A Self-stabilizing Weighted Matching Algorithm

Fredrik Manne and Morten Mjelde

University in Bergen, Norway
{fredrik.manne, mortenm}@ii.uib.no

Abstract. The problem of computing a matching in a graph involves
creating pairs of neighboring nodes such that no node is paired more than
once. Previous work on the matching problem has resulted in several self-
stabilizing algorithms for finding a maximal matching in an unweighted
graph. In this paper we present the first self-stabilizing algorithm for
the weighted matching problem. We show that the algorithm computes
a é—approximation to the optimal solution. The algorithm is simple and
uses only a fixed number of variables per node. Stabilization is shown
under various types of daemons.

Keywords: self-stabilizing algorithms, weighted matching.

1 Introduction

Given a graph with n nodes and m edges, a matching is a set of edges in a graph
such that no node is incident to more than one selected edge. In a distributed
setting a matching can model a situation where each node must choose exactly
one of its neighbors for communication. The associated optimization problem
then becomes to choose a matching of maximum cardinality.

The matching problem lends itself well to distributed solutions since progress
towards a maximal solution can be made by selecting any edge in any order and
adding it to the current matching just as long as the selected edge is not incident
to an edge already included in the matching. It is well known that any maximal
matching (i.e. where no more edges can be added) is also a %—approximation to
the maximum matching.

Figure [Th shows an example of a non-maximal matching, while Figure b
illustrates a matching that is maximal, but not maximum. A maximum matching
is shown in Figure [[k. Finally, Figure [[d shows a set of edges that is not a
matching, since they are incident on the same node.

Previous work on the matching problem has resulted in several self-stabilizing
algorithms. Hsu and Huang [7] gave the first such algorithm and proved a bound
of O(n?) on the number of moves assuming a sequential model under an adver-
sarial daemon. This analysis was later improved to O(n?) by Tel [9] and finally
to O(m) by Hedetniemi et al. [6].

Gradinariu and Johnen [5] employed a method of randomization to assign an
ID to each node that is unique within distance 2, and used this to run Hsu and

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 383 2007.
© Springer-Verlag Berlin Heidelberg 2007

384 F. Manne and M. Mjelde

3 g i o

Fig. 1.

Huang’s algorithm under an adversarial daemon. They show only finite stabi-
lization time however. Using the same technique of randomized local symmetry
breaking, Chattopadhyay et al. [] later provided a maximal matching with O(n)
round complexity, but assuming the weaker fair distributed daemon.

In [4] Goddard et al. describe a synchronous version of Hsu and Huangs al-
gorithm and show that it stabilizes in O(n) time steps. Very recently, Manne et
al. [8] presented an algorithm that stabilizes in O(m) time steps in the more gen-
eral distributed model. Goddard et al. [3] also gave a self-stabilizing algorithm for
computing a maximal strong matching, however with exponential stabilization
time.

In the current paper we present the first self-stabilizing algorithm for comput-
ing a weighted matching. As opposed to the unweighted case, we now assume an
edge weighted graph and the objective is to compute a matching such that the
sum of the weights of the edges in the matching is as large as possible. Again
considering an example where every node in a network must choose exactly one
neighbor to communicate with, the weighted matching problem can be used to
model networks where not all lines of communication are equally desirable. For
example, in a wireless system the weight assigned to a link might reflect the qual-
ity or bandwidth of the link. In this setting selecting a matching of maximum
weight would ensure maximum information flow in the network.

We show that the presented algorithm computes a %—approximation to the
optimal solution. As to speed of convergence, we show that the algorithm stabi-
lizes in O(n) rounds in the distributed model under a fair daemon. This implies
that it also stabilizes in O(n) time steps in the synchronous model which is the
same as the algorithm by Goddard et al. [4] for the unweighted case. For an ad-
versarial daemon we show that the algorithm stabilizes in a finite (exponential)
number of steps both for the sequential and the distributed daemon.

It should be noted that computing a %—approximation for the weighted match-
ing problem is an inherently more difficult problem than for the unweighted case.
The reason for this is that in the weighted case any maximal solution can be
arbitrarily bad compared to the optimal solution.

The rest of this paper is organized as follows. In Section [2 we give a short
introduction to self-stabilizing algorithms and the computational environment

A Self-stabilizing Weighted Matching Algorithm 385

we assume. In Section [3] we present our new algorithm while we show correctness
and speed of stabilization in Section @] before concluding in Section

2 The Self-stabilizing Paradigm

A self-stabilizing algorithm is a distributed system where each node is an in-
dependent entity with knowledge only of itself and its neighbors. Unlike many
other distributed systems, a self-stabilizing algorithm is not initialized. Instead
the algorithm has to be able to reach a stable, or terminal, configuration regard-
less of its starting configuration. In this sense, a self-stabilizing algorithm is very
resistant to transient faults and can also handle a dynamic environment where
the structure of the underlying graph is changing.

A self-stabilizing algorithm is comprised of a set of rules, where each rule is
made up of a predicate and a move. If a predicate evaluates to true for a node, the
node is referred to as privileged and only then may it execute the corresponding
move. An algorithm is stable if there are no privileged nodes in the graph.

The general distributed model allows a non-empty subset of the privileged
nodes to perform one move each during a time step in the execution of the
algorithm. The synchronous model is a sub-variant of this model, and requires
that every privileged node executes a move in each step. Another sub-variant
of the distributed model, the often-used sequential model, allows only a single
node to make a move during each step.

If more than one node in the graph is privileged at that start of a particu-
lar time step there are several models that govern which nodes will perform a
move. Common to all of these models is the notion of a daemon that makes the
actual choice as to which subset of privileged nodes are selected for a move. We
distinguish between a fair and an adversarial daemon. Under a fair daemon a
privileged node will never have to wait an infinite number of time steps before
it is permitted to make a move, while an adversarial daemon can select any
privileged node for a move.

With the adversarial daemon, the moves complexity of an algorithm is mea-
sured in time steps for the distributed and synchronous model and in single
moves for the sequential model. Under a fair daemon we measure moves com-
plexity in rounds, where one round is a minimal sequence of time steps during
which every node privileged at the start of the round has either made a move or
become non-privileged. For further reading about self-stabilization algorithms

see [2].

3 The Algorithm

In the following we present and motivate our self-stabilizing weighted matching
algorithm. Note that at this stage we do not make any assumptions as to which
model or which daemon the algorithm will execute under.

386 F. Manne and M. Mjelde

3.1 The Graph Model

Given an undirected weighted graph G = (V, E) where |V| = n and |E| =
m. We denote w,, > 0 as the weight of the edge (v,u) € E. Furthermore,
we assume that every node v € V has a unique, comparable, ID, denoted
by ID,. To ensure uniqueness of the edges we define a function w(v,u) =
(wy,u, max{ID,, ID,}, min{ID,,I1D,}). This triplet, referred to as the effec-
tive weight of an edge, is used to define a total ordering of the edges. That is,
the edges are first ranked by their weight and if two edges have the same weight
they are ranked by the highest ID of the two nodes incident on that edge. If these
are also equal the edges are ranked by the lowest ID of the two incident nodes.
In this way, any node can compute the effective weight of all edges incident on
it, and no two edges in the graph will ever be considered to be of equal weight
(note that w(v, null) is by definition 0). Thus the heaviest edge in any subset of
E is the edge with greatest effective weight. For ease of presentation we will not
distinguish between weight and effective weight in the rest of the presentation
but merely assume that the weight of each edge is unique.

We also use the notation N(v) for the neighborhood of v. That is, for a
node v € V, u € N(v) & (v,u) € E. We say that two edges are incident if
they share at least one common end point. Note that an edge is incident to
itself.

3.2 Variables

Every node v € V has two variables, m,, and h,. The intent being that in a stable
configuration m,, should point to the neighbor of v that v is matched with, while
h., is the weight of the edge (v, m,). If the node v is not matched then m, should
be set to null and h, to 0. During the execution of the algorithm a node v will
use m, and h, to propose a matching with one of its neighbors by pointing to
it. However, two neighbors v and w are only considered to be matched with each
other if both m, = w and m,, = v. A matching M consists of all the matched
edges in the graph, while the weight of M is the sum of the weights of the edges
in M.

The algorithm also makes use of the set N'(v) defined as follows: N'(v) is a
subset of N (v) such that u € N'(v) < (v € N(v) Aw(v,u) > hy). That is, N'(v)
consists of all the neighbors of v that could achieve a match of equal or higher
weight than their current one if they were to match with v. Note that N'(v) is
not a variable, but rather a set that v can compute during the execution of the
algorithm.

3.3 The Algorithm

In this section we present our algorithm. It is quite simple, consisting of one
function and one rule:

A Self-stabilizing Weighted Matching Algorithm 387

BestMatch(v)
return u : MaXye N’ (v)U{null} w(v, u)

SetMatch
if m, # BestMatch(v)\/ h, # w(v, m,)
then
m, = BestMatch(v)
hv = ’U](U, mv)

Algorithm 1.

The function BestMatch(v) returns the neighbor v € N'(u) such that
w(v,u) is maximal among all nodes in N’(v), while the rule SetMatch sets
m, to point to the node returned by BestMatch(v) and also updates the value
of h, accordingly. Thus a node will always strive to match with the node in
N’(v) so that the resulting matched edge has maximal weight.

Figure 2l shows a possible execution of Algorithm 1. Starting from the config-
uration in Figure [Zh, we observe that nodes b and ¢ are matched. However, for
both node b and ¢ there exists an unmatched neighbor such that both the edge
(a,b) and the edge (a,c) has a greater weight than (b, c¢). Assume now that ¢
makes a move first and points to a (Figure Bb). Since (a, ¢) is the heaviest edge
incident on a, the node a can now execute a move and point to ¢ (Figure 2k)
(note that the moves executed up till this point could have been done in any
order). At this point b can no longer point to ¢, and since a is matched to ¢, it
is left with d as its only unmatched neighbor. Thus b points to d (Figure 2H),
and d, having now become privileged, points back (Figure k). Thus we have
two pairs of matched nodes in the graph.

4 Proof of Correctness

In the following we will first show that when Algorithm 1 has reached a sta-
ble configuration it also defines a matching that is a %—approximation to the

388 F. Manne and M. Mjelde

maximum weight matching. We will then bound the number of steps the al-
gorithm needs to stabilize both for the fair and for the adversarial distributed
daemon. Note that the fair daemon is a subset of the adversarial one, thus any
result for the latter also applies to the former.

4.1 Correct Stabilization

We now show that the algorithm, once stable, has found a %—approximation to

the maximum weight matching problem. To do so, we first need the following
observation which follows from the BestMatch function and from the predicate
of SetMatch.

Observation 1. In a stable configuration m, € N'(v)U{null} and h,=w(v, m,)
for every node v € V.

The next step is to show that when stable, there is consensus in the graph as to
which pairs of nodes are matched.

Lemma 1. In a stable configuration m,=u < m, =v for every edge (v,u) € E.

Proof. We note from Observation [I] that in a stable configuration m,, €
{N'(v),null}, m, € {N'(u),null}, hy = w(v,m,), and h, = w(u,my).
The rest of the proof is by contradiction.

We first show that m, = v = m, = v. Assume that m, = u while
m, = y where y # v. Depending on the weights of (v, u) and (u,y) we
have the following two possibilities: i) w(v,u) > w(u,y), in which case
u would be privileged, since v would be a better match for u than y.
it) w(v,u) < w(u,y) in which case v is not a better match for u, thus
u ¢ N'(v) and v is privileged. In either case, the algorithm is not stable.
Using the same argument it also follows that m, = u < m, = v, thus
proving the lemma. d

In the following we refer to a stable matching as a set of edges M in a stable
configuration such that for every edge (x,y) € F, (z,y) € M < m, =y and
my = x. The next lemma shows that we cannot have a stable configuration
where two adjacent nodes each have a matching of lower weight than that of the
edge joining them.

Lemma 2. In a stable configuration, for every edge (v,u) € E we have w(v,u)
< max(hy, hy)-

Proof. From Observation [[l we know that in a stable configuration h, =
w(xz, my) for any node x € V. The rest of the proof is by contradiction.

Assume that there exists an edge (v,u) € E in a stable configuration
such that w(v,u) > max(h,, hy). Then since w(v,u) > h, we have u €
N'(v). Also, since the current configuration is stable BestMatch(v)
returns a node x € N'(v) such that m, = z and w(v,z) > w(v,u). But
since hy, < w(v,u) it follows that w(v, m,) < w(v,u) and we must have
m, # BestMatch(v) contradicting that the solution is stable. The same
argument can also be used to show that u is privileged. a

A Self-stabilizing Weighted Matching Algorithm 389

Corollary 1. Let M be any stable matching given by Algorithm 1. Then every
edge (v,u) € E is incident on at least one edge (x,y) € M such that w(v,u) <

w(,y).

Proof. Let (v,u) be any edge in FE in a stable configuration. From Lemma
we know that w(v,u) < max(hy, hy,). Assume (without loss of gener-
ality) that h, = max(h,, h,). Then since w(v,u) > 0 we must also have
h. > 0 and it follows that w is matched in M. From Observation [I] we
know that h, = w(u,m,) implying that w(v,u) < w(u,m,) and the
result follows. ad

This enables us to show the main result of this section.

Theorem 1. Any stable matching M given by Algorithm 1 is a %—approximation
to the maximum weighted matching problem.

Proof. Let M* be a maximum weighted matching for G. From Corollary
[we know that it is possible to associate every edge (v,u) € M* with
exactly one incident edge (z,y) € M such that w(v,u) < w(z,y). Since
at most two edges from M™* can be associated with each edge of M we
have that 2w(M) > w(M™*) and the result follows. O

We note that it is fairly straight forward to show that the matching produced
by Algorithm 1 is in fact exactly the same matching as the sequential greedy
algorithm would give.

4.2 Convergence

We now show that Algorithm 1 stabilizes from any given starting configura-
tion. Specifically, we will be looking at the rate of convergence first using the
distributed adversarial model and then using the distributed fair model. The
distributed model is the most general model, where a non-empty subset of the
privileged nodes makes a move during each time step. Note that if at each time
step only one node is allowed to make a move, this model is identical to the
sequential model.

4.3 The Distributed Adversarial Model

We proceed to bound the number of time steps needed before Algorithm 1 stabi-
lizes under an adversarial daemon. The proof is based on counting the number of
moves needed before at least one node v stabilizes permanently. We then repeat
the argument recursively for the remaining set of nodes A =V — {v} obtaining
our desired bound. First we show that if parts of the graph has stabilized per-
manently then there exists at least one node that can at most make two more
moves.

Lemma 3. Given a set A C V where the nodes in A are the only nodes in the
graph permitted to move. Then there exists at least one node in A that can make
at most two moves.

390 F. Manne and M. Mjelde

Proof. Let (v,u) be the heaviest edge in the set {(z,y) Vz,y € A :
(x,y) € E} U {(a,b) YVae A, be V\A: (a,b) € EANw(a,b) > hy}. We
assume without loss of generality that at least v € A.

If u € V\A then w(v,u) > h,, and the only move v can make is one
that sets m, = u (provided that this is not already the case). Since there
does not exist any edge incident on v in A that is heavier than (v,) and
since u cannot make a move, it follows that v will not move again.

If u € A then there are two possibilities: i) h, < w(v,u) or it) h, >
w(v,u). In the first case it follows that the only move v can make is to
match with u before becoming permanently stable (again assuming that
only nodes in A may execute moves).

In the second case, u will need to make one move to correct its h-
value (which is incorrect). During this time step v can also make a move.
Following this move h,, < w(v,u), and as in case i), the only move v can
make is to match to u, again becoming permanently stable. Thus v has
executed at most two moves not counting any moves executed before u’s
first move. If v executes any move before u, we can simply switch the
roles of v and u and repeat the argument.

In either of the above cases we see that there has to exist at least one
node in A that can move at most twice. O

Based on Lemma B we can now give a recursive formula for the number of moves
that Algorithm 1 can execute on the remaining nodes that have not yet stabilized
permanently.

Lemma 4. Let A CV be a set where |A] = k and let t(k) be the maximum num-
ber of moves needed for A to stabilize given that only nodes in A are permitted
to move. Then t(k) <3-t(k —1)+2.

Proof. Recall from Lemma [3] that there exists at least one node v € A
that can execute at most two moves. From the premise of the lemma we
know that at most ¢(k — 1) moves can be made by the nodes in A\{v}
before v makes its first move. Following this, another ¢(k — 1) moves can
be made before v’s second move. And finally at most ¢(k — 1) subsequent
moves can be made as a result of v’s second and final move. Thus at
most 3 - t(k — 1) + 2 moves can be made in a set of size k. O

Theorem 2. Algorithm 1 stabilizes after O(3™) time steps under the distributed
adversarial model.

Proof. From Lemma [l we know that the time needed for a subset of
nodes of size k to become stable is ¢(k) < 3-¢(k — 1)+ 2. Since t(1) =1
it follows that the maximum number of moves needed to ensure stabi-
lization is ¢(n) < 23771 — 1. Thus the number of time steps used by
the algorithm is O(3™). O

For the sequential adversarial model the bound from Theorem[2 can be improved
to O(2™). This follows by noting that for any unstable configuration there ex-
ists at least one node that can make at most one more move before becoming
permanently stable. We omit the details.

A Self-stabilizing Weighted Matching Algorithm 391

4.4 The Distributed Fair Model

We now look at the convergence rate of Algorithm 1 assuming a distributed
model under a fair daemon, and prove that the algorithm stabilizes after at
most 2 - |[M| + 1 rounds where M is the final matching found by the algorithm.
We remind the reader that in the distributed fair model, complexity is measured
in rounds, where one round is a minimum period of time during which every
node that was privileged at the start of the round has either made at least one
move or at some point become non-privileged.

We first note that since the distributed fair model is a subset of the distributed
adversarial model it follows from Theorem [2 that Algorithm 1 will eventually
stabilize with a matching M that is a é—approximation to the maximum weighted
matching problem. Thus it is meaningful to refer to the resulting matching M.
We now proceed to bound the number of rounds before Algorithm 1 stabilizes.

Lemma 5. After at most one round m, € N(v) U {null} and h, = w(v,my)
for every v € V.

Proof. Recall from the predicate of SetMatch that a node v is privileged
if its m-value is incorrect or if h, # w(v, m,). In either case SetMatch
will set m,, to some node u € N'(v) U {null} and h, to w(v,m,). Since
N'(v) € N(v) the result follows. O

Note that one cannot guarantee that m, € N'(v) U {null} after the first round
as N’(v) might change after v has made its move.

Lemma 6. After at most two rounds, the heaviest edge (v,u) € E is part of M.
Furthermore, the algorithm will never cause (v,u) to leave M.

Proof. From Lemma [l we know that after the first round every node
has a correct h-value and m, € N(v) U {null}. If (v,u) is the heaviest
edge in G it follows that h, < w(v,u) and h, < w(v,u), implying that
u € N'(v) and v € N’(u). Thus if m, # u then v is privileged and if
my # v then w is privileged. In either case, at most one more round is
needed before v and u are matched. This will happen since neither of
the two nodes has a neighbor that can give a better matching than the
other node.

Since there does not exist any edge in the graph with weight greater
than (v,u) neither v nor u will become privileged again, and thus the
edge (v, u) will never leave the matching. O

We can now give the final bound on the number of rounds needed before Algo-
rithm 1 stabilizes.

Theorem 3. Algorithm 1 converges after at most 2 - |M|+ 1 rounds.

Proof. Let ey, ez, ..., ey be the edges in M sorted in descending order.
We show by induction that e, es, . .., e; are all part of the matching after
at most 2¢ rounds, and that they will not leave M in subsequent rounds.

392 F. Manne and M. Mjelde

The base case is covered by Lemma [0l and it follows that e; must be
the heaviest edge in E.

For the induction step assume that the algorithm has run for at most
2-(i—1) rounds and that the edges M;_1 = {e1,ea,...,e;_1} have been
permanently added to M. It follows that we do not need to consider any
edge incident on M;_; for future inclusion in M.

Let (v,u) be the heaviest edge not incident on M;_1. Then by the
same argument as in the proof of Lemma [(] it follows that within the
next two rounds (v,u) will be permanently added to M. Since no edge
of weight greater than w(v,u) will be added to M in subsequent time
steps it follows that e; = (v, u).

From the above is follows that at most 2 - [M| rounds are needed to
find the matching. However, since some nodes may not be part of the
matching, one more round may be needed for these nodes to right any
incorrect variables they may have. Thus the algorithm requires at most
2+ |M| + 1 rounds. O

It should be noted that the size of a matching in a graph G = (V, E) cannot
exceed |V']/2. Since this would imply that every node is matched, the number of
rounds needed for the algorithm to stabilize in this case is at most 2 - |M| = |V,
not 2 - [M|+ 1.

As was noted in Section 2] both the synchronous and sequential fair models
are sub variants of the distributed fair model. Thus the bound from Theorem Bl
also holds for either of these models.

5 Conclusion

We have presented the first self-stabilizing algorithm for computing a %— approx-
imation for the maximum weighted matching problem. In addition to being short
and simple, the complexity of the algorithm is linear over the number of nodes
in the graph when using a distributed fair daemon. Furthermore the algorithm
requires only two variables per node.

It is worth noting that while we in Section Bl require that all IDs are unique,
this is in fact not needed. The algorithm requires only that every ID is unique
within distance 2. That is, no node can have two or more neighbors with the
same ID. On the same note, we do not need to create a global ordering of the
edges in the graph. While a global ordering was used to make the proofs more
understandable, a local ordering is sufficient for the algorithm.

One common method for improving the approximation ratio of a matching is
by the use of augmenting paths. An augmenting path is a path such that exactly
every other edge in the path is part of the current matching. The length of an
augmenting path is the number of unmatched edges in it. It is well known that if
a matching does not contain an augmenting path of length ¢ then the matching
is a i_f_l—approximation. Thus it would be of interest to see if it is possible to
design self-stabilizing algorithms that can detect and correct augmenting paths

A Self-stabilizing Weighted Matching Algorithm 393

of length larger than ¢ = 1 as is done in the current paper, while at the same
time limiting the number of variables and stabilization time. One possible way
of doing this could be to use the same kind of augmentations as is used in the
sequential linear time algorithm by Vinkelmeier and Hougardy [10] to produce
a solution with approximation ratio arbitrarily close to 2/3.

References

10.

. Chattopadhyay, S., Higham, L., Seyffarth, K.: Dynamic and self-stabilizing dis-

tributed matching. In: PODC 2002. Proceedings of the twenty-first annual sympo-
sium on Principles of distributed computing, pp. 290-297. ACM Press, New York
(2002)

. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing dis-

tributed algorithm for strong matching in a system graph. In: HiPC 2003. LNCS
(LNAI), vol. 2913, pp. 66-73. Springer, Heidelberg (2003)

. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing pro-

tocols for maximal matching and maximal independent sets for ad hoc networks.
In: IPDPS, p. 162 (2003)

. Gradinariu, M., Johnen, C.: Self-stabilizing neighborhood unique naming under

unfair scheduler. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.)
Euro-Par 2001. LNCS, vol. 2150, Springer, Heidelberg (2001)

. Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Maximal matching stabilizes in time

o(m). Inf. Process. Lett. 80(5), 221-223 (2001)

. Hsu, S.-C., Huang, S.-T.: A self-stabilizing algorithm for maximal matching. Inf.

Process. Lett. 43(2), 77-81 (1992)

. Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A new self-stabilizing maximal

matching algorithm. In: Sirocco 2007. Proceedings of the 14" International Col-
loquium on Structural Information and Communication Complexity, pp. 96-108.
Springer, Heidelberg (2007)

. Tel, G.: Maximal matching stabilizes in quadratic time. Inf. Process. Lett. 49(6),

271-272 (1994)
Vinkemeier, D.E.D., Hougardy, S.: A linear-time approximation algorithm for
weighted matchings in graphs. ACM Trans. Algorithms 1(1), 107-122 (2005)

	A Self-stabilizing Weighted Matching Algorithm
	Introduction
	The Self-stabilizing Paradigm
	The Algorithm
	The Graph Model
	Variables
	The Algorithm

	Proof of Correctness
	Correct Stabilization
	Convergence
	The Distributed Adversarial Model
	The Distributed Fair Model

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

