
SIAM J. MATRIX ANAL. APPL.
Vol. 13, No. 1, pp. 386-401, January 1992

() 1992 Society for Industrial and Applied Mathematics
025

EFFICIENT MATRIX MULTIPLICATION ON SIMD COMPUTERS*

P. BJORSTADt, F. MANNEr, T. SOI:tEVIK, AND M. VAJTERIC?$

Dedicated to Gene H. Golub on the occasion of his 60th birthday

Abstract. Efficient algorithms are described for matrix multiplication on SIMD computers.
SIMD implementations of Winograd’s algorithm are considered in the case where additions are
faster than multiplications. Classical kernels and the use of Strassen’s algorithm are also considered.
Actual performance figures using the MasPar family of SIMD computers are presented and discussed.

Key words, matrix multiplication, Winograd’s algorithm, Strassen’s algorithm, SIMD com-
puter, parallel computing

AMS(MOS) subject classifications. 15-04, 65-04, 65F05, 65F30, 65F35, 68-04

1. Introduction. One of the basic computational kernels in many linear algebra
codes is the multiplication of two matrices. It has been realized that most problems
in computational linear algebra can be expressed in block algorithms and that matrix
multiplication is the most important kernel in such a framework. This approach is
essential in order to achieve good performance on computer systems having a hier-
archical memory organization. Currently, computer technology is strongly directed
towards this design, due to the imbalance between the rapid advancement in processor
speed relative to the much slower progress towards large, inexpensive, fast memories.
This algorithmic development is highlighted by Golub and Van Loan [13], where the
formulation of block algorithms is an integrated part of the text. The rapid devel-
opment within the field of parallel computing and the increased need for cache and
multilevel memory systems are indeed well reflected in the changes from the first to
the second edition of this excellent text and reference book. Their notation and anal-
ysis of the "level-3 fraction" of a given matrix algorithm emphasizes the importance
of efficient computational kernels for BLAS-3-type [11] operations.

Today, hierarchical memories provide the same motivation as small memories and
secondary storage did in the sixties and seventies. The organization of linear algebra
computations in terms of a complete library of block algorithms with a corresponding
set of routines operating on individual blocks is more than twenty years old (see, for
example, [2]).

Matrix multiplication is a very compute-intensive task, but also rich in compu-
tational parallelism, and hence well suited for parallel computation. The problem
has a simple structure and well-understood mathematical properties. It is therefore
often used as a benchmark for parallel computers. Despite this, the task of writing
an efficient implementation of the BLAS-3 kernels for any particular advanced archi-
tecture machine is often nontrivial [3]. We will in this paper do a careful study of the
matrix multiplication problem on SIMD computers. In order to appreciate the often
subtle architectural differences between different computers, one must relate this type

Received by the editors May 16, 1991; accepted for publication (in revised form) August 2, 1991.
Institutt for Informatikk, Universitetet Bergen, H0yteknologisenteret, N-5020 Bergen, Norway.

This work was supported in part by Norwegian Research Council for Science and the Humanities
grant 413.89/024 and in part by The Royal Norwegian Council for Scientific and Industrial Research
contract IT0228.20484.

This author is on leave from the Slovak Academy of Sciences, Bratislava, Czechoslovakia.
This author’s research was supported by The Royal Norwegian Council for Scientific and Indus-
trial Research.

386

EFFICIENT MATRIX MULTIPLICATION ON SIMD COMPUTERS 387

of work to a particular computer. We will use the MasPar MP-1 computer for our
actual implementations; a brief description of this computer can be found in 2. Most
of the discussion is relevant for other data parallel machines (like the AMT DAP or
the CM-2), but actual parameters will of course be different.

In particular, we will consider the relative speed of addition and multiplication as
well as the relative speed of arithmetic and communication, in order to find efficient
algorithms. We show that nonstandard algorithms like the one proposed by Winograd
[25] and the fast method of Strassen [23] can be efficiently implemented on SIMD
computers. Winograd’s algorithm is attractive in the case where additions are faster
than multiplications.

As was observed by Brent [7], the exchange of multiplications with additions can
give significant speedup, provided that floating point addition is executed faster than
floating point multiplication. This was indeed the case in the late sixties and early
seventies, but the difference decreased in the following years. Quite recently, this
trend has been partially changed, resulting in new computer systems where, again,
additions are less expensive than multiplications.

In the MP-1 computer, each processor is only four bits wide. Arithmetic must then
be implemented using four bit "nibbles," and while addition is linear in the number of
nibbles, multiplication is quadratic in the number of nibbles of the mantissa. Similarly,
the AMT DAP is based on single bit processors while the CM-2 has special hardware
for floating point arithmetic. It may also be expected that individual SIMD processors
will become more complex in future generations. This will increase the floating point
speed and tend to reduce the time difference between addition and multiplication.
On the other hand, this difference may also be present in modern high performance
microprocessors. An example is the Intel i860 chip [16], where 64 bit additions can be
executed at a peak rate of 40 Mflops, while 64 bit multiplications can be performed
in parallel, but at a maximum rate of 20 Mflops.

On any distributed memory computer performing matrix computations, impor-
tant questions include how to map the matrices onto the computer and how to design
an efficient data flow between processors. On massively parallel systems this issue
is critical. The problem has attracted much interest and a number of systolic arrays
have been proposed for the problem (see [17], [19] and their references). Some sys-
tolic algorithms impose a very specific design on the hardware that can be used; we
focus on algorithms that can be implemented efficiently on general purpose SIMD
computers.

After a brief description of the MasPar MP-1 computer, we focus, in 3, on
the case with N2 processors where all matrices are N N. These algorithms are the
computational kernels for various block algorithms needed to handle the multiplication
of arbitrary-sized matrices. In 4, we discuss the case where each matrix dimension
is of the form kN, for k 2, 3,.... In 5, we briefly discuss some of the questions
related to the case where the dimensions are arbitrary.

2. Some basic features of the MasPar MP-1 computer. The MasPar MP-
1 system is a massively parallel SIMD computer system. The system consists of a
high performance UNIX workstation (FE) and a data parallel unit (DPU). The DPU
consist of at least 1024 processor elements (PEs), each with 16Kb of memory and
192 bytes of register space. All processors execute instructions broadcast by an array
control unit (ACU) in lockstep, but each processor can disable itself based on logical
expressions for conditional execution. It should be noted that the individual proces-
sors may operate not only on different data, but also in different memory locations,

388 P. BJORSTAD, F. MANNE, T. SOREVIK, AND M. VAJTERIC

thus supporting an indirect addressing mode.
There are three different communication mechanisms available: the Xnet, the

router, and the global or-tree.
The PEs are interconnected by a two-dimensional toroidal mesh that also allows

for diagonal communication. In the MasPar terminology this is called the Xnet. The
Xnet operates in three modes:

Xnet: time is: startup / #bits distance,
XnetP(ipe)" time is: startup + #bits + distance,
XnetC(opy)" time is: startup + #bits + distance.

The two last modes are useful for regular, nonlocal communication, but require
that the processors between any pair of communicating processors be inactive. Thus
for sending over longer distance, XnetP is much faster than basic Xnet. XnetC is sim-
ilar to XnetP, but it leaves a copy of the transmitted variable on all the intermediate
processors. The notation Xnet[k] means that the communication distance is k with
respect to the processor mesh.

MasPar also supports arbitrary node to node communication through a three-
stage switch called the router. For our purpose and for the current range of available
models, the router communication cost is constant, independent of the size of the
machine. This means that the router, despite its much higher startup time, becomes
more competitive compared with Xnet as the machine scales up in size, for all data
movements where the communication distance scales with the size of the machine.

The global or-tree can move data from the individual processors to the ACU.
If many processors send data at the same time a global reduction results. We take
advantage of this mechanism to find the maximum data value of an array at a very
small cost in time.

MasPar currently supports Fortran, including a substantial part of the new F90
standard [21] and C based on Kernighan and Ritchie [18], extended to take advantage
of the MasPar architecture.

Floating point is implemented in software. We define the average time of a float-
ing point instruction: 1/2(Mult + Add). Measured in units of , the floating
point performance of the MP-1 corresponds to a peak speed of 0.0355 Mflops in 64
bit arithmetic per processor, or 290 Mflops for a machine having 8192 processors.
The processors can access memory in parallel with the execution of arithmetic or
communication instructions. We define the ratio

Load
(1) 5 ,
where "Load" is the communication time between local memory and registers to load
or store one (64 bit) word. Expressing the relative speed of memory access and floating
point arithmetic, we expect 5 _< 1 on balanced systems. Due to the asynchronous
nature of this operation on the MP-1, 5 varies in the interval (0.05 -0.5) depending
on the algorithm. Also define the ratio

Xnet[1](2)

expressing the time of nearest neighbor communication relative to the time of an
average floating point operation. On the MasPar MP-1, - 0.2 and a floating point
multiplication takes approximately three times the time for a corresponding floating
point addition, all in 64 bit precision.

A more detailed general description of the MasPar MP-1 computer can be found
in [4], [9], and [22].

EFFICIENT MATRIX MULTIPLICATION ON SIMD COMPUTERS 389

3. Multiplying N N matrices on an N N processor array. To emphasize
the algorithmic structure, we first describe the basic algorithms for the special case
of square N N matrices that fit exactly on an N2 processor machine. We assume
(as is the case on current machines) that N is a power of two. Later, we discuss the
modifications necessary to obtain fast algorithms for larger matrix problems.

3.1. Cannon’s data flow for the standard algorithm. The standard defi-
nition of matrix multiplication, C AB, as

(3) ci,j ai,kbk5 V i, j
k

provides an obvious method for the computation. Evaluating each of the N2 elements
requires exactly N multiplications and N- 1 additions, a sequential complexity of
2N3 N2. If N3 processors are available, the N3 multiplications may be done in one
step and the N2 sums of N terms in logN steps. On a local memory machine one
must, however, take communication costs into account. On a two-dimensional mesh
of processors with nearest neighbor communication only, Gentleman [12] has proved
that there does not exist any parallel algorithm with communication complexity of
order less than O(N). This result is independent of the number of processors available.
Thus unless we use the router communication, the largest number of processors for
which we can hope to achieve optimal efficiency is O(N2).1

A data flow scheme for the evaluation of (3) on a two-dimensional mesh of pro-
cessors where the matrices fit exactly on the processor grid was designed by Cannon
[8]. The algorithm is well described in [13], but since it has similarities with the al-
ternative algorithms to be described and since it serves to introduce our notation, we
briefly describe it in the next paragraph.

Only one element from each matrix is stored on each processor. In order to keep
all the processors busy, we need to assure that each processor has elements from A
and B that form a product term (i.e., ai,k and bk,j for some k). In Cannon’s scheme
this is done by an initial preskewing of the matrices. The A matrix is preskewed by
rows, while the B matrix is preskewed by columns, as in the 4 4 example shown in
Fig. 1.

al a2 a3 ao blo b21 b32 b03
a22 a23 a20 a2 b20 b3 b02 b13
a33 a30 a31 a32 b30 bo b12 b23

FIG. 1. Standard preskewing.

With this preskewing, a very simple data flow scheme guarantees that each pro-
cessor gets appropriate pairs of elements in each step. The entire multiplication is
described by the algorithm below.

In all our algorithms we use - to denote assignment, while = denotes data
transmission. All operations are performed on matrix elements. Subscripts that occur
in algorithms do not represent the indices of the matrix elements, but a processor

Note that the use of pipelined communication on the mesh, like XnetP, has a cost proportional
to the distance, but such a small constant (one clock cycle) that it can be used efficiently to simulate
models of communication that violate this assumption for all computers in the MP-1 family.

390 P. BJORSTAD, F. MANNE, T. SOREVIK, AND M. VAJTERIC

address. All processor addresses are modulo N. We assume the processors, as well as
the matrices, to have indices running from 0,..., N- 1.

Standard Matrix Multiplication
on all processors:
Preskew A; Preskew B;
on all processors:

c ,,-- ab;
for/- 1, N-1

on all processors (i, j):
ai,j := ai,j+l;
bi,j bi+l,j;
c c + ab;

This algorithm performs all the multiplications needed for (3) and accumulates them
in c. The difference from the standard outer product update of C is that the index k
in the term a,kbk,j takes different values (in fact, k (i +j + l) (mod N)) on different
processors in each step. Consequently, the updates take place in different order on the
elements of C. In this algorithm we keep all the processors busy using only nearest
neighbor communication (Xnet[1]).

In the preskewing all elements of A move along rows on the processor grid while
B’s elements are moving along columns. This is a very regular communication and
consequently well suited for the Xnet. We tried two different implementations.

Linear Preskewing
/* A and B are initialized with
element (i, j) on processor (i, j) */
for k= 1, N- 1

on processors (i, j) where _> k:
ai,j ":=: ai,j+l

on processors (i, j) where j >_ k"
bi,y bi+l5;

or alternatively,

Logarithmic Preskewing
/* A and B are initialized with
element (i, j) on processor (i, j) */
fork--0, logN -1

on all processors (i, j) where i (mod 2k) is odd:
ai,j "(:= ai,j+2

on all processors (i, j) where j (mod 2k) is odd:
bi,j = bi+2,j

The total data transmission (words times distance) resulting from these two algo-
rithms is in both cases N2(N- 1), but their execution times on the MasPar MP-1
are different. With fewer iterations we reduce loop overhead and logical tests (with
resulting changes in the active processor set), as well as the accumulated startup time
for Xnet. Consequently, the logarithmic preskewing should perform better.

The router may also be used to preskew the matrices. The router views the
processors as a linear array and each processor must compute the destination address

EFFICIENT MATRIX MULTIPLICATION ON SIMD COMPUTERS 391

for its variable. The actual communication can then be viewed as taking place in
parallel. We have a total of 2N(N- 1) 64 bit words that must be moved. The
communication rates in Table 1 refer to this and do not consider the distance of
communication. If (i, j) is the coordinate of a processor, then p N i / j is the
router address. The individual i, j, and p are all predefined and available on each
processor.

The router preskew then takes the following simple form.

Router Preskewing
/* A and B are initialized with
element (i, j) on processor p N i + j */
on all processors p:

q--p-i;
on processors where (j < i):

q+-q+N;
aq = ap;
q-p-N.j;
on processors where (i < j):

q+-qWN2;
bq bp;

While the speed of a preskew based on Xnet depends on the size of the computer,
a router2 preskew does not. Thus increasing the size of the machine makes the router
more competitive relative to the Xnet.

TABLE
Mwords/s in preskewing.

Machine size
Matrix size N

Linear preskew
Log preskew
Router preskew

1024 2048 4096 8192
32 64 64 128

3.0 4.0 6.0 8.1
5.1 7.2 10.7 15.0
5.0 10.2 20.5 41.1

We present preskewing data for both square and rectangular machines in Table
1. The matrix size N will always be taken equal to the larger of the two sides if the
processor mesh is nonsquare. In this case, the matrix is mapped to the processor
array by having each processor store two matrix elements. We note that the router
bandwidth increases proportionally with the machine size, resulting in a constant time
for the preskewing, while the two algorithms using Xnet have a bandwidth increase
proportionally to the square root of the machine size. This reflects the fact that the
average communication distance grows as the square root of the number of processors.
Also note how much faster the logarithmic preskew is compared with the linear; in
fact, for the 1024 processor machine, this is the method of choice.

2 Clearly this is only true for the current range of machines. In general one would expect the time
to grow logarithmically with the number of processors since the number of stages in such a switch
will increase with the number of processors.

392 P. BJORSTAD, F. MANNE, T. SOREVIK, AND M. VAJTERIC

3.2. Data flow for Winograd’s algorithm. Winograd [25] proposed the fol-
lowing method for matrix multiplication: Let

(4)

and

N/2-1

di,j E (ai,2k + b2k+lj)(ai,2k+l + b2kj)
k--0

N/2-1

(5) ai ai,2kai,2k+,
k=0

N/2-1

(6) b; E b2kTl,jb2k,j;
k=0

then the elements of C can be computed as

The exact flop count for this algorithm is 2N3 + 3N2 2N, which is slightly more
than the standard product (3). However, the number of multiplications is one half at
the expense of additions. Consequently, on the MP-1, there is a potential maximum
speedup of 25 percent using Winograd’s algorithm, if we are able to construct an
efficient data flow scheme for the algorithm.

The numerical stability of this algorithm was analyzed by Brent [7]. He shows that
scaling of the matrices A and B is essential. Define the norm IIAII maxi,d a,d I- If
the crude but easy-to-implement scaling

(8) A 2PA, B 2-PB,

where p is an integer such that

1 < 22p IIAII() < 2,

then (7) will compute AB + E with IIEI] bounded by

(0)
9
(n2 + 16n)ullAll IIBll,IlEll

and with u being the unit roundoff of the machine.
corresponding bound for the standard algorithm

This compares well with the

(11) IIEII _< n=ullAII IIBII / O(uU),

although a generally stronger, componentwise bound exists for this algorithm [13].
In Table 2, we compare two different scaling algorithms. Both algorithms first find

IIAII and IIBII in the two matrices. The scaling is then performed as outlined above.
We scale by a power of two, implemented either as a shift of the exponent or by a
straightforward multiplication. We report the performance in millions of 64 bit words
scaled per second. This scaling takes advantage of the global or-tree for finding the
maximum elements. We note that exponent shifting is much faster and also avoids
extra rounding errors. The drawback is a more machine-dependent implementation.

EFFICIENT MATRIX MULTIPLICATION ON SIMD COMPUTERS 393

TABLE 2
Mwords scaled/s in Winograd’s algorithm.

Machine size
Matrix size

Multiplication
Exponent shift

1024 2048 4096 8192
32 64 64 128

3 9 12 36
9 22 35 86

The correction terms (5) and (6) are easily computed by a standard log-sum in
parallel for all rows and columns. The choice of communication for this operation
is XnetP. When found, the correction terms are broadcasted along rows or columns
using XnetC. The parallel arithmetic complexity of (5) and (6) is log N. In computing
the log-sum there will be log N startups for the XnetP and a total transmission cost
proportional to N. (Remember that on the MP-1, the transmission cost will be
dominated by the log N term for all existing values of N.)

Keeping one element from each matrix on each processor, we need (ai,2k, b2k+l,j)
on processor (i,j). Next, we need (ai,2k+i,b2k,j) followed by (ai,2k+2, b2k+3,j) and
(ai,2k+3, b2k+2,j). This is the same regular data flow as in Cannon’s algorithm, except
that the elements of B are pairwise interchanged. The corresponding preskewing is
shown in Fig. 2.

all a12 a13 alo boo b31 b22 b13
a22 a23 a20 a2 b30 b2 b2 b03
a33 a30 a3 a32 b20 bll b02 b33

FIG. 2. Preskewing for Winograd I.

With this initialization, we are able to obtain all the sums ai,2k+l -b2k,j and
ai,2k + b2k,j+l on all processors. The difficulty is, however, that the two sums in (4)
do not turn up at the same time on every processor. The processors are divided into
two groups in a checkerboard pattern. On the "black" processors the second sum
turns up one step later than on the "white." In order to do the multiplication and
the update of di,j simultaneously on all processors, we need to store the first sum in
a register on the "white" processors until the second sum has been computed. This
results in an extra interchange of the values of two variables. The algorithm can be
described as follows.

Winograd I (Single Correction)
on all processors:

Scale A; Scale B;
/* compute the correction terms */
on all processors:
a - logsum(ai,lai,o + ai,3ai,2 +’" + ai,N-lai,N-2);
b - logsum(bo,jbl,j + b2,jb3,j +’" + bN-2,jbN-,j);
c +-- --a

/* preskew according to Fig. 2 */
on all processors:

Preskew A; Preskew B;
/*multiplication phase*/

394 P. BJI2IRSTAD, F. MANNE, T. SDREVIK, AND M. VAJTERIC

on all processors:
sO.-a+b;

for/= 1, N/2
on all processors:

ai,j = ai,j+1;

bi,j = bi+1,j

sl -a+b;
ai,j == hi,j+1;
bi,j = bi+1,
s2 - a + b;

on processors (i, j) where (i + j)is even:
tmp .- sO; sO s2; s2 -- tmp;

on all processors:
c - c/ sl. s2;

By unrolling the loop one level, the three assignments needed for swapping can
be replaced by one.

Another strategy that allows us to group together pairs of elements of A and B
where the index k differs by 1, is based on making copies of A and B that are shifted
one column or row, respectively. If we keep the same simple data flow, but cyclically
send one copy into the other, always sending the one which is a step ahead, we manage
to move both copies two positions in only two steps, instead of four. However, we are
now computing

(12)
N/2

di,j ai,2k + b2k-l,j)(ai,2k-1 nt- b2k,j
k=l

on half the processors. Note that the indices in (12) must be taken modulo N. Being
different from (4), we need different correction terms on these processors. Using
the two versions simultaneously, we now compute two sets of correction terms. For
each processor we use the term that corresponds to the di,j that is computed. The
algorithm can be stated as follows.

Winograd II (Double Correction)
/* Scale the matrices as in (8) and (9) */
on all processors:

Scale A; Scale B;
/* compute the correction terms */
on all processors:

a -- logsum(ai,lai,o + ai,3ai,2 +’" + ai,N-lai,N-2);
aa - logsum(ai,oai,N-1 + ai,2ai,1 +’" + ai,N-2ai,N-3);
b logsum(bo,jbl,j + b2,jb3,j +’" + bg-2,jbN-l,j);
bb logsum(bN-l,b05 + bsb2,j +... + bN-35bN-2,);

on all processors where (i + j) even:
c ,-- --a bj

on all processors where (i + j) odd:
c - -aa bb;

/* preskew as for Cannon’s algorithm */
on all processors:

Preskew A; Preskew B;

EFFICIENT MATRIX MULTIPLICATION ON SIMD COMPUTERS 395

TABLE 3
SIMD matrix multiplication kernels.

Machine size
Matrix size

Cannon
Winograd
Winograd II

1024 2048 4096 8192
32 64 64 128

Mflops OH Mflops OH Mflops OH Mflops OH
24 16%
21 38%
20 43%

54
47 24
57 27%

103 8%
102 25%
100 29%

226 4%
220 13%
258 16%

/* multiplication phase */
on all processors:

bi,j bi+1j;- + (+ ,) (+);
for k- l,N/2-1

on all processors:
ai,j ":= ai,"3+1;
bi,j = hi+1,j

a_ i, a{,j+1;

bi,j = b+1,
c - c -t- (a -t- }) * (5 + b);

While computing the double set of log-sums we always have enough processors
to do the arithmetic in parallel for the sums. However, when using XnetP for the
communication all intermediate processors must be idle. The communication time
for computing the correction terms is doubled, while the arithmetic has the same
time complexity as in the single correction case.

3.3. Timing results. We have carefully timed the different routines. The re-
sults are presented in Tables 3 and 4. The Mflops3 are based on flop counts for the
standard method (3). We compare the three algorithms in Table 3, where all calcula-
tions are performed in 64 bit precision. We present Mflops figures and the percentage
of the total time spent in "OverHead." The column labeled "OH" covers preskewing
and, in the case of Winograd, scaling and computation of the correction terms.

The results require a few comments. When we compare the two variants of Wino-
grad as stated in this paper, it seems that Winograd I should be slightly superior in
terms of complexity. This advantage can be seen on the square machines (1024,4096).
On the nonsquare machines, we need to store two matrix elements on each proces-
sor. This leads to a reduction from 4 to 3 in the nearest neighbor communication
in the inner loop, but doubles the register requirements. In Winograd I there is the
additional need to unroll the inner loop one level. The resulting code requires more
registers than currently available. Winograd II is therefore considerably faster on the
nonsquare machines. As predicted by the analysis, the overhead of all three algo-
rithms is reduced as N increases. Cannon’s algorithm is competitive on the smaller
machines due to its lower overhead, but on the 8192 processor machine (and on larger

3 Since Winograd’s algorithm needs some additional operations for doing the correction terms
(O(n2)), the correct flop counts are actually somewhat higher here. But a fair comparison from a

practical point of view requires the same flop counts for both algorithms. All Mflops figures in this
paper refer to the standard method (3).

396 P. BJORSTAD, F. MANNE, T. SOREVIK, AND M. VAJTERIC

TABLE 4
Dependence on floating point format.

Precision
Algorithm

Cannon
Winograd
Winograd II

64 bit
Mflops OH

226
220 13%
258 16%

32 bit
Mflops OH

461
384 16%
452 21%

machines) we note that the 25 percent saving in arithmetic puts Winograd ahead in
performance.

Since the relative speed of multiplication and addition depends on the length of the
mantissa, we give results for both 32 bit and 64 bit precision floating point formats
in Table 4. These formats have 23 and 52 bits in the mantissa, respectively. We
observe that Cannon more than doubles in performance, while the speedup is about
75 percent for Winograd, consistent with the relative importance of multiplications
in the two algorithms.

4. Block algorithms. In this section we discuss how to multiply matrices hav-
ing more elements than the number of processors available. Again, assuming N2

processors, we first deal with square matrices of size n kN, where k 2, 3,..-.
There are two common ways to partition the matrix. One can either divide it

into k2 blocks, each of size N N, and distribute one element of each submatrix to
the corresponding processor. Alternatively, one can split the matrix into N2 k k
blocks and distribute each block to an individual processor.

In the first case, one can simply do the matrix multiplication by a block version
of the standard algorithm. This requires k3 calls to a routine for doing the matrix
multiplication of N N matrices. The preskewing can be done once for each block,
giving a total of k2 calls to the preskewing routine. Similarly, for the Winograd kernel,
both the scaling and the correction terms can be computed directly on the global ma-
trix. This improves the parallel complexity to O(k2 T k log N) for the correction terms
and to O(k2) for the scaling. Thus, asymptotically, the arithmetic of the kernel loop
will dominate the entire computation. This approach gives the same ratio between
communication and arithmetic as for the N N case considered in 3. In Table 5,
we present data for this scheme with N 128 and 8192 processors.

In the second case, it is straightforward to do a block version of Cannon’s algo-
rithm. In this case we get a block preskewing. In N steps each processor will do
a matrix multiplication of k k blocks and send the two blocks to its neighbors.
Now we have O(k3N) arithmetic operations, but only O(k2N) communication. This
advantage may, however, be offset by the more frequent access to memory of order
O(k3N). Using the relations (1) and (2) we obtain the inequality

(13) (5)k _> /+ ,
which must hold if this algorithm shall be faster than the first one considered. Here
corresponds to the memory access speed for the first blocking strategy. The relation
shows that local memory access must be faster than nearest neighbor communication
for the second blocking strategy to give a faster method. This is only true on the MP-
1 if overlap between register loads and arithmetic can be achieved. The global N N
memory access (fetching one number to each processor) cannot easily be overlapped,
and .5 while the reading of local k k blocks facilitates a 5 of approximately .08

EFFICIENT MATRIX MULTIPLICATION ON SIMD COMPUTERS 397

TABLE 5
Performance of block algorithms with N x N kernel blocks based on kernels from Table 3.

n

256 0.15 230
512 1.15 233
1024 9.14 235
2048 72.82 236

64 bit precision

Block Cannon Block Winograd
Time Mflops Time Mflops

32 bit precision

Block Cannon Block Winograd
Time Mflops Time Mflops

0.12 272 0.07 484
0.92 291 0.54 495
7.14 301 4.30 500

56.50 304 34.12 503

0.07 490
0.50 531
3.89 551

30.47 564

in our case. We conclude that for sufficiently large matrices, the second strategy will
be most efficient. We employ Cannon’s data flow, but have a choice between standard
matrix multiplication at the block level or the use of Winograd’s method.4 We note
that preskewing, scaling, and correction terms can be performed in the same way as
above.

Finally, note that Winograd’s algorithm cannot be applied to matrix blocks since
(4)-(7) depends on commutativity. In addition to the two alternatives already men-
tioned, there is obviously a "virtual processor" Winograd method, where the data for
each virtual processor is grouped locally and assigned to physical processors. The
complexity of this method is similar to the first block method considered in this sec-
tion, but the programming is more complex. In addition, this approach suffers from
a more expensive and complicated preskewing.

4.1. Strassens algorithm on an SIMD machine. Strassen first presented
his algorithm for matrix multiplication in [23]. It is based on a recursive divide and
conquer scheme. The algorithm is clearly presented in Chapter 1 of [13]. It is well
known that the algorithm has a sequential complexity of O(n2"87), as compared to
O(r3) for ordinary matrix multiplication. Because of lower-order terms it is advisable
to employ an ordinary matrix multiplication routine when the dimension of the blocks
reaches some preset cutoff point no _> 8 [14]. Due to algorithm overhead that grows
with the number of recursions, as well as efficient use of the hardware at hand, we
chose to take no 128 for our 8192 processor machine. We can then use one of the
computational kernels described in the previous section with N 128.

Lately, there has been a renewed interest in Strassen’s algorithm. Bailey [1]
implemented it on a CRAY-2 and reported speedups up to 2.01 for. 2048. The
numerical properties of this algorithm are analyzed in [6] and more recently in [14]; see
also Golub and Van Loan [13] for a discussion of problems where Strassen’s algorithm
should not be used. The algorithm satisfies the following error bound:

(14) I[EI _< n (ng+ 5n0) 5n ul]AII IIBII + O(u2),
n0

where no _< n is the cutoff point mentioned above (log2 12 3.6). This should be
compared with standard multiplication (11) and with Winograd’s algorithm (10).
The error bound is somewhat weaker, but may still be regarded as acceptable unless
small, componentwise relative errors are required. Empirical results from both Bailey
[1] and nigham [15] show that the error in Strassen is small enough to justify its use
in applications where speed is crucial. Also note that our choice of no 128 improves

4 In this case k should be even, or the code must simulate the algorithm for k -+- 1.

398 P. BJORSTAD, F. MANNE, T. SOREVIK, AND M. VAJTERIC

the bound for realistic values of n, compared to having a very small value. Both IBM
and CRAY support routines for fast matrix multiplications using Strassen’s algorithm.

In this section we restrict k to be a power of 2 (i.e., k 21 1, 2,...) and we
partition the matrix into k2 blocks of size N x N. With this layout of the matrix all
additions and subtractions can be performed in parallel without any communication
between the PEs. At each step of the algorithm, each processor views its data as
being a local n n matrix on which it is performing Strassen’s algorithm. Once the
cutoff point is reached, each processor will have one element that fits into one of the
standard kernel matrix multiplication algorithms described earlier. Both Cannon’s
and Winograd’s algorithms were tried as the kernel to perform the matrix multipli-
cations. Note that in both cases we can perform the preskewing of the k2 blocks in a
preprocessing step. Also, the scaling step in Winograd’s algorithm can be performed
as part of the preprocessing. This reduces the "Overhead" in Table 3 significantly.
The use of Winograd as a computational kernel in Strassen’s algorithm also slightly
changes the error bound (14) to

(15) IlSll-< 00 gn + 23n0 5n ullAll [[Bll + O(u2)

Strassen’s algorithm will have log(k) levels of recursion and require approx-
imately k2’8 (kernel) matrix multiplications each of size N N. Note that each
processor therefore will do 2k2"SN nearest neighbor communications compared with
only 2k2N for the block methods. Asymptotically, Strassen will always win due to
the lower exponent in arithmetic complexity, but for practical problems we obtain the
inequality

(16) (1 + " + /N)k
2"s <_ (1 + 5)k3 + (7 + 5 +)k2

for values of k where Strassen’s method will outperform the asymptotically best block
algorithm. Here again refers to memory access that cannot easily be overlapped
with arithmetic. The last term on the right-hand side comes from the memory access
when sending the blocks to neighbor processors. On the MP-1, this inequality is
always satisfied. If we neglect the /N term and the k2 terms, then (16) simplifies to

(17) k> (I+’Y)-1-I-5

The value of k is therefore quite sensitive to an increase in -. For example, if we assume
that i << 1 and take the quite reasonable value of /- 1, then k >_ 32, corresponding
to five levels of recursion in Strassen. This implies that the matrix must be at least of
dimension 4096, requiring more than 400 Mbytes of memory, perhaps exceeding the
size of the machine.

The algorithm was tried on matrices of size kN, N 128, k 2l, 1, 2, 3, 4.
Tables 6 and 7 give the timings of the different cases. Comparing Table 5 with the
left parts of Tables 6 and 7, we find, in agreement with the discussion, that the
partitioning into N N blocks is best for smaller matrices. The crossover point is
around n 2048, slightly higher than predicted. In 32 bit precision 5 increases and
the same effect is even more pronounced. As predicted by (16), Strassen’s algorithm
is faster than the block methods for any levels of recursion on the MP-1. We note
that our block Winograd code is faster than the one processor CRAY-2 figures using

EFFICIENT MATRIX MULTIPLICATION ON SIMD COMPUTERS 399

TABLE 6
Performance of block algorithms in 64 bit precision.

Block Cannon
n Time Mflops

256 0.21 163
512 1.35 199
1024 9.62 223
2048 72.44 237

Block Winograd
Time Mflops

0.20 170
1.17 230
7.82 275

56.87 302

Strassen-Cannon
Time Mflops

0.13 256
0.91 295
6.34 339

44.42 387

Strassen-Winograd
Time Mflops

0.11 294
0.79 341
5.47 392

38.14 450

TABLE 7
Performance of block algorithms in 32 bit precision.

Block Cannon
n Time Mflops

256 0.11 315
512 0.68 394
1024 4.80 447
2048 36.00 477

Block Winograd
Time Mflops

0.11 302
0.66 409
4.40 488

31.85 539

Strassen-Cannon
Time Mflops

0.06 538
0.43 624
3.00 716

21.02 817

Strassen-Winograd
Time Mflops

0.06 530
0.43 619
3.01 714

21.01 817

the CRAY MXM library, reported by Bailey [1]. Our results for Strassen’s method
are also quite comparable with his.

Another similar algorithm, due to Winograd [5], which uses only 15 additions and
subtractions (as compared to 18 by Strassen), was also implemented. There was no
significant improvement in execution time, since the block multiplication completely
dominates the small saving in arithmetic.

We note that Manber [20] claims that Strassen’s algorithm cannot be easily paral-
lelized. Our results show a practical, parallel version, but depends on a very favorable,
low value of the parameter 7.

5. Matrices of arbitrary size. Suppose we have two n n matrices and N2

processors. If n/N is an integer we can use any of the algorithms defined in 3 or 4.
If n/N is not an integer we may divide the matrices into k k blocks, k [n/N],
and place the K2 blocks, K [n/k, in the upper left K K part of processor
array. With this mapping of the data there are at least two simple modifications of
the standard algorithms from 4.

We may extend the matrix with zero blocks and run the algorithm as before.
Considering only the multiplication part, the parallel complexity of this algorithm
will be

(18) 2k2Na(k + 7),

where a and 7 are defined in (2). Alternatively, we only use the K K processors.
In this case the boundaries must be handled using two extra XnetP[N- K] in the
inner loop. For comparison we get"

(19) 2k2Ka(k + 7 + /),

where - is defined like 7, but using the time of XnetP[N- K] instead of Xnet[1]. For
the MP-1 one can assume that 7 < " < 27 for interesting values of K. This shows
that the last approach should be used if

(20) K < N.
k+27

400 P. BJORSTAD, F. MANNE, T. SOREVIK, AND M. VAJTERIC

With 1/5, this will almost always be the best choice.
Consider now the case where the matrix blocks in our partition are nonsquare.

This is necessary when the matrices (or the processor array) are nonsquare. In Can-
hOE’S scheme the elements of two matrices move in every step. Cannon chose A and B
to move, while the elements of C remain in place. We may as well move B and C or A
and C. For the previously described preskewing, these alternative data flows force one
of the matrices to move along diagonals. While the arithmetic work is independent
of the data flow, the communication time is not. Assuming that the matrices are of
different shape and partitioned as above, we will minimize the communication effort
by always sending the two matrices with the smallest block sizes. This possibility is
available when the interconnection network supports diagonal communication, as on
the MP-1.

Finally, let us consider the case where the number of matrix elements is less then
the number of processors. Alternative algorithms based on making copies of A and B
to all processors exist. If this is done properly, up to n3 processors can participate in
the multiplication phase. Finally, the summation of all n2 inner products must take
at least log n steps. However, as proved by Gentleman [12], the communication com-
plexity is still O(n) for a two-dimensional mesh with nearest neighbor communication
only. Typically, we want a binary tree network to support this kind of algorithm
[10]. On the MP-1, one can do a rather efficient simulation of binary trees using
XnetP. In particular, one can design efficient algorithms for matrices of dimension
n-- 2 n < N. Vajteric has described such algorithms for the MP-1 in [24].

6. Conclusions. We have developed and analyzed data flow algorithms for Wino-
grad’s and Strassen’s matrix multiplication algorithms and shown that they can be
efficiently implemented on a state of the art massively parallel SIMD computer. The
algorithms perform close to the theoretical maximum of the machine and provide a
very cost-effective way of doing large scale matrix computations. Our algorithms can
also be implemented on alternative SIMD machines like the AMT DAP and the CM-
2. In order to predict the performance on these machines the parameters c, 5, and- must be determined and major architectural differences (e.g., router performance
and XnetP-type communication) must be taken into account. We note, in particu-
lar, that Strassen’s algorithm depends on a very favorable communication speed /.
There will be a considerable challenge to maintain this property in future data parallel
computing systems.

Acknowledgment. We thank Dr. Robert Schreiber for suggesting the data flow
scheme employed in the second Winograd algorithm and for stimulating discussions.
Also, thanks to Ken Jacobsen at MasPar for providing us with technical data and Erik
Boman for coding the fast scaling algorithm used to stabilize the Winograd algorithm.

REFERENCES

[1] D. H. BAILEY, Extra high speed matrix multiplication on the Cray-2, SIAM J. Sci. Statist.
Comput., 9 (1988), pp. 603-607.

[2] K. BELL, B. HATLESTAD, O. E. HANSTEEN, AND P. O. ARALDSEN, NORSAM, a programming
system for the finite element method. User’s manual, Part 1, General description, The
Technical University of Norway, Trondheim, 1973.

[3] C. H. BISHOF, Fundamental linear algebra computations on high-performance computers, Tech.
Report, Argonne National Laboratory, Argonne, IL, August 1990.

[4] T. BLANK, The MasPar MP-1 architecture, in Proc. IEEE Compcon, Spring 1990, February
1990.

EFFICIENT MATRIX MULTIPLICATION ON SIMD COMPUTERS 401

[5] G. BRASSARD AND P. BRATLEY, Algorithms: Theory and Practice, Prentice-Hall, Englewood
Cliffs, NJ, 1988.

[6] R. P. BRENT, Algorithms for matrix multiplication, Tech. Report CS 157, Computer Science
Department, Stanford University, Stanford, CA, 1970.

[7] , Error analysis of algorithms for matrix multiplication and triangular decomposition
using Winograd’s identity, Numer. Math., 16 (1970), pp. 145-156.

[8] L. E. CANNON, A cellular computer to implement the Kalman filter algorithm, Ph.D. thesis,
Montana State University, Bozeman, MT, 1969.

[9] P. CHRISTY, Software to support massively parallel computing on the MasPar MP-1, in Proc.
IEEE Compcon, Spring 1990.

[10] E. DEKEL, D. NASSIMI, AND S. SAHNI, Parallel matrix and graphs algorithms, SIAM J. Comput.,
10 (1981), pp. 657-675.

[11] J. DONGARRA, J. DU Cloz, I. DUFF, AND S. HAMMARLING, A set of level 3 basic linear algebra
subprograms: Model implementation and test programs, ACM Trans. Math. Software, 16
(1990), pp. 18-28.

[12] W. M. GENTLEMAN, Some complexity results for matrix computations on parallel processors,
J. Assoc. Comput. Mach., 25 (1978), pp. 112-115.

[13] G. H. GOLUB AND C. F.VAN LOAN, Matrix Computations, Second Edition, The Johns Hopkins
University Press, Baltimore, MD, 1989.

[14] N. J. HIGHAM, Exploiting fast matrix multiplication within the level 3 BLAS, ACM Trans.
Math. Software, 16 (1990), pp. 352-368.

[15] , Stability of a method for multiplying complex matrices with three real matrix multi-
plications, Tech. Report no. 181, Department of Mathematics, University of Manchester,
Manchester, England, January 1990.

[16] INTEL COMPUTER CORPORATION, i860 64-bit Microprocessor Programmer’s Reference Manual,
1990.

[17] H. J. JAGADISH AND T. KAILATH, A family of new eficient arrays for matrix multiplication,
IEEE Trans. Comput., 38 (1989), pp. 149-155.

[18] B. W. KERNIGHAN AND D. M. RITCHIE, The C programming language, Prentice-Hall, Engle-
wood Cliffs, NJ, 1978.

[19] H. T. KUNG, Why systolic architecture?, Comput. J., 15 (1982), pp. 37-46.
[20] U. MANBER, Introduction to Algorithms, Addison-Wesley, Reading, MA, 1989.
[21] M. METCALF AND J. REID, Fortran 90 Explained, Oxford Science Publications, Reading, MA,

1990.
[22] J. NICKOLLS, The design of the MasPar MP-1, a cost effective massively parallel computer, in

Proc. IEEE Compcon, Spring 1990.
[23] V. STRASSEN, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354-356.
[24] M. VAJTERIC, Matrix multiplication algorithms for matrices of the size n

_
128 on the MasPar

parallel computer, Tech. Report, Institutt for Informatikk, Universitetet Bergen, Bergen,
Norway, August 1990.

[25] S. WINOGRAD, A new algorithm for inner product, IEEE Trans. Comput., C-18 (1968), pp. 693-
694.

