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Abstract. We present a self-stabilizing algorithm for the distance-2 col-
oring problem that uses a constant number of variables on each node and
that stabilizes in O(Δ2m) moves using at most Δ2 + 1 colors, where Δ
is the maximum degree in the graph and m is the number of edges in
the graph. The analysis holds true both for the sequential and the dis-
tributed adversarial daemon model. This should be compared with the
previous best self-stabilizing algorithm for this problem which stabilizes
in O(nm) moves under the sequential adversarial daemon and in O(n3m)
time steps for the distributed adversarial daemon and which uses O(δi)
variables on each node i, where δi is the degree of node i.

1 Introduction

The problem of preventing potential interference when assigning frequencies to
processes can be modeled as a graph coloring problem where nodes that are
sufficiently close must have different colors. As frequencies (colors) are a scarce
resource, it is also desirable to use as few colors as possible. A number of different
objective functions and models have been studied for this problem; see [1] for a
recent survey. In the current paper we study one such problem, that of assigning
colors to nodes so that two nodes that are within distance two of each other
are assigned different colors. We present and analyse an efficient self-stabilizing
algorithm for this problem. The remainder of this section briefly surveys previous
work on self-stabilizing coloring algorithms and then shows how the current
paper extends and improves on that body of knowledge.

In 1993 Ghosh and Karaata [4] presented an algorithm for coloring planar
graphs using at most 6 colors by transforming the graph into a directed acyclic
graph, and assuming that all nodes have unique identifiers. This result was later
improved to work with bounded variable values and without identifiers by Huang
et al. [9] and finally was generalized to a wider class of graphs by Goddard et
al. [5].

Also in 1993, Sur and Srimani [14] gave an algorithm for exact coloring of
bipartite graphs. The algorithm assumes that a specific node is a root and then
colors nodes based on the distance from the root. For this algorithm only finite
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stabilization was shown and there was no bound on the number of moves. This
work was later extended by Kosowski and Kuszner [10] who presented a self-
stabilizing algorithm that colors bipartite graphs using exactly two colors and
using a polynomial number of moves. Their algorithm also relies on a distin-
guished root.

Shukla et al. [11] offered randomized self-stabilizing algorithms for coloring of
anonymous chains and oriented rings. In [12] the same authors developed self-
stabilizing algorithms for two-coloring several classes of bipartite graphs, namely
complete odd-degree bipartite graphs and tree graphs.

The first self-stabilizing coloring algorithms for general graphs were given by
Gradinariu and Tixeuil [7] in 2000. They presented three different algorithms
based on a greedy assignment technique. These algorithms use at most Δ + 1
colors and stabilize in O(nΔ) moves, where Δ is the maximum node degree in
the graph. It is assumed that each node has knowledge of Δ. This result was
later improved by Hedetniemi et al. [8] who gave two algorithms for coloring
arbitrary graphs, respectively, also using Δ + 1 colors. The moves complexity of
these algorithms is O(n) and O(m), where the latter algorithm also guarantees
that each node is assigned the smallest available color within its neighborhood.

Other types of coloring problems have also been studied using the self-
stabilizing paradigm. For instance, [13] gives a self-stabilizing algorithm that
tries to achieve a node coloring where the sum of the colors assigned to each
node is minimum. [15] presents a self-stabilizing Δ + 4 edge coloring algorithm
for planar graphs in anonymous networks, while [2] describes a self-stabilizing
algorithm for edge coloring general graphs.

In this paper we consider self-stabilizing algorithms for the distance-2 coloring
problem. That is, one wants to assign colors to the nodes in such a way that each
node receives a color different from its neighbors within distance 2 (i.e. different
from all of the nodes neighbors and its neighbors’ neighbors).

In [6] Gradinariu and Johnen describe a self-stabilizing algorithm for the prob-
lem of unique naming. This is essentially the same problem as is studied here in
that it asks for an assignment of labels to nodes such that no two nodes who are
distance-2 neighbors have the same label. They present a randomized scheme
where the expected number of moves by each node is one. However, the scheme
requires that every node knows n, the number of nodes in the network, and it
assigns colors in the range [1, 2n2].

In [3] Gairing et al. introduce a general mechanism for allowing a node to
obtain information at distance-2 from it. The idea is based on each node copying
the states of its neighbors and thus making this information available to its own
neighbors. It is shown how a distance-2 coloring can be obtained in O(nm)
moves under the sequential daemon model and in O(n3m) time steps under the
distributed daemon model. In these algorithms the color of each node can easily
be chosen in the range [1, δ2i + 1] where δ2i denotes the number of distance-
2 neighbors of node i. We note that the algorithm requires that each node i
maintain O(δi) variables where δi is the number of neighbors of i.
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In the current paper we present a self-stabilizing algorithm for the distance-2
coloring problem that uses at most Δ2 + 1 colors. The algorithm stabilizes in
O(Δ2m) moves under the sequential daemon and also uses the same number
of time steps for the distributed daemon model. For a fair daemon (sequential
or distributed) our algorithm requires O(Δm) rounds to stabilize. In addition,
each node is only required to maintain a constant number of variables. Thus
our algorithm improves the time step complexity for the distributed adversarial
daemon by at least a factor of n and depending on how Δ2 compares with n the
algorithm might also improve the moves complexity for the sequential adversar-
ial daemon. For instance, for a graph where the degree of each node is at most a
constant, our algorithm improves the moves complexity by a factor of n for the
sequential adversarial daemon and by a factor of n3 for the distributed adversar-
ial daemon. Moreover, our algorithm improves the overall memory consumption
from O(m) down to O(n) variables.

The rest of this paper is organized as follows. In Section 2 we give a short
introduction to the self-stabilizing model. In Section 3 we present and motivate
our algorithm. In Section 4 we show that any stable configuration of the al-
gorithm also gives a valid distance-2 coloring and in Section 5 we analyze the
complexity of the algorithm. Finally, we conclude in Section 6.

2 Model

A system consists of a set of processes where two adjacent processes can com-
municate with each other. The communication relation is typically represented
by a graph G = (V, E) where |V | = n and |E| = m. Each process corresponds
to a node in V and two nodes i and j are adjacent if and only if (i, j) ∈ E.
We assume that each node has a unique identifier. In the following we will not
distinguish between a node and its identifier.

The set of neighbors of a node i ∈ V is denoted by N(i) and N [i] = N(i)∪{i}.
Similarly we define N2(i) as the set of neighbors of node i within distance 2 of
i and N2[i] = N2(i) ∪ {i}. Let δi = |N(i)| and Δ = maxi∈V δi.

A node maintains a set of local variables which make up the local state of the
node. Each variable ranges over a fixed domain of values. Every node executes the
same algorithm, which consists of one or more rules. A rule has the form name
: if guard then command. A guard is a boolean predicate over the variables of
both the node and those of its neighbors. A command is a sequence of statements
assigning new values to the variables of the node.

An assignment of a value to every variable of each node from its corresponding
domain defines a configuration of the system. A rule is enabled in some configu-
ration if the guard is true with the current assignment of values to variables. A
node is eligible if it has at least one enabled rule. A computation is a maximal
sequence of configurations such that for each configuration si, the next config-
uration si+1 is obtained by executing the command of at least one rule that is
enabled in si. (A node that executes such a rule makes a move or a step). A
configuration is defined as stable if there are no eligible nodes in the system.
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A daemon is a predicate on executions. We distinguish several kinds of dae-
mons: the sequential daemon makes the system move from one configuration to
the next by executing exactly one enabled rule, while the distributed daemon
achieves this by executing any non-empty subset of enabled rules. Note that a
sequential daemon is an instance of the distributed daemon. Also, a daemon is
fair if any rule that is continuously enabled is eventually executed, and adver-
sarial if it may execute any enabled rule at every step. Again, the adversarial
daemon is more general than the fair daemon.

A system is self-stabilizing for a given specification if in finite time it converges
to a stable configuration that conforms to this specification, independent of its
initial configuration and without external intervention.

We consider two measures for evaluating complexity of self-stabilizing pro-
grams. A step is the minimum unit of time such that a process can perform any
of its moves. For a sequential daemon exactly one process executes one eligi-
ble rule during each step, while for a distributed daemon there can be several
processes that each makes one simultaneous move during a given step. Thus,
the step complexity measures the maximum number of steps that are needed to
reach a configuration that conforms to the specification (i.e. a legitimate config-
uration) for all possible starting configurations. The round complexity considers
that executions are observed in rounds: a round is the smallest sub-sequence of
an execution in which every process that was eligible at the beginning of the
round either makes a move or has its guard(s) disabled since the beginning of
the round. Note that both of these types of analysis focus on communication
and not on computation, as it is assumed that a process can perform any type
of necessary local computation during one move.

3 The Algorithm

In the following we motivate and describe the new algorithm. We begin by com-
paring the algorithm with previous self-stabilizing coloring algorithms. In doing
so, we examine how coloring conflicts at distance-1 and distance-2 are handled.

For coloring conflicts between neighboring nodes any self-stabilizing algorithm
must avoid the possibility of two adjacent nodes repeatedly changing their colors
to the same color in a lockstep fashion. With a sequential daemon this is straight
forward to handle [8]. For a distributed daemon one can solve this by using a
randomized scheme if the network is anonymous [7], or if the nodes have unique
identifiers by using the relative values of the identifiers to break ties [7].

For coloring conflicts between nodes at distance-2 there are two issues to
consider: how to discover a coloring conflict and then how to resolve it. Even for
a sequential daemon, resolving a conflict can be difficult, as information does
not propagate immediately between distance-2 neighbors.

Gairing et al. [3] let each node maintain a local copy of the colors of its
neighbors. Thus a node i has direct access to the colors of the nodes in N2[i]
and can itself discover any coloring conflicts that it is involved in. A node that
wants to change its color must then obtain permission from all of its distance
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one neighbors before doing so. This is achieved by using pointers. In this way no
two nodes at distance two from each other can change color at the same time.

In the algorithm by Gradinariu and Johnen [6] coloring conflicts are detected
by a node i that discovers that it has two neighbors with the same color (one
“neighbor” may in fact be i itself). The node i then sets a flag value equal to
the conflicting color. This signals that any node in N [i] using this color should
recolor itself. Nodes that are affected by this then choose a new color randomly
from a predetermined interval.

In our algorithm we combine ideas from both [3] and [6]. A coloring conflict
is detected by any node that is adjacent to the conflicting nodes. This node will
then signal to exactly one of the conflicting nodes i that it should change its
color. When i sees the signal it will put up a flag requesting to change its color.
However, i can only recolor itself once all of its neighbors have acknowledged the
flag by themselves pointing to i. In this way no other node in N2[i] can change
its color at the same time as i. To select the appropriate color we use a novel
deterministic scheme where i will perform a linear search starting from color 1
until it finds a valid color. Each possible color that i considers must either be
accepted or rejected by the neighbors of i. If any neighbor rejects the suggested
color, i will try the next possible color and repeat until it finds a color that is
accepted by all of its neighbors.

A recoloring can either take place because of a distance-1 or a distance-2
coloring conflict. In addition we also force recoloring if the color of a node is
higher than a reasonable upper bound on the size of its distance-2 neighborhood.
This assures that the final coloring never uses more than Δ2 + 1 colors.

The following list gives the variables that are available on each node i.

– dist1degi, the size of |N [i]|.
– dist2degi, an upper bound on the number of nodes in N2[i]. Every node

should get a color in the range [1, dist2degi].
– ci, the color of node i.
– flagi, true if node i wants to change its color, otherwise false.
– pi, a pointer to a node j ∈ N [i], signalling that j should change its color. If

no such node exists then pi = null.
– si, the current color of pi.
– ti, a color that pi could change to.
– coloringi, true if node i is in the process of recoloring itself. This requires

that pj = i for all j ∈ N [i].

Next, we describe two functions that are used by the algorithm. Here node i is
the calling processor and in the NextColor function q ∈ N [i].

NextColor(i, q) is used by node i for calculating which color node q could have.
The function returns both the current color of q and the smallest color ≥ cq,
that q can have without causing any coloring conflicts with nodes in N [i]−{q}.

NextColor(i, q):
w = min{a : a ≥ cq ∧ (∀z ∈ N [i] − {q} : a �= cz)}
return (cq, w)
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CorrectPointer(i) is used for determining the next node in N [i] that should
change its color (or at least have it verified). A node j ∈ N [i] needs to attempt
a recoloring if either flagj = true or if ∃k ∈ N [i] − {j} such that cj = ck. If
there are several candidates the one with the lowest ID is chosen. The function
returns a triplet (q, cq, w) where q is the next node in N [i] that should attempt
a recoloring and w is the smallest color ≥ cq that does not cause a conflict with
nodes in N [i] − {q}.

CorrectPointer(i):
q = min{ j ∈ N [i] : (flagj = true ∨ ∃k ∈ N [i] − {j} : (cj = ck))}
if q �= null
then return (q, NextColor(i, q))
return (null, null, null)

Before formally specifying the algorithm, we give the intuition for each rule.

Distance-1: Set dist1degi to the size of N [i].
Distance-2: Set dist2degi to an upper bound on the size of N2[i]. Note that
this rule double counts two nodes in N(i) if they are themselves neighbors or if
they have a common neighbor.
Reset: Set coloringi to false if it is incorrectly true. It could be that either
coloringi was incorrectly true in an initial configuration or that i has to abandon
an attempt to recolor itself. This is detected if some node j ∈ N [i] does not point
to i (i.e. pj �= i) or if flagi �= true.
Notify neighbor: Set pi to point to the lowest numbered node j ∈ N [i] that
either wants to recolor itself (i.e. flagj = true) or needs to recolor itself because
it has a color that conflicts with some node in N [i]. Also, set ti to a suggested
new color for pi = j and set si = cj to indicate that the values have been set
in response to the current value of cj. Note that once a node j has started to
recolor itself, as indicated by coloringj = true, no node i that is pointing to j
can change its pointer-value. That is, pi must continue to point to j as long as
j is recoloring itself.
Respond to color: If the neighbor pi is recoloring itself and has changed its
color, acknowledge the color change in si and if the color si conflicts with a color
in N [i], use ti to suggest the next higher possible color for pi to use. Recall that if
the node pi is recoloring itself (indicated by coloringpi = true) then the node pi

will cycle through possible colors. For each such color, node i must acknowledge
the color change (by setting si to the new color) and signalling if it accepts the
new color (by setting ti = cpj ) or if pi should change to a higher color (ti > cpj ).
Need new color: If i needs to recolor, set flagi = true, signalling a request to
recolor. If a node j ∈ N [i] is pointing to i (pj = i) while both acknowledging the
current color of i (sj = ci) and requesting that i change its color (tj > ci), then
node i must perform a recoloring. Node i signals to its neighbors that it wants
to do so by setting flagi = true. Alternatively, if i has dist2degi < ci then it
should also set flagi = true to indicate that it needs to change its color. Note
that the only place that i can later set flagi = false is in the Done recoloring
method.



An Efficient Self-stabilizing Distance-2 Coloring Algorithm 243

Start recoloring: If every node in N [i] agrees that i is the next to recolor, i
begins the recoloring process by setting coloringi = true and starting with color
1. A node can only start to recolor itself when it has set flagi = true and each
node j ∈ N [i] is pointing to it (pj = i), while at the same time acknowledging
the current color of i (by setting sj = ci). The node i then sets coloringi = true,
locking all other nodes in N [i] from changing their p-values until i has completed
the recoloring.
Change color: If all neighbors have acknowledged the current color ci and at
least one neighbor knows of a conflict with ci, then change i’s color. Whenever
node i has proposed a new color it must wait for this to be acknowledged by
all nodes in N [i] (sj = ci). If at least one j ∈ N [i] indicates that there is a
conflict with the current color choice (by setting tj > ci) then i must try the
next possible color (i.e., the maximum color over all tj values).
Done recoloring: If all neighbors have acknowledged the current color ci and
no neighbor knows of a conflict with ci, set flagi = false and coloringi = false,
indicating that i has completed its recoloring process. Note that in this case there
is no distance-2 conflict with ci. Note also that this is the only routine that sets
flagi to false.

The rules are executed in the given order, meaning that a rule is never exe-
cuted unless all the previous rules cannot be executed.

Algorithm 1
Distance-1:

if dist1degi �= |N [i]|
then dist1degi = |N [i]|

Distance-2:
if dist2degi �= (

∑
j∈N(i) dist1degj) − dist1degi + 2

then dist2degi = (
∑

j∈N(i) dist1degj) − dist1degi + 2

Reset:
if (coloringi = true) and ((∃j ∈ N [i] : pj �= i) or flagi = false)
then coloringi = false

Notify neighbor:
if (pi = null or coloringpi = false) and ((pi, si, ti) �= CorrectPointer(i))
then (pi, si, ti) = CorrectPointer(i)

Respond to color:
if (pi �= null) and (coloringpi = true) and ((si, ti) �= NextColor(i, pi))
then (si, ti) = NextColor(i, pi)

Need new color:
if (flagi = false) and ((∃j ∈ N [i] : (pj = i ∧ sj = ci ∧ tj > ci)) ∨

(1 ≤ dist2degi < ci))
then flagi = true

Start recoloring:
if (flagi = true) and (∀j ∈ N [i] : (pj = i ∧ sj = ci)) and (coloringi = false)
then coloringi = true

ci = 1
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Change color:
if (coloringi = true) and (∀j ∈ N [i] : (pj = i ∧ sj = ci)) and (∃j ∈ N [i] : tj > ci)
then ci = max{tj : j ∈ N [i]}

Done recoloring:
if (coloringi = true) and (∀j ∈ N [i] : (pj = i ∧ sj = ci ∧ tj = ci))
then coloringi = false

flagi = false

Figure 1 shows a possible execution of Algorithm 1. The initial graph consists
of four nodes i, j, k, and l where i > k and with colors as shown in Figure 1a. We
assume that the Distance-1, Distance-2, and Reset rules have stabilized before
our example starts. Since ci = ck node j will first execute a Notify neighbor move
and set pj = k, sj = 2, and tj = 3. This will force node k to execute a Need new
color move and set flagk = true. This will again be followed by nodes k and l
executing Notify neighbor moves giving the configuration shown in Figure 1b. At
this point all nodes in N [k] are pointing to k, each with an s-value equal to ck.
Since tj > ck it follows that k now can execute a Start recoloring move, setting
coloringk = true and ck = 1. From this point no node in N [k] can change its
p-value until coloringk = false.

All three nodes in N [k] are now ready to respond to the current value of
ck through Respond to color moves. In doing so both nodes j and k will set
their t-values > ck since both of them can see that cj = ck. This will give the
configuration in Figure 1c.

Now k will execute two Change color moves, each followed by all nodes in
N [k] acknowledging the change in color by executing a Respond to color move.
This will first increase the value of ck to 3 (Figure 1d) and then to 4 (Figure
1e). At this point there are no conflicts between ck and the nodes in N2(i). This
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Fig. 1. A possible execution of Algorithm 1
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is indicated by the fact that all t-values in N [k] are equal to ck. Thus node k
can execute a Done recoloring move which will again be followed by each node
in N [k] executing a Notify neighbor move to set their p, s, and t values to null,
finally giving the coloring shown in Figure 1f.

4 Correct Stabilization

In this section we show that when Algorithm 1 is stable the ci values define a legal
distance-2 coloring where no node has a color that is larger than δiΔ+1 ≤ Δ2+1.
We start by showing that each node has an effective bound on the size of N2[i].

Lemma 1. In a stable configuration every node i has dist2degi ≤ δiΔ + 1.

Proof. Note first that in a stable configuration it follows from the Distance-1
rule that every node must have dist1degi = δi + 1 ≤ Δ + 1. The Distance-2 rule
then implies that dist2degi = (Σj∈N(i)dist1degj)−dist1degi+2 = (Σj∈N(i)(δj +
1)) − δi + 1 ≤ δiΔ + 1. �

Since, for any node i, we have that |N2[i]| ≤ δiΔ + 1, it follows that it is
possible to achieve a legal distance-2 coloring where i has a color in the range
[1, δiΔ + 1]. To see this, it is sufficient to note that there must be a color in
the range [1, |N2[i]|] not used by the nodes in N2(i). This color can always be
assigned to node i.

Next, we show that when the algorithm is stable no node is actively trying to
change color.

Lemma 2. In any stable configuration, coloringi = false for every node i.

Proof. If there exists a node i with coloringi = true, then every node j ∈ N [i]
must have pj = i, otherwise i could execute a Reset coloring move. Similarly,
there must be at least one node j ∈ N [i] with sj �= ci or tj �= ci (or both);
otherwise i could execute a Done recoloring move. A node j ∈ N [i] where sj �= ci

is eligible for a Respond to color move, since ci is NextColor(j, i)’s first return
value. Thus we may assume that some j has tj �= ci. If tj < ci then again node
j is eligible for a Respond to color move, while if tj > ci then i is eligible for a
Change color move. This is a contradiction. It follows that coloringi = false in
a stable configuration. �

Lemma 3. In any stable configuration the following statements are true for
every node i: (i) flagi = false, (ii) For every pair of distinct nodes j, k ∈
N [i], cj �= ck, and (iii) ci ≤ dist2degi.

Proof. This proof is omitted due to space limitations.

We can now state the main result of this section.

Theorem 1. In a stable configuration the c values define a legal distance-2 col-
oring where every node i satisfies ci ≤ δiΔ + 1.

Proof. This follows directly from Lemmas 1 and 3. �
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5 Step Complexity

In this section we derive and prove a bound on the number of time steps needed
for Algorithm 1 to stabilize, given an arbitrary initial configuration. The analysis
assumes a distributed adversarial daemon. This means that in each time step a
non-empty subset of eligible nodes makes one move each.

Table 1 is a summary of upper bounds on the number of time steps that might
include a move of each type (i.e., each rule) before stabilization. The last column
in the table references the result that proves the number of steps. The results
and proofs follow the table.

Lemma 4. There can be at most 2(m + n) time steps containing Distance-1 or
Distance-2 moves.

Proof. Each node can at most make one Distance-1 move. After this move a
node can make one initial Distance-2 move and then only after each node in
j ∈ N(i) changes its dist1degj value. Thus a node i can at most make a total
of δi + 2 Distance-1 and Distance-2 moves. Since

∑
i∈V (δi + 2) = 2n + 2m we

get that the total number of Distance-1 and Distance-2 moves is bounded by
2(m + n). �

Lemma 5. There can be at most n time steps containing Reset moves that start
with coloring = true and flag = false.

Proof. Each node i can make one such initial Reset move. Any subsequent Reset
move must follow a Start recoloring move and come before any Done recoloring

Table 1. Summary of Step Complexity

Move # Steps (Upper Bound) Complexity Proof
Distance-1 n = O(m) Lemma 4
Distance-2 n + 2m = O(m) Lemma 4
Reset 0 = O(1) Lemma 5
coloring = false

Reset n = O(m) Lemma 5
coloring = true
flag = false

Reset n + 8mΔ = O(Δm) Lemma 9
coloring = true
flag = true

Notify neighbor 9n + 16m = O(m) Lemma 12
Respond to color 4n + 14m(Δ2 + Δ + 1) = O(Δ2m) Lemma 14
Need new color 3n = O(m) Lemma 11
Start recoloring 5n + 8mΔ = O(Δm) Lemma 10
Change color 4n + 8mΔ = O(Δm) Lemma 13
Done recoloring 4n = O(m) Corollary 2
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move, since this is the only occasion when coloringi = true. However, Start
recoloring is only executed when flagi = true and the only move that can set
flagi = false is Done recoloring, which also sets coloringi = false. Thus any
subsequent Reset move cannot be triggered by flagi = false. �

Before investigating the step complexity of the remaining rules, we examine how
each move can or cannot cause a transition between different states of a node i.
The states we are interested in depend on the possible values of coloringi and
flagi. Figure 2 shows the state transition diagram. Note that four rules are not
shown in the figure since they do not impact the analysis: Distance-1, Distance-2,
Respond to color, and Notify neighbor.

The transitions in Figure 2 are defined by the predicates and commands of
the rules. If coloringi = true while flagi = false then i will execute a Reset
move and set coloringi = false. From this configuration the only move that
can affect the values of coloringi and flagi is a Need new color move that sets
flagi = true. From that state the only possible move is Start recoloring, which
sets coloringi = true. From the configuration coloringi = true and flagi = true
node i can execute a number of Change color moves, but these do not change the
values of either coloringi or flagi. It is possible that i executes a Reset move,
setting coloringi = false, if some j ∈ N [i] has pj �= i. The other possibility is
that i executes a Done recoloring move and sets coloringi = false and flagi =
false. In addition to these moves, i can also execute a Distance-1, a Distance-2,
a Notify neighbor, or a Respond to color move. These do not affect coloringi and
flagi and are not shown in Figure 2.

A recoloring sequence by node i consists of a sequence of moves beginning
with Start recoloring (the transition from state D to state C) and ending with
Done recoloring (the transition from state C to state B). Note that i can abort
an initiated recoloring sequence by executing a Reset move and transitioning
from state C back to state D. This can only happen if some j ∈ N(i) executes
a Notify neighbor move, which will then set pj �= i, during the same step that

coloring = true
flag     = false

coloring = false
flag     = false

coloring = false
flag     = true

coloring = true
flag     = true

Reset

Need new color

Reset

Start recoloring

Do
ne
 r
ec
ol
or
in
g

Change color

A B

C D

Fig. 2. States of Algorithm 1 with respect to coloring and flag values
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i executes the initial Start recoloring move. Otherwise pj = i will remain true
as long as coloringi = true. If i does not abort, we call the recoloring sequence
complete. A complete recoloring sequence is correct if i has been assigned a color
r ≤ δiΔ + 1 not used by any node in N2(i) when the recoloring sequence ends.

We now consider a complete recoloring sequence α executed by a node i where
α is not the first complete recoloring sequence executed by i. Let g be the time
step when i enters α by executing a Start recoloring move and let h be the
time step when i executes its first Change color or Done recoloring move in α,
whichever comes first. Also, for a particular j ∈ N [i], let f be the last time step
prior to g when j executes a Notify neighbor move. Note that j sets pj = i in
time step f . Then f < g < h and pj = i will remain true for at least the time
span [f, g−1] and also after time step h−1. In the same manner coloringi = true
in the time span [g, h] (and possibly longer).

Our next result considers the values that tj can take on prior to time step h.

Lemma 6. Let g be the time step when node i executes the Start recoloring
move in a non-initial complete recoloring sequence α, and let h be the earliest
time step in α that i executes a Change color or Done recoloring move. For any
particular j ∈ N [i], let f be the last time step prior to g when j executes a Notify
neighbor move.

After time step h − 1 and before time step h: for every j ∈ N [i] the following
are true: pj = i, sj = ci, and either tj = 1 or tj is equal to the lowest or second
lowest unused color in N [j] − {i}.
Proof. This proof is omitted due to space limitations.

Now we have established the different possible values that each tj for j ∈ N [i]
can have just after time step h−1. The next two results are needed to make sure
that i starts to select a new color once i has executed a Start recoloring move.

Corollary 1. Let g be the time step when node i executes the Start recoloring
move in a non-initial complete recoloring sequence α, and let h be the earliest
time step in α that i executes a Change color or Done recoloring move.

If the Need new color move by i that set flagi = true prior to i entering
α was caused by dist2degi < ci then for each j ∈ N [i] the value of tj will be
pointing to the lowest unused color in N [j] − {i} after time step h − 1.

Proof. The Need new color rule requires that 1 ≤ dist2degi < ci. Thus since
1 < ci the value of ci will be reduced to 1 when i executes a Start Recoloring
move in time step g. �

Lemma 7. Let g be the time step when node i executes the Start recoloring
move in a non-initial complete recoloring sequence α, and let h be the earliest
time step in α that i executes a Change color or Done recoloring move.

If the Need new color move by i that set flagi = true prior to i entering α
was not caused by dist2degi < ci then there must be some j ∈ N [i] that has
tj > 1 after time step h − 1.
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Proof. Since i exited the previous recoloring sequence with every j ∈ N [i] satis-
fying tj = ci at the time step in which the Done recoloring move was executed,
there must exist some node j ∈ N [i] that executed a Notify neighbor move and
set pj = i, sj = ci, and tj > ci prior to i executing the Need new color move
to enter α. At the time j executed the Notify neighbor move, there must have
existed at least one node k ∈ N [j]−{i} such that ck = ci and i < k. Note that k
cannot have changed color between this point and time step h, because pj �= k.
(As long as ci = ck CorrectPointer(j) will never set pj = k in Notify neighbor
since i < k.) Thus we can conclude that the coloring conflict between i and k
still exists after time step h − 1. From this it follows that when pj was last set
to i the value of tj must have been set to a value greater than ci. �
We can now show that α must be correct.

Lemma 8. Let α be a recoloring sequence for node i. When i exits α there is
no node in N2(i) with the same color as i and ci ≤ δiΔ + 1.

Proof. This proof is omitted due to space limitations.

Note that every node j ∈ N [i] must execute at least one Respond to color move
before i executes a Done recoloring move. Thus the value of dist1degj for each
j ∈ N [i] must be correct when i exits α. Similarly, dist2degi must be correct
when i exits α.

We have now shown that every complete recoloring sequence (except maybe
the first) will result in a node i having a distinct color among all the nodes
in N2[i]. However, there is a possibility that i does not complete a recoloring
sequence and this may result in a coloring conflict. But as the proof of the
following result shows, the non-complete recoloring sequences can be subsumed
in the complete recoloring sequences.

Theorem 2. No node will perform more than three complete recoloring se-
quences.

Proof. From Lemma 8 it follows that a non-initial complete recoloring sequence
by a node i will result in ci being unique relative to the colors used by the nodes
in N2(i). An incomplete recoloring sequence by i will result in i executing a
Reset move with ci = 1. Thus if i has received a legal color such that ci > 1,
then no node in N2(i) will receive the same color as i.

Now assume a node i has executed its second complete recoloring sequence.
If ci > 1 then no node k ∈ N2(i) can exit a subsequent recoloring sequence with
ck = ci. But if k, where i < k, performs a Reset move right after executing a
Start recoloring move and if ci = 1 then we get ci = ck. This would force i to
perform a new recoloring sequence which would result in ci > 1 (since k cannot
change color until i has done so) and thus no further recoloring sequences would
be needed by i. �
Now that we have shown that each node can execute at most three complete
recoloring sequences it is fairly straight forward to count the number of different
moves each node can make. The following results state these counts without
showing the straight-forward proofs, in the interest of saving space.
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Corollary 2. There can be at most 4n time steps containing Done recoloring
moves.

Lemma 9. There can be at most n + 8mΔ time steps containing Reset moves
that start with coloring = true and flag = true.

Lemma 10. There can be at most 5n + 8mΔ time steps containing Start recol-
oring moves.

Lemma 11. There can be at most 3n time steps containing Need new color
moves.

Lemma 12. There can be at most 9n+16m time steps containing Notify neigh-
bor moves.

Lemma 13. There can be at most 4n+8mΔ time steps containing Change color
moves.

Lemma 14. There can be at most 4n+14m(Δ2 +Δ+1) time steps containing
Respond to color moves.

Theorem 3. Algorithm 1 stabilizes after O(Δ2m) time steps.

Proof. The result follows directly from Lemmas 4, 5, 9, 10, 11, 12, 13, 14 and
Corollary 2. See Table 1 for a summary. �

We note that the same time step analysis holds for a sequential adversarial
daemon. The main difference between a distributed and sequential adversarial
daemon is that with the sequential one, we can show that any node that has
gone through at least two complete recoloring sequences will end up with the
lowest color not used by any node in N2(i), as opposed to the second lowest for
the distributed daemon. However, in both cases one cannot guarantee that each
node has been assigned the lowest available color in a stable solution, as there
might be nodes that do not change color during the execution of the algorithm.

The analysis for a fair daemon (sequential or distributed) is not much different
from the one presented here and gives a round complexity of O(Δm). Although
we omit the details due to space considerations it is not hard to see that when
a node i has executed a Change color move, all nodes in N [i] can respond to
this in one round. Thus the complexity of the Respond to color moves, which are
the most frequent moves, are lowered from O(Δ2m) moves for the adversarial
daemon to O(Δm) rounds for the fair daemon. To see that this is also a lower
bound it is sufficient to consider a complete graph where every node starts with
the same initial color.

6 Concluding Remarks

We note that Algorithm 1 can easily be modified to solve various other restricted
coloring problems. For instance, colors could be selected from a finite list of
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available colors (a so called list coloring) or it could be required that |ci−cj | > a
when i and j are distance-2 neighbors, where a is some positive constant.

However, Algorithm 1 cannot in its current form produce a Grundy coloring
(i.e. where each node i has the lowest available color in N2(i)) as it cannot detect
available free colors that are smaller than the current (correct) color. One solution
to this could be to let each node set flagi = true with some small probability.

We also note that although we require that every node has a unique identifier,
it is not hard to show that it suffices that each identifier is unique within distance-
2 for the algorithm to run correctly.
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