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Abstract. The matching problem asks for a large set of disjoint edges in
a graph. It is a problem that has received considerable attention in both
the sequential and self-stabilizing literature. Previous work has resulted
in self-stabilizing algorithms for computing a maximal (}-approximation)
matching in a general graph, as well as computing a g-approximation
on more specific graph types. In the following we present the first self-
stabilizing algorithm for finding a g—approximation to the maximum
matching problem in a general graph. We show that our new algorithm
stabilizes in at most exponential time under a distributed adversarial
daemon, and O(n?) rounds under a distributed fair daemon, where n is
the number of nodes in the graph.

Keywords: Self-stabilizing algorithm, g—Approximation, Maximum
matching.

1 Introduction

A matching in a graph G = (V, E) is a subset M of E such that no pair of edges
in M have common endpoints. We say that two nodes v and w are matched
if the edge (v,w) is in M. A matching M is mazimal if no proper superset of
M is also a matching. A matching M is mazimum if there does not exists any
matching with cardinality larger than |M|. While there exists sequential algo-
rithms for computing a maximum matching in polynomial time, the complexity
of such algorithms renders them impractical in many settings when applied to
large graphs. Thus, approximation algorithms are often used to rapidly provide
matchings that are within an acceptable margin of error. A maximal matching
can be computed in linear time over the size of the graph, and it is well known
that this results in a %—approximation to the maximum matching. In order to

compute matchings with approximation ratios better than é, augmenting paths
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are often used. An augmenting path is a path in the graph, starting and end-
ing in an unmatched node and where every other edge is either unmatched or
matched, i.e. for each consecutive pair of edges exactly one of them must be-
long to the matching. Once an augmenting path p has been identified one can
increase the size of M by performing an augmenting step. This consists of re-
moving each matched edge of p from M and including every unmatched edge of
pin M. This way the cardinality of the matching is increased by one. Hopcroft
and Karp [12] show that given a graph G = (V, E) and a matching M C E then
if there does not exist an augmenting path of length at most three in G, then
M is a g—approximation to the maximum matching.

The matching problem is often used to model several real world situations.
Examples include the problem of assigning tasks to workers or creating pairs of
entities. The latter lends itself well to a distributed network, since processes in
the network may need to choose exactly one neighbor to communicate with.

In this paper we use augmenting paths and present a self-stabilizing algorithm
that computes a g—approximation to the maximum matching problem in a gen-
eral, unweighted graph. Our algorithm is based on using an existing maximal
matching, and then identifying augmenting paths of length three. These are then
used to improve the cardinality of the matching.

1.1 Self-stabilizing Algorithms

Self-stabilizing algorithms [3J4] are distributed algorithms that permit forward
failure recovery by means of an attractive property: starting from any arbitrary
initial state, the system autonomously resumes correct behavior within finite time.
Self-stabilization allows failure detection to be bypassed, yet does not make any
assumptions about the nature or the span of those failures. Central to the theory
of self-stabilization is the notion of daemon, an abstraction for the scheduling of
nodes in the system to execute their local code. A daemon is often viewed as an ad-
versary to the algorithm that tries to prevent stabilization by scheduling the worst
possible nodes for execution. The weakest possible requirement is that the daemon
is proper, i.e. only nodes whose scheduling would change the system state are ac-
tually scheduled (these nodes are privileged). Variants of daemons can be defined
along two axis: (1) a daemon may be sequential (meaning that no two privileged
nodes may be selected by the daemon simultaneously) or distributed (in which
case any number of privileged nodes may be selected at the same time), and (i) a
daemon may also be fair (which ensures that every privileged node will be allowed
to move eventually) or adversarial (meaning that a privileged node may have to
wait indefinitely, yet always scheduling some privileged node for execution). Intu-
itively, distributed is a more general property than sequential, and adversarial is
a more general property than fair. Thus among these daemons, the most general
is the distributed adversarial, and the least general is the sequential fair daemon.
As a result, an algorithm that tolerates the most general adversary also tolerates
the least general one, but the converse is not true.

Time complexity is measured differently depending on the daemon used: for
any fair daemon time complexity is measured in rounds, where a round is the
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smallest sub-sequence of an execution in which every node privileged for at least
one move at the start of a round has either executed one of these moves during
the round, or has become ineligible to do so. For the adversarial sequential
daemon, complexity is measured in single node moves, while for the adversarial
distributed daemon it is measured in time steps, where a time step is one step
in the execution during which at least one privileged node executes one move.

When no nodes in the graph are privileged, we say that the algorithm is stable,
or has reached a stable configuration.

1.2 Related Work

The first self-stabilizing algorithm for computing a maximal matching was given
by Hsu and Huang [13]. The authors showed a stabilization time of O(n?) moves
under a sequential adversarial daemon. This analysis was later improved to O(n?)
by Tel [15] and to O(m) by Hedetniemi et al. [I1], where m is the number of edges
in the graph. The algorithm assumes an anonymous graph and the sequential
daemon is used to break symmetry. By means of randomization Gradinariu and
Johnen [J] gave a method for assigning identifiers that are unique within distance
two. This was then used to transform the algorithm by Hsu and Huang so that
it stabilizes under a distributed adversarial daemon, albeit with an unbounded
stabilization time.

Goddard et al. [6] gave a synchronous variant of Hsu and Huangs algorithm
and showed that it stabilizes in O(n) rounds. While not explicitly proved in the
paper, it can be shown that this algorithm stabilizes in §(n?) time steps under
an adversarial distributed daemon. Gradinariu and Tixeuil [I0] provide a general
scheme to transform an algorithm written for the sequential adversarial daemon
into an algorithm that can cope with the distributed adversarial daemon. Using
this scheme with the Hsu and Huang algorithm yields a time step complexity of
O(A-m), where A denotes the maximum degree of the graph. Manne et al. [14]
later gave an algorithm for finding a maximal matching that stabilizes in O(m)
time step under the distributed adversarial daemon, and O(n) rounds when
using the distributed fair daemon. The aforementioned protocols of [GJI0JI4]
assume that the nodes are provided with unique identifiers (either globally, or
within a certain distance), as [14] points out that deterministic protocols require
symmetry breaking to deal with the adversarial daemon.

When it comes to improving the é—approximation induced by the maximal
matching property, only a few works investigate this issue in a self-stabilizing
setting. Ghosh et al. [5] and Blair and Manne [I] presented a framework that
can be used for computing a maximum matching in a tree under a distributed
adversarial daemon using O(n?) moves, while Goddard et al. [§] gave a self-
stabilizing algorithm for computing a g—approximation in anonymous rings of
length not divisible by three using O(n*) moves, under a sequential adversar-
ial daemon. The polynomial complexity results mainly from the fact that only
strongly constrained topologies are investigated.
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The case of general graphs is more intricate and is the topic of this paper.
It is possible to compute a g—approximation (or even an optimal solution) for
the maximum matching problem by collecting the entire graph topology on each
node using a self-stabilizing topology update protocol, and then run a deter-
ministic sequential algorithm on each node. This would yield a self-stabilizing
algorithm for the matching problem, but at the expense of having to duplicate
the system graph on each node. This approach is not very practical in most
settings, due to its considerable memory usage.

As far as feasibility is concerned, it would be possible to use a generic scheme
such as [7I2] that prevents nodes at distance k or less of a particular node u to
execute code until further notice from u. Such a scheme would permit to devise
a protocol that essentially tries to find and then to integrate augmenting paths
starting at a node u. Unfortunately, both schemes suffer from severe drawbacks
for this purpose. First, both [7] and [2] make use of a large amount of memory at
each node (typically, an exponential number of states with respect to k). Second,
the complexity of a g—approximation scheme using [7] would be unbounded.
Third, a scheme based on [2] would require operating under a fair daemon, and
may not stabilize under an adversarial one.

1.3 Owur Contribution

In this paper we present the first self-stabilizing algorithm for computing a g—

approximation to the maximum matching in a general, non-anonymous graph,
that performs under any daemon. Complexity-wise, we show that our algorithm
stabilizes in O(2""2- A-n) time steps under the distributed adversarial daemon,
and in O(n?) rounds under the distributed fair daemon. The memory used at
each node by our protocol is low: we use three pointers to neighbors and one
boolean variables. The rest of the paper is organized as follows. The algorithm
is presented in Section 2l In Section Bl we show the correctness of the algorithm,
while the stabilization time for the algorithm is shown in Section @ Finally, we
conclude in Section

2 The Algorithm

In this section we present our new algorithm. The algorithm assumes that there
exists an underlying maximal matching algorithm, which has reached a stable
configuration. In Section we will explain how the algorithm works when
this algorithm is not in a stable configuration. The new algorithm functions by
identifying augmenting paths of length three, and then rearranging the matching
accordingly. This is done in several steps. First every pair of matched nodes v, w
will try to find unmatched neighbors to which they can rematch. Then one of
v and w will first attempt to match with one of its candidates. Only when the
first node succeeds, will the second node also attempt to match with one of
its candidates. If this also succeeds the rematching is considered complete. The
algorithm will stabilize when there are no such augmenting paths left.
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2.1 Predicates and Variables

Given an undirected graph G = (V, E) where each node v has a unique identifier.
We assume that these can be ordered, and in the following we do not distinguish
between a node and its identifier. By definition v < null for every node v € V.

The set of neighbors of v in G is denoted by N (v). In the following, we refer
to M’ as the set of edges in the underlying maximal matching. If v is matched in
M’ then m, denotes the node that v is matched with in M’; i.e. (v,m,) € M.
Note that if v is unmatched in M’ then m,, = null. For a set of nodes A, we define
1(A) and o(A) as the set of matched and unmatched nodes in A, respectively,
in the maximal matching M’. Since we assume that the underlying maximal
matching is stable, a nodes membership in u(V) or o(V) will not change, and
each node v can use the value of m, to determine which set it belongs to.

In order to facilitate the rematching, each node v € V maintains three pointers
and one boolean variable. The pointer p, refers to a neighbor of v that v is trying
to (re)match with. If p, = null then the matching of v has not changed from the
maximal matching (we define py.; = null). Thus two neighboring nodes v, w
are matched if and only if either p, = w and p,, = v, or if p, = null, p, = null
and (v,w) € M.

For anode v € u(V'), the pointers a,, and 3, refer to two nodes in o (N (v)) that
are candidates for a possible rematching with v. Also, s, is a boolean variable
that indicates if v has performed a successful rematching or not.

2.2 Rules and Functions

The following section gives the rules and functions of the algorithm. Each rule
is executed on a node v € V. We divide the rules into two sets, one for nodes in
o(V) and one for nodes in p(V'). If more than one rule is privileged for a node
in pu(V), the rules are executed in the order presented here. For a set of nodes
A, Unique(A) returns the number of unique elements in the sefll, and Lowest(A)
returns the node in A with the lowest identifier, or null if A = (.

SingleNode
if  (po = null A Lowest{w € N(v) | pw = v} # null)V

po & (w(N(v)) U{null}) V (po # null A pyp, # v)
then p, := Lowest{w € N(v) | p» = v}

Algorithm 1 - Rule for nodes in o(V)

Motivation. We now give a brief motivation for each rule in Algorithm 1.

The purpose of the SingleNode rule is to ensure that a node v € o(V) is
pointing to a neighbor in u(N(v)) that points back to v. In doing so, v and p,
will be matched. If there exists more than one candidate, the rule will select the
one with the smallest identifier. If no node in u(N (v)) points to v, the rule ensures
that v points to null, thereby informing v’s neighbors that v is unmatched.

! Note that Unique(A) = |A|. However for the sake of clarity we use Unique(A).
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Update
if (o > Bv) V (ow, B ¢ 0(N(v)) U {null})V
(v = Bo A aw £ null) Vpy ¢ (o(N(v)) U{null}) vV
((aw, Bv) # BestRematch(v) A (py = null V pp, ¢ {v,null}))
then (aw, 8y) := BestRematch(v)
(P, Sv) := (null, false)

MatchFirst
if (AskFirst(v) # null) A (py # AskFirst(v) V sy # (Pp, = v))
then p, := AskFirst(v)
Sv 1= (pp, = V)

MatchSecond
if (AskSecond(v) # null) A (sm, = true) A (p» # AskSecond(v))
then p, := AskSecond(v)

ResetMatch
if (AskFirst(v) = AskSecond(v) = null) A ((pv, $v) # (null, false))
then (p., sv) 1= (null, false)

Algorithm 1 - Rules for nodes in u(V).

BestRematch(v)
a = Lowest {u € o(N(v)) A (pu = null V p, =v)}
b= Lot(uest){u € o(N(W))\{a} A (pu =null Vp, =)}
return (a,b

AskFirst(v)
if oy # null A am, # null A2 < Unique({aw, B, @my, Bm, }) < 4
then if a, < am, V(@w=0m N\Bv=nul)V (s = Wm, N3m, 7 null\v<m)
then return a,
else return null

AskSecond(v)
if AskFirst(m.) # null
then return Lowest({aw, 8o} \ {@m, })
else return null

Algorithm 1 - Functions

The Update rule is used to ensure that a node v € u(V) has «, and 8, set to
two neighbors that v can try to match with. Note that the rule is executed if any
one of the current a-, 3-, or p-value is not pointing to a node in o(N(v)) or to
null, or if the values of a and 3 are incorrect, relative to each other. If this is not
the case, the rule is executed only if v is not already involved in a rematch at-
tempt. The values of o, and (3, are returned by the BestRematch function, which
returns the two unmatched neighbors in o(N(v)) with the smallest identifiers.

The MatchFirst rule is executed by a node v € p(V) in order to initiate
a rematch attempt. The AskFirst function returns the neighbor of v that v
should attempt to rematch with. If this succeeds, then the node m, may become
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privileged for a MatchSecond move, which employs the AskSecond function in
the same way that MatchFirst uses AskFirst. The AskFirst function has two
consecutive predicates, both which must evaluate to true in order for the calling
node v to become privileged for a MatchFirst move. The first predicate (the
first if statement) checks that v and m, each have at least one possible unique
neighbor to rematch with. The second predicate decides whether v or m,, should
initiate the rematch attempt.

If a node v € u(V) becomes unable to participate in a rematch attempt, it
may be privileged for a ResetMatch move, in order to reset its p- and s-value.

Example. We now give a possible execution of Algorithm 1 under a distributed
adversarial daemon. Figure [Tl presents a graph, consisting of the four nodes z, v,
w, and y, where v < w and z < y. Nodes v and w are matched in the underlying
maximal matching. This is shown by the double line joining them. In the figure
we illustrate one node pointing to a neighbor by an arrow (the absence of an
arrow means that the node in question is pointing to null), and if the s-value
is true for a node we show this by a double border. The values of the a- and
(-variables are not shown in the figure.

Figure [Tk shows the initial state of the graph. We assume that at this point
(aw, By) = (z,null) and (au, Bw) = (z,2), where z ¢ N(w). Also note that
sy = false. Observe that both v and w are pointing to z, which implies that
x is privileged for a SingleNode move. Since 3, ¢ N(w), w is privileged for
an Update move. In Figure [Ib z has executed its SingleNode move, and v has
executed a subsequent MatchFirst move and set s, = true. At this point, w
may execute an Update move, while no other nodes are privileged. This move
will set (pw, Sw) = (null, false) and, since w has no neighbors that are eligible
candidates for a rematch attempt, (a,Bw) = (null, null). However, this gives
AskFirst(v) = null, and v can now execute a ResetMatch move, which is followed
by a SingleNode move by z. The result of these moves is shown in Figure [Ik.

At this point, both v and w have, combined, at least two unique candidates
for a rematching, namely x and y. Thus both nodes will execute Update moves,
after which AskFirst(w) = x (which implies that AskFirst(v) = null), and w may
execute a MatchFirst move, and point to x, as seen in Figure [[d. Following this

Fig. 1. Execution example of Algorithm 1



A Self-Stabilizing g—Approximation Algorithm 101

move, = executes a SingleNode move and points to w after which w will set s, =
true through a MatchFirst move (Figure[lk). Since w has successfully established
a rematching, v may now attempt the same by executing a MatchSecond move
and point to y. This will cause y to point back to v (note however that v is not
privileged to set s, = true) (Figure [If). At this point the system has reached
a stable configuration, and the augmenting path that existed in Figure [[h has
been identified and used to improve the matching.

3 Correct Stabilization

In this section we show that when Algorithm 1 is stable it has computed a
g—approximation to the maximum cardinality matching problem. Due to page
constraints we omit some of the proofs.

We first need the following definition.

Definition 1. A node v € u(V) is a pioneer if and only if AskFirst(v) # null.
We define the short hand notation

R(v) = ay # null A au, # null A2 < Unique({awy, Bys 0t Bm, ) < 4

Thus R(v) is equal to the outcome of the first if-statement of the AskFirst
function. R(v) = true states that v and m,, each have at least one candidate
for a rematch, and together they have at least two unique candidates. Note that
R(v) = R(m,). We now make the following observation about Algorithm 1.

Lemma 1. For a node v € u(V') in a stable configuration where R(v) = true
then either AskFirst(v) # null or AskFirst(m,) # null.

Next we show the following connection between AskFirst(v) and AskSecond(my,).

Lemma 2. Ifv € u(V) then AskFirst(v) # null if and only if AskSecond(m.,)
# null.

We now proceed to show that in a stable configuration whenever a node v has
Py # null then we must have p, € N(v) and p,, = v. To do so we look at three
different cases. The first case is v € o(V'). For v € u(V) we distinguish if v is a
pioneer or not.

Lemma 3. Let v € o(V) in a stable configuration. Then p, # null implies that
Py € p(N(v)) and that pp, = v.

To show that the equivalent of Lemma [ also holds for v € u(V) we first need
to show the following two intermediate results.

Lemma 4. Let v € p(V). Then we cannot have p, # null, p,, # v, and
(e, By) # BestRematch(v) in a stable configuration.

Corollary 1. Let v € u(V). Then we cannot have p, # null, pp, # v, and
Dy € {a, By} in a stable configuration.
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We can now show that the equivalent of Lemma [3 also holds for v € (V).

Lemma 5. Let v € u(V) in a stable configuration. If AskFirst(v) # null then
(1) py # null, (it) py € o(N(v)), (iii) pp, = v, and (iv) s, = true.

Lemma 6. Let v € u(V) in a stable configuration. If AskSecond(v) # null then
(i) py # null, (ii) p, € o(N(v)), and (i) pp, = v.

We have now established for any node v € V that if p, # null then p,, = v.
We next show that if v € p(V') is matched to a node other than m, in a stable
configuration, then m,, is also matched to a node other than v.

Lemma 7. Ifv € u(V) in stable configuration then p, # null < pp,, # null.

Next we show that when Algorithm 1 is stable the original matching M’ and the
p values define an unambiguous matching. Recall that two neighboring nodes v
and w are matched if either (v, w) € M’, p, = null, and p,, = null or if p, = w
and p,, = v. Similarly, a node v is unmatched if v € o(V') and if p, = null.

Lemma 8. In a stable configuration every node is either matched or unmatched.

We can now finally show that a stable configuration of Algorithm 1 is a 2-

3
approximation to the maximum cardinality matching problem.

Theorem 1. A stable configuration of Algorithm 1 is a g—approximation to the
mazximum matching problem.

Proof. We first note from Lemma [ that a stable matching is well defined, mean-
ing that every node is either matched or unmatched. Next, from Hopcroft and
Karp [12], we have that for a graph G with a matching M, if there does not
exists an augmenting path of length three or less then M is a g—approximation
to the maximum matching in G.

From the definition of an augmenting path it follows that any node in u(V)
will also be a member of the final matching. Consequently, an augmenting path in
a stable configuration must both start and end with nodes from o (V). Due to the
underlying maximal matching we know that there does not exist an augmenting
path in M’ of length one, i.e. two unmatched nodes cannot be neighbors. It
is therefore sufficient to show that there does not exist an augmenting path
x,v,w,y in a stable configuration where x and y are distinct unmatched nodes
and v and w are matched.

Assume that such a path exists in a stable configuration, then v,w € u(V),
otherwise two adjacent nodes would be in o(V'). Since v and w are matched in
the final matching then either (i) p, = w and p,, = v or (i) p, = p, = null and
(v,w) € M".

Note that in Case (i) p, € (V') (and similarly for p,,), which would trigger
an Update move, contradicting that the configuration is stable.

For Case (ii) first note that since x and y are unmatched, p, = p, = null.
Thus, if Unique({aw,3y}) = 0 then v is privileged for an Update move (and
similarly for w). However, if both {a, 8,} # 0 and {aw, Bw} # 0 we see from
Lemma [ that either AskFirst(v) # null or AskSecond(v) # null. From lemmas
and [f] this implies that the configuration is not stable. O
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4 Stabilization Time

We now progress to bound the time needed for the algorithm to stabilize, both
for the distributed adversarial and for the distributed fair daemon. For these
analysis we assume that the underlying maximal matching is stable. We address
the interaction between the maximal matching and Algorithm 1 in Section
Note that due to page constraints we omit some of the proofs.

4.1 Distributed Adversarial Daemon

In this section we bound the number of time steps needed for Algorithm 1 to
stabilize with the distributed adversarial daemon. Recall that one time step is
one step in the execution during which at least one node privileged at the start
of the time step has executed exactly one move.

We say that a node v € u(V') has executed a forced Update move if an Update
move was executed due to one of the following conditions: (i) o, > By, (ii)
Qw, By ¢ 0(N(v)), or (iii) o, = B, while v, # null. Since neither of these states
can occur as a result of an executed move they must occur as a result of incorrect
initial values. Thus, each node v € u(V') can execute at most one forced Update
move, and this will be the first move that v executes, if it was initially privileged
to do so. We now make the following observation about Algorithm 1.

Lemma 9. Let v € (V). Then AskFirst(v) # null if and only AskSecond(v)
= null.

Lemma 10. For every nodes v € u(V'), if neither v nor m, is privileged for a
forced Update move and AskFirst(v) # null then AskFirst(v) < AskSecond(m,).

The following result shows that once a successful rematching has been estab-
lished, then if the involved nodes in (V') are not privileged for a forced Update
move, the involved nodes in o(V') will not move again.

Lemma 11. Given nodes v,w,z, and y where (v,w) € M', x € o(N(v)) and
y € o(Nw)). If py = ¢, pw = Y, Pz = v, py = w, AskFirst(v) = z, and
AskSecond(w) = y, then if neither v nor w is privileged for a forced Update
move, neither x nor y will move again.

Next we show that the nodes in (V) will stabilize rapidly if no node in o(V)
executes a move.

Lemma 12. A node v € u(V) can make O(1) moves between each time step
that includes a move by a node in o(N(v))

Proof. Let v € pu(V) and consider a maximal sequence S of time steps where
no node in o(N(v)) makes a move. Let a,b be the initial values of a,, 3, and
a’, b their values after the first (if any) Update move by v in S. Then from
the BestRematch function we have that o', € o(N(v)) U {null}. Since the
values of a, and [, are only changed by the Update rule they will remain in
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o(N(v)) U {null} for the duration of S while (a,,3,) = BestRematch(v) also
remains true.

The Update rule sets p, = null and any value subsequently assigned to p, must
be taken from the set {a, By, null}. It follows that p, € o(N(v)) U {null} will
remain true throughout S after the first Update move. From these observations
it follows that there can at most be one Update move in S.

The remaining rules can only be triggered by changes in the values of «y,, G,
Oy s Bmy > Pvs and pp, . From the above observation we know that there can only
be four configurations of o, By, &m,,Om, in S since each «, pair can only
change value once in S. It follows from Lemma [0 that for fixed o, By, m, s Om.,
values we must have one of the following configurations: (i) AskFirst(v) #
null and AskSecond(v) = null, (ii) AskFirst(v) = null and AskSecond(v) #
null, or (i) AskFirst(v) = null and AskSecond(v) = null. Thus only one of
the rules MatchFirst, MatchSecond, and ResetMatch can be privileged before
at least one of au, By, m,, Bm, Py changes value. For each of these rules it is
straightforward to see that the assignment to p, or s, cannot make the same rule
become privileged again. The only assignment that can cause a new move is if
pp, changes value which could result in MatchFirst to be executed consecutively
more than once. But if p, € o(N(v)) then p,, will not change in S. Also, if
py = null then p,, cannot change and if p, & o(N(v)) U {null} then the next
move executed by v will be an Update move. It follows that v can at most
execute one move between each time that at least one of «ay, By, ®m,, Bm.,, Pv
changes value in S and the result follows. O

In order to reason about SingleNode moves and the cause of these, we use the
following definitions: Given a node x € o(V) and a node v € p(V), we refer to
x as being asked first in a rematch attempt if AskFirst(v) = x and p, is set to z.
Similarly, we refer to = as being asked second if AskSecond(v) = x and p, is set
to . We say that x accepts the matching attempt if following either of the above
cases it sets p, = v. If x sets p, # v then x rejects the matching attempt by v.

Lemma 13. The node y with the highest identifier in (V) can execute moves
during at most O(6,) time steps where &, is the degree of y.

We now bound the total number of moves executed by nodes in o(V).

Lemma 14. Each node in (V) can execute moves during at most O(2"+2. A)
time steps, where A is the mazimum degree in the graph.

Proof. Order the nodes in o(V) as zg, 1, ..., x+—1 where t = |o(V')| such that
xo > 1 > ... > x4. We denote the number of moves that a node z; can execute
as L(i), and show by induction that L(i) < ZZ;B L(e) + O(A).

The base case is i = 0. It was shown in Lemma[I3]that the single node with the
highest identifier in o(V) can execute at most O(A) moves. Thus L(0) = O(A).

For the induction step we assume that the bound holds for every node g, z1,
...;x;—1 and prove that this implies that it also holds for x;. We show this by
considering the instances where x; is asked second separately from where x; is
asked first.
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The case where x; is asked second is similar to the base case, and will thus
result in O(A) moves.

For the case where x; is asked first by some node v we first observe that if v
is initially privileged for a forced Update move, then following this move x; may
become privileged to set p,, # v. However, if x; is again asked first by v, we
know that there exists a node w = m, where k = AskSecond(w) and k # null.
We now counsider two cases: (i) k € o(N(w)) or (i) k ¢ o(N(w)).

In Case (i) it follows that there exists a node z; € o(V) such that z; = k. If
xj < x; then ayy > By, which must be due to an incorrect initialization. Thus, w
is privileged to execute a forced Update move, after which x; may again become
privileged. Subsequently, if x; is again asked first by v, then Case (i) is again
true, but now with z; > x;.

We will now show that x; may only become privileged again due to moves
made by x;. At this point, both v and w must have executed any forced Update
move, if they were privileged to do so. Obviously x; will not become privileged
while p, = x;, and from the predicate of the Update move we see that v will
not become privileged for an Update move while p;, = v. From the ResetMatch
predicate it follows that v may only become privileged if AskSecond(w) = null,
which implies that x; has made a move. Furthermore, from Lemma [IT] we know
that if z; accepts the rematch attempt from w, x; will not move again. Hence,
when k € o(N(w)), the number of moves by x; is bounded by ZL;% L(k).

For Case (ii) note first that k ¢ o(N(w)) can only occur once initially due to
incorrect initialization. In this case w is privileged for an Update move, and z;
may only become privileged again following this move. Since x; has at most A
neighbors, it follows that Case (ii) may at most cause O(A) additional moves
for ;. Combining the case where z; is asked second with (i) and (ii) we get
L(i) < L(i —1) 4+ L(i — 2) 4+ ... + L(0) + O(4) < 27%2. O(A) and the result
follows. O

Based on lemmas [[2] and [[4] we get the following bound on the step complexity
of Algorithm 1 when using a distributed adversarial daemon.

Theorem 2. Algorithm 1 will stabilize in O(2"T2 - A n) time steps.

4.2 Distributed Fair Daemon

In this section we consider the complexity of Algorithm 1 when run with a
distributed fair daemon. Due to page constraints we only give an outline of the
analysis.

We first note that following the first round, for any node z € V p, € N(z) U
{null}, and additionally, for any node v € u(V), if AskFirst(v) # null then
ay, By € o(N(v)) and AskFirst(v) < AskSecond(m,). Consequently, if there
exists an augmenting path of length three in the graph, then within O(1) rounds,
at least one node v € p(V) must have p, = = # null (possibly as a result of
a MatchFirst move), where x € o(V). Thus, within the end of the subsequent
round, p; = w # null (note that w may be equal to v). If = was asked second by
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w we know that a rematch attempt has succeeded. If = was asked first, we know
that there exists a node y where x < y that is asked second by m,,. Thus we can
repeat the above argument, creating a chain of nodes in o(V) with increasing
identifiers that must eventually lead to two edges joining the matching. Observe
that the length of this chain is at most O(n).

Thus we see that after at most O(n) rounds at least two edges must join the
matching, and since the cardinality of the matching is at most O(n), we get the
following result.

Theorem 3. Algorithm 1 will stabilize in O(n?) rounds under a distributed fair
daemon.

4.3 Interaction with the Maximal Matching

While the previous two sections show that Algorithm 1 stabilizes when the under-
lying maximal matching is stable, we need to consider how Algorithm 1 functions
on a non-stable maximal matching. We assume a maximal matching algorithm
such as the one given by Manne et al. [I4] and denote this as Algorithm 0. This
algorithm has the property that if an edge becomes part of the matching then
it will remain so for the remainder of the execution. We enforce that no rule
in Algorithm 1 will become privileged on a node z if a rule in Algorithm 0 is
privileged for the same node. Furthermore, if a node z in Algorithm 0 has made
a bid to establish a new matching, then no rule in Algorithm 1 will become priv-
ileged for z until the attempt has either succeeded or failed (note that z is not
necessarily privileged). This may for example occur if z is attempting to match
with a neighbor, but has not yet received a response (for details of Algorithm 0,
see [I4]). Finally, we assume that Algorithm 0 does not use any variables from
Algorithm 1.

Given the above, then at any point during the execution of the combined
algorithm, there exists a (possibly empty or disconnected) subgraph of G where
Algorithm 0 is stable. Since the non-stable nodes that border on this subgraph
will not become privileged for Algorithm 1, it follows that any execution of
Algorithm 1 will stabilize on G. Due to page restraints we omit further details.

The algorithm given in [I4] has a complexity of O(m) and O(n) for the dis-
tributed adversarial and distributed fair daemon respectively, and thus the com-
bined complexity of algorithms 0 and 1 is O(2"+2 - A.n -m) for the distributed
adversarial daemon and O(n?) for the distributed fair daemon.

5 Conclusion

We have presented the first self-stabilizing algorithm for computing a g— approx-
imation to the maximum cardinality matching problem in a general graph. The
algorithm uses only constant number of variables for each node, and stabilizes
in O(2""2 . A - n) time steps and O(n?) rounds for the distributed adversarial
and distributed fair daemon, respectively, when assuming a stable underlying
maximal matching.
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It is worth noting that it would have been possible to design an algorithm
such that through the use of identifiers, the eventual solution is deterministic,
i.e. unaffected by the initial state of the graph and the order in which rules are
executed. This algorithm would conceivably be both shorter and have a better
complexity than the one presented here, but at the cost of robustness. That is,
in the presented algorithm, adding or removing a node in a stable solution would
have little or no effect on the majority of the graph, while the hypothetical strict
algorithm would possibly have to redo the entire stabilization process.

A possible area for future research is to investigate how better approximation
ratios than g could be achieved with complexity efficient self-stabilizing algo-
rithms. Furthermore, it would be of interest to see if the algorithm given here
could be generalized for weighted instances of the matching problem, or if the
stabilization time can be improved.
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