
A Parallel Algorithm for Computing the
Extremal Eigenvalues of Very Large Sparse

Matrices*

Fredrik Manne

Department of Informatics, University of Bergen, N-5020 Bergen, Norway
Fredrik. Manne@ii. uib. no

Abs t rac t . Quantum mechanics often give rise to problems where one
needs to find a few eigenvalues of very large sparse matrices. The size of
the matrices is such that it is not possible to store them in main memory
but instead they must be generated on the fly.
In this paper the method of coordinate relaxation is applied t o o n e class
of such problems. A parallel algorithm based on graph coloring is pro-
posed. Experimental results on a Cray Origin 2000 super computer show
that the algorithm converges fast and that it also scales well as more
processors are applied.

1 I n t r o d u c t i o n

Frequently problems in quantum mechanics lead to the computat ion of a small
number of extremal eigenvalues and associated eigenvectors of

A x = A B x

where A and B are real symmetric and sparse matrices of very high order. The
matrices are often of such a magnitude tha t it is neither practical nor feasible
to store them in memory. Instead the elements of the matrices are generated as
needed, commonly by combining elements from smaller tables.

A number of methods have been proposed for solving such systems. See
Davidson [1] for a survey. More recent methods include among others the im-
plicitly re-started Arnoldi iteration [4] by Lehoucq et. al. Common to most of
these methods is that they only require the storage of a few dense vectors. In
this paper we consider one of the early methods, the method of coordinate relax-
ation [2, 7] used for computing the smallest eigenvalue of a large sparse symmetr ic
system. The coordinate relaxation method selects each coordinate of the approx-
imate eigenvector and alters it so that the Rayleigh quotient is minimized. This
is repeated until a converged solution is obtained. The advantage of the method
is tha t the amount of memory is restricted and, as noted by Shavitt et. al [8], it
is also possible to neglect coordinates if their contribution to the overall solution
is insignificant.

For full paper, see h t tp ://www. i i . uib. no/~fredr ikm

333

However, the convergence of the method is only guaranteed if the smallest
eigenvalue is simple and has a good separation. Moreover, a good approximation
of the eigenvalue must exist. If these conditions are met and the matr ix is strictly
diagonal dominant, the convergence is usually fast [3].

We present an efficient parallel version of this method applicable for sparse
matrices. Designing such an algorithm is a non-trivial task since the computation
of the contribution from each coordinate in the algorithm depends directly on
the previous computations.

We first show that it is possible to perform the selection of which coordinates
to use in parallel. The selected coordinates define a sparse graph. By performing
a graph coloring on the vertices of this graph it is possible to divide the updating
of the necessary variables into parallel tasks. Since the sparse graph changes from
each iteration of the algorithm the graph coloring has to be performed repeatedly.

The presented algorithm has been implemented and tested on a 128 processor
Cray Origin 2000 computer using diagonal dominant matrices from molecular
quantum mechanics. The results show the scalability of the algorithm.

2 T h e C o o r d i n a t e R e l a x a t i o n M e t h o d

Here we briefly review the coordinate relaxation (CR) method. For simplicity we
assume that B = I such that we are considering the simplified problem A x = .~x.

Given a symmetric matrix A E ~ • We wish to compute the smallest
eigenvalue ~ and its corresponding eigenvector x.

Given an initial approximation x of the eigenvector and a search direction y
we find a new eigenvector x t -- x + ay where the scalar a is determined so that
the Rayleigh quotient

x ~ T A x I
R (x ') - x,~x '

is minimized.
In the CR method we take y equal to a unit vectors ei. Combined with the

notation

F = A x (1)

p = x T A z (2)

q = x T x (3)

we get the following quadratic equation for determining a

C g 2 (f i - - ai ix i) -]- C~p - - aiiq) + p x i - f i q ----- 0. (4)

When a has been determined one must update the values of p, q, x, F , and
accordingly:

334

p' = p + 2c~/i + a2a~i (5)
q~ = q + 2 ~ x i + a 2 (6)

z' = x + ~ e i (7)
F' = A x ~ = A x + c~Aei = F + aA i (8)

h I - - p~ - q~ (9)

Updating p, q, x, and A involves only a few scalar operations. The t ime con-
suming part of the algorithm involves computing F ~. This involves not only
n o n z (A i) scalar operations but each element of Ai must also be generated. If A
is to large to store in memory this must be done on the fly.

In one complete iteration of the CR method one cycles through every coor-
dinate of x. A threshold that is successively lowered is used to determine if a
coordinate should be used or not.

3 A P a r a l l e l A l g o r i t h m

We now present a parallel version of the CR method for sparse matrices. The
algorithm operates in three stages. First we consider which coordinates should
be used to update the eigenvector. Then we consider how the calculations can be
ordered to allow for parallel execution, and finally how the actual computat ions
are performed. Our computat ional model is a parallel computer with distr ibuted
memory. Communication is done by message passing.

The computat ion of the different values of a is inherently sequential with each
step of the algorithm depending on the previous ones. As described in Section 2
the main work of the algorithm is in updat ing F according to (8).

F i n d i n g C a n d i d a t e s We use the initial values of A,p, q, and F at the s tar t
of the iteration when testing each coordinate to see if it contributes enough to
the solution. If so, the coordinate is added to the set of candidates tha t will be
used to update the solution. Thus we postpone the updat ing of the solution until
after we have determined which coordinates to use. To ensure tha t all significant
contributions to the solution are acquired we make repeated passes over the
matr ix before lowering the threshold value.

By dividing the coordinates evenly among the processors we can now deter-
mine the candidates in parallel without the need of communication except for
distributing the initial values.

U p d a t i n g t h e S o l u t i o n We show how it is possible to postpone and thus
accumulate the updat ing of F. Let K the set of chosen coordinates. To be able
to compute a j the element f j must be updated by each c~i where i < j, i C K,
a n d ai j 7 ~ O. Let K = {C1, C2, ..., Cr}, 1 < r < IKI be a parti t ioning of K
such tha t aij = 0 for i , j E Ck and 1 < k < r. If the coordinates in C1 are
applied first, we can compute each c~, i E C1, without performing any update
on F. This follows from the fact tha t aij = 0 for i , j C C1. Thus the updat ing

335

of F can be postponed until each ai , i E C1 has been computed. Note tha t the
computat ion of the values of a is sequential. But since this only involves a few
scalar operations for each a it can be performed relatively fast. Before we can
compute the values of a corresponding to the coordinates in C2 we must perform
an update of F. This can be done in several ways. We choose to immediately
perform the complete update of F:

F = F + E (ai * Ai) (10)
icC1

From a parallel point of view we have now restructured the algorithm to
consist of fast sequential parts, each one followed by some communication and
a potential larger parallel update of F.

To perform the updates on F in parallel we associate the work related to
one row of A with one processor making it responsible for updat ing fi for each
row assigned to it. This requires tha t each processor has access to the necessary
values of a and to the corresponding rows of A.

With this scheme the only communication required is the distribution of the
as. This can be done in one broadcast operation before the parallel update of
F. The load balance now depends on how F is distributed and the structure
of the rows of A corresponding to coordinates in each Cj. If we distribute x in
the same way as F we must gather both x~ and f~, i E Cj from each processor
before the sequential computat ion of the a 's . We do this on processor 0 which
then computes the values of a.

In order to obtain the desired partitioning of K we perform a graph coloring
on the adjacency graph G(K). The set C~ now consists of the coordinates whose
corresponding vertices are colored with color i. The complete parallel algorithm
is as follows:

Para l l e l C o o r d i n a t e R e l a x a t i o n
Calculate initial value of ~ and x
R e p e a t

D o s times
Find a set of candidates K
Perform a graph coloring on G(K)
For each color i:

Gather fj and xj j C Ci on processor 0
Processor 0: Fo r each ej E Ci

Calculate p, q, and a
Broadcast the values of a
Update F and x with the coordinates in Ci

E n d do
Lower threshold
Processor 0: Distribute p and q

U n t i l convergence

Here s is the number of passes we make over the matr ix before lowering the
threshold.

336

4 R e s u l t s

We have performed experiments on a Cray Origin 2000 computer with 128 pro-
cessors. Here we present results for a matrix from quantum mechanical calcula-
tion [5]. The matrix is of order 5189284, and contain on the order of 1.1 x 1011
non-zero elements. The elements are generated on the fly by combining elements
from several smaller tables.

Table 1 displays the timings and speedups for one matrix when increasing the
number of processors. All times are given in seconds. The quality of the solutions
are as good as for the sequential algorithm, and the number of candidates found
differ by less than 270. Finding candidates takes 2.5 seconds on 16 processors

Proc 10 16 26 31 41 51 75 100
Time 11131662 407 336 260 209 156 128

Speedup 1.0 1.7 2.7 3.3 4.3 5.3 7.1 8.7

Table 1. Execution times and speedup for m = 38.

and scales appropriately. The graph coloring takes between 12 and 14 seconds
independent of the number of processors used.

To conclude we note that the presented algorithm gives a good speedup on
realistic problems but also note that one should be careful to only use the CR
method when the convergence criteria are met. Comparisons with the ARPACK
parallel package for computing extremal eigenvalues [4] show that for our par-
ticular problems the coordinate relaxation method gives an order of magnitude
faster convergence.

R e f e r e n c e s

1. E. R. DAVIDSON, Super-matrix methods, Computer Physics Communications,
(1988), pp. 49-60.

2. D. K. FADDEEV AND V. N. FADDEEVA, Computational Methods of Linear Algebra,
W. H. Freeman and Co., San Francisco, CA., 1963.

3. G. H. GOLUB AND C. F. V. LOAN, Matrix Computations, North Oxford Academic,
2 ed., 1989.

4. R. B. LEHOUCQ, D. SORENSEN, AND P. VU, ARPACK: An implementation of the
implicitly re-started Arnoldi iteration that computes some of the eigenvaIues and
eigenvectors of a large sparse matrix. Available from netlib@ornl.gov under the
directory scalapack, 1996.

5. I. ROEGGEN. Private communications.
6. A. RUHE, SOR-methods for the eigenvalue problem with large sparse matrices,

Math. Comp., 28 (1974), pp. 695-710.
7. H. R. SCItWARZ, The method of coordinate overrelaxation for (A - AB)x = O,

Numer. Math., (1974), pp. 135-151.
8. I. SHAVITT, C. F. BENDER, A. PIPANO, AND R. P. HOSTENY, The iterative cal-

culation of several of the lowest or highest eigenvalues and corresponding eigenvec-
tots of very large symmetric matrices, Journal of Computational Physics, (1973),
pp. 90 108.

