
A New Self-stabilizing Maximal Matching
Algorithm

Fredrik Manne1, Morten Mjelde1, Laurence Pilard2, and Sébastien Tixeuil3,�

1 University of Bergen, Norway
{fredrikm,mortenm}@ii.uib.no

2 University of Iowa, USA
laurence-pilard@uiowa.edu

3 LRI-CNRS UMR 8623 & INRIA Grand Large, Université Paris Sud, France
tixeuil@lri.fr

Abstract. The maximal matching problem has received considerable
attention in the self-stabilizing community. Previous work has given dif-
ferent self-stabilizing algorithms that solves the problem for both the
adversarial and fair distributed daemon, the sequential adversarial dae-
mon, as well as the synchronous daemon. In the following we present a
single self-stabilizing algorithm for this problem that unites all of these
algorithms in that it stabilizes in the same number of moves as the pre-
vious best algorithms for the sequential adversarial, the distributed fair,
and the synchronous daemon. In addition, the algorithm improves the
previous best moves complexities for the distributed adversarial daemon
from O(n2) and O(δm) to O(m) where n is the number of processes, m
is the number of edges, and δ is the maximum degree in the graph.

1 Introduction

A matching in an undirected graph is a subset of edges in which no pair of
edges is adjacent. A matching M is maximal if no proper superset of M is also
a matching. Matchings are typically used in distributed applications when pairs
of neighboring nodes have to be set up (e.g. between a server and a client). As
current distributed applications usually run continuously, it is expected that the
system is dynamic (nodes may leave or join the network), so an algorithm for the
distributed construction of a maximal matching should be able to reconfigure
on the fly. Self-stabilization [3,4] is an elegant approach to forward recovery
from transient faults as well as initializing a large-scale system. Informally, a
self-stabilizing systems is able to recover from any transient fault in finite time,
without restricting the nature or the span of those faults.

The environment of a self-stabilizing algorithm is modeled by the notion of
a daemon. There are two main characteristics for the daemon: it can be either
sequential (or central, meaning that exactly one eligible process is scheduled for

� Support for this work was given by the Aurora program for collaboration between
France and Norway.

G. Prencipe and S. Zaks (Eds.): SIROCCO 2007, LNCS 4474, pp. 96–108, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A New Self-stabilizing Maximal Matching Algorithm 97

execution at a given time) or distributed (meaning that any subset of eligible
processes can be scheduled for execution at a given time), and in an orthogonal
way, it can be fair (meaning that in any execution, every eligible processor
is eventually scheduled for execution) or adversarial (meaning that the daemon
only guarantees global progress, i.e. some eligible process is eventually scheduled
for execution). An extreme case of a fair daemon is the synchronous daemon,
where all eligible processes are scheduled for execution at every step. Of course,
any algorithm that can cope with the distributed daemon can cope with the
sequential daemon or the synchronous daemon, and any algorithm that can
handle the adversarial daemon can be used with a fair or a synchronous daemon,
but the converse is not true in either case.

There exists several self-stabilizing algorithms for computing a maximal
matching in an unweighted general graph. Hsu and Huang [10] gave the first
such algorithm and proved a bound of O(n3) on the number of steps assuming
an adversarial daemon. This analysis was later improved to O(n2) by Tel [12]
and finally to O(m) by Hedetniemi et al. [9]. The original algorithm assumes
an anonymous network and operates therefore under the sequential daemon in
order to achieve symmetry breaking. Indeed, one can show that in some symmet-
ric networks there exists no deterministic self-stabilizing solution to the maximal
matching problem.

By using randomization, Gradinariu and Johnen [7] proposed a scheme to give
processes a local name that is unique within distance 2, and used this scheme
to run Hsu and Huang’s algorithm under an adversarial distributed daemon.
However, only a finite stabilization time was proved. Using the same technique
of randomized local symmetry breaking, Chattopadhyay et al. [2] later gave a
maximal matching algorithm with O(n) round complexity (in their model, this is
tantamount to O(n2) steps), but assuming the weaker fair distributed daemon.

In [5] Goddard et al. describe a synchronous version of Hsu and Huang’s
algorithm and show that it stabilizes in O(n) rounds. Although not explicitly
proved in the paper, it can be shown that their algorithm also copes with the
adversarial distributed daemon using θ(n2) steps. Here, symmetry is broken
using unique identifiers at every process. In [8], Gradinariu and Tixeuil provide
a general scheme to transform an algorithm using the sequential adversarial
daemon into an algorithm that copes with the distributed adversarial daemon.
Using this scheme with Hsu and Huang’s algorithm yields a step complexity of
O(δm), where δ denotes the maximum degree of the network.

Our contribution is a new self-stabilizing algorithm that stabilizes after O(m)
steps both under the sequential and under the distributed adversarial daemon.
Under a distributed fair daemon the algorithm stabilizes after O(n) rounds.
Thus, this algorithm unifies the moves complexities of the previous best al-
gorithms both for the sequential and for the distributed fair daemon and also
improves the previous best moves complexity for the distributed adversarial dae-
mon. As a side effect, we improve the best known algorithm for the adversarial
daemon by lowering the environment requirements (distributed vs. sequential).
To break symmetry, we assume that node identifiers are unique within distance

98 F. Manne et al.

2 (this can be done using the scheme of [2,7]). The following table compares fea-
tures of the aforementioned algorithms and ours (best feature for each category
is presented in boldface).

Reference Daemon Step Round Asymmetry
complexity complexity

[9,10,12] sequential adversarial O(m) anonymous
[7] distributed adversarial finite distance 2
[2] distributed fair O(n2) O(n) distance 2
[5] synchronous O(n2) O(n) unique ID
[8] distributed adversarial O(δm) unique ID
This paper distributed adversarial O(m) O(n) distance 2

The rest of this paper is organized as follows. In Section 2 we give a short
introduction to self-stabilizing algorithms and the computational environment
we use. In Section 3 we describe our algorithm and prove its correctness and
speed of convergence in Section 4. Finally, in Section 5 we conclude.

2 Model

A system consists of a set of processes where two adjacent processes can com-
municate with each other. The communication relation is typically represented
by a graph G = (V, E) where each process is represented by a node in V and
two processes i and j are adjacent if and only if (i, j) ∈ E. The set of neighbors
of a node i ∈ V is denoted by N(i). The neighbors of a set of processes A ⊆ V
is defined as follows N(A) = {j ∈ V − A, ∃i ∈ A s.t. (i, j) ∈ E}. A process
maintains a set of variables. Each variable ranges over a fixed domain of values.
An action has the form 〈name〉 : 〈guard〉 −→ 〈command〉. A guard is a boolean
predicate over the variables of both the process and those of its neighbors. A
command is a sequence of statements assigning new values to the variables of
the process.

A configuration of the system is the assignment of a value to every variable
of each process from its corresponding domain. Each process contains a set of
actions. An action is enabled in some configuration if its guard is true at this
configuration. A process is eligible if it has at least one enabled action. A compu-
tation is a maximal sequence of configurations such that for each configuration
si, the next configuration si+1 is obtained by executing the command of at least
one action that is enabled in si (a process that executes such an action makes
a move or a step). Maximality of a computation means that the computation is
infinite or it terminates in a configuration where none of the actions are enabled.

A daemon is a predicate on executions. We distinguish several kinds of dae-
mons: the sequential daemon make the system move from one configuration
to the next by executing exactly one enabled action, the synchronous daemon
makes the system move from one configuration to the next one by executing all
enabled actions, the distributed daemon makes the system move from one config-
uration to the next one by executing any non empty subset of enabled actions.

A New Self-stabilizing Maximal Matching Algorithm 99

Note that the sequential and synchronous daemons are instances of the more
general (i.e. less constrained) distributed daemon. Also, a daemon is fair if any
action that is continuously enabled is eventually executed, and adversarial if it
may execute any enabled action at every step. Again, the adversarial daemon is
more general than the fair daemon.

A system is self-stabilizing for a given specification, if it automatically con-
verges to a configuration that conforms to this specification, independently of
its initial configuration and without external intervention.

We consider two measures for evaluating complexity of self-stabilizing pro-
grams. The step complexity investigates the maximum number of process moves
that are needed to reach a configuration that conforms to the specification (i.e.
a legitimate configuration), for all possible starting configurations. The round
complexity considers that executions are observed in rounds: a round is the
smallest sequence of an execution in which every process that was eligible at the
beginning of the round either makes a move or has its guard(s) disabled since
the beginning of the round.

3 The Algorithm

In the following we present and motivate our algorithm for computing a maximal
matching. The algorithm is self-stabilizing and does not make any assumptions
on the network topology. A set of edges M ⊆ E is a matching if and only if
x, y ∈ M implies that x and y do not share a common end point. A matching
M is maximal if no proper superset of M is also a matching.

Each process i has a variable pi pointing to one of its neighbors or to null. We
say that processes i and j are married to each other if and only if i and j are
neighbors and their p-values point to each other. In this case we will also refer
to i as being married without specifying j. However, we note that in this case j
is unique. A process which is not married is unmarried.

We also use a variable mi to let neighboring processes of i know if process i is
married or not. To determine the value of mi we use a predicate PRmarried(i)
which evaluates to true if and only if i is married. Thus predicate PRmarried(i)
allows process i to know if it is currently married and the variable mi allows
neighbors of i to know if i is married. Note that the value of mi is not necessarily
equal to PRmarried(i).

Our self-stabilizing scheme is given in Algorithm 1. It is composed of four
mutual exclusive guarded rules as described below.

The Update rule updates the value of mi if it is necessary, while the three
other rules can only be executed if the value of mi is correct. In the Marriage
rule, an unmarried process that is currently being pointed to by a neighbor j
tries to marry j by setting pi = j. In the Seduction rule, an unmarried process
that is not being pointed to by any neighbor, point to an unmarried neighbor
with the objective of marriage. Note that the identifier of the chosen neighbor
has to be larger than that of the current process. This is enforced to avoid the
creation of cycles of pointer values. In the Abandonment rule, a process i resets

100 F. Manne et al.

Algorithm 1. A self-stabilizing maximal matching algorithm

Variables of process i:
mi ∈ {true, false}
pi ∈ {null} ∪ N(i)

Predicate:
PRmarried(i) ≡ ∃j ∈ N(i) : (pi = j and pj = i)

Rules:
Update:

if mi �= PRmarried(i)
then mi := PRmarried(i)

Marriage:
if mi = PRmarried(i) and pi = null and ∃j ∈ N(i) : pj = i
then pi := j

Seduction:
if mi = PRmarried(i) and pi = null and ∀k ∈ N(i) : pk �= i

and ∃j ∈ N(i) : (pj = null and j > i and ¬mj)
then pi := Max{j ∈ N(i) : (pj = null and j > i and ¬mj)}

Abandonment:
if mi = PRmarried(i) and pi = j and pj �= i and (mj or j ≤ i)
then pi := null

its pi value to null. This is done if the process j which it is pointing to does
not point back at i and if either (i) j is married, or (ii) j has a lower identifier
than i. Condition (i) allows a process to stop waiting for an already married
process while the purpose of Condition (ii) is to break a possible initial cycle of
p-values.

We note that if PRmarried(i) holds at some point of time then from then
on it will remain true throughout the execution of the algorithm. Moreover, the
algorithm will never actively create a cycle of pointing values since the Seduction
rule enforces that j > i before process i will point to process j. Also, all initial
cycles are eventually broken since the guard of the Abandonment rule requires
that j ≤ i.

Figure 1 gives a short example of the execution of the algorithm. The ini-
tial configuration is as shown in Figure 1a, where idi > idj > idk. Here both
processes j and k attempt to become married to i. In Figure 1b process i has
executed a Marriage move, and i and j are now married. In Figure 1c both i
and j execute an Update move, setting their m-values to true. And finally, in
Figure 1d process k executes an Abandonment move.

A New Self-stabilizing Maximal Matching Algorithm 101

i

j k
p = i
m = false

p = i
m = false

p = null
m = false

a)

i

j k
p = i
m = false

p = i
m = false

p = j
m = false

b)

i

j k
p = i
m = true

p = i
m = false

p = j
m = true

c)

i

j k
p = i
m = true

p = null
m = false

p = i
m = true

d)

Fig. 1. Example

4 Proof of Correctness

In the following we will first show that when Algorithm 1 has reached a sta-
ble configuration it also defines a maximal matching. We will then bound the
number of steps the algorithm needs to stabilize both for the adversarial and
fair distributed daemon. Note that the sequential daemon is a subset of the
distributed one, thus any result for the latter also applies to the former.

4.1 Correct Stabilization

We say that a configuration is stable if and only if no process can execute a move
in this configuration. We now proceed to show that if Algorithm 1 reaches a
stable configuration then the p and m-values will define a maximal matching M
where (i, j) ∈ M if and only if (i, j) ∈ E, pi = j, and pj = i while both mi and
mj are true. In order to perform the proof, we define the following five mutual
exclusive predicates:

PRmarried(i) ≡ ∃j ∈ N(i) : (pi = j and pj = i)
PRwaiting(i) ≡ ∃j ∈ N(i) : (pi = j and pj
= i and ¬PRmarried(j))
PRcondemned(i) ≡ ∃j ∈ N(i) : (pi = j and pj
= i and PRmarried(j))
PRdead(i) ≡ (pi = null) and (∀j ∈ N(i) : PRmarried(j))
PRfree(i) ≡ (pi = null) and (∃j ∈ N(i) : ¬PRmarried(j))

Note first that each process will evaluate exactly one of these predicates to true.
Moreover, also note that PRmarried(i) is the same as in Algorithm 1.

We now show that in a stable configuration each process i evaluates either
PRmarried(i) or PRdead(i) to true, and when this is the case, the p-values define
a maximal matching. To do so, we first note that in any stable configuration the
m-values reflects the current status of the process.

Lemma 1. In a stable configuration we have mi = PRmarried(i) for each
i ∈ V .

Proof. This follows directly since if mi
= PRmarried(i) then i is eligible to
execute the Update(i) rule. �

We next show in the following three lemmas that no process will evaluate either
PRwaiting(i), PRcondemned(i), or PRfree(i) to true in a stable configuration.

102 F. Manne et al.

Lemma 2. In a stable configuration PRcondemned(i) is false for each i ∈ V .

Proof. If there exists at least one process i in the current configuration such
that PRcondemned(i) is true then pi is pointing to a process j ∈ N(i) that is
married to a process k where k
= i. From Lemma 1 it follows that in a stable
configuration we have mi = PRmarried(i) and mj = PRmarried(j). Thus
in a stable configuration the predicate (mi = PRmarried(i) and pi = j and
pj
= i and mj) evaluates to true. But then process i is eligible to execute the
Abandonment rule contradicting that the current configuration is stable. �

Lemma 3. In a stable configuration PRwaiting(i) is false for each i ∈ V .

Proof. Assume that the current configuration is stable and that there exists at
least one process i such that PRwaiting(i) is true. Then it follows that pi is
pointing to a process j ∈ N(i) such that pj
= i and j is unmarried. Note first
that if pj = null then process j is eligible to execute a Marriage move. Also, if
j < i then process i can execute an Abandonment move.

Assume therefore that pj
= null and that j > i. It then follows from Lemma 2
that
¬PRcondemned(j) is true and since j is not married we also have
¬PRmarried(j). Thus PRwaiting(j) must be true. Repeating the same ar-
gument for j as we just did for i it follows that if both i and j are ineligible
for a move then there must exist a process k such that pj = k, k > j, and
PRwaiting(k) also evaluates to true. This sequence of processes cannot be ex-
tended indefinitely since each process must have a higher id than the preceding
one. Thus there must exist some process in V that is eligible for a move and the
assumption that the current configuration is stable is incorrect. �

Lemma 4. In a stable configuration PRfree(i) is false for each i ∈ V .

Proof. Assume that the current configuration is stable and that there exists at
least one process i such that PRfree(i) is true. Then it follows that pi = null
and that there exists at least one process j ∈ N(i) such that j is not married.

Next, we look at the value of the different predicates for the process j. Since
j is not married it follows that PRmarried(j) evaluates to false. Also, from
lemmas 2 and 3 we have that both PRwaiting(j) and PRcondemned(j) must
evaluate to false. Finally, since i is not married we cannot have PRdead(j).
Thus we must have PRfree(j). But then the process with the smaller id of i
and j is eligible to propose to the other, contradicting the fact that the current
configuration is stable. �

From lemmas 2 through 4 we immediately get the following corollary.

Corollary 1. In a stable configuration either PRmarried(i) or PRdead(i) holds
for every i ∈ V .

We can now show that a stable configuration also defines a maximal matching.

Theorem 1. In any stable configuration the m and p-values define a maximal
matching.

A New Self-stabilizing Maximal Matching Algorithm 103

Proof. From Corollary 1 we know that either PRmarried(i) or PRdead(i) holds
for every i ∈ V in a stable configuration. Also, from Lemma 1 it follows that
mi is true if and only if i is married. It is then straightforward to see that the
p-values define a matching.

To see that this matching is maximal assume to the contrary that it is possible
to add one more edge (i, j) to the matching so that it still remains a legal
matching. To be able to do so we must have pi = null and pj = null. Thus
we have ¬PRmarried(i) and ¬PRmarried(j) which again implies that both
PRdead(i) and PRdead(j) evaluates to true. But according to the PRdead
predicate two adjacent processes cannot be dead at the same time. It follows
that the current matching is maximal. �

4.2 Convergence for the Distributed Adversarial Daemon

In the following we will show that Algorithm 1 will reach a stable configuration
after at most 3 · n + 2 · m steps under the distributed adversarial daemon.

First we note that as soon as two processes are married they will remain so
for the rest of the execution of the algorithm.

Lemma 5. If processes i and j are married in a configuration C (pi = j and
pj = i) then they will remain married in any ensuing configuration C′.

Proof. Assume that pi = j and pj = i in some configuration C. Then process i
cannot execute neither the Marriage nor the Seduction rule since these require
that pi = null. Similarly, i cannot execute the Abandonment rule since this
requires that pj
= i. The exact same argument for process j shows that j also
cannot execute any of the three rules Marriage, Seduction, and Abandonment.
Thus the only rule that processes i and j can execute is Update but this will not
change the values of pi or pj . �

A process discovers that it is married through executing the Update rule. Thus
this is the last rule a married process will execute in the algorithm. This is
reflected in the following.

Corollary 2. If a process i executes an Update move and sets mi = true then
i will not move again.

Proof. From the predicate of the Update rule it follows that when process i sets
mi = true there must exist a process j ∈ N(i) such that pi = j and pj = i. Thus
from Lemma 5 the only move i can make is an Update move. But since the mi

value is correct and pi and pj will not change again this will not happen. �

Since a married process cannot become “unmarried” we also have the following
restriction on the number of times the Update rule can be executed by any
process.

Corollary 3. Any process executes at most two Update moves.

104 F. Manne et al.

We will now bound the number of moves from the set {Marriage, Seduction,
Abandonment}. Each such move is performed by a process i in relation to one
of its neighbors j. We will call any such move made by either i or j with respect
to the other as an i, j-move.

Lemma 6. For any edge (i, j) ∈ E, there can at most be three steps in which
an i, j-move is performed.

Proof. Let (i, j) ∈ E be an edge such that i < j. We then consider four different
cases depending on the initial values of pi and pj at the start of the algorithm.
Note from Algorithm 1 that the only values that pi and pj can take on are
pi ∈ {null}∪N(i) and pj ∈ {null}∪N(j). For each case we will show that there
can at most be three steps in which i, j-moves occur.

Case (i): pi
= j and pj
= i. Since i < j the first i, j-move cannot be process j
executing a Seduction move. Also, as long as pi
= j, process j cannot execute a
Marriage move. Thus process j cannot execute an i, j-move until after process
i has first made an i, j-move. It follows that the first possible i, j-move is that
i executes a Seduction move simultaneously as j makes no move. Note that at
the starting configuration of this move we must have ¬mj . If the next i, j-move
is performed by j simultaneously as i performs no move then this must be a
Marriage move which results in pi = j and pj = i. Then by Lemma 5 there will
be no more i, j-moves. If process i makes the next i, j-move (independently of
what process j does) then this must be an Abandonment move. But this requires
that the value of mj has changed from false to true. Then by Corollary 2 process
j will not make any more i, j-moves and since pj
= null and pj
= i for the rest
of the algorithm it follows that process i cannot execute any future i, j-move.
Thus there can at most be two steps in which i, j-moves are performed.

Case (ii): pi = j and pj
= i. If the first i, j-move only involves process j then
this must be a Marriage move resulting in pi = j and pj = i and from Lemma 5
neither i nor j will make any future i, j-moves. If the first i, j-move involves pro-
cess i then it must make an Abandonment move. Thus in the configuration prior
to this move we must have mj = true. It follows that either mj
= PRmarried(j)
or pj
= null. In both cases process j cannot make an i, j-move simultaneously
as i makes its move. Thus following the Abandonment move by process i we are
at Case (i) and there can at most be two more i, j-moves. Hence, there can at
most be a total of three steps with i, j-moves.

Case (iii): pi
= j and pj = i. If the first i, j-move only involves process i then
this must be a Marriage move resulting in pi = j and pj = i and from Lemma
5 neither i nor j will make any future i, j-moves. If the first i, j-move involves
process j then this must be an Abandonment move. If process i does not make
a simultaneous i, j-move then this will result in configuration i) and there can
at most be two more steps with i, j-moves for a total of three steps containing
i, j-moves.

If process i does make a simultaneous i, j-move then this must be a Marriage
move. We are now at a similar configuration as Case (ii) but with ¬mj . If the

A New Self-stabilizing Maximal Matching Algorithm 105

second i, j-move involves process i then this must be an Abandonment move
implying that mj has changed to true. It then follows from Corollary 2 that
process j (and therefore also process i) will not make any future i, j-move leaving
a total of two steps containing i, j-moves. If the second i, j-move does not involve
i then this must be a Marriage move performed by process j and resulting in
pi = j and pj = i and from Lemma 5 neither i nor j will make any future
i, j-moves.

Case (iv): pi = j and pj = i. In this case it follows from Lemma 5 that neither
process i nor process j will make any future i, j-moves. �

It should be noted in the proof of Lemma 6 that only an edge (i, j) where we
initially have either pi = j or pj = i (but not both) can result in three i, j-moves,
otherwise the limit is two i, j-moves per edge. When we have three (i, j)-moves
across an edge (i, j) we can charge these moves to the processor that was initially
pointing to the other. In this way each process will at most be incident on one
edge which it is charged three moves for. From this observation we can now
give the following bound on the total number of steps needed to obtain a stable
solution.

Theorem 2. Algorithm 1 will stabilize after at most 3 · n + 2 · m steps under
the distributed adversarial daemon.

Proof. From Corollary 2 we know that there can be at most 2n Update moves,
each which can occur in a separate step. From Lemma 6 it follows that there can
at most be three i, j-moves per edge. But as observed, there is at most one such
edge incident on each process i for which process i is charged for, otherwise the
limit is two i, j-moves. Thus the total number of i, j-moves is at most n + 2 · m
and the result follows. �

From Theorem 2 it follows that Algorithm 1 will use O(m) moves on any con-
nected system when assuming a distributed daemon. Since the distributed dae-
mon encompasses the sequential daemon this result also holds for the sequential
daemon.

4.3 Convergence for the Distributed Fair Daemon

Next we consider the number of rounds used by Algorithm 1 when operated
under the distributed fair daemon. Note that one round may encompass several
steps, and we only require that every process eligible at the start of a round
either executes at least one rule during the round or becomes ineligible to do
so. This also implies that moves made in the same round may or may not be
simultaneous. Since the fair distributed daemon is a subset of the adversarial
distributed daemon any results that were shown in Section 4.2 also applies here.
We will now show that Algorithm 1 converges after at most 2 · n + 1 rounds for
this daemon.

We define that a process i ∈ V is active if either PRmarried(i) or PRdead(i)
is false. A process that is not active is inactive. From Corollary 2 it follows that

106 F. Manne et al.

any process i ∈ V where PRmarried(i) is true will not become active again for
the rest of the algorithm. This also implies that if PRdead(i) is true in some
configuration then it will remain so for the rest of the algorithm.

Lemma 7. Let A ⊆ V be a maximal connected set of active processes in some
configuration of the algorithm. If |A| > 2 then after at most four more rounds
the size of A has decreased by at least 2.

Proof. We first note that the size of A cannot increase during the execution of
the algorithm. Assume now that no processes in A gets married during the next
four rounds. We will show that this leads to a contradiction.

After the first round every process j ∈ N(A) must have mi = true. This
follows since any process j ∈ N(A) must have PRdead(j) = false (by definition)
and will therefore have PRmarried(j) = true. Thus if mj is initially false for a
process j ∈ N(A) then after the first round mj will be set to true. Similarly, if
a node i ∈ A has mi = true then mi will be set to false after the first round.
According to the assumption that no processes in A gets married, the m-values
will not change during the next three rounds.

Next, consider any i ∈ A that either initially or after the first round satisfies
pi = j such that either j ∈ N(A) or j < i (or both). It follows that if j ∈ N(A)
then mj = true after the first round, and if j < i then i will be eligible for
an Abandonment move before j can execute a Marriage move (otherwise they
get married). Thus in either case, process i is eligible for an Abandonment move
no later than after the first round. Also note that the situation where pi = j
and j < i cannot occur again after the first round. This is because prior to this
configuration we must have pj = i and mi = true, which is not possible if i ∈ A.

Thus after the second round a process i ∈ A cannot execute an Abandonment
move since this requires that either mpi = true or that i > pi. Since no process
can execute an Abandonment move it also follows that no process can execute
a Marriage move since this would lead to two processes getting married. Thus
at this stage a process can only execute a Seduction move and a process that
is not eligible for a Seduction move at this point will not become eligible for a
Seduction move after the third round since no m-value is changed and no p-value
is set to null during the third round.

Hence, at the start of the third round we have that for every i ∈ A either
(i) pi = null or (ii) pi = j where j ∈ N(j) ∩ A. If Case (i) is true for every
process in A, then since |A| ≥ 2 then at least the process with the lowest id in
A is eligible for a Seduction move. Therefore no later than after the third round
there exists at least one process i1 ∈ A where pi1 = i2 such that i2 ∈ N(j) ∩ A.
Further, let {i1, i2, ..., ik} be a path of maximal length such that ix+1 ∈ N(ix)∩A
and pix = ix+1, 1 ≤ x < k. Note that while the Seduction moves made by the
processes during the third round may be performed in different steps, no process
will become eligible for an Update or Abandonment move, since they must be
preceded by a Marriage and Update move, respectively. It follows that each
ix ∈ A and also that ix < ix+1. Since the length of the path is finite we have
pik

= null.

A New Self-stabilizing Maximal Matching Algorithm 107

The process ik is now eligible for a Marriage move and therefore cannot be
eligible for any other move. As noted, process pik−1 cannot be eligible for an
Abandonment move at this point since ik−1 < ik and mk = false. Thus following
the fourth round processes ik−1 and ik will become married, contradicting our
assumption and the result follows. �

Note that if A in Lemma 7 only contains one node i then either PRwaiting(i) or
PRcondemned(i) must be true initially. In either case, after at most two moves i
will have updated mi and executed an Abandonment move such that PRdead(i)
is true.

Obviously |A| ≤ |V |, and from Lemma 5 we know that once married, a process
will remain married for the rest of the algorithm. From this we get that at most
2·n rounds are needed to find the matching. However, after the matching has been
found every married process may execute an Update move, and every unmarried
process may execute an Abandonment move. Both of these can be done in the
same round. Note that it is not necessary for a process i that is unmarried when
the algorithm terminates to execute a final Update move as mi = false after the
first round and remains false throughout the algorithm. From this we get the
following theorem.

Theorem 3. Algorithm 1 will stabilize after at most 2 ·n+1 rounds when using
a fair distributed daemon.

5 Conclusion

We have presented a new self-stabilizing algorithm for the maximal matching
problem that improves the time step complexity of the previous best algorithm
for the distributed adversarial daemon, while at the same time as meeting the
bounds of the previous best algorithms for the sequential and the distributed
fair daemon.

It is well known that a maximal matching is a 1
2 -approximation to the maxi-

mum matching, where the maximum matching is a matching such that no other
matching with strictly greater size exists in the network. In [6], Goddard et al.
provide a 2

3 -approximation for a particular class of networks (trees and rings of
size not divisible by 3). Also, in particular networks such as Trees in [11,1] or
bipartite graphs in [2], self-stabilizing algorithms have been proposed for maxi-
mum matching. However, no self-stabilizing solution with a better approximation
ratio than 1

2 currently exists for general graphs. Thus it would be of interest to
know if it is possible to create a self-stabilizing algorithm for general graphs that
achieves a better approximation ratio than 1

2 , or even an optimal solution.

References

1. Blair, J., Manne, F.: Efficient self-stabilzing algorithms for tree networks. In: ICDS,
pp. 20–26. IEEE Computer Society Press, Los Alamitos (2003)

2. Chattopadhyay, S., Higham, L., Seyffarth, K.: Dynamic and self-stabilizing dis-
tributed matching. In: PODC, pp. 290–297 (2002)

108 F. Manne et al.

3. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

4. Dolev, S.: Self Stabilization. MIT Press (March 2000)
5. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing pro-

tocols for maximal matching and maximal independent sets for ad hoc networks.
In: IPDPS, p. 162. IEEE Computer Society Press, Los Alamitos (2003)

6. Goddard, W., Hedetniemi, S.T., Shi, Z.: An anonymous self-stabilizing algorithm
for 1-maximal matching in trees. In: Arabnia, H.R. (ed.) PDPTA, pp. 797–803.
CSREA Press (2006)

7. Gradinariu, M., Johnen, C.: Self-stabilizing neighborhood unique naming under
unfair scheduler. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.)
Euro-Par 2001. LNCS, vol. 2150, pp. 458–465. Springer, Heidelberg (2001)

8. Gradinariu, M., Tixeuil, S.: Conflict managers for self-stabilization without fairness
assumption. Technical Report 1459, LRI, Université Paris Sud (September 2006)

9. Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Maximal matching stabilizes in time
o(m). Inf. Process. Lett. 80(5), 221–223 (2001)

10. Hsu, S-C., Huang, S.-T.: A self-stabilizing algorithm for maximal matching. Inf.
Process. Lett. 43(2), 77–81 (1992)

11. Karaata, M.H., Saleh, K.A.: Distributed self-stabilizing algorithm for finding max-
imum matching. Comput. Syst. Sci Eng. 15(3), 175–180 (2000)

12. Tel, G.: Maximal matching stabilizes in quadratic time. Inf. Process. Lett 49(6),
271–272 (1994)

	Introduction
	Model
	The Algorithm
	Proof of Correctness
	Correct Stabilization
	Convergence for the Distributed Adversarial Daemon
	Convergence for the Distributed Fair Daemon

	Conclusion

