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EFFICIENT SPARSE CHOLESKY FACTORIZATION ON A MASSIVELY
PARALLEL SIMD COMPUTER*

FREDRIK MANNEt ANt) HJALMTCR HAFSTEINSSON

Abstract. We investigate the effect of load balancing when performing Cholesky factorization on a massively
parallel SIMD computer. In particular we describe a supernodal algorithm for performing sparse Cholesky factor-
ization. The way the matrix is mapped onto the processors has significant effect on its efficiency. We show that this
assignment problem can be modeled as a graph coloring problem in a weighted graph. By a simple greedy algorithm,
we obtain substantial speedup compared with previously suggested data mapping schemes. Experimental runs have
been made on a 16K processor MasPar MP-2 parallel computer using symmetric test matrices with irregular sparsity
structure. On these problems our implementation achieves performance rates of well above 200 Mflops in double
precision arithmetic.
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1. Introduction. The solution of sparse linear systems has long been important for many
applications in science and engineering. As these applications are increasingly being moved to
parallel computers it becomes crucial to find efficient algorithms to solve such linear systems.
In many cases the matrices involved are symmetric positive definite so they can be factored by
Cholesky factorization and the linear system solved by forward and back substitution. Iterative
methods are also available for solving linear systems, but direct methods might be preferred
for reasons of stability and accuracy.

Most of the recent work on parallel implementations of sparse Cholesky factorization has
been for vector supercomputers and MIMD multiprocessors 17]. High performance has been
achieved on the Cray Y/MP [28] and the Cray-2 [6]. Implementations on MIMD computers
are mostly for hypercube architectures, such as the Intel iPSC 11 ], [26], [30].

Until recently the conventional wisdom has been that parallel computers based on the
SIMD model are better suited for iterative rather than for direct algorithms for solving sparse
linear systems. Gilbert and Schreiber 15] attempted to refute that belief by implementing a
supernodal, multifrontal algorithm to compute the Cholesky factorization on the Connection
Machine CM-2. Despite a disappointing Mflop rate they managed to show the feasibility of
direct sparse methods on SIMD computers.

Kratzer 19] demonstrated a method for efficient sparse LU factorization on the MasPar
MP- computer by mapping the data onto the processors in a special way. His implementation
achieves throughput of up to 11.3 Mflops on a 4K-processor MP-1 using single precision data.

In this paper we implement sparse Cholesky factorization on a 16K processor MasPar
MP-2 parallel computer. Our algorithm is similar to Kratzer’s for LU factorization, but we
introduce a new way of assigning the data to the processors. Direct comparison with the
work by Kratzer is difficult because of the differences in computers, but an implementation of
Kratzer’s mapping scheme on our computer shows that our method gives an improved Mflop
rate of about 20%.

Wehave done experiments on irregular sparse test matrices and have achieved performance
rates of up to 219 Mflops in double precision and 287 Mflops in single precision. Even
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though the double precision peak rate of the 16K processor MP-2 is 2300 Mflops, we cannot
realistically expect to get even close to that number, especially with irregular sparse data.

The paper is organized as follows. We begin in 2 with a brief description of the MasPar
MP-2, the parallel computer which we use. Then we provide some background definitions for
sparse Cholesky factorization in 3. In 4 we describe the data structures and algorithms in
our implementation of the Cholesky factorization. Section 5 discusses how different ways of
distributing the data onto the processors affect the performance of our factorization algorithm.
We give numerical results for some practical test matrices in 6 and present our conclusions
and observations in the final section of the paper.

2. The MP-2 machine. This section describes the architecture of the MasPar MP-2
parallel computer. It can be skipped by those familiar with the MasPar.

The MasPar MP-2 system is a massively parallel SIMD computer. It is an upgrade of
the older MP-1 system [5], incorporating more powerful processor elements while using the
same communication subsystem. The MP-2 consists of two parts: a high performance work
station, which acts as a front-end for the system, and a data parallel unit (DPU). The DPU
contains between 1024 (1K) and 16384 (16K) processor elements. They are arranged in a
two-dimensional, toroidal-wrapped grid called the processor array. The DPU also contains an
array control unit (ACU), which provides an interface between the front-end and the processor
elements.

All the processor elements receive the same instruction from the ACU at the same time and
execute it on their local data. However, individual processor elements can disable themselves
based on logical expressions and they can also use indirect references when referring to local
data.

The MP-2 provides two types of communication between the processor elements called
Xnet and Router. Xnet communication is the faster, but more restricted, procedure. It follows
the grid lines of the processor array. Processor elements can .send data any distance to the
north, south, west, and east, as well as to the northwest, northeast, southwest, and southeast.
The grid lines wrap around, so each processor element always has a neighbor in each of these
eight directions.

There are three types of Xnets: basic Xnet, XnetP(ipe), and XnetC(opy). The syntax for
basic Xnet is

xnet(dir)[ (dist)]. (var)

where (dir) is one of N, NE, E, SE, S, SW, W, NW; (dist) is the distance along the processor
grid; and (var) is the variable to be communicated. For instance, xnetE[2].i refers to variable
in a processor two steps to the east.

The basic Xnet takes time according to the formula

(startup) + (#bits) (dist).

A typical value for 64-bit operands is 6 + 66 (dist) clock cycles, where (dist) is at most 128.
On the MP-2 a clock cycle is 80 ns. The XnetP is faster over long distances taking time

(startup) + (#bits) + (dist),

with a typical value being 91 + (dist) clock cycles. The XnetC is similar, but leaves a copy
of the transmitted value on each intermediate processor. However, XnetP and XnetC require
that every intermediate processor between the sending and receiving processor be inactive.

XnetC provides an efficient way for broadcasting a value along a row or a column of the
processor array. Sending a 64-bit value to the other 127 processors in the same row/column
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of a 16K machine (with a 128-by-128 processor array) takes only about three times as much
time as a basic Xnet to a nearest neighbor.

Router communication allows each processor to send data to any other processor in the
processor array. This makes it more flexible than the Xnet, but slower. The time for a Router
communication varies with the amount of collisions, but averages out to about 6200 clock
cycles for 64-bit operands.

In the programs reported on in this paper we use XnetC almost exclusively for com-
munication between processor elements. This gives higher speed, but requires that data be
distributed to the processors in a special way in order to take advantage of the XnetC. This is
discussed further in 5.

Each processor element is a 32-bit load/store arithmetic processor with 40 32-bit registers
and 64Kb of RAM. There is no floating point hardware and all floating point operations are
thus implemented in software. If we define the average time of a floating point operation (flop)

(Mult + Add) the peak speed of a single processor element is 0.1412 Mflops forasot

64-bit arithmetic. A 16K processor machine would thus have the peak performance of 2314
Mflops.

Comparing the speed of arithmetic with communication on the MP-2, we obtain the ratio

Xnet[1]
=0.8.

Thus floating point arithmetic on a 64-bit value is actually more expensive (by 20%) than
sending that valueto the nearest neighbor in the processor array. It should also be noted that
copying a 64-bit value to all the other processors in a column or a row of the PE array, using
XnetC, costs only 2.5 times more than a single 64-bit floating point operation on the MP-2.

3. Linear algebra background. Let A be an n n symmetric positive definite matrix.
One way of solving the linear system Ax b consists of finding the unique lower triangular
matrix L, such that A LL. This is called Cholesky factorization of A. The linear system
Ax b can then be solved by solving two triangular systems Ly b and Lx y.

When A is sparse there are some additional steps in the Cholesky factorization. In general
the Cholesky factor L will not be as sparse as A since the factorization usually introduces some
nonzeros into L. These nonzeros are calledfill-in. By a symmetric reordering of the columns
and rows of A we can often reduce the fill-in. Finding the ordering that gives the least
fill-in is NP-hard [29]. Two frequently used heuristics are minimum degree 14] and nested
dissection 12].

After a fill-reducing ordering has been found, the next step in a sparse Cholesky factor-
ization is the symbolic factorization. Its purpose is to find the nonzero structure of L so that
memory can be reserved for the nonzeros before their numerical values are computed. In
parallel Cholesky factorization it is equally important to know the structure of L to allocate
work evenly among the processors.

The last step is the numerical factorization, in which the values of the nonzeros of L are
calculated. This is usually the most time-consuming part of the Cholesky factorization.

It is often convenient to view the numeric factorization as a combination of the opera-
tions cmod(j, i) and cdiv(i). The operation cmod(j, i), working only on elements below the
diagonal, subtracts a multiple of column from column j, where the multiplier is lji, and
the operation cdiv(i) divides the column by the square root of its diagonal element. Using
these vector operations we can define two variants ofCholesky factorization, column-Cholesky
shown in Fig. and submatrix-Cholesky shown in Fig. 2.

The column-Cholesky variant, which is the method most often used in sequential factor-
ization codes, is also called afan-in method [17]. Column j remains unchanged throughout
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for j ton do
for < j where lji 0 do

cmod(j, i);
cdiv(j);

end-do

FIG. 1. Sparse column-Cholesky.

fori= ltondo
cdiv(i);
for j > where lji 0 do

cmod(j, i);
end-do

FIG. 2. Sparse submatrix-Cholesky.

the execution, until at some point in the algorithm it is modified by all the previous columns
that have a nonzero in row j.

In submatrix-Cholesky, on the other hand, a column j is modified by column k immedi-
ately after the cdiv(k) operation. Column k is sent to all the columns where it is needed and
these columns are then modified. Thus this method is often called fan-out or outer product.
The parallel numeric factorization algorithm in this paper is a variant of submatrix-Cholesky.

We now turn to some graph theoretic definitions that are useful in sparse Cholesky fac-
torization.

The graph G(A) ofthe symmetric matrix A is the graph with vertices 1, 2 n and edges
{(i, j) aij 0}. Thefilled graph G*(A) has vertices 1, 2 n and edges {(i, j) lij 0}.
Thus G*(A) represents the nonzero structure of the matrix L + L. The main purpose of the
symbolic factorization step in sparse Cholesky factorization is to compute the graph G*(A)
from G(A).

An important structure in sparse Cholesky factorization is the elimination tree [22]. The
elimination tree T(A) is defined as follows. If vertex v has higher-numbered neighbors in
G* (A), then the parent of v in T (A) is the lowest numbered such neighbor p(v); otherwise v is
a root. In matrix terminology the parent of column v is the row number of the first off-diagonal
nonzero that appears in column v of the factor matrix L. Note that T (A) is a subgraph of
G* (A), the edges of G* (A) that are not in T (A) are called nontree edges. If A is irreducible,
which means that G(A) is one connected component, then T (A) is a single tree. From now
on we will assume that A is irreducible.

The elimination tree T (A) represents the dependencies between the columns of A during
Cholesky factorization. The columns corresponding to leaves of T(A) do not have to be
modified by any other columns. Therefore we could perform the cdiv-operation on all the
leaf columns simultaneously. Also note that two columns that are unrelated in the elimination
tree do not depend on each other and could be computed in parallel, if all their descendants
have been eliminated. Thus the height of T(A) is closely related to the parallelism inherent
in the Cholesky factorization of A. The lower the tree, the more columns can be eliminated
in parallel.

In sparse Cholesky factorization we can often take advantage ofthe fact that some adjacent
columns in the factor matrix L may have the same nonzero structure. A set of such columns
is called a supernode [1]. Finding and utilizing supernodes in L can give benefits both in
computation speed and storage space. In the elimination tree, a supernode appears as a path
of nodes in the tree that have the same nontree edges to their common ancestors in the tree.
The vertices of a supernode will form a clique in the filled graph G*.
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4. The factorization algorithm. In this section we describe our algorithm forperforming
sparse Cholesky factorization on the MP-2 computer. As mentioned in 3 it is similar to an
algorithm for sparse LU-factorization by Kratzer [19]. We will assume that preordering and
symbolic factorization have already been performed.

We will now show how the elements of the factor matrix L are stored on the processor
array. We assume that preordering and symbolic factorization have already been performed,
so we have determined the positions of the nonzeros of L. The initial values of the nonzeros of
L are 0 for the fill-in elements and the values of the corresponding elements in A for the others.
The columns and rows are mapped onto the processor array according to a mapping function
M [1..N] --+ [1..P], where N is the dimension of the matrix A and P is the dimension
of the processor array. If M(i) k then matrix column is mapped to processor column k.
Similarly, row is mapped to processor row k. Thus element ai,j will be mapped to processor
(M(i), M(j)). With this layout each processor in the same column of the processor array will
have the same columns from the matrix mapped to it and each processor row will similarly
have the same matrix rows mapped to it. The processors on the diagonal of the processor
array will receive the same columns as rows, so each diagonal matrix element will therefore
be mapped to a diagonal processor.

Each processor has an array column_name containing the indices of the matrix columns
that are mapped to this processor. This array is ordered by increasing value.

The nonzeros allocated to each processor are stored in column-major order in a one-
dimensional array. For each nonzero its floating point value and its local row index is stored.
The local row indices are calculated relative to the number of rows mapped to each processor.
In order to facilitate look-up into the array of nonzero elements, each processor has a vector
giving the starting point of each column. The local column index of an element is given
implicitly as the column it belongs to.

Since we assume that the matrix is positive definite each diagonal matrix element is
nonzero. This means that the first element of each column on the diagonal processors is a
diagonal matrix element. For each ofthese diagonal elements the local row and column indices
will be identical.

We now proceed to describe the algorithm. It is a parallel version of submatrix-Cholesky
factorization. The main difference is that we perform the cdiv operations after all the cmod
operations have been done. This way we avoid having one processor column performing a
cdiv operation while the rest of the processors are idle. Because of this we have to scale
column by lji/lii before subtracting it from column j when doing cmod(j, i).

The algorithm operates by performing N outer products in a sequential order. The
first step, when performing the th outer product, is to distribute the element li,i to all the
processors. The off-diagonal elements from column are then copied across the processor
rows. This means that each nonzero entry lj,i (j > i) is copied to each processor in row
M(j), along with its local row index j’. Each processor that receives lj,i stores the floating
point value in an array guest in position j’. In order to determine whether element j’ in guest
belongs to column a separate integer array time_stamp is set to in position j’.

If lj,i is nonzero, cmod(j, i) must be performed as a part of the th outer product. Column
j is mapped to processor column M(j). Thus the arrival of lj,i and j’ on the diagonal
processor (M(j), M(j)) indicates that the local column j’ should be modified by column
i. Remember that on the diagonal processor, j’ is also the local index of column j’. The
processor (M(j), M(j)) therefore stores the value j’ in a list update. When column has
been copied all across the processor array the list update will, on each diagonal processor,
contain the local indices of the columns on which a cmod operation should be performed. Each
diagonal processor now initiates the necessary cmod operations by first dividing each received
element lj,i by li,i. The resulting floating point value, together with the local column index
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j’ for column j, is copied to each processor in processor column M(j). Each processor then
looks through its elements in column j’ and updates the ones for which time_stamp, indexed
by the local row index, is equal to i.

The complete algorithm, without the cdiv operation, is given in Fig. 3. In the algorithm
the index of each element is the local index. Capital variables indicate that they are global
and have the same value for each processor. On the MasPar each processor is identified by its
coordinates in the processor array, denoted by the variables ix and iy. In the algorithm we use
this feature to determine if a processor is on the diagonal or not. The all statement makes all
the processors active, and copyS[P].y x is the XnetC, which copies the value in variable x
into the variable y on the next P processors to the south. Since the grid wraps around we use
this statement to broadcast the value of x on one processor, into y on all the processors in the
same processor column, thus in the algorithm P denotes the dimension of the processor grid.

The algorithm in Fig. 3 actually only computes something resembling an LDLT-factor-
ization. To get the Cholesky factorization we have to divide each column with the square root
of its diagonal element, i.e., a cdiv operation. The reason for doing the cdivs last is that it
allows us to perform simultaneously one cdiv operation on every processor column. Since the
square-root operation is expensive, we want to maximize the number of processors doing a
square root at the same time. To do this we distribute diagonal elements down each processor
column, perform the square root, and then let each processor send its result down the processor
column in an ordered fashion. This lets us trade a square-root operation for an XnetC operation
and some loop overhead. Since a double precision square root takes approximately 10 times
longer to execute on the MasPar than an XnetC, this arrangement saves execution time. The
code for the cdiv operations is given in Fig. 4. In the algorithm the variable nc contains the
number of columns allocated to each processor, and the sendS[i].y x is the XnetP, which
sends the value of variable x to the variable y on the ith processor to the south.

We take advantage of supernodes in order to reduce overhead in the algorithm. The
supernodes of the matrix are found in a preordering step. Storage and scheduling of the
supernodes is done on the ACU. While processing the first column in a supernode each
processor stores the index of the column it is updating and also the .index of the elements that
are updated. Thus when processing subsequent columns in the same supernode each processor
knows which columns and elements to update. This way only the floating point values have
to be distributed. However, when column is being distributed across the processor array we
actually also distribute the local row index. We found this to be faster than storing it in a table
on each processor.

5. Load balancing. In this section we will show how the problem of finding a good
mapping M for the algorithm presented in 4 can be viewed as a graph coloring problem on a
weighted graph. Based on this observation we develop an algorithm that constructs a mapping
that should make the Cholesky factorization more efficient. First we discuss the effect of the
mapping on the performance of the Cholesky factorization.

5.1. Effect of mapping. We start by considering the cmod operations since our exper-
iments showed them to be the most time consuming. Consider the i.th outer product. Let
Si {r Iri 0} be the row indices of the nonzero elements below the diagonal in column
i. Then in stage we must perform cmod(r, i) for each r Si. Thus if each column in Si is
mapped to a separate processor column each of these cmods can be performed in parallel in
one step. If two or more columns from Si are mapped to the same processor column we will
have to perform their corresponding cmods sequentially. Thus when performing the th outer
product we have to perform as many cmod operations as the maximum number of columns
from Si that are mapped to the same processor column.
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:-- 1;
forI :-- ltoN-ldo

k :-- 0;
r :--0;
if column_name[i] I

if (ix iy)
copyS[P].di := li,i;

copyE[P].di := di;
for each nondiagonal element lt,i in column do

copyE[P].fv := It,i;
copyE[P].k := t;
all

time_stamp[k] := I;
guest[k] :=fv;
if (ix iy) and (k - 0)
r:=r+l;
update[r] := k;

end-if
k :=0;

end-all
end-do
i:=i+1;

end-if

k :=0;
for j := to r do

fv := guest[update[j]] / di;
copyS[P]:fv :=fv;
copyS[P].k := update[j];
all

for each element ls,k in column k do
if time_stamp[s] I

l,,k := ls, --fv guest[s];
k :-- 0;

end-all
end-do

end-do

FIG. 3. Parallel Choleskyfactorization.

Note that the number ofcopy operations needed to distribute column across the processor
array is equal to the maximum number of cmod operations that are performed in the ith outer
product. This implies that the maximum number of elements that any processor stores from
column is equal to the number of cmod operations performed. Thus a mapping that severely
limits the number of cmod operations each processor participates in will reduce both the
number of steps needed to spread column and the amount of storage needed to hold column i.

We now look at how the mapping effects the multiplications within each cmod operation
of the ith outer product. Assume that ail > 2 and let b < c < d be elements of Si. It then
follows that lcb :/: 0 and ldb 0 because of fill. Thus when performing cmod(b, i) both 1
and 1,t must be modified. The element l, is mapped to processor (M(c), M(b)), and l,, is



PARALLEL SPARSE CHOLESKY FACTORIZATION 941

for j := 0 to Inc/PJ do
if ix iy

for := to min{P 1, nc- P j} do
sendS[i].fv := ll,i+l+j,P;

fv := ll,l+j,e;
end-if

for := to min{P, nc P j} do
if ((ix +i- mod P) -----iy)
copyS[P].fw :=fv;

for each element ls,i+j,e in column + j P do
ls,i+j,e := ls,i+j,p /fw;

end-do
end-do

FIG. 4. The cdiv operation.

mapped to processor (M(d), M(b)). Thus if M(c) M(d) these two elements are mapped to
the same processor. This would then imply that for cmod(b, i) we have to perform two updates
(each consisting of one multiplication and one subtraction) on processor (M(c), M(b)). It
follows that when performing cmod(b, i) we have to perform as many updates on processor
column M(b) as the maximum number of elements in Si, each greater than b, that are mapped
to the same processor column.

We note that even if each column in Si is mapped to a separate processor column it is
not true in general that one can do all the multiplications and subtractions in one step. The
reason for this is that if is the first column of a supernode each processor searches through
the local column that is being updated and performs an update (multiplication and subtraction)
whenever it finds an element where time_stamp is set to i. Thus due to the SIMD nature of the
MP-2 we might have to perform more multiplication steps than one. This, however, is true
only for the first column in a supernode. For subsequent columns the position of the elements
being updated is known and if each column in S is mapped to a separate processor column,
the updates are performed in one step.

Finally, we note that the execution time of the cdiv operations depends upon the number
of columns that are mapped to the same processor column and how well the nonzeros of
each column are spread along its processor column. Since the total time of the Cholesky
factorization is completely dominated by the outer products it is not as important to spread
the matrix columns evenly on the processor columns in order to reduce the time spent on the
cdivs.

From the above discussion we propose the following measure of the quality of a mapping:
The total number of parallel cmod operations should be minimized. This will also reduce the
number of multiplications, speed up the spreading of each column, and reduce the maximal
number of nonzeros assigned to each processor from each matrix column.

5.2. Optimizing the data mapping. We now try to find mappings giving few cmod
operations on each processor column. Consider again the th outer product. It will update
only columns that are both ancestors of in the elimination tree and adjacent to in the filled
graph. Thus two columns that are unrelated in the elimination tree will never be updated by the
same outer product. This was observed by Kratzer 19] who proposed that column should be
mapped to processor column M(i) (L(i) mod P), where L(i) is the length ofthe path in the
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elimination tree from to the root of the tree. The value L (i) is the level of in the elimination
tree. Thus we see that two columns and j, where (L(i) mod P) (L(j) mod P) will
be mapped to the same processor column. If li,k and lj,k are nonzeros, then in the kth outer
product, processor column (L(i) mod P) will have to perform two cmods.

We now proceed to set up a graph-theoretical framework that allows us to look at this
problem of minimizing the number of cmods from a different viewpoint.

Let G(A) be the adjacency graph of a matrix A. The filled graph G* (A) can be constructed
by playing the elimination game on G(A). The game consists of eliminating the vertices of
G(A), one after the other, and at the same time adding fill edges to G*(A). When vertex is
eliminated it is removed from consideration and its higher-numbered neighbors are made into
a clique by adding edges.

We now have a succession ofpossibly overlapping cliques F1 FN-1 in G*(A), where
the clique Fi contains the higher-numbered neighbors of vertex i. These cliques are also called

fronts and play an important role in the multifrontal method [8], [23].
The correspondence to the matrix point of view is that if {rl rk} are vertices in clique

Fi then the nonzeros in column of L will be in rows {rl rk }. The mapping of the matrix
columns to the processors can be viewed as a coloring of the vertices of G*(A). Assuming
we have P different colors, then the maximum number of vertices with the same color in a
clique Fi is the same as the number of cmods that have to be done by a processor column in
stage of the factorization.

The mapping problem can now be reformulated. We want to color the vertices of G* (A)
using P colors in a way that minimizes the sum of the maximum number of vertices with the
same color in each frontal clique Fi. More formally,

given G*(A) with frontal cliques F FN-1 and a positive number P,
find a coloring M {1 N} --+ {1 P such that

N-1

is minimum, where Ci is the maximum number of vertices with the same
color in clique Fi.

If we can solve this problem exactly then we will have a mapping that gives the minimum
number of cmod operations for the Cholesky factorization algorithm presented in 4. The
mapping is not guaranteed to be optimal with respect to the time that the factorization takes,
but since the cmods take such a big portion of the time we are likely to be close to that optimum.

Assume that we have clique Fi {jl, j2, j3, j4}. If the vertices jl and j2 are colored
with the same color p, then there is no extra cost in assigning the other two vertices j3 and
j4 the same color q, p - q. This aspect of the problem complicates the task of designing
efficient algorithms that generate good solutions. Therefore we have reformulated the problem
in order to make it easier to design good approximation algorithms. However we want those
algorithms to give solutions that also are good for the original mapping problem.

In the new problem we introduce weights on the edges of G*(A), giving the weighted
graph G(A). The weight w on each edge (j, k) is defined as follows:

w(j,k)=l{i (j,k) 6 Fi}l

The value w(j, k) is the number of frontal cliques of which j and k are both members.
Equivalently, w(j, k) denotes how many outer products update both columns j and k. If
w(j, k) is large then it will be difficult to assign j and k colors without conflicting with the
colors of other nodes. If M(j) M(k) then there are w(j, k) frontal cliques that contain at
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least two nodes with the same color. Thus, if w(j, k) is large the likelihood of M(j) M(k)
giving a contribution to some Ci increases. This leads to the following weighted graph coloring
problem:

Given Go and a positive number P, find a coloring M {1 N} --+
1 P such that

w(j,k)
U(j).-U(k)

is minimum.
The above problem can be seen to be equivalent to a problem called multiway parti-

tion [20]. This problem is concerned with breaking up a weighted graph into a fixed number
of parts, minimizing the weight of the external edges lying between the parts. The equiva-
lence comes from the fact that the multiway partition is maximizing the weight of the internal
edges, i.e., edges between nodes with the same color, and by negating the weights we get
the above coloring problem. The multiway partition problem for general graphs is NP-hard,
even when restricted to only two colors [10]. Since G(A) is chordal it might be possi-
ble to solve the problem in polynomial time on this graph, although we know of no such
method.

There are a number of heuristic algorithms for the multiway partition problem for general
graphs [3], [9], [18]. Most of them are based on repeated application of a heuristic for
bipartition. They are quite complex and take limited advantage of special structure in the
input graph.

We implemented one approximation algorithm for the weighted coloring problem on
general graphs [27], but it did not give good solutions for our input graphs, in spite of the
relatively high time complexity of O(N EI P), where E is the edge set of G*(A).

5.3. The algorithm. We are now ready to describe our approximation algorithm for the
weighted coloring problem.

A feature of G is that edges between higher-numbered vertices in general have more
weight than edges between lower-numbered ones. It is therefore important to get a good
mapping of the higher-numbered vertices. Based on this observation we propose the following
algorithm for computing M: Set M(N) 1. Then for each j N down to 1, choose
M(j) so that the quantity

w(j,k)
U(j)=U(k),k>j

is minimized. With this algorithm M(j) can be calculated in time linear in the number of
higher-numbered vertices incident to i. Thus given G, each value of M can be computed in
time linear in the number of edges in G (or nonzeros in L). The complete algorithm is given
in Fig. 5. The array cost is used to accumulate the cost of coloring the current vertex with a
given color. The main purpose of the array last is to avoid having to clear the cost-array in
each iteration of the outer loop. It records which colors currently have positive cost associated
with them in the current iteration. Thus if last[r then color r has already had cost assigned
to it in this iteration, so we can add to that value; otherwise the value in cost[r] is from a
previous iteration and should be overwritten.

When we determine k in the algorithm in Fig. 5 we start the search from position L (i) mod
P, where L(i) is the level of column in the elimination tree. This is done in order to get an
even spread of the columns that can be colored at no cost.

In our experiments this approximation algorithm for the weighted coloring problem gave
quite good solutions to the original problem of minimizing the number of cmod operations.
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M[N] := 1;
for := N- downto do

assigned := O;
for each edge (i, j) where j ,> do

if last[M[j]] then
cost[M[j]] := w[i, j];
last[M[j]] := i;

assigned := assigned + 1;
else

cost[M[j]] := cost[M[j]] q- w[i, j];
end-do
if assigned P

find k such that cost[k] is minimum
else

find k such that last[k] - i;
M[i] := k;

end-do

FIG. 5. Calculating the mappingfunction M.

We infer this from the fact that the solutions were never more than 15% from a lower bound
that we believe to be somewhat lower than the optimal solution. We did try some other simple
heuristics, without managing to improve upon the one we present here. It should be noted,
though, that in our algorithm we take advantage of special properties of the input graph, so
even if it seems to give us good solutions we do not expect the algorithm to do as well on
general graphs.

So far we have not discussed how the weight of each edge can be calculated efficiently.
We do this in a way quite similar to the symbolic factorization. We consider the nodes from
through N. When considering node we add a weight of one to each edge going between

higher numbered neighbors of in G. Thus we increase the weight by one on all those edges
that the symbolic factorization would have added to G if they were not already present. Just
as in symbolic factorization we may take advantage of the supernodes when calculating the
weights of the edges in G. Consider supernode J, consisting ofcolumns through j. We first
look at a node k such that < k < j. Then each edge going from vertex k to higher-numbered
vertices will receive an extra weight of k from the other nodes in J. Now looking at nodes
that are outside the supernode J, we know that each edge that will be updated by vertex j
will also be updated by the other vertices in supernode J. Thus it is sufficient to increase the
weight of the edges that would have been updated by j by a factor of j + 1. The complete
algorithm is shown in Fig. 6. The indices giving the beginning and end of each supernode are
stored in the array sup. There are U supernodes altogether.

Since the calculation of weights and symbolic factorization are similar kinds of operations
they could be merged into one operation giving low overhead compared with the symbolic
factorization alone. In our present implementation, however, we do these operations separately.
This is because we use routines from Sparspak [13] for the symbolic factorization.

Finally we suggest another way of characterizing the weights of the edges of G*. This
method is based on row subtrees [22]. The th row subtree of L is a subtree of the elimination
tree for L rooted at node that has been pruned of all nodes that are not adjacent to in G*.
The weight w(j, k) can now be interpreted as the number of vertices in the intersection of the
row subtrees of j and k. This representation can potentially lead to a method of calculating
the weights without explicitly computing the symbolic factorization.
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for :-- to U do
for j := sup[i] + to sup[/+ 1]- do

for each edge (j, k) where j < k < do
w[k, j] := w[k, j] + j sup[i];

Matrix Dim
bcstk23 3134
bcsstk24 3562
bcsstk25 15439
bcsstk30 28924
bcsstk31 35588
bcsstk33 8738
100-2D 10000
16-3D 4096
21-D 9261
25-3D 15625
30-3D 27000
32-3D 32768
36-3D 46656

j := sup[/+ 1]- 1;
for each edge (j, k) where j < k do

for each edge (j, l) where k < do
w[/, k] := w[1, k] + sup[/+ 1] sup[i];

end-do

FIG. 6. Calculating the weights.

TABLE
Characteristics ofthe test matrices.

Nonzeros
437,177
298,426

1,581,668
4,615,864
6,039,557
2,667,875
321,681
586,524

1,931,839
4,066,777
8,816,024
11,567,458
19,023,715

Etree Work
825 126.10
579 39.02

2392 358.94
3179 1,412.45
2887 3,272.38
2055 1,341.63
378 20.51
902 134.95
1595 735.32
2301 2,116.80
3364 6,228.71
3835 9,171.01
4885 18,671.27

NZ64
107
73
387
1127
1475
652
79
144
472
993
2153
2825
4645

NZ128 LB64 LB128
27 8603 5396
19 6310 4329
97 33717 22747
282 84866 51389
369 112490 69256
163 45718 25108
20 11455 10278
36 11153 6900
118 34631 20175
249 71076 40124

539. 150647 83033
707 196386 107916
1162 319678 173842

6. Numerical results. We have implemented the numeric factorization algorithm from

4 on the MasPar MP-2 computer. The program was written in the programming language
MPL, which is based on ANSI C, extended to support data parallel programming. It was run
on a 16K processor MP-2 with 64Kb of processor element memory and also for comparison
on a 4K (64-by-64 PE array) partition of the same machine.

The test matrices fall into two groups. One contains BCS structural engineering matrices
from the Harwell-Boeing collection [7]. They were ordered using the minimum-degree algo-
rithm from Sparspak [13]. Symbolic factorization was performed sequentially with a routine
from Sparspak.

The other type of test matrices represents two-dimensional k k nine-point grids and
three-dimensional k k k twenty-seven point grids. They were preordered by Sparspak’s
automatic nested dissection heuristic and the symbolic factorization computed sequentially.
After the symbolic factorization of each matrix we computed its partition into supernodes.

We show some of the characteristics of the test matrices in Table 1. The dimension
of each matrix is given as well as the number of nonzeros in its Cholesky factor and the
height of the elimination tree. The column labeled Work gives the number of floating point
operations involved in factoring the matrix in Mflops. Columns NZ64 and NZ128 denote the
maximum number of nonzeros per processor in the 4K and 16K processor implementation,
respectively, if the nonzeros would be distributed as evenly as possible. These numbers are
really (#nonzeros)/4K] and (#nonzeros) / 16K].

In addition Table 1 gives lower bounds on the total number of cmod-operations required
for factoring the matrix. These numbers were found by calculating for each column the
number of nonzeros below the diagonal divided by the number of processor columns (64 or
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Matrix Layout

bcsstk23

bcsstk24

bcsstk25

bcsstk30

bcsstk31

bcsstk33

100-2D

16-3D

21-3D

25-3D

30-3D

32-3D

36-3D

TABLE 2
Resultsfor 16Kprocessor MasPar MP-2.

Nz C1 cmods Ut ST SF DT DF
Min_Cost 66 43 6066 29.0 1.465 86.09 1.867 67.53
Levels 71 46 7007 25.4 1.566 76.13 2.112 59.71
C&S 56 25 7717 21.2 1.856 67.96 2.376 53.06
Min_Cost 47 47 4679 19.4 0.999 39.07 1.242 31.42
Levels 55 42 5653 14.8 1.174 33.23 1.482 26.33
C&S 49 28 7184 9.5 1.514 25.76 1.930 20.22
Min_Cost 234 173 25073 23.8 5.906 60.77 7.438 48.26
Levels 255 184 32580 16.7 7.647 46.94 9.708 36.97
C&S 226 121 36467 13.3 8.775 40.91 11.202 32.04
Min_Cost 428 249 58230 34.6 12.975 108.86 16.754 84.31
Levels 471 264 73498 26.5 16.113 87.66 20.922 67.51
C&S 515 226 84276 21.0 18.879 74.82 24.678 57.23
Min_Cost 593 330 76716 45.6 19.566 167.25 25.520 128.23
Levels 677 352 94560 37.3 23.649 138.38 30.876 105.98
C&S 651 279 105450 32.2 26.533 123.33 34.749 94.17
Min_Cost 218 82 28486 47.1 6.953 192.95 "9.276 144.64
Levels 226 78 34416 38.1 8.388 159.94 11.151 120.31
C&S 240 69 36040 34.8 8.948 149.94 11.931 112.45
Min_Cost 128 128 10396 5.8 2.409 8.52 2.914 7.04
Levels 135 131 11652 4.6 2.680 7.65 3.268 6.28
C&S 107 79 15175 2.8 3.473 5.91 4.313 4.76
Min_Cost 67 46 7876 26.0 1.790 75.38 2.283 59.13
Levels 79 46 9862 20.0 2.223 60.72 2.850 47.35
C&S 72 32 11652 14.6 2.716 49.68 3.516 38.39
Min_Cost 180 89 23232 36.0 5.643 130.30 7.357 99.95
Levels 188 93 28495 29.4 6.876 106.94 8.969 81.99
C&S 198 73 32276 23.3 8.060 91.23 10.587 69.45
Min_Cost 350 145 46327 43.5 11.960 177.00 15.793 134.03
Levels 395 160 56946 34.9 14.806 142.97 19.529 108.39
C&S 385 123 62861 28.8 16.986 124.62 22.521 93.99
Min_Cost 714 245 94197 50.5 26.910 231.46 35.987 173.08
Levels 732 240 114324 42.0 32.608 191.02 43.482 143.25
C&S 781 211 124879 36.2 36.607 170.15 48.996 127.13
Min_Cost 928 299 122746 53.0 36.380 252.09 48.832 187.81
Levels 909 280 146589 45.3 43.189 212.35 57.776 158.73
C&S 972 256 161579 37.8 49.105 184.92 66.674 137.55
Min_Cost 1399 398 194258 57.7 65.021 287.16 85.331 218.81
Levels 1478 411 235768 48.1 76.523 244.00 103.276 180.79
C&S 1548 365 255711 42.1 85.327 218.82 115.516 161.63

128) and taking the ceiling of the result. This gives the minimum number of cmods needed
when performing the outer product with this column, if all the processor columns are working
simultaneously. Adding these numbers for all columns of the matrix gives the values denoted
by LB64 and LB 128. The number ofcm0ds required is the main distinguishing factor between
the different mapping schemes discussed in 5.

Table 2 shows the results of factoring the test matrices on a 128-by-128 PE array (16K
processors) in single and double precision. We tried three different assignments ofthe nonzeros
to the processors. The method called Min_Cost is our new method described in 5, Levels
refers to the scheme of Kratzer 19], and C&S is short for the "Cut & Stack" method where
the matrix is cut up into pieces that are P-by-P and stacked on the processor array in the
obvious way (i.e., M(i) mod P). This last method is a simple approach that works well
for dense problems [4], and we include it here to show how it can be improved upon for sparse
factorization.

Column Nz gives the maximum number of nonzeros on any processor for each layout
scheme and each matrix. Column Cl contains the maximum number of matrix columns (and
rows) assigned to any one processor. We also give the number of cmods required for each
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100

c&s

FIG. 7. Percentages ofcmods above lower bound.

mapping method. This number should be compared with the lower bound for 16K processors
in column LB 128 of Table 1. Note that the estimated lower bound is probably less than the
optimal value and should only be used as an indication of how close to the optimal the values
for different mapping methods are. The column labeled Ut gives the average percentage of
processors taking part in each relevant arithmetic operation (multiplication and subtraction).
This number indicates the processor utilization for each test problem. It would be possible
to increase this percentage somewhat by assembling in a list all the operations needed to be
done by each processor column for each cmod and then performing them simultaneously, but
this was found to increase the total factorization time due to overhead. The time in seconds
for single precision factorization is in ST and the resulting Mflop rate is in SF, and finally the
time and Mflop rate for double precision are in columns DT and DF, respectively.

The results in Table 2 show that the Min_Cost layout scheme consistently gives 10-30%
fewer cmods than the Levels scheme. This translates into correspondingly less time required
for the factorization and a higher Mflop rate. The Levels method gives in turn 10-20% fewer
cmods than the simple C&S. Thus, in our experiments, the new Min_Cost scheme is up to
50% better for sparse factorization than the standard method for dense matrix computation.
This result is presented graphically in Fig. 7, where the number of cmods generated by the
three layout schemes are compared with the lower bound from Table 1.

The large difference between the lowest double precision throughput of 7 Mflops and the
highest one of 219 Mflops is characteristic of SIMD computers. The matrix 100-2D that gets
the lowest throughput is very sparse and has a relatively high dimension compared with the
amount of work required to factor it. Thus a large proportion of the time is spent on overhead,
scanning through the columns, and looking for computation. Note, however, that the number
of cmods given by the Min_Cost method for this matrix is only 1% from the lower bound.
The matrix that gets the highest throughput, 36-3D, has less than .2% density in its Cholesky
factor, but has enough operations to keep the processors busy doing useful work.

When considering the Mflop rate it should be noted that the factor matrices we use are
slightly denser and thus provide more work than the same matrices in other papers 19], [26].
For instance the factor matrix for bcsstk30 that Kratzer [19] uses is about 0.9% dense, but
our factor matrix is 1.1% dense. The amount of work is not reported in the Kratzer’s paper,
but is probably proportionally less than what we have. This makes it difficult to compare the
Mflop rates even for the same matrices. The reason for this difference is that the preordering
algorithms available to us give more fill than the algorithms used in the other papers.
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TABLE 3
Resultsfor 4Kprocessor MasPar MP-2.

Matrix Layout

bcsstk23

bcsstk24

bcsstk25

100-2D

16-3D

21-3D

Min_Cost

Levels
C&S
Min_Cost

Levels
C&S
Min_Cost

Levels
C&S
Min_Cost

Levels
C&S
Min_Cost

Levels
C&S
Min_Cost

Levels
C&S

NZ C1 cmods Ut ST SF DT DF
154 63 9664 45.3 2.495 50.54 3.358 37.55
175 72 10749 42.2 2.736 46.09 3.681 34.26
167 49 11526 37.0 3.010 41.89 4.063 31.04
113 68 7101 35.5 1.388 28.11 1.837 21.24
132 73 8085 30.8 1.556 25.07 2.068 18.87
128 56 9522 23.1 1.876 20.79 2.508 15.56
567 276 38050 39.6 9.164 39.17 12.218 29.38
603 290 47068 31.0 11.514 31.17 15.328 23.42
650 242 50606 27.2 12.659 28.36 16.909 21.23
212 192 12057 16.2 2.506 8.1’9 3.159 6.49
240 201 14519 12.1 2.973 6.90 3.793 5.41
241 157 18255 7.9 3.796 5.40 4.905 4.18
196 79 12556 43.2 2.930 46.06 3.949 34.17
199 76 14906 36.6 3.464 38.96 4.673 28.88
219 64 16387 30.0 4.004 33.71 5.418 24.91
517 164 38710 53.7 10.740 68.47 14.750 49.85
602 166 45400 45.8 12.701 57.90 17.374 42.32
625 145 49010 40.0 14.135 52.02 19.396 37.91

An interesting sidenote is that in order to do the cdiv operations last, our algorithm actually
does more floating point operations than the number given in Table 1. However we still use
the value from the table to compute the Mflop rate.

On the MasPar MP-2 double precision arithmetic takes between two and three times as
long as single precision. Therefore one could expect to more than double the Mflop rate in
going from double precision to single precision. In our case the speedup is around 30%. We
can use this difference in speedups to crudely estimate, that the portion of time spent doing
arithmetic out of the total computation time is about 38%.

Table 3 is similar to Table 2, except that the values are from running the program on a
64-by-64 section of the MP-2. We were not able to try out as large matrices as with the full
machine. The reason for this is that each processor has to store more data since we have fewer
processors. We also believe that there is some memory overhead in simulating a 64-by-64 PE
array.

The data in Table 3 gives some indication of how well the algorithm scales with an
increased number of processors. In most cases we get between 1.5 and 2-fold speedup.
Although a 128-by-128 PE array has four times as many processors as a 64-by-64 one, it
should be taken into account that the number of processor columns is only doubled, so the
potential decrease in the number of simultaneous cmods is only by a factor of two. This can
be seen in Table 1 comparing the values in NZ64 and NZ128 on one hand and the values in
LB64 and LB 128 on the other.

Finally, we note that the maximum number of nonzeros used with each of the different
mapping schemes gets closer to the absolute minimum as the size of the matrices increase.

7. Conclusion. We have presented a new method of assigning the nonzeros of a sparse
matrix to the processors of a SIMD computer in order to speed up Cholesky factorization of
the matrix. It is assumed that the processors are arranged in a grid and communication along
the grid lines is fast. Using this new mapping scheme, our implementation of sparse Cholesky
factorization achieves a Mflop rate of over 200 on a powerful SIMD computer.

The main purpose of laying out the matrix onto the processors in this special way is to
reduce the total number of cmod-operations that must be done. The method we present is a
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relatively simple greedy algorithm, which seems to get rather close to the lower bounds of the
problems tested. It would be interesting to know if an efficient algorithm exists that can find
an optimal layout in this respect.

Another way of getting potentially fewer cmods is to find an ordering that gives a lower
elimination tree. One can expect that as the elimination tree gets lower, fewer related matrix
columns will have to be assigned to the same processor column. The extreme case is when the
height is less than 128 (the number of processor columns), then we would only need to do one
cmod for each column. A case close to this extreme is shown in the test matrix 100-2D, which
has an elimination tree of height 378, dimension 10000, and the Min_Cost layout scheme gives
only 10396 cmods.

We have concentrated on minimizing the number of cmod operations, but have not been
concerned with optimizing the computation of the cdiv operations. The reason is that the cdivs
account for only around 1% of the total execution time according to our experiments. Thus
there is very little to gain in optimizing them.

The optimality criteria used for mapping the matrix to the processor array is strongly
influenced by the type of Cholesky factorization that we use. Other variants would probably
do better with different layout schemes.

As long as there is sufficient work in each outer product we can keep most ofthe processors
busy and there is no need to exploit the large grain parallelism given by the elimination tree. We
have experimented with other types of Cholesky factorization, in particular column-Cholesky
(or fan-in Cholesky) where the matrix columns were ordered according to a postordering of
the elimination tree and assigned to the processor columns in that order (i.e., not wrapped).
In that way it was possible to modify simultaneously all the columns that were on the same
level in the tree. This algorithm looked quite good on paper, but was nevertheless slower
than the fan-out algorithm presented here. This result is related to speed differences between
the various communication primitives provided by MasPar. On another SIMD computer the
fan-in algorithm might be more competitive.

We have also tried some other mapping schemes that have proved successful in other
circumstances, such as the randomized algorithm of Ogielski and Aiello [25], that they use
with good results for sparse matrix-vector multiplication on a SIMD machine. For sparse
Cholesky factorization it gave worse results than the simple C&S. We tried to improve the
method by balancing the load on each processor based on the amount of work in each ma-
trix column after the randomization [24]. This was slightly better, but still did not beat
C&S.

While the numeric Cholesky factorization ran on a parallel computer in this implementa-
tion, all the preprocessing was done sequentially. On the larger test matrices this preprocessing,
which included preordering and symbolic factorization in addition to the layout scheme, took
considerably more time than the numeric factorization. However, these preliminary stages
only have to be performed once for each sparse matrix structure. If we need to factor many
matrices with the same structure, but different values, the time spent on preprocessing can be
amortized over many numeric factorizations. This is the case in the interior point method for
the solution of linear programs [2], [21 ].

All preprocessing stages might benefit from running on a parallel computer. The job of
finding efficient parallel algorithms for these steps thus awaits further research.

The last step in solving a linear system via Cholesky factorization consists of solving two
triangular systems. A parallel version has been implemented on the MP-2 [16]. However
the amount of work in the triangular solutions is much less than in the numeric factorization
so the processor utilization of that implementation is considerably lower than what we report
here.
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