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Abs t rac t .  Quantum mechanics often give rise to problems where one 
needs to find a few eigenvalues of very large sparse matrices. The size of 
the matrices is such that it is not possible to store them in main memory 
but instead they must be generated on the fly. 
In this paper the method of coordinate relaxation is applied t o  o n e  class 
of such problems. A parallel algorithm based on graph coloring is pro- 
posed. Experimental results on a Cray Origin 2000 super computer show 
that the algorithm converges fast and that it also scales well as more 
processors are applied. 

1 I n t r o d u c t i o n  

Frequently problems in quantum mechanics lead to the computat ion of a small 
number  of extremal eigenvalues and associated eigenvectors of 

A x  = A B x  

where A and B are real symmetric  and sparse matrices of very high order. The 
matrices are often of such a magnitude tha t  it is neither practical nor feasible 
to store them in memory. Instead the elements of the matrices are generated as 
needed, commonly by combining elements from smaller tables. 

A number of methods have been proposed for solving such systems. See 
Davidson [1] for a survey. More recent methods include among others the im- 
plicitly re-started Arnoldi iteration [4] by Lehoucq et. al. Common to most  of 
these methods is that  they only require the storage of a few dense vectors. In 
this paper  we consider one of the early methods, the method of coordinate relax- 
ation [2, 7] used for computing the smallest eigenvalue of a large sparse symmetr ic  
system. The coordinate relaxation method selects each coordinate of the approx- 
imate  eigenvector and alters it so that  the Rayleigh quotient is minimized. This 
is repeated until a converged solution is obtained. The advantage of the method 
is tha t  the amount  of memory  is restricted and, as noted by Shavitt  et. al [8], it 
is also possible to neglect coordinates if their contribution to the overall solution 
is insignificant. 

For full paper, see h t tp  ://www. i i .  uib. no/~fredr ikm 
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However, the convergence of the method is only guaranteed if the smallest 
eigenvalue is simple and has a good separation. Moreover, a good approximation 
of the eigenvalue must exist. If these conditions are met and the matr ix is strictly 
diagonal dominant, the convergence is usually fast [3]. 

We present an efficient parallel version of this method applicable for sparse 
matrices. Designing such an algorithm is a non-trivial task since the computation 
of the contribution from each coordinate in the algorithm depends directly on 
the previous computations. 

We first show that  it is possible to perform the selection of which coordinates 
to use in parallel. The selected coordinates define a sparse graph. By performing 
a graph coloring on the vertices of this graph it is possible to divide the updating 
of the necessary variables into parallel tasks. Since the sparse graph changes from 
each iteration of the algorithm the graph coloring has to be performed repeatedly. 

The presented algorithm has been implemented and tested on a 128 processor 
Cray Origin 2000 computer using diagonal dominant matrices from molecular 
quantum mechanics. The results show the scalability of the algorithm. 

2 T h e  C o o r d i n a t e  R e l a x a t i o n  M e t h o d  

Here we briefly review the coordinate relaxation (CR) method. For simplicity we 
assume that  B = I such that  we are considering the simplified problem A x  = .~x. 

Given a symmetric matrix A E ~ •  We wish to compute the smallest 
eigenvalue ~ and its corresponding eigenvector x. 

Given an initial approximation x of the eigenvector and a search direction y 
we find a new eigenvector x t -- x + ay  where the scalar a is determined so that  
the Rayleigh quotient 

x ~ T A x  I 
R ( x ' ) -  x,~x ' 

is minimized. 
In the CR method we take y equal to a unit vectors ei. Combined with the 

notation 

F = A x  (1) 

p = x T A z  (2) 

q = x T x  (3) 

we get the following quadratic equation for determining a 

C g 2 ( f i  - -  ai ix i )  -]- C~p - -  aiiq) + p x i  - f i q  ----- 0. (4) 

When a has been determined one must update the values of p, q, x, F ,  and 
accordingly: 
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p' = p + 2c~/i + a2a~i (5) 
q~ = q + 2 ~ x i + a  2 (6) 

z' = x + ~ e i  (7) 
F'  = A x  ~ = A x  + c~Aei = F + aA i  (8) 

h I - -  p~ - q~ ( 9 )  

Updating p, q, x, and A involves only a few scalar operations. The t ime con- 
suming part  of the algorithm involves computing F ~. This involves not only 
n o n z ( A i )  scalar operations but  each element of Ai must also be generated. If  A 
is to large to store in memory this must be done on the fly. 

In one complete iteration of the CR method one cycles through every coor- 
dinate of x. A threshold that  is successively lowered is used to determine if a 
coordinate should be used or not. 

3 A P a r a l l e l  A l g o r i t h m  

We now present a parallel version of the CR method for sparse matrices. The 
algorithm operates in three stages. First we consider which coordinates should 
be used to update  the eigenvector. Then we consider how the calculations can be 
ordered to allow for parallel execution, and finally how the actual computat ions 
are performed. Our computat ional  model is a parallel computer  with distr ibuted 
memory. Communication is done by message passing. 

The computat ion of the different values of a is inherently sequential with each 
step of the algorithm depending on the previous ones. As described in Section 2 
the main work of the algorithm is in updat ing F according to (8). 

F i n d i n g  C a n d i d a t e s  We use the initial values of A,p, q, and F at the s tar t  
of the iteration when testing each coordinate to see if it contributes enough to 
the solution. If so, the coordinate is added to the set of candidates tha t  will be 
used to update  the solution. Thus we postpone the updat ing of the solution until 
after we have determined which coordinates to use. To ensure tha t  all significant 
contributions to the solution are acquired we make repeated passes over the 
matr ix  before lowering the threshold value. 

By dividing the coordinates evenly among the processors we can now deter- 
mine the candidates in parallel without the need of communication except for 
distributing the initial values. 

U p d a t i n g  t h e  S o l u t i o n  We show how it is possible to postpone and thus 
accumulate the updat ing of F.  Let K the set of chosen coordinates. To be able 
to compute a j  the element f j  must be updated by each c~i where i < j, i C K,  
a n d  ai j  7 ~ O. Let K = {C1,  C2,  ..., Cr}, 1 < r < IKI be a parti t ioning of K 
such tha t  aij = 0 for i ,  j E Ck and 1 < k < r. If  the coordinates in C1 are 
applied first, we can compute each c~, i E C1, without performing any update  
on F.  This follows from the fact tha t  aij = 0 for i , j  C C1. Thus the updat ing 
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of F can be postponed until each ai ,  i E C1 has been computed. Note tha t  the 
computat ion of the values of a is sequential. But  since this only involves a few 
scalar operations for each a it can be performed relatively fast. Before we can 
compute the values of a corresponding to the coordinates in C2 we must  perform 
an update  of F.  This can be done in several ways. We choose to immediately 
perform the complete update  of F: 

F = F + E (ai * Ai) (10) 
icC1 

From a parallel point of view we have now restructured the algorithm to 
consist of fast sequential parts,  each one followed by some communication and 
a potential  larger parallel update  of F.  

To perform the updates  on F in parallel we associate the work related to 
one row of A with one processor making it responsible for updat ing fi  for each 
row assigned to it. This requires tha t  each processor has access to the necessary 
values of a and to the corresponding rows of A. 

With this scheme the only communication required is the distribution of the 
as.  This can be done in one broadcast  operation before the parallel update  of 
F.  The load balance now depends on how F is distributed and the structure 
of the rows of A corresponding to coordinates in each Cj. If we distribute x in 
the same way as F we must gather both x~ and f~, i E Cj from each processor 
before the sequential computat ion of the a 's .  We do this on processor 0 which 
then computes the values of a.  

In order to obtain the desired partitioning of K we perform a graph coloring 
on the adjacency graph G(K). The set C~ now consists of the coordinates whose 
corresponding vertices are colored with color i. The complete parallel algorithm 
is as follows: 

Para l l e l  C o o r d i n a t e  R e l a x a t i o n  
Calculate initial value of ~ and x 
R e p e a t  

D o  s times 
Find a set of candidates K 
Perform a graph coloring on G(K) 
For each color i: 

Gather  fj and xj j C Ci on processor 0 
Processor 0: Fo r  each ej E Ci 

Calculate p, q, and a 
Broadcast  the values of a 
Update  F and x with the coordinates in Ci 

E n d  do  
Lower threshold 
Processor 0: Distribute p and q 

U n t i l  convergence 

Here s is the number of passes we make over the matr ix  before lowering the 
threshold. 
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4 R e s u l t s  

We have performed experiments on a Cray Origin 2000 computer with 128 pro- 
cessors. Here we present results for a matrix from quantum mechanical calcula- 
tion [5]. The matrix is of order 5189284, and contain on the order of 1.1 x 1011 
non-zero elements. The elements are generated on the fly by combining elements 
from several smaller tables. 

Table 1 displays the timings and speedups for one matrix when increasing the 
number of processors. All times are given in seconds. The quality of the solutions 
are as good as for the sequential algorithm, and the number of candidates found 
differ by less than 270. Finding candidates takes 2.5 seconds on 16 processors 

Proc 10 16 26 31 41 51 75 100 
Time 11131662 407 336 260 209 156 128 

Speedup 1.0 1.7 2.7 3.3 4.3 5.3 7.1 8.7 

Table 1. Execution times and speedup for m = 38. 

and scales appropriately. The graph coloring takes between 12 and 14 seconds 
independent of the number of processors used. 

To conclude we note that the presented algorithm gives a good speedup on 
realistic problems but also note that one should be careful to only use the CR 
method when the convergence criteria are met. Comparisons with the ARPACK 
parallel package for computing extremal eigenvalues [4] show that for our par- 
ticular problems the coordinate relaxation method gives an order of magnitude 
faster convergence. 
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