
A Memory Efficient Self-stabilizing Algorithm

for Maximal k-Packing

Fredrik Manne and Morten Mjelde

Department of Informatics, University in Bergen, Norway
{fredrik.manne, mortenm}@ii.uib.no

Abstract. The k-packing problem asks for a subset S of the nodes in a
graph such that the distance between any pair of nodes in S is greater
than k. This problem has applications to placing facilities in a network.

In the current paper we present a self-stabilizing algorithm for com-
puting a maximal k-packing in a general graph. Our algorithm uses a
constant number of variables per node. This improves the memory re-
quirement compared to the previous most memory efficient algorithm [9]
which used k variables per node. In addition the presented algorithm is
very short and simple.

Keywords: self-stabilizing algorithms, k-packing.

1 Introduction

Facility location problems in a network involve distributing a set of resources
such that the entire network is covered. Depending on the objective these can
either be minimization problems where one wants to use as few resources as
possible while covering the graph or maximization problems where one wants to
distribute as many resources as possible under some constraint. There exists a
number of such problems and they have been extensively studied in the literature
of sequential algorithms [1,10,12,13].

In this paper we present a self-stabilizing distributed algorithm for one such
problem, namely the k-packing problem. This involves selecting a set S of nodes
such that the length of the shortest path between any pair of nodes (v, w) ∈ S
is greater than k (a 1-packing is better known as an independent set). The set
S is referred to as black nodes while the remaining nodes are referred to as
white. A maximum k-packing implies that S is the set with largest cardinality,
and finding this is NP-hard on a general graph [6]. The simpler problem of
computing a maximal k-packing (i.e. no superset of S is also a legal solution)
can easily be solved by a sequential greedy algorithm in linear time.

Previous work on developing self-stabilizing algorithms for the k-packing prob-
lem has resulted in several different algorithms. Gairing et al. gave an algorithm
that computed a maximal 2-packing on a general graph [5]. This algorithm used an
exponential number of moves and a constant number of variables per node. God-
dard et al. subsequently developed a self-stabilizing algorithm for solving maximal
k-packing on a general graph [9]. This algorithm used an exponential number of

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 428–439, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Memory Efficient Self-stabilizing Algorithm for Maximal k-Packing 429

moves, and k variables per node. In a recent paper Goddard et al. also presented
a self-stabilizing algorithm for the same problem that runs in nO(log k) moves [8].
However, this algorithmrequires that eachnode stores informationabout the graph
within a radius of k from itself, thus substantially increasing the memory require-
ments. We also note that there exists a self-stabilizing algorithm for computing a
maximum k-packing on a tree graph with a moves complexity of O(n3) [11].

From the above exposition it follows that there is a trade off between the
number of moves and the amount of memory used on each node when design-
ing self-stabilizing algorithms for computing a maximal k-packing on a general
graph. In fact, if one first computed a spanning tree in the graph, a task which
is considerable simpler than computing a maximal k-packing [7], one could copy
the structure of the entire graph into each node in a polynomial number of
moves [2] and then solve the maximal k-packing problem by a local determin-
istic sequential algorithm on each node. The same approach could also be used
to compute a maximum k-packing (although this would require an exponential
local running time on every node).

In this paper we fill in one part in this trade off between moves complexity and
memory usage. We present an algorithm that computes a maximal k-packing for
a general graph using only a constant number of variables per node, each of which
hold at most O(log n) bits. However, the moves complexity of the algorithm is still
exponential. In addition to using less memory than other algorithms for this prob-
lem the algorithm itself is very short, and thus easy to understand and implement.

Limiting the amount of memory is an important factor in many applications
such as in sensor networks where the computational units are small and rely on
battery power to operate.

The rest of this paper is organized as follows. In Section 2 we present some
background on self-stabilizing algorithms. In Section 3 we present our algorithm
and show that any stable solution produced by it is also a legal solution and that
it will stabilize in a finite amount of time. Finally, we conclude in Section 4.

2 The Self-stabilizing Paradigm

Self-stabilizing algorithms are a variant of distributed systems first introduced by
Dijkstra in 1974 [3]. However, the significance of the work was not immediately
recognized, and serious work did not begin until the late 1980’s. One of the most
important properties of any self-stabilizing algorithm is its ability to recover
from any transient errors that occurs, and even changes in the graph itself. This
ability makes self-stabilizing algorithms extremely fault tolerant.

A self-stabilizing algorithm does not assume the existence of a central leader.
Instead, all nodes in the graph are considered equals, and each of them has the
same copy of the algorithm. Each node maintains a set of variables that together
make up the nodes local state. The union of all local states is the graphs global
state. In the normal self-stabilizing model any node has knowledge only of its
own and its neighbors’ local states. The algorithm itself is comprised of a set of
rules. These are typically written in the form:



430 F. Manne and M. Mjelde

Rule i
if p(v)
then M

The function p(v) is called the predicate, and M is called the move. The predicate
takes the node v as a parameter, and becomes true or false based on v’s local
state and the local state of its neighbors. The move M will change one or more
of v’s local variables. If the predicate is true the rule is called privileged, and
only then can it execute its corresponding move. For cases where there are more
than one privileged rule in the graph, the self-stabilizing model assumes the
existence of a central daemon that determines which rules will be permitted
to make its move. Various self-stabilizing algorithms employ different daemons,
and for the current algorithm we assume an adversarial daemon (as opposed
to a fair or random daemon). Regardless of the type of daemon used any self-
stabilizing algorithm has to guarantee to reach a solution in a finite number of
moves independent of the starting configuration. This is called to stabilize and
implies that no node in the graph has a privileged rule. For further reading on
self-stabilizing algorithms, see [4].

For our algorithm we assume the existence of an undirected graph G = (V, E)
where V is the set of nodes and E the set of edges. We further assume that each
node has a unique ID, and that these IDs can be ordered. The ID of a node v
is denoted by IDv. The set of nodes N(v) is the open neighborhood of v, and
contains all the neighbors of v.

3 The Algorithm

In the following we present and analyze our new algorithm. It is based on each
node determining the distance to its two nearest black nodes (possibly including
itself). Based on this information a node can then determine if it should be black
or white.

3.1 The Local Variables

As mentioned in Section 2, each node in a self-stabilizing algorithm maintains a
set of local variables that make up the nodes local state. In our algorithm, each
node v ∈ V has two pairs of variables: (pv, bv) and (p′v, b′v). The intention is that
pv denotes the shortest distance (i.e. number of edges) to v’s closest black node
y and with bv = IDy. The pair (p′v, b

′
v) gives the same information about v’s

second closest black node (assuming it exists). The range of pv is [0,∞] while
the range of p′v is [1,∞]. It then follows that in a stable configuration the black
nodes are identified by having p-values equal to 0 and p′-values larger than k.

In the case where a node has more than one black node at a minimum distance
from it we say that the black node with the smallest ID-value is the closest one.
Thus the term “closest black node” will always be well defined.

As we will explain in further detail later, the purpose of the (p′, b′) values is
for every black node in the graph to gain knowledge of its closest black node
other than itself.



A Memory Efficient Self-stabilizing Algorithm for Maximal k-Packing 431

3.2 Definitions and Notations

Based on the local variables of each node we now give some definitions and
notations that we will be using. This is done to make the ensuing presentation
clearer and also more compact.

Two adjacent nodes v and w where bv = bw and pv = pw + 1 belong to the
same domain and we say that w is a predecessor of v in the domain. A node v
that does not have a predecessor is a leader of the domain. The domain relation
is transitive and thus each domain is a connected component of the graph. We
will also say that adjacent nodes v and w where either b′v = bw and p′v = pw + 1
or b′v = b′w and p′v = p′w +1 belong to the same domain. Thus a node can belong
to two domains at the same time depending on if we are looking at the (pv, bv)
or (p′v, b

′
v) values.

A domain U is proper if v is a leader of U and there exists a node w such
that bv = IDw. Note that w does not have to be part of U for U to be proper.
A domain that is not proper is improper.

We define the set Tv for a node v as being the pair (pv, bv) and (p′v, b
′
v). We

further define the set TM for some set of nodes M as ∪v∈MTv.

3.3 The Algorithm

The algorithm consists of one function and one rule. These are as follows:

support(v)
(α, β) = min{(γ, δ) ∈ TN(v) : δ �= IDv}
(α′, β′) = min{(γ, δ) ∈ TN(v) : δ �= IDv, δ �= β}

if (α ≥ k) ∨ (pv = 0 ∧ β > IDv)
return (0, IDv, α + 1, β)

else
return (α + 1, β, α′ + 1, β′)

Rule 1
if (pv, bv, p

′
v, b

′
v) �= support(v)

then set (pv, bv, p
′
v, b

′
v) = support(v)

The purpose of the support function is to return the correct (p, b) and (p′, b′)
values for a node v based on the local state of v and its neighbors. The function
starts by selecting a pair (α, β) from TN(v) such that α is as small as possible
while β �= IDv. In the case of a tie a pair with the smallest β value is selected.
Next the function selects a pair (α′, β′) in the same manner as above only with
the added constraint that β′ �= β. In both of the above cases, if no valid pair can
be found in TN(v) the pair (∞,∞) will be used.

Based on the selected values the function will now determine if v should be
black or not. With the assumption that (α, β) represents the distance to the
closest black node (other than v itself) it follows that either if α ≥ k or if pv = 0
(indicating that v is at present black) and the closest black node has higher ID



432 F. Manne and M. Mjelde

than v (β > IDv) then v can become (or remain) black. In the case where the
above condition was met, the function returns (0, IDv, α + 1, β), where the first
pair of values indicates that v should be black and the second pair gives the
distance and ID of the closest black other than v itself.

If v should not be black then it should become (or remain) white. All it has
to do in this case is to gather data about its two closest black nodes. Thus the
function returns (α + 1, β, α′ + 1, β′).

Rule 1 is the only rule in the algorithm. It simply determines if one or more of
the values returned by the support function does not correspond to the node’s
current values. If this is the case, the node is privileged for a move that corrects
them.

3.4 Correct Stabilization

We now show that the algorithm, when stable, has solved the maximal k-packing
problem. To do so we first show that in a stable configuration the values of p
and p′ will be set to the distance of the nearest and second nearest black node
respectively.

We again remind the reader that in the case where a node v has more than
one black node at minimum distance we will break ties by defining that which
ever has the smallest ID is the one closest to v. Note that this is consistent with
how the support function operates.

Lemma 1. Let (pv, bv) be the local values for a node v ∈ V in a stable configu-
ration. Then there exists a black node y such that y is the closest black node to
v of distance pv from v and such that IDy = bv.

Proof. Note first that we cannot have a node v with pv > k in a stable
configuration.

The proof of the claim is by induction on the value of pv. If pv = 0 then
v is black, and must have bv = IDv in a stable configuration. Assume
therefore that the claim is true for every w ∈ V where pw < l, 1 < l ≤ k,
and let v ∈ V be a node such that pv = l. Then by the construction
of the support function there must exist a node u ∈ N(v) such that
pu = pv −1 = l−1 and bv = bu. From the induction claim it follows that
there exists a black node y such that bu = IDy where y is the closest
black node at a distance l−1 from u. We therefore have that there exists
a path of length l between v and the black node y where bv = IDy.

If there was to exist a path from a black node x to v of length less
than l or of length l but with IDx < bv, then again by the induction
hypothesis there must exist a node z ∈ N(v) such that either pz +1 < pv

or pz + 1 = pv and bz < bv. In both of these cases v would be privileged
for a move. 
�

Corollary 1. In a stable configuration, the maximum distance from any node
to a black node is at most k.



A Memory Efficient Self-stabilizing Algorithm for Maximal k-Packing 433

Proof. Consider a white node v in a stable solution that has minimum
distance > k to the nearest black node. By Lemma 1 it then follows
that every w ∈ N(v) has pw ≥ k in which case the support function will
return 0 for pv thus contradicting the assumption that the configuration
is stable. 
�

We now need to show that we cannot have two black nodes in a stable configu-
ration that are closer to each other than k. To do so we first show that the value
of p′v will be set to the distance to the second closest black node of a node v.

Lemma 2. Let (p′v, b′v) be the local values for some node v ∈ V in a stable
configuration containing at least two black nodes. Then there exists a black node
y such that y is the second closest black node to v of distance p′v from v and such
that IDy = b′v.

Proof. Note first that by the construction of the support function each
node that has 0 < p′v < ∞ in a stable configuration must have a neighbor
w where either (pw+1, bw) = (p′v, b′v) and bw �= bv or where (p′w+1, b′w) =
(p′v, b′v) and bw = bv. Thus starting from v there exists a path along
decreasing p or p′ values such that the b-value is unchanged. If the path
makes use of a p-value then since the p-values do not depend on the p′-
values, the path will lead to a black node. This must eventually happen
since a value of p′ = 1 must have been obtained from a black neighbor.
Thus it follows that if p′v = l then there exists a path of length l from v
to a black node y such that b′v = IDy. It now remains to show that this
path is the shortest path from v to a black node different from bv.

Let v be a node with bv = IDx in a stable configuration such that
among the nodes with b-value set to IDx, v has the shortest distance
l to a black node y where y �= x. Let y = w0, w1, . . . , wl−1, v be the
nodes on this path. Then y must be the closest black node to each wi,
1 ≤ i < l, and by Lemma 1 we must have pwi = i and bwi = IDy. The
support function applied to v then has the opportunity to return the
pair (l, bwl−1 = IDy) for (p′v, b

′
v). If it does not do so then this would

indicate that there exists a black node different from x that is closer to
v than y is. This is a contradiction and the result follows.

Assume by induction that p′v and b′v are set correctly for every node
with both bv = IDx and with shortest distance r, r ≥ l, to a black
node other than x. Let v now be a node with shortest distance r + 1
to a black node y other than x. Then if the shortest path from v to y
does not pass through any node with b-value set to x the same argument
as above shows that we must have p′v = r + 1 and b′v = IDy. If the
shortest path y = w0, w1, . . . , wr, v does pass through at least one node
with bwi = IDx then we must have bwr = IDx. This follows since as
soon as the shortest path from v to y leaves the x-domain it will not
re-enter it. Thus by induction we have p′wr

= r and b′wr
= IDy and in a

stable configuration we must have p′v = r + 1 and b′v = IDy. 
�



434 F. Manne and M. Mjelde

Note that if there is only one black node y in G then each node v will have
bv = y and the pair (p′v, b′v) will be set to (∞,∞).

From Lemmas 1 and 2 it follows that in a stable configuration any white node
v has pv equal to the distance to the nearest black node while any black node w
has p′w equal to the distance to the nearest black node other than itself. Thus if
x and y are the two closest black nodes and with IDx < IDy and distance l from
each other where l ≤ k then in a stable configuration we will have p′y = l and
b′y ≤ IDy. But with this configuration y cannot keep py = 0 and is privileged
for a move. Thus we have the following result.

Lemma 3. In a stable configuration there does not exist a pair of black nodes
where the minimum distance between them is less than or equal to k.

Putting all of this together it is now straightforward to show that a stable solu-
tion is also a maximal k-packing.

Theorem 1. A stable configuration is a maximal k-packing.

Proof. From Lemma 3 it follows that in a stable configuration there
cannot exist black nodes within distance k of each other. Further from
Corollary 1 we know that there cannot exist a non-privileged white node
with distance greater than or equal to k to every black node in the graph.
Thus it follows that a stable configuration is a maximal k-packing. 
�

3.5 Convergence

Now that we have shown that once the algorithm stabilizes it has reached a valid
solution we proceed to show that the algorithm will do so in a finite amount of
steps. To reduce the complexity of the presentation we will assume that the al-
gorithm in each move either updates (pv, bv) or (p′v, b′v) (and not both). While
this is not entirely keeping with how Rule 1 functions, making this assump-
tion does not affect the correctness of the analysis. Consider that once the sup-
port function for a node v has returned, updating the two pairs (pv, bv) and
(p′v, b

′
v) can be regarded as two separate moves where one has no bearing on the

other.
Starting with (pv, bv) we first divide the execution of Rule 1 into three differ-

ent cases depending on the outcome of the move. These three cases are as follows:

Black move. A node is said to make a black move if after the move it has
changed its color from white to black.

Decremental move. A node v is said to make a d-move if it has changed
pv to p̄v and bv to b̄v such that either p̄v < pv or b̄v < bv ∧ p̄v = pv.

Incremental move. A node v is said to make an i-move if it has changed
pv to p̄v and bv to b̄v such that either p̄v > pv or b̄v > bv ∧ p̄v = pv.



A Memory Efficient Self-stabilizing Algorithm for Maximal k-Packing 435

Note that we label a move by the first condition in increasing order that
evaluates to true. For example, a node makes a black move if it has become
black, even if the move also qualified as a d-move. We note that both the d-
and i-moves can be defined for the (p′, b′)-values. It is then straightforward
to see that the three different types of moves cover every possible move that
the algorithm can make. In the following we will first reason that we cannot
have an infinite sequence of d- and i-moves when only applied to the (p, b)-
values.

To be able to reason about what causes a node to make a move we note that a
locally stable node v can only become privileged and make a new move if one of
its neighbors x first makes a move. If this is the first move among the neighbors
of v that causes v to become privileged we will say that the move made by x
initiated the subsequent move by v. With this definition we can now show the
following result.

Lemma 4. A d-move cannot initiate an i-move.

Proof. Consider a locally stable node v with values pv and bv. Then if v
is white there must exist a node w ∈ N(v) such that pw + 1 = pv and
bw = bv. If v is to make an i-move there cannot exist any node u ∈ N(v)
with either pu < pv−1 or with pu = pv−1 and bu ≤ bv. In the case where
w does not make a move this is not true. Also, if w makes a d-move then
w must decrease either its p-value or b-value (or both). In either case the
condition for v to make an i-move is not satisfied.

If v is a locally stable black node then it will only make an i-move if
some neighbor w has pw < k and bw < IDv. But if this is not the case
prior to when w makes an i-move it will not be true after the move. 
�

From Lemma 4 it follows that in a sequence of moves by the nodes of G that
consists entirely of d- and i-moves one can analyze the number of i-moves inde-
pendently from the d-moves. We will do this in the following, but first we show
how many consecutive d-moves there can be.

Lemma 5. The number of consecutive d-moves is at most O(n2k).

Proof. After a node has executed its initial move (which might be a d-
move) it will have a p-value in the range [0, k]. Thus it follows that a node
can at most decrement its p-value k times before it has to make an i-
move. In addition a node can decrease its b-value while keeping its p-value
fixed. Each node in the graph can at most give rise to one unique b-value.
In addition there might be n additional b-values in the graph due to the
initial values. Thus for a fixed p-value a node might decrease its b-value
at most 2n times. This gives a total of at most 2nk d-moves per node. 
�

Next, we analyze the i-moves and show that any sequence consisting entirely of
i-moves must stabilize.



436 F. Manne and M. Mjelde

Lemma 6. There cannot be an infinite sequence of i-moves.

Proof. Let β1, β2, . . . , βl, 1 ≤ l ≤ 2n, be an increasing sequence contain-
ing the set of distinct b-values that are used during the execution of the
algorithm. This contains the values given by the IDs of the nodes as well
as any initial b-values.

Define a vector A = [a(0,β1), a(0,β2), . . . , a(0,βl), a(1,β1), a(1,β2), . . . ,
a(1,βl), . . . , a(k,β1), a(k,β2), . . . , a(k,βl)] where entry a(i,βj) is the number
of nodes in the graph at any one time with p-value equal to i and b-value
equal to βj that are privileged for an i-move. Note that only a node v
with 0 ≤ pv < k can be privileged for an i-move, thus every node that
is privileged for an i-move is represented in A and the sum of the ele-
ments in A is always bounded by n. We will now show that if an i-move
changes A to A′ then A > A′ where the comparison is done by viewing
each vector as a number consisting of at most 2(k + 1)n digits.

Consider a node v that makes an i-move and let pv, bv be the associated
values of v before the move. Then the value in position (pv, bv) of A will
be reduced by one and since v will not be privileged for a new i-move im-
mediately after this move v will not directly cause any other entry in A to
change. In addition, any node w ∈ N(v) that had v as its only neighbor-
ing node with either pv < pw −1 or with pv = pw −1 and bv ≤ bw before
the move and where either pv > pw−1 or pv = pw−1 and bv > bw is true
after the move has now become privileged for an i-move. If this is the case
the entry a(pw ,bw) will increase by one for each such node w. But since
the initial value of pv is less than pw it follows that A > A′. To see that
any consecutive sequence of i-moves must terminate after a finite number
of moves it is sufficient to note that we cannot have negative numbers
in A and that the sum of the entries in A is always bounded by n. 
�

The immediate bound obtained from the proof of Lemma 6 is fairly pessimistic as
there are an exponential number of distinct configurations of the A vector used
in the proof. Still, together with Lemmas 4 and 5 it shows that any sequence
of d-moves and i-moves must stabilize. The only time where the (p′, b′) values
might affect the (p, b) values is when making a black node privileged to perform
an i-move. But then the node ceases to be black and as long as we don’t allow
for any black nodes this can at most happen once for each node.

To see that the i- and d-moves on the (p′, b′) values also must stabilize it is
sufficient to note that for fixed (p, b) values the i- and d-moves on (p′, b′) behaves
in the same way as on the (p, b) values. Thus it follows that between each set of
i- and d-moves on the (p, b) values we can at most have a finite number of i- and
d-moves on the (p′, b′) values. Thus we have the following result.

Lemma 7. Any sequence of i- and d-moves applied to both the (p, b) and (p′, b′)
values is bounded.

It now remains to incorporate the black moves into the analysis. We do this with
in the following.



A Memory Efficient Self-stabilizing Algorithm for Maximal k-Packing 437

Lemma 8. There cannot be an infinite sequence of black moves.

Proof. Any black node v at the start of the algorithm where bv �= IDv

will be corrected by the first move v makes and thus there can at most be
n such moves. Thus for the rest of the analysis we assume that bv = IDv

for every black node.
Similar to in the proof of Lemma 6 we define the vector A = [a(1,β1),

a(1,β2),. . . , a(1,βl), a(2,β1), a(2,β2),. . . , a(2,βl),. . . , a(k,β1), a(k,β2), . . . , a(k,βl)]
where entry a(j,βi) is the number of nodes in the graph at any one time
with p-value equal to j and b-value equal to βi that are privileged for
an i-move on the (p, b) values. Again, we also assume that the different
values of βi span all possible values (at most 2n) and that βi < βi+1.

It is then clear that only a domain where βi corresponds to the IDv

of some v ∈ V can contain a black node as a leader and there can only
be one such black node at a time (apart from at start up).

Let v be the node with lowest ID among the nodes in G. Then a(0,IDv)

is the leftmost position in A that can correspond to a black node. If v
is black it can only become white due to a node w ∈ N(v) with values
such that either pw < k and bw < bv or that p′w < k and b′w < bv

(in which case bw = bv). Denote the one of bw and b′w that caused
this to happen by b′′w and let U be the domain containing b′′w. Since v
had the lowest ID among the nodes in G it follows that U is improper,
and must have a leader u whose b-value does not equal the ID of any
node.

For v to become black again the value of pw must increase to at
least k. This cannot happen until u makes an i-move and increases
its p-value. Thus between each time v becomes black some node be-
longing to an improper domain must make an i-move. It follows from
the proof of Lemma 6 that this can only happen a finite number of
times.

Now assuming that the r nodes with lowest IDs, r ≥ 1, can only
change between white and black a finite number of times we will show
that this implies that the node v with the (r+1)st smallest ID also only
can change between white and black a finite number of times.

Let R denote the set of domains with lower IDs than v. Then using
the same argument as above it follows that between each time v changes
from black to white some node in R must have executed an i-move. We
know that each such move will cause A < A′ and that any d-moves will
not change any value of A. Thus between each time some domain in R
executes a black move v can only perform a finite number of black moves.
Since by assumption each proper domain in R can only execute a finite
number of black moves the result follows. 
�

Combining the results from lemmas 5 through 8 we now have our main result.

Theorem 2. Algorithm Rule 1 will stabilize in a finite number of moves.



438 F. Manne and M. Mjelde

4 Conclusion

We have presented a very simple self-stabilizing algorithm that solves the k-
packing problem. In doing so it only uses a constant number of variables per
node. The main mechanism for solving the problem is a method for a black
node to compute the distance to its nearest black node other than itself. We
believe that this mechanism can be used in designing self-stabilizing algorithms
for other problems that also involves some k-distance property. This is something
we intend to study further in the future.

We do not believe that this idea can be extended to an anonymous network,
since a white node v would not be able to distinguish between black nodes that
are not in N(v).

Still, the main open question is to better understand the trade off between
memory usage and moves complexity in self-stabilizing algorithms. There are
currently few hardness results in terms of moves complexity in the literature on
self-stabilizing algorithms and even if some self-stabilizing algorithms require an
exponential number of moves there is still room for ranking these like one is
currently seeing in the field of exact sequential algorithms.

References

1. C. Berge, Theory of Graphs and its Applications, no. 2 in Collection Universitaire
de Mathematiques, Dunod, Paris, 1958.

2. J. Blair and F. Manne, Efficient self-stabilzing algorithms for tree networks, in
Proceedings of ICDS 2003, The 23rd IEEE International Conference on Distributed
Computing Systems, 2003, pp. 20–26.

3. E. W. Dijkstra, Self-stabilizing systems in spite of distributed control, CACM, 17
(1974), pp. 643–644.

4. S. Dolev, Self-stabilization, MIT press, 2000.
5. M. Gairing, R. M. Geist, S. T. Hedetniemi, and P. Kristiansen, A

self-stabilizing algorithm for maximal 2-packing, Nordic J. Comput., 11 (2004),
pp. 1–11.

6. M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman
and Co., 1978.

7. F. Gärtner, A survey of self-stabilizing spanning-tree algorithms, Tech. Report
IC/2003/38, Swiss Federal Institute of Technology, 2003.

8. W. Goddard, S. Hedetniemi, D. Jacobs, and V. Trevisan, Distance-k infor-
mation in self-stabilizing algorithms, in Proceedings of SIROCCO 2006, 2006. To
appear.

9. W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani, Self-
stabilizing global optimization algorithms for large network graphs, Int. J. Dist.
Sensor Networks, 1 (2005), pp. 329 – 344.

10. M. A. Henning, Distance domination in graphs, in Domination in Graphs: Ad-
vanced Topics, T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, eds., Marcel
Dekker, New York, 1998, pp. 321–349.



A Memory Efficient Self-stabilizing Algorithm for Maximal k-Packing 439

11. M. Mjelde, k-packing and k-domination on tree graphs, master’s thesis, Depart-
ment of Informatics, University of Bergen, Norway, 2004.

12. O. Ore, Theory of Graphs, no. 38 in American Mathematical Society Publications,
AMS, Providence, 1962.

13. P. J. Slater, R-domination in graphs, J. Assoc. Comput. Mach., 23 (1976),
pp. 446–450.


	Introduction
	The Self-stabilizing Paradigm
	The Algorithm
	The Local Variables
	Definitions and Notations
	The Algorithm
	Correct Stabilization
	Convergence

	Conclusion

