Il Loosely speaking, after the
system first reaches line 6 the network will have reached a “normal configuration”
and thereafter the search process behaves as expected. Note that the algorithm
is non-silent.

The entire process uses 5424 (u) variables on each node u, where §(u) = | N (u)|
and N (u) denotes the neighbors of u. For the leader election process we maintain

114 J. Blair, F. Manne, and R. Mihai

Algorithm 1. The overall graph searching process

1: Elect an n/2-separator as root r and set all p, to point towards r; /* L1-L5 */
2: child, «+ an arbitrary neighbor of r; /* R1 *x/

3: Signal all v € N(r) — {child,} to go to SLEEP; /* consequence of R1 */

4: loop

5. when (Next(child,) is SLEEP) & (child, signals “search completed”) do

6: prev < child,; child, «— Next(child,); /* R2 %/

7 do in parallel

8: Transition subtree rooted at child, to ACTIVE; /x T1-T4 */

9: Transition subtree rooted at prev to SLEEP; /* T5 %/

10: Search the subtree rooted at child,; /* S1-S4 x/

a parent pointer p,, and for each neighbor v € N (u) a size,(v) value that will hold
the size of the subgraph containing u in the original graph with the edge (u,v)
removed. The results in [2] guarantee that once the election process stabilizes,
all p,, and size,(v) values are correct. Since those values are not changed in any
other part of the algorithm, in the absence of spurious faults they remain correct
throughout. The remaining 4 + 6 (u) variables are used in the other two processes
and will be described in the follow-on subsections.

We use the leader election algorithm, which we refer to as the L-algorithm
implemented as rules L1-L5, exactly as specified in [2] and therefore will not
further describe it here. The next subsection explains the transition process and
our implementation of it. Subsection describes the new search process.

3.1 Transition - Lines 8 and 9

The transition processes in lines 8 and 9 together implement a full 2-wave PIF
process similar to that designed by Bein, Datta, and Karaata in [I]. For each
wave except the last, their algorithm broadcasts information down from the
root and then propagates feedback up from the leaves. As presented in [I] the
last wave is cut short, only broadcasting down. We, however, include this last
propagation of feedback up, since we need the feedback to guarantee that the
last broadcast reached the leaves before starting the search process.

The complete state-transition process from the perspective of one node u
transitions its variable state,, through a series of five states (SLEEP — AWAKE —
CSIZE-UP — CSIZE-DOWN — ACTIVE) as depicted in Figure 1. After initialization,
an arbitrary node u rests in the SLEEP state and expects its parent p,, to be in the
SLEEP state as well. Only when u sees that p, is AWAKE will u transition away
from SLEEP, moving to the AWAKE state and thereby playing its part in a “wake-
up” broadcast. Following this, v waits in the AWAKE state until all of its children
transition themselves from SLEEP through AWAKE and finally to CSIZE-UP; only
then will u itself transition to CSIZE-UP, thereby providing “I’'m awake” feedback
to p,. The leaves are the first to switch from the broadcast down state AWAKE
to the feedback up state CSIZE-UP, since they have no children. The switch from
this first propagate feedback (“I'm awake”) stage to the second broadcast (“get

Efficient Self-stabilizing Graph Searching in Tree Networks 115

T6-ABNORMAL

- T6-ABNORMAL — — - _~~ _
ACTIVE -~ - ™~
« ACTIVE T5-GO-TO-SLEEP
ready SLEEP
to &) “cleared” BROADCAST S
search” -7
- R
_ -7 e /
_ - 4!
_ .
- v = ! =
- » g w
x| v e z! z|%
218°] o™ o Olz
<|< N ke Qo]
o m (Vg - Z w]
©|lAa < & ml alz
+| 2 .7 < L b
P s O\ —
= _ - 7z = \ ~
~ .
P - s \
- e \
_- .
T3-GET-READY T2-AWAKE
CoIZE AWAKE
BROADCAST FEEDBACK

Fig. 1. The T moves process is a PIF process

ready to search”) stage occurs at the root, where once its neighbor child, is in
the CSIZE-UP state it effectively moves itself through CSIZE-UP to CSIZE-DOWN,
thereby initiating the second wave transitioning all nodes to CSIZE-DOWN once
their parent is CSIZE-DOWN. Again, the leaves turn the broadcast down wave
into “I'm ready to search” feedback by transitioning through CSIZE-DOWN and
to ACTIVE. Only when all of u’s children are ACTIVE does u transition itself to
ACTIVE. Once ACTIVE, a node is eligible to participate in the search process
described in the next subsection.

If at any point during the search process u sees that p, is no longer ACTIVE
(i.e., has transitioned to SLEEP), then wu itself will transition to SLEEP. During
normal processing this will be initiated as a broadcast down wave from the root
only when the entire subtree containing u has been cleared. If, at any point after
leader election is complete, the states that p,, u, and w’s children are in do not
make sense with respect to this transition process, then u will respond to the
abnormal configuration by jumping to SLEEP.

There are three main tasks that we need the transition process to accomplish in
order to correctly implement the search using only |logn| + 1 searchers. First, the
transition process computes in each node the size of the current subtree assuming
the edge between the root and the subtree does not exist. These values are collec-
tively stored in the csize() vectors in exactly the same way as the size() vectors
holds the size of the subtrees of the entire graph. The csize() values are computed
in two waves. During the first feedback (“T'm awake”) wave the size of the subtree
below each node is calculated using the propagated up csize() values from its chil-
dren. Then, during the second broadcast (“get ready to search”) wave the size of
the subtree above each node (i.e., the portion of the subtree reached through the
parent) is calculated using the propagated down csize() values from p,,.

116 J. Blair, F. Manne, and R. Mihai

function ParentState (u):
if Root (pu)
then if child,, =u
then if state, = CSIZE-UP
then return CSIZE-DOWN
elseif state, = SLEEP
then return AWAKE
else return state,
else return SLEEP

function ReadyToSearch (u):
/* check if leaf */
if |[N(u)|=1
then if csizep, (u) =0
then return true
else return false
n « csizey(pu) + csizep, (u)
if (Vv € N(u), csize,(u) < n/2)
then return true

else return statep, if (v € N(u), csize,(u) > n/2)
function CalculateComponents (u): then return false
foreach v € N(u) if (v € N(u), csizey(u) =n/2)
csizey(v) — 1+ Z csizeg(u) then if (ID, > ID,)
zEN(u)—{v} then return true
return csize, else return false

Fig. 2. Auxilliary functions

The second main task that the transition process accomplishes is to initialize,
during the last feedback (“I'm ready to search”) wave, the other variables needed
to begin the search process. Combining these first two tasks with the transition
process from [I] we end up with a six rule implementation that accomplishes the
following. (Red font highlights the difference between our implementation and
the rules given in [I]).

e T1-WAKE-UP (rule ¢B in [I]): broadcast down a “wake-up” call (i.e., transi-
tion to AWAKE).

e T2-AWAKE (iF,[F): propagate up both “I'm awake” feedback (i.e., transition
to CSIZE-UP) and the size of the subtree rooted at w.

e T3-GET-READY (iB): broadcast down both a “get ready to search” call (i.e.,
transition to CSIZE-DOWN) and the size of the subtree above.

e T4-READY (iF,lF): propagate up “I'm ready to search” feedback (i.e., tran-
sition to ACTIVE) and initialize variables needed for the search.

e T5-GO-TO-SLEEP (iB,[B): broadcast down a “go to sleep” call (i.e., transi-
tion to SLEEP).

e T6-ABNORMAL (iCa,lCa): jump to SLEEP if any state value in the neigh-
borhood does not make sense.

We refer to these six rules as the T-algorithm. Note that for the T-algorithm
uses 14 6(u) additional variables: the state variable state,, and for each neighbor
v € N(u), csize,(v).

The third task that the T-algorithm accomplishes is to admit the search pro-
cess in only one subtree of the root at a time. We accomplish this by using a
ParentState(u) function to report the state of a node u’s parent p,.

If p,, is not the root, the function simply returns p,’s state. However, when p,,
is the root the state it returns is dependent on whether or not u = child, (see

Efficient Self-stabilizing Graph Searching in Tree Networks 117

(< logn moves) (< A moves)
| 4 |4
ACTIVE ACTIVE ACTIVE
“ready to « P
search” (1 move) searching (1 move) “cleared”

Fig. 3. The S moves process implements graph search

Figure 2 where red font again highlights differences from the implementation in
[1]). To see how this works, consider a call to ParentState(u) when the parent p,
is the root. Then the return value is SLEEP if v is not the root’s current child,;
otherwise the return value is the appropriate state in the transition process
relative to u’s current state. For example, if u = child, has not yet begun
transitioning away from SLEEP then the function returns AWAKE in order to
initiate a “wake-up” broadcast in u’s subtree.

The results in [I] prove that rules T1 - T6 are executed in a well structured
manner, giving the following result.

Lemma 1. When the root initiates a multi-wave broadcast-feedback process in
a subtree C1 after initialization the following properties hold:

(a) Every node in Cy will execute, in order, rules T1, T2, T3, and then T4.

(b) For any v € Cy, when v executes T2, all descendants of v will have already
evecuted T2.

(c) All nodes in Cy will execute T2 before any node in Cy executes T3.

(d) For any v € C1, when v executes T3, all ancestors of v will have already
evecuted T3.

(e) For any v € C1, when v executes T4, all descendants of v will have already
executed T}.

3.2 Search - Lines 2, 3, 5, 6, and 10

The rules used to implement the search process are divided into two sets called
the R-algorithm (implementing lines 2, 3, 5, and 6) and the S-algorithm (imple-
menting line 10). The R-algorithm executes only on the root and the S-algorithm
executes only on non-root nodes. As mentioned above, the S-algorithm takes
place in one subtree of the root at a time. We call that subtree a component
of the graph and recursively search components by placing a searcher at the
n' /2-separator of the component, where n’ denotes the number of vertices in the
component. We denote such a separator as a center node of the component and
use this to partition the current component into smaller components, searching

118 J. Blair, F. Manne, and R. Mihai

each of these in turn. Once a component is cleared, the last searcher in that
component is released before returning control to a previous level in the recur-
sion. The root always hosts a searcher. It is this recursive behavior of splitting
the graph at its center that admits a graph searching process that uses only
|logn| + 1 searchers.

The R~ and S-algorithms use the remaining 3 variables. Boolean variables
searcher, and cleared, are used respectively to indicate the presence of a searcher
on u and to signal that after u’s most recent T4 move u has been searched and
either currently maintains a searcher as a guard or is cleared and guarded some-
where else. Finally, a pointer child,, is used to point to the current neighboring
subcomponent that is being searched. We also assume that each node u has a list
of its neighbors beginning with FirstChild(z) and ending with p,,. The function
Next(child,) advances child,, through this list.

The S-algorithm includes five rules that systematically progress through the
ACTIVE state as shown in Figure 3. Details are given as Algorithm [2I Rule S1
adjusts the vector csize, () using the auxiliary function CalculateComponents
shown in Figure 2. With this the csize, () values can reflect the reduced size of
the current component. When a node u has up-to-date csize,() values and it

Algorithm 2. Search process on non-root node u (S-algorithm)

/* S1 - S4 only possible for ACTIVE non-root with entire neighborhood
ACTIVE */
S1-ADJUST-CSIZE-VALUES:
1: if (= cleared,) & (Jv € N(u),csize,(v) #1+ Z csizez(u)) then
z€N(u)—{v}
2: csize, «— CalculateComponents(u);

S2-BECOME-SEARCHER:

1: if (ReadyToSearch(u)) & (- cleared,) & (child, = NULL) then
2: searcher, < true; cleared, + true; /* clears u */
3: child,, «— FirstChild(u); csizey(childy) < 0;
S3-NEXT-CHILD:
1: if (childy # pu) & (childchia, = u) & (= searcherchig,) then
2: child,, «— Next(child,); csizey(child,) < 0;
S4-COMPONENT-CLEARED:
1: if (childy = pu) & (childp, = u) & (searchery) & (searchery,) then
2: searcher,, < false; /* edge (u,p,) is cleared; release u’s searcher */
S5-ABNORMAL:
1: if (child, ¢ N(u) U{NULL}) || ((child, € N(u)) & (csizeu(child,) # 0))
|| ((child, = NULL) & (searcher, || cleared.))
|| ((childy € N(u)) & (penita, = u) & (childcniia, = u) & (= searcher,)) then
2: childy, «— pu; csizey(pu) — O;
3: searcher, « false; cleared,, « true;

Efficient Self-stabilizing Graph Searching in Tree Networks 119

is the center of the current component, the Boolean function ReadyToSearch
given in Figure 2 evaluates to true and S2 is enabled on w. An S2 move places a
searcher on the node u that is executing the move and starts the search process
in one of its neighboring subcomponents (the one pointed to by child,). The
S3 move is enabled only after the current child, subcomponent is cleared, at
which time u advances its child pointer to the next child. After u has progressed
through each of its non-parent neighbors, S3 is no longer enabled. The S4 move
is used to release the searcher on u only after all children components are cleared
and the parent p,, also has a searcher on it to guard u’s cleared component. Note
that just before the S4 move releases the searcher on u, we also know that the
edge (u,p,) has been cleared.

After initialization in the root r’s neighborhood (either explicitly through
execution of R1 or implicitly with initial values in N(r)), the R-algorithm is a
continuous series of R2 moves executed by r, each followed by a period of waiting
until the current child, is cleared. An ACTIVE child, and the subtree rooted at
child, is considered to be cleared when child;phiq4, = r and child, has released
its searcher (i.e., —searchercpia,). Details are given as Algorithm [3l

Algorithm 3. Search process on root node u (R-algorithm)

/* R1 - R2 only possible for root with consistent size values in
neighborhood */

R1-ROOT-INITIALIZE:

1: if (= searchery) & (child, ¢ N(u)) & (Jv € N(u), csize,(v) #0) then

2: searcher, < true; /* clears u */;
3: Yv € N(u), csizey(v) < 0;
4: child,, «— FirstChild(u);

R2-ROOT-NEXT-CHILD:

1: if (childchia, = u) & (- searcherchiia,) & (statechiid, = ACTIVE) &
(stateNext(child,) = SLEEP) then
2: child,, «— Next(childy,);

4 Correctness

We show the correctness of our algorithm in five parts. The first part is an
immediate consequence of the results in [2], where they prove that at most O(n?)
time steps (or h rounds, where h is the diameter of G) contain L moves. Thus
if we can show that at any time prior to stabilization of the L-algorithm the R-,
T- and S-algorithms will stabilize given that there are no L moves, then it will
follow that the L-algorithm will stabilize with the n/2-separator as the global
root, designated by r, and with every parent pointer p, set appropriately. The
fact that the R-~, T- and S-algorithms stabilize will follow from the remainder of
the correctness proof.

Next we argue in Subsection] below that the R-algorithm behaves as ex-
pected, assuming the T- and S-algorithms stabilize in the absence of any L- or

120 J. Blair, F. Manne, and R. Mihai

R moves. This argument shows that after stabilization of the L-algorithm r will
begin executing R2 moves and that just prior to any R2 move, state, = SLEEP
for y = Next(child,). The results in [I] then guarantee that every node in the
subtree rooted at y will be in the SLEEP state before it begins the T-algorithm
that will be initiated by r with the next R2 move.

We then show in Subsection that each R2 move will initiate the T-
algorithm in the subtree rooted at the assigned-in-R2 pointer child, and that
each node in that subtree will have the correct initial values for the S-algorithm
before it is eligible to execute any S move. Subsection 3] then addresses the
key correctness result, proving that starting from a normal configuration the
S-algorithm correctly searches the subtree rooted at child, using no more than
|logn| searchers at any point in time. For the final portion of the correctness
proof Subsection 4] argues that the T- and S-algorithms will stabilize correctly
in the absence of any L or R moves regardless of the initial configuration and that
before the L-algorithm stabilizes, the R-algorithm will stabilize in the absence
of any L moves.

Note that the premise required for the first part, that before stabilization of
the L-algorithm the R-, T- and S-algorithms stabilize in the absence of any L
moves, follows from these results. That is, the results in Subsections and
3] ensure, respectively, that starting from a normal configuration the T-, and
S-algorithms stabilize. The results in Subsection [£4] ensure that before the L-
algorithm stabilizes and/or starting from an abnormal configuration all three
algorithms stabilize.

Due to space limitations we do not give the details of most proofs. Details
are, however, available upon request.

4.1 The R-algorithm

We focus in this subsection on R moves made after the L-algorithm has stabilized
with the n/2-separator as r.

Only a node believing it is 7 is enabled to execute any R move. Moreover,
since no T- or S move is privileged on r, R moves are the only possible moves
r can make. Furthermore, because the T- and S-algorithms will stabilize (Sub-
sections and [3]), we know that r will be given an opportunity to execute
enabled R moves. In light of this, we prove here the following lemma.

Lemma 2. After the L-algorithm has stabilized:

(a) r will execute R2 with appropriate variable values and

(b) just before any R2 move, state, = SLEEP for y = Next(child,), ensuring
that every node v in the subtree rooted at y is either in the SLEEP state or
will transition to SLEEP before any subsequent S mowve.

4.2 The T-algorithm

In this subsection we consider what happens just after r executes an R2 move.
Let C be the component of G — {r} containing child, following the R2 move. We

Efficient Self-stabilizing Graph Searching in Tree Networks 121

will show that each v € C will execute the T-algorithm and that, after v’s last T
move, its variables will be correctly initialized for the start of the S-algorithm.
To that end, we say that a csize,(x) value is correct-with-respect-to C if v € C
and csize,(x) is equal to the size of the component in C\{(v,z)} containing v.

From Lemma] we know that each node in C' will either be in the SLEEP
state just after » makes the R2 move, or will subsequently transition to SLEEP
before its parent (and hence it) can begin the T-algorithm. Then it follows from
Lemma [I] that each node in C' will perform T1 through T4 in sequence. This is
the foundation needed to prove that the configuration at each v € C following
its T4 move is what is needed before it begins the S-algorithm.

Lemma 3. Starting from a normal configuration, after a vertex v € C makes a
T/ move and before it makes any S move, the following properties hold:

(a) cleared, = false.

(b) searcher, = false.

(¢) child, = NULL.

(d) For all x € N(v), csize,(x) and csize,(v) are correct-with-respect-to C'.

4.3 The S-algorithm

In this subsection we will show that once r has executed an R2 move setting
child, = v the subtree C rooted at v will be searched and cleared. Moreover,
the search will stabilize with v’s variable values enabling an R2 move on r, thus
continuing the search in G. We will also show that the process of searching C'
never uses more than logn searchers simultaneously and that the total number
of moves is at most O(|C|log |CY).

It follows from the discussion in the previous section that every node in C'
will execute the entire T-algorithm before it can start executing the S-algorithm.
Thus even though both the T- and S-algorithms might execute concurrently any
node that has not yet finished the T-algorithm is eligible to continue executing
the T-algorithm. Also, no values that are set by the S-algorithm are used in the
predicates of the T-algorithm. Note in particular that csize() values used by
the T-algorithm are only influenced by other csize() values from nodes where
the T-algorithm is still running. We will therefore assume that the T-algorithm
has run to completion on C' when the S-algorithm starts. Thus we assume that
when the S-algorithm starts we know from Lemma [that all csize() values are
correct-with-respect-to C, searcher, = false and child, = false for each v € C.
The value of searcher, can only be set to true if v executes an S2 move. To keep
track of the searchers that are used at any given time, we will label a node that
executes an S2 move as an L; searcher where 7 — 1 is the number of searchers in
C just prior to the move. For completeness we define Ly = r.

It is conceivable that more than one node in C' could execute an S2 move
during the same time step and thus we could have more than one L; searcher
at the same time. But, as we will show, only one node in C can execute an
S2 move during any time step. We will also show that the searchers are placed
and removed in a first-in-last-out fashion. Thus every L;, j < i, will still be a
searcher when L; ceases to be so.

122 J. Blair, F. Manne, and R. Mihai

With these assumptions we define the components of G —{Ly,...,L;—1} that
are incident on any L;_1 as the C; components of G. It follows then that C' is
a C1 component. Again for completeness we define Cy = G. Additionally, if the
value of childr, , is pointing to a node v € C; N N(L;_1) with csizer, ,(v) =0,
then we denote the C; component containing v as the active C; component. As
we will show all active components are in C' and are nested within each other.

The center of a component C;, denoted by center(C;), is the |C;|/2-separator.
Ties are broken using the highest ID. Let C; be a component and let v € C;
and z € N(v). Then the actual size of the subtree containing v in C; — {x}, is
denoted by actuall (z).

Again, looking at C' = (' it is clear that until makes a subsequent R2 move,
C; remains active and that following the T-algorithm csize,(r) = actuall(x)
for every v € (. Before proceeding we need the following result about how S1
moves will update the csize() values in an active component.

Lemma 4. Let x¢ = L;_1 be incident on an active component C; and let
x1,%2 -+ ,x; be any path in C; where the following properties hold:

o x1 € N(x0) and csizez,(x1) = 0.

o csizey, (xp41) > B for some constant B > |C;| and each k, 0 < k < j.

o csizey(xy) is correct-with-respect-to C; — {xy} for each x, 0 < k < j, and
y € N(zx) where y is not on the path xo,-- -, x;.

Assume further that the only type of moves that are executed on any node are
S1 moves by the nodes x1,x2,--- ,x;. Then for each x, 0 < k < j:

(a) The S1 moves will stabilize with csizey, (xr1) = actuall, (Tp41).
(b) At each time step prior to the move where csizey, (vr11) obtains its final
value csizey, (Tp41) > B.

Lemma [identifies the very structured way in which any csize,(x) value will
evolve with a series of S1 moves in the absence of any other S moves; essentially
they will decrease, jumping from one actual value to some subsequent actual
value, ending when v becomes the center of an active component. As it turns
out, this characteristic of the changing csize,(x) values persists even in the
presence of other S moves within the active components.

We will use the following defined characteristic of an active component when
we later show how searchers are activated.

Definition 1. An active component C; where |C;| > 0 is ready-for-searching if
the following is true immediately following the S2 or S8 move by an L;_1 node
that defined Cj:

(a) Every L;, 0 < j < i, such that there exists an edge (L;,v) for some v € C;
has childy, = v and csizer,(childr;) = 0.

(b) For every v € C;, cleared, = false.

(c) For each v € C; let x € N(v) be the neighbor of v on the path from v to
Li_1. Then csize,(x) = actuali=t(z).

Efficient Self-stabilizing Graph Searching in Tree Networks 123

(d) For each v € C; let x € N(v) be a neighbor of v not on the path from v to
Li_1. Then csize,(x) > |Cyl.

Note that following the T-algorithm on C' = C; all csize,() for v € Cy are
correct-with-respect-to C7. Thus the only move that can be executed in Cy is
S2 by center(Cy) which then becomes the first (and currently only) L; node.
If |C1| > 1 then childy, is set to some v € C; thus defining one or more Co
components. Since at that time csizer, (v) = 0 it follows that the Cy component
of C1 — {L1} containing v is also active. Moreover, it is not hard to see that this
Cy component is ready-for-searching. Since the csize() values surrounding any
other Cs components have not changed these will remain stable until L; makes
a subsequent S3 move, changing a csize() value next to the other Cy component.

As the next lemma shows, the S-algorithm will recursively continue to create
new nested components that are ready-for-searching. Moreover, it will do so in
a sequential fashion.

Lemma 5. When the S-algorithm runs on a ready-for-searching component C;,
1> 1:

(i) The first node in C; to execute an S2 move will be center(C;).
(ii) If |C;] > 1 then the Ciy1 component that childcenier(c,) points to just after
its S2 move will be ready-for-searching at that time.
(i1i) The nodes in C; — Ciy1 — {center(C;)} can only execute S1 moves until
center(C;) makes an S3 move.

Since L; is the only initial searcher in C] it follows from Lemma [that the
S-algorithm will continue to create new nested components Cs, ..., C; one at a
time until either a node L; is a leaf or a node L; sets childy, = L; where j < i.In
both cases, L; then sees |Ci+1| = 0. In the following we show how the recursion
returns and that when it does so each component has been cleared and will not
be recontaminated. First we need the following definition of a subtree that has
been searched.

Definition 2. Let (v,w) € E be where w = p,. The subtree H of G — {w} with
v as its root is cleared-and-guarded if:

o For every x € V(H) — {v} searcher, = true and searcher, = false,
o Fvery x € V(H) has child, = p,, and
e Every x € V(H) has been cleared and no recontamination has occurred.

Note that it is only the node v closest to r that can possibly make a move
in a subtree that is cleared-and-guarded and this can only happen if p, has
childy,, = v, at which point v is eligible to execute an S4 move.

We can now show that the S-algorithm, when started correctly on a component
C;, will return with the entire C; being cleared-and-guarded.

Lemma 6. Let C; be a component of G such that C; is ready-for-searching and
every subgraph of G — C; adjacent to C; except possibly the one closest to r

124 J. Blair, F. Manne, and R. Mihai

is cleared-and-guarded. Further, let (v,w) € E be such that v € C; and w & C;
while p, = w. Then following the S2 or S8 move that defined C;, the S-algorithm
will reach a point where the component of G —{w} containing v, will be cleared-
and-guarded. In doing so the algorithm will not use more than |log|C;|| +1 new
searchers simultaneously.

Because each S2 and S3 move designates exactly one of its adjacent subcompo-
nents to next recursively start the S-algorithm, we can prove the following.

Lemma 7. The number of moves executed by the S-algorithm on a component
C; which satisfies the conditions for Lemmal@ is O(|C;|log |C|).

Note that the proof of Lemma [7 establishes that, for any v € C;, the number of
times that v executes each S move is as specified in Figure 3.

4.4 Initialization

In this subsection we show that the algorithm will reach a normal configuration.
We do this by first showing that in the absence of any L, R and T moves the
S-algorithm will stabilize, regardless of the initial configuration. This result,
together with the results in [I], ensures that in the absence of any L or R moves,
the T- and S-algorithms together will stabilize in a normal configuration. Our
other initialization result, Lemma [0 uses this to then show that in the absence
of any L moves, the combined R~, T- and S-algorithms stabilize in a normal
configuration. Since the results in [2] guarantee that as long as this is the case
the L-algorithm will stabilize we will then have proven that the integrated self-
stabilizing algorithm that includes the five L rules, the two R rules, the six T
rules and the five S rules will reach a normal configuration.

Lemma 8. Let H = (Vy, Ex) be a maximal connected subgraph of G such that
every v € Vi has state, = ACTIVE and let n = |Vy|. Then in the absence of any
L, T or R moves, the S-algorithm will stabilize in H using O(n?) moves.

Lemma 9. Let v = FirstChild(r) after an R1 move by r and let Cy be the
component of G —{r} containing v. Then in the absence of any L moves, the T-
and S-algorithms will stabilize in Cy with child, = r and searcher, = false.

4.5 The Integrated Algorithm
We are now ready to prove the final results.

Theorem 1. Starting from an arbitrary configuration the L-, T-, R- and S-
algorithms combined reach a point when the n/2-separator of G is r, all p, point
in the direction of r, and the entire network is in a normal configuration when
the r executes the R2 move.

Proof. Follows from Lemmas 2] B Bl and the results in [2] and [IJ.

Theorem 2. After reaching a normal configuration, following any R2 move on
r the combined L-, T-, R- and S-algorithm will clear all of G in O(nlogn) moves
using no more than 1 + [logn| searchers.

Efficient Self-stabilizing Graph Searching in Tree Networks 125

5 Concluding Remarks

We have given an efficient non-silent self-stabilizing algorithm for graph searching
in trees. The algorithm integrates three separate self-stabilizing processes and
ensures that each behaves as expected even in the presence of the other processes.

Although as presented the algorithm addresses the node search problem, it
can be easily modified to perform edge searching or mixed searching. In the edge
search variant searchers are slid through the edges. Let us consider a node u and
its parent v. If v has a searcher on it and w is the next node that will receive
a searcher then instead of placing the searcher directly on w we can place the
searcher on v and then slide it to w. By doing this we can transform the node
search strategy to an edge search strategy.

Due to the sequential nature of our algorithm, the number of rounds for it to
execute could be on the same order as the number of moves.

Our algorithm can be used to solve other types of problems that require
recursive decomposition of the graph by identifying the centers at each level of
the decomposition. For example, it is straight-forward to adapt our algorithm
to find a 2-center of a tree using only O(n) moves after initialization, improving
over the algorithm given in [3].

References

1. Bein, D., Datta, A.K., Karaata, M.H.: An optimal snap-stabilizing multi-wave
algorithm. The Computer Journal 50, 332-340 (2007)

2. Blair, J.R.S., Manne, F.: Efficient self-stabilizing algorithms for tree networks. In:
Proceedings of the 23rd IEEE International Conference on Distributed Computing
Systems (ICDCS), pp. 912-921 (2003)

3. Coudert, D., Huc, F., Mazauric, D.: A distributed algorithm for computing and
updating the process number of a forest. In: Taubenfeld, G. (ed.) DISC 2008.
LNCS, vol. 5218, pp. 500-501. Springer, Heidelberg (2008)

4. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph
searching. Theor. Comput. Sci. 399, 236-245 (2008)

5. Huang, T.C., Lin, J.C., Chen, H.J.: A self-stabilizing algorithm which finds a 2-
center of a tree. Computers and Mathematics with Applications 40, 607624 (2000)

6. Kinnersley, N.G.: The vertex separation number of a graph equals its path-width.
Inf. Process. Lett. 42, 345-350 (1992)

7. Korach, E., Solel, N.: Tree-width, path-width, and cutwidth. Discrete Appl.
Math. 43, 97-101 (1993)

8. Mihai, R., Mjelde, M.: A self-stabilizing algorithm for graph searching in trees. In:
Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 563-577. Springer,
Heidelberg (2009)

9. Peng, S., Ho, C., Hsu, T., Ko, M., Tang, C.: Edge and node searching problems on
trees. Theor. Comput. Sci. 240, 429-446 (2000)

10. Skodinis, K.: Construction of linear tree-layouts which are optimal with respect to
vertex separation in linear time. J. Algorithms 47, 40-59 (2003)

	Efficient Self-stabilizing Graph Searching in Tree Networks
	Introduction
	Preliminaries
	The Algorithm
	Transition - Lines 8 and 9
	Search - Lines 2, 3, 5, 6, and 10

	Correctness
	The R-algorithm
	The T-algorithm
	The S-algorithm
	Initialization
	The Integrated Algorithm

	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

