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Abstract

Efficient parallel algorithms for problems such as maximum
weighted matching are central to many areas of combinatorial
scientific computing. Manne and Bisseling [13] presented a
parallel approximation algorithm which is well suited to dis-
tributed memory computers. This algorithm is based on a dis-
tributed protocol due to Hoepman [9]. In the current paper,
a partitioned global address space (PGAS) implementation is
presented.

PGAS programmers have the conveniences of using a
shared memory model, which provides implicit communica-
tion between processes using normal loads and stores. Since
the shared memory is partitioned according to the affinity of
a process, one is also able to exploit data locality.

This paper addresses the main differences between the
PGAS and MPI implementations of the Manne-Bisseling al-
gorithm. It highlights some advantages of using the PGAS
model such as shorter, simpler code, similarity to the se-
quential algorithm, and options for fine-grained and coarse-
grained communication.

1. INTRODUCTION

A matching M in a graph G = (V,E) is a subset of
edges such that no two edges in M are incident to the
same vertex. If G = (V,E,w) is a weighted graph with edge
weights w : E — R, the weight of a matching is defined as
w(M) = Z w(e).

eeM
The maximum weight matching problem is to find a match-

ing which maximizes the total weight of the edges in M. Ver-
tices incident to edges in M are considered matched while the
remainder are free or unmatched.

The first exact polynomial time algorithm for this prob-
lem was given by Edmonds in 1965 and runs in O(n*m) [7],
where n and m are the number of vertices and edges in a
graph, respectively. Since then, much work has been done
to improve the worst case running time of this algorithm.
The fastest known result is due to Gabow who reduced it to
O(nm +n*logn) [8]. In the area of parallel algorithms, it is
still an open problem to find a maximum weighted match-
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ing using an NC algorithm [10]. NC is the class of problems
that are computable in polylogarithmic time with polynomi-
ally many processors.

One of the simplest approximation algorithms for the
weighted matching problem is the greedy algorithm. It works
by iteratively removing the heaviest edge e and adding it to
the matching. All edges adjacent to e are then discarded. This
process continues until there are no more edges left. The ap-
proximation ratio for this algorithm is % and the runtime is
O(mlogn) since the edges of G need to be sorted [6].

Preis [14] developed an algorithm called LAM which is
based on the greedy approach, but avoids sorting the edges
of the graph. At each step the locally heaviest edge is chosen
and added to the matching. A locally heaviest edge or domi-
nating edge is one which has a weight greater than all of its
neighbors. The approximation ratio for this algorithm is also
%, but the runtime is O(m) since the locally heaviest edge can
be found in amortized constant time [6].

Hoepman [9] developed a linear distributed protocol which
builds on the LAM algorithm. It assigns one processor to each
vertex of the graph and after a set of communication rounds,
determines which two processors share a dominating edge.
Manne and Bisseling [13] showed how this protocol could
be used in an efficient parallel matching algorithm which is
suitable for distributed memory computers. They developed
an MPI implementation which scales well on both complete
and sparse graphs.

An implementation of the Manne-Bisseling algorithm is
presented using the partitioned global address space (PGAS)
model. This paper addresses the main differences between the
PGAS and MPI implementations and discusses how the two
paradigms affect their respective implementations.

2. PROGRAMMING PARADIGMS

Currently the two most popular parallel computing
paradigms are shared address space and message passing. In
the shared address space or shared memory paradigm, all pro-
cessors can read and write to a global space and therefore
communicate implicitly. In the message passing paradigm,
each processor has its own private memory and exchange
of data and synchronization information is done explicitly
through messages.

The message passing paradigm works best for problems
in which the data can be easily partitioned and the computa-



tion is well structured. Graph computations on sparse graphs
are usually “data-driven” in the sense that the structure of the
graph dictates the order of the computations [12]. This struc-
ture is highly irregular and therefore difficult to express in
code. As a result, many graph problems are difficult to imple-
ment using message passing because the explicit communi-
cation required to model these access patterns is non-intuitive
[12].

The shared address space paradigm, however, is ideal for
irregular computations due to the implicit communication.
Programming is also simplified as the programmer can fo-
cus more on the algorithm than the communication. Unfor-
tunately, all large scale shared address space platforms have
non-uniform memory access (NUMA) which can lead to poor
performance from remote memory accesses.

2.1. PGAS Paradigm

The partitioned global address space paradigm aims to ad-
dress the problems associated with the shared memory model
while still maintaining its conveniences [5]. Like the shared
address space model, PGAS languages have a global space
to which all processors can read and write. This space is also
logically partitioned so that a portion of it is local to each pro-
cess. This allows a programmer to exploit memory locality by
placing data close to the processes that manipulate it.

Each process has a private address space in addition to
affinity to a portion of the shared address space. Data objects
in the shared address space are visible to all processes, how-
ever latency is reduced for objects in a process’s partition.
Current PGAS languages follow the single program multiple
data (SPMD) execution model. Examples of these languages
include Unified Parallel C (UPC) [2], Co-Array Fortran [15]
and X10 [4].

PGAS languages, such as UPC, provide programming con-
structs for denoting shared and private variables, data parti-
tioning, affinity and synchronization. Instead of focusing on
the syntax of one particular language, some conventions are
adopted for representing these constructs in the pseudocode.

2.1.1. Shared and Private Variables

Shared variables reside in the shared address space and are
visible to all processes. There is only one copy of each shared
variable. In this paper, local variables are shared variables
with affinity to a particular process. Private variables reside in
a process’s private memory and are only visible to the owning
process. Each process has its own copy of each private vari-
able. In order to clarify locality, all variables are declared as
shared, local or private in the pseudocode presented.

2.1.2. Data Partitioning

Shared arrays are distributed round-robin across all pro-
cesses one block of elements at a time. Given a shared array
A[n] with a block size of 1 distributed over k processes, each

process p has affinity to elements A[p], A[k + p|, A[2k + p],
A[3k+ p] and so on. If the block size is b then process p has
affinity to b contiguous elements starting at element A[pb].
The size of the block is specified in the declaration of the ar-
ray. Unlike message passing, the array indices do not change
after partitioning because the global ordering is still main-
tained. Figure 1 shows an example of this.

i[n-s] [n-2] [n-1]

Shared

eeoe

Private
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Figure 1. PGAS Memory View. Example of a shared array
of n elements distributed across THREADS processes with a
blocking factor b = 3.

2.1.3. Affinity

Once an array has been partitioned, it is easy to calculate
the affinity of an element based on the block size. Given a
shared array A, the set of elements with affinity to a process
is denoted as myA. If the block size is unknown, for exam-
ple when dereferencing a pointer, the programmer can call
a function which returns the id of the owning process. This
function is denoted as owner(x) in the pseudocode.

2.1.4. Synchronization

Synchronization constructs such as barriers ensure that all
processes reach a certain point in the code before any of them
continue execution. This is denoted by the barrier statement
in the pseudocode.

3. SEQUENTIAL ALGORITHM

The sequential matching algorithm given by Manne and
Bisseling [13] will be presented first. Given a weighted graph
G = (V,E,w), let N, be the set of vertices that are neighbors of
v. Let C,, the set of candidate vertices of v, be the unmatched
vertices in N,. Let v’s mate be the endpoint of the heaviest
unmatched edge incident to v. This endpoint is denoted as
mate, and is computed by the function A(C,). If v has chosen
u as its mate then v wants to match with u. If two neighboring
edges have the same weight, ties are broken using the vertex
id, i.e. if w(u,v) =w(v,x), the edge (u,v) would be considered




heavier if u > x. Tie-breaking is only needed when two edges
share a common endpoint.

The sequential algorithm is composed of two stages. In the
first stage, the initial set of dominating edges is found and
added to the matching. For each vertex v, the algorithm com-
putes its mate u and checks to see if u has chosen v as a
mate. A match is made if the two vertices mutually choose
each other. The edge (u,v) is added to the matching M and
the vertices {u,v} are added to the set D. This set D con-
tains matched vertices which are used later on to increase the
matching.

Since each vertex v in D is no longer a candidate for match-
ing, any vertex which wants to match with v needs a new
mate. In the second stage, the algorithm removes each vertex
v from D one at a time and looks at each unmatched neigh-
bor x. If x wants to match with v, the algorithm updates the
candidate list C, and finds the next best available mate, y.
If y wants to match with x then (x,y) is added to M and the
vertices {x, y} are added to D. The algorithm terminates when
D = 0. If there is an edge which can extend the current match-
ing it will be found before D is exhausted [13]. Algorithm 1
provides further details.

4. PARALLEL ALGORITHM

The owner-computes model is used in the parallel version
of this algorithm. The vertices of the graph are partitioned
and each process runs the sequential algorithm on its allo-
cated vertices. The graph can be partitioned naively using the
relative numbering, or with a graph partitioning library such
as Metis [11] which minimizes the number of crossing edges.
In the parallel version, the matching is defined by the mate
value of the vertices marked as matched. The algorithm is
composed of two stages corresponding to the sequential al-
gorithm.

In the first stage, each process finds the dominating edges
incident to its allocated vertices. It iterates over the set of
vertices in its subgraph and computes their desired mates.
Next all processes synchronize to ensure all mates are pre-
computed before matches are made.

Then each process iterates over each vertex v in its sub-
graph and marks it as matched if its desired mate u also chose
v. This match is made even if u belongs to another process.
In this case the owner of v marks v as matched and the owner
of u marks u as matched. Each vertex that a process marks
as matched is added to its private set D. Since processes only
match the vertices in their subgraphs, the vertices in D are
always local.

The second stage proceeds as in the sequential algorithm
with the limitation that a process cannot update the candidate
list and mate value of a remote vertex. A process p removes
a vertex v in its D, by considering each unmatched neighbor
x of v where x wants to match with v. If x is owned by g # p,
p instructs ¢ to find a new mate for x. However, if x is local
to p, p updates the candidate list C, and finds the next best

Algorithm 1 Sequential Matching Algorithm [13]

Require: G= (V,E,w)

Ensure: M contains the edges in the computed matching
1: forallv eV do

2 mate, < null

3 C, <N,

4: end for

5: D0

6: M«—0

7

8

9

: forallveVdo
mate, < h(C,)

u < mate,
10:  if mate, = v then
11: D —DU{u,v}
12: M —MU{(u,v)}
13:  endif
14: end for

15: while D # 0 do

16: v+ some vertex from D

17 D+« D\ {v}

18:  for all x € C, where mate, =v and (v,x) ¢ M do
19: Cy — C\{v}

20: mate, — h(Cy)

21: y < matey

22: if mate, = x then
23: D — DU{x,y}
24: M—MU{(x,y)}
25 end if

26:  end for
27: end while
28: return M

mate, y. If y wants to match with x and y is also local to p,
the match is made as in the serial case. If however, y is owned
by g # p, p instructs g to complete the match. Whenever a
process marks a vertex as matched the vertex is added to its
D. The algorithm terminates when D = 0 for all processes.

4.1. MPI Implementation

In the MPI implementation of this algorithm, each process
maintains a set of ghost-vertices to handle crossing edges. If
a vertex v resides on process p and has a neighbor u which
resides on process g, where p # g, a ghost-vertex V' and the
corresponding edge (u,v") will be created on process g.

When the initial mates are computed for each vertex v,
this value is propagated to all ghost copies of v. Whenever
v chooses a new mate, all ghost copies of v need to be up-
dated. This requires a message from p to all processes that
have ghost copies of v. Since all copies of v will always have
the same mate value, it is impossible for v to be matched with
more than one remote vertex. If two remote vertices x and y,
which reside on different processes, want to match with two
different ghost copies of v, the mate value of v will either be x,



y or neither. Since it cannot be both x and y at the same time,
two conflicting matches cannot be made. For more details on
the MPI implementation please refer to [13].

4.2. PGAS Implementation

In the PGAS implementation, the vertices are stored in
shared memory in an array. The array is distributed based on
a partitioning computed by the Metis graph partitioning li-
brary, so that each process has affinity to the vertices in its
subgraph. If Metis returns a partitioning with unequal parti-
tion sizes, the array is padded with dummy vertices to ensure
a uniform block size. Each vertex is represented by a struct
which contains a linked list of its neighbors, its desired mate
and a flag signaling whether or not it is matched. The data
structure is an augmented adjacency list with repeated edges.

The first stage of the PGAS implementation is very similar
to the general parallel matching algorithm outlined in section
4. Algorithm 2 gives a detailed description of this stage.

Algorithm 2 PGAS Matching Algorithm Stage 1
Require: G = (V,E,w)
Ensure: Vertices marked as “matched” constitute a matching
1: shared G, mate,, matched,
: local myV, C,, N,, mate,, matched,
. private D, v, u
: D0
: for all v € myV do
C,—N,
mate, — h(C,)
matched, «— false
end for
10: barrier
11: for all v € myV do
12 u <« mate,
13:  if mate, = v then

14: matched, «— true
15: D —DU{v}

16: if u € myV then

17: matched, — true
18: D —DU{u}

19: end if

20:  end if

21: end for

22: barrier

The second stage of the PGAS implementation can be
done in either a synchronous or asynchronous manner. In the
asynchronous version messages are sent individually using
atomic memory operations, while in the synchronous version
they are sent in bulk during a communication step. The syn-
chronous version is very much like the MPI implementation.
Receiving messages works similarly. In the asynchronous
version messages are retrieved when a process exhausts its

work, however in the synchronous version messages are re-
ceived in bulk

Messages for a process p are written to p’s portion of a
shared array S. Each element in S is a vertex which the own-
ing process needs to update. S is distributed evenly among all
processes and |S| = |V|. Each portion of S that belongs to a
process p acts as a stack for p since vertices are added and re-
moved from the end. Each process p also maintains a shared
value size,, that reflects the number of items currently in its
stack. To send a message to a process p, size,, is incremented
using an atomic memory operation to reserve the space, then
the values are written. When p removes an element from the
stack, it performs the same actions in reverse. First it copies
the item to be removed then decrements the stack counter
using an atomic operation. Algorithm 3 describes the syn-
chronous version of stage 2.

4.3. Comparison
This algorithm was implemented in both MPI and UPC,
however they differ in several areas.

4.3.1. Similarity to the Sequential Algorithm

One of the main advantages of using the PGAS model is
the similarity between the sequential algorithm and its corre-
sponding parallel version. Maintaining this similarity makes
it easier for a programmer to develop a parallel implementa-
tion, since the programming overhead in parallelizing a se-
quential algorithm can often be significant. In this paper, the
pseudocode for the serial algorithm and the PGAS version is
very similar.

One of the drawbacks of the MPI implementation is the
need for ghost-vertices and the arithmetic overhead that goes
with using them. In the PGAS model, there is no need for
ghost-vertices since the entire graph can be placed in shared
memory. Of course this means that reading a vertex which
is not in a process’s subgraph incurs a cost. However from a
programmability standpoint, it is preferable to read and write
to shared memory in the same manner that private memory is
accessed.

4.3.2. Code Length

The length of the UPC implementation is much shorter
than the MPI version which is mainly due to the amount of
parallel overhead that the MPI programmer must implement.
Code length is a software metric that is often used to predict
a program’s reliability and ease of maintenance [3].

In MPI, distributing the graph, setting up the ghost-
vertices, calculating the locations of off-processor vertices
and edges, and sending and receiving messages are among
the extra work that is left to the programmer. PGAS lan-
guages like UPC make it easy to distribute the graph by us-
ing a blocking factor when the array is created. There is also
very little arithmetic needed to locate vertices since the global



Algorithm 3 PGAS Matching Algorithm Stage 2

Require: G = (V,E,w), D

Ensure: Vertices marked as “matched” constitute a matching
1: shared G, S, matey, matched,
2: local myV, C,, Cy, mate,, mate,, matched,
3: private D, Q, v, x, y, workLe ft
4: S—10

5. workLeft <—sum of |D| for all processes

6

7

8

. while workLeft > 0 do
while D # 0 do
: v < some vertex from D
9: D — D\ {v}

10: for all x € C, such that mate, = v and mate, # x do
11 if x ¢ myV then

12: prepare msg for owner(x) to update x
13: else

14: Cy—C\ {v}

15: matey, < h(Cy)

16: y < matey

17: if mate, = x then

18: matched, < true

19: D — DU{x}

20: if y € myV then

21: matched, < true

22: D — DU{y}

23: else

24: if matched, = false then

25: prepare msg for owner(y) to update y
26: end if

27: end if

28: end if

29: end if

30: end for

31:  end while

32:  write all msgsto S

33:  barrier

34:  copy my msgs to Q

35:  update vertices in Q and add matched vertices to D
36:  barrier

37.  workLeft «—sum of |D| for all processes

38: end while

numbering of vertices is maintained. It is also easier for a pro-
cess to determine which vertices are allocated to it since an
owner() function is provided.

4.3.3. Implicit Communication

In an MPI program, communication is done through sends
and receives, while in a PGAS program it is done through
reads and writes to shared memory. This implicit form of
communication makes it easier to selectively broadcast values
such as when a vertex v has chosen a new mate. When this oc-
curs in the MPI version, a message must be explicitly sent to

all processes which have a ghost-copy of v. In the PGAS im-
plementation, this is not necessary since any process can read
v’s updated information when necessary. On the other hand,
since the communication is implicit it is harder to account for
non-local memory references which are often equivalent to
messages.

4.3.4. Coarse and Fine-Grained Communication

In the synchronous version of the PGAS implementation
we use coarse-grained communication, since all messages
are aggregated and sent in one step. However in the asyn-
chronous version, we use atomic memory operations to write
notifications as soon as they are discovered. This is an ex-
ample of fine-grained communication. In MPI, programmers
typically make their programs as coarse-grained as possible
as in the Bulk-Synchronous-Processing (BSP) model [12].
BSP type algorithms separate computation and communica-
tion into distinct supersteps to reduce the overall cost of la-
tency. This model is appropriate for well-structured problems,
however for graph algorithms this limits the amount of fine-
grained parallelism that can be exploited [12].

4.3.5. Atomic Memory Operations

As mentioned earlier, atomic memory operations were
used in the UPC implementation to send and receive mes-
sages. Adding to the stack involves writing to remote shared
memory which incurs a cost. Atomic operations were used to
provide concurrent, conflict-free access to the stack. If atomic
operations are not available on a particular platform, locks
may be used as a substitute. However, locks are not as scal-
able as atomic operations and were generally avoided.

5. PERFORMANCE

The PGAS implementation was developed in UPC and run
on an in-house UPC reference implementation to verify cor-
rectness. We are seeking access to a machine with the char-
acteristics necessary for this type of algorithm to make per-
formance measurements. This algorithm requires support for
fine-grained memory references with little or no locality.

The performance of this algorithm is largely dictated by
the number of remote memory references that are made. A
process performs a remote read whenever it updates one of
its candidate lists involving non-local vertices, and when it
checks the mate value of a remote vertex. Remote writes
are done when sending messages to other processes. Both of
these situations are affected by the partitioning of the graph,
as the number of remote neighbors in a vertex’s candidate list
determines the amount of remote memory references.

Given a sparse graph which has been partitioned into & sec-
tions, the number of crossing edges ¢ can be easily computed.
In the worst case, a process will have ¢ remote neighbors in its
candidate lists since edges are repeated. The probability that



a vertex chooses a remote mate is dependent on ¢ and the av-
erage degree of the graph. Manne and Bisseling [13] showed
that if the edge weights are assigned randomly, the Hoepman
protocol [9] is expected to terminate in O(log|E|) rounds. In
the parallel algorithm this corresponds to a process exhaust-
ing all the vertices in its D and processing all messages it
received.

Given these factors, some performance predictions can be
made using a performance model for PGAS languages. This
model from Zhang and Seidel [16], uses micro-benchmarks
to determine the cost of a remote memory reference and the
compiler and runtime optimizations available on a platform.
Since both of the DARPA High Productivity Computing Sys-
tems (HPCS) [1] petascale machines are being designed with
PGAS languages in mind, it is appropriate to evaluate this
implementation in a way that is consistent with the scale and
capabilities of expected platforms.

6. FUTURE WORK

A tighter upper bound will be determined on the num-
ber of remote memory references a process makes in each
round. Using this and performance characteristics of antici-
pated PGAS platforms, a probabilistic performance model of
this algorithm will be created. If we are able to secure access
to a tightly coupled system, the algorithm will also be evalu-
ated using a wider array of graphs to determine how various
graph structures affect its behavior.
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