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Abstract— We study the communication primitive of broad-
casting (one-to-all communication) in known topology radio
networks, i.e., where for each primitive the schedule of
transmissions is precomputed based on full knowledge about
the size and the topology of the network. We show that
radio broadcasting can be completed inD + O(log n) time
units in planar graphs of size n, and with diameter D.
This improves the currently best knownD+O(log3 n) time
schedule proposed by Elkin and Kortsarz in [16] [SODA’05],
and 3D time schedule due to Gąsieniec, Peleg and Xin in
[23] [PODC’05]. In this paper, we also explore broadcasting
in radio networks in the presence of edge failures.

Index Terms— Broadcasting, centralized radio networks,
fault-tolerance, gossiping, planar graphs.

I. I NTRODUCTION

We consider the following radio network model: an
undirected connected graphG = (V, E), whereV rep-
resents the set of nodes of the network andE contains
unordered pairs of distinct nodes, such that(v, w) ∈ E iff
the transmissions of nodev can directly reach nodew and
vice versa (the reachability of transmissions is assumed
to be a symmetric relation). In this case, we say that the
nodesv andw areneighboursin G. Note that in a radio
network, a message transmitted by a node is always sent
to all of its neighbors.

The degreeof a nodew is its number of neighbours.
We use∆ to denote themaximum degreeof the network,
i.e., the maximum degree of any node in the network. The
size of the networkis the number of nodesn = |V |.

Communication in the network is synchronous and con-
sists of a sequence of communication steps. In each step,
a nodev either transmits or listens. Ifv transmits, then
the transmitted message reaches each of its neighbours
by the end of this step. However, a nodew adjacent to
v successfully receives this message iff in this stepw is
listening andv is the only transmitting node amongw’s
neighbors. If nodew is adjacent to a transmitting node
but it is not listening, or it is adjacent to more than one
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transmitting node, then acollision occurs andw does not
retrieve any message in this step.

The two classical problems of information dissemina-
tion in computer networks are thebroadcastingproblem
and thegossipingproblem. The broadcasting problem
requires distributing a particular message from a distin-
guishedsourcenode to all other nodes in the network. In
the gossiping problem, each nodev in the network ini-
tially holds a messagemv, and the aim is to distribute all
messages to all nodes. For both problems, one generally
considers as the efficiency criterion the minimization of
the time needed to complete the task.

In the model considered here, the running time of a
communication schedule is determined by the number
of time steps required to complete the communication
task. This means that we do not account for any internal
computation within individual nodes. Moreover, no limit
is placed on the length of a message which one node can
transmit in one step. In particular, this assumption plays
an important role in the case of the gossiping problem,
where it is then assumed that in each step when a node
transmits, it transmits all the messages it has collected by
that time. (i.e., the ones received and its own one.)

Our schemes rely on the assumption that the communi-
cation algorithm can use complete information about the
network topology. Such topology-based communication
algorithms are useful whenever the underlying radio net-
work has a fairly stable topology/infrastructure. As long
as no changes occur in the network topology during the
execution of the algorithm, the tasks of broadcasting and
gossiping will be completed successfully. In this paper,
we also consider reliability issues. Furthermore, we show
that it is possible to increase the level of fault-tolerance
in our algorithms, at the expense of some small extra
time consumption to deal with a limited number of edge
failures. We defer this issue to Section III.

A. Our results

We provide a new (efficiently computable) determinis-
tic schedule that usesD+O(logn) time units to complete
the broadcasting task in any planar graph of sizen,
and with diameterD. This significantly improves on the
previously known best schedule, i.e., theD + O(log3 n)
schedule from [16]. Remarkably, our new broadcasting
scheme also improves the3D-time schedule in [23] for
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the graphs with large diameter. In this paper, we also
propose a2D+O(log n)-time algorithm for fault-tolerant
radio broadcasting in planar graphs, in the presence of a
constant number of edge failures.

B. Related work

The work on communication in known topology radio
networks was initiated in the context of the broadcasting
problem. In [12], Chlamtac and Weinstein prove that the
broadcasting task can be completed in timeO(D log2 n)
for every n-vertex radio network of diameterD. An
Ω(log2 n) time lower bound was proved for the family
of graphs of radius 2 by Alonet al [1]. In [16], Elkin
and Kortsarz give an efficient deterministic construction
of a broadcasting schedule of lengthD + O(log4 n)
together with aD+O(log3 n) schedule for planar graphs.
Recently, Gąsieniec, Peleg and Xin [23] showed that a
D + O(log3 n) schedule exists for the broadcast task,
that works inany radio network. In the same paper, the
authors also provide an optimal randomized broadcasting
schedule of lengthD+O(log2 n) and a new broadcasting
schedule using fewer than3D time slots on planar graphs.
Very recently, a24D + O(log2 n) time deterministic
broadcasting schedule for any radio network was pro-
posed by Kowalski and Pelc in [28]. This is asymptot-
ically optimal unlessNP ⊆ BPTIME(nO(log log n))

[28]. Nonetheless, for largeD, a D + O( log3 n
log log n ) time

broadcasting scheme outperforms the one in [28], which
was proposed by Cicalese, Manne and Xin in [10] very re-
cently. Efficient radio broadcasting algorithms for several
special types of network topologies can be found in Diks
et al.[13]. For general networks, however, it is known that
the computation of an optimal (radio) broadcast schedule
is NP-hard, even if the underlying graph is embedded in
the plane [8], [34].

Many authors also studied deterministic distributed
broadcasting in ad-hoc radio networks, in which every
node knows only its own label, using the model of
directed graphs, see for instance [4]–[7], [9], [11], [14],
[26]. Increasingly faster broadcasting algorithms work-
ing on arbitraryn-node (directed) radio networks were
constructed, the currently fastest being theO(n log2 D)-
time algorithm from [11]. (HereD is the diameter of the
network, i.e, the longest distance from the source to any
other node). On the other hand, in [9] a lower bound of
Ω(n log D) on the time required to perform broadcasting
was proved for directedn-node networks of radiusD.

Very few results [15], [25], [33] are known about radio
broadcasting in presence of node (edge) failures in con-
trast to plethora of papers on fault-tolerant communication
in wired P2P networks (For a survey see [33]).

Radio gossiping in networks with known topology
was first studied in the context of radio communication
with messages of limited size, by Gąsieniec and Potapov
in [21]. They also proposed several optimal or close
to optimal O(n)-time gossiping procedures for various
standard network topologies, including lines, rings, stars

and free trees. For general topology radio network a
O(n log2 n) gossiping scheme is provided and it is proved
that there exists a radio network topology in which the
gossiping (with unit size messages) requiresΩ(n log n)
time. In [30], Manne, and Xin show the optimality of
this bound by providing anO(n log n)-time gossiping
schedule with unit size messages in any radio network.
The first work on radio gossiping in known topology
networks with arbitrarily large messages is [22], where
several optimal gossiping schedules are shown for a
wide range of radio network topologies. For arbitrary
topology radio networks, anO(D + ∆ log n) schedule
was given by Gąsieniec, Peleg, and Xin in [23]. Very
recently, Cicalese, Manne, and Xin [10] provided a new
(efficiently computable) deterministic schedule that uses
O(D + ∆ log n

log ∆−log log n ) time units to complete the gos-
siping task in any radio network of maximum degree
∆ = Ω(log n). Later in [31], Manne and Xin further
improve the gossiping time toO(D+ ∆ log n

log ∆ ) in any radio

network of maximum degree∆ = Ω(log
c

c−1 n), for any
constantc > 1, which is an optimal schedule in the sense
that there exists a radio network topology, specifically a
∆-regular tree, in which the radio gossiping cannot be
completed in less thanΩ(D + ∆ log n

log ∆ ) units of time.
So far, the gossiping problem has mostly been stud-

ied in the context of ad-hoc radio networks, where the
topology of connections is unknown to the nodes. In this
model, Chrobaket al. [7] proposed a fully distributed
deterministic algorithm that completes the gossiping task
in time O(n3/2 log3 n). For small values of the diameter
D, the gossiping time was later improved by Gąsieniec
and Lingas [18] toO(nD1/2 log3 n). Another interesting
O(n3/2)-time algorithm, a tuned version of the gossip-
ing algorithm from [7], can be found in [37]. A very
recentO(n4/3 log10/3 n)−time gossiping algorithm has
been proposed by Gąsieniec, Radzik, and Xin in [24]. A
study of deterministic gossiping in ad-hoc radio networks,
with messages of limited size, can be found in [17]. The
gossiping problem inad-hocradio networks also attracted
studies based on efficient randomized algorithms. In [7],
Chrobak et al. proposed anO(n log4 n)-time gossiping
procedure. This time was later reduced toO(n log3 n)
[29], and very recently toO(n log2 n) [11].

II. B ROADCASTING IN PLANAR GRAPHS WITH

KNOWN TOPOLOGY

In this section we present the idea of a deterministic
algorithm that generates a schedule for completing the
broadcasting task in a planar graph in timeD+O(log n).
Our schedule is based on the notion of agathering
spanning treeas given in [23].

A. Preliminaries

We first recall the following recursive ranking
procedure of nodes in a rooted tree (see [23]). Leaves
have rank1. Next consider a nodev and the setQ of
its children and letrmax be the maximum rank of the
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nodes inQ. If there is a unique node inQ of rank rmax

then set the rank ofv to rmax, otherwise set the rank of
v to rmax + 1.

Lemma 1:The largest rank in a tree of sizen is
bounded bydlog ne (see [23]).

Given any graphG with source nodes, the nodes are
partitioned into consecutive layersLi = {v | dist(s, v) =
i}, for i = 0, .., D where D is the diameter ofG. A
gathering spanning tree GSTof G is a BFS spanning tree
T of G rooted ats, such thatT is ranked as above and that
also satisfies the following condition: every node inLj+1

of ranki is at most adjacent to one node inLj also of rank
i, and thus if all the nodes of ranki in Lj transmit at the
same time then the messages will be received by the nodes
in Lj+1 of rank i successfully without any collisions.

The following lemma was shown in [23].

Lemma 2:There exists a polynomial time construction
of a GST in any graphG.

Figure1 shows how a gathering spanning tree can be
constructed from a graphG.

1331 1 1

1113 3 1

1122 3 1

1112 3 1

1121 2 1

1111 1 1

4

Original Graph Gathering−spanning−tree with ranks

Figure 1. Creating a gathering spanning tree.

In the following we assume a rankedGST in G given
by the parent relation on each node. For clarity of
presentation, we use the same definitions as in [23].

Definition 3: the rank sets: Ri = {v | rank(v) = i},
where1 ≤ i ≤ rmax ≤ dlog ne.

Definition 4: the fast transmission set: F k
i = {v |

v ∈ Lk ∩ Ri and parent(v) ∈ Ri}. We also define
Fi =

⋃D
k=1 F k

i andF =
⋃rmax

i=1 Fi.

Definition 5: the slow transmission set: Sk
i = {v | v ∈

Lk ∩ Ri and parent(v) ∈ Rj , j > i}. We also define
Si =

⋃D
k=1 Sk

i andS =
⋃rmax

i=1 Si.

Lemma 6: In a planar graph, all nodes in setSi+1 of
a GST can receive the source message from their parents
in Li of the GST in three time units.

Proof. In [23], it states that all nodes in one partition
can be informed by another partition in a bipartite planar

graph (in this case two consecutive BFS layers) in three
time units. The solution is based on the use of the3-step
subschedule Procedure PB. (See an example in Figure
2.) Note that during this process the source message
ms received by a nodev ∈ Si+1 may be delivered by
some other nodes inLi of GST rather than exactly by
its parent in the GST.

3 2 2 1 33

2

1
1

2

3
2

2

1

1

2

s

: Node v transmits in the ith time slot.i

2
1

Figure 2. An example of Procedure PB. (All solid black nodes in L2

will receive the source message from the white nodes inL1 after three
time slots. Note that all white nodes have already received the source
message froms in the previous time slot.)

B. Deterministic construction of aD + O(log n) broad-
casting schedule

The deterministic algorithm uses the ranked gathering
spanning tree GST, on this occasion rooted in thesource
nodes. The algorithm usesfast and slow transmissions
that partition the set of nodes to the setsF andS, where
the broadcast message is disseminated from the roots
(using parent-child connections) towards the leaves of the
tree.

Let us start with an overview of the broadcast process
from the point of view of a copy of the message that
was eventually received at some leafa of the tree. Note
that this message does not necessarily have to follow the
unique shortest pathp(a) leading from the root of the tree
to a. In fact, there are many paths on which the message
could be forwarded. For the sake of the time complexity
analysis, however, we fix our attention on the pathp(a)
and argue about the potential progress of the message
along this path.

Conceptually, the pathp(a) is broken down into seg-
ments

p(a) = 〈pF
1 (a), pS

1 (a), pF
2 (a), pS

2 (a), . . . , pF
q (a), pS

q (a)〉 ,

where eachpF
i (a) is a segment consisting of fast trans-

mission edges (i.e., edges leading fromparent(v) to v,
both of the same rank) and eachpS

i (a) is a single edge
(u, w) where u is a node on layerLk for somek, w
is a node on layerLk+1 andrank(u) > rank(w). We
refer to such edges(u, w) as slow transmission edges (see
Figure 3 for an example). (Note that some of thepF

i (a)
segments may be empty.)

Again, we stress that in reality, the message need
not follow this path. Nevertheless, we may consider the
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1331 1 1

1113 3 1

1122 3 1

1112 3 1

1121 2 1

1111 1 1

4 pS
1 (b)

pF
1 (b)

pS
1 (a)

pF
1 (a)

pS
2 (a)

pF
2 (a)

pS
3 (a)

pF
3 (a)

ba

Figure 3. An example of the path partition.

“progress” of the message along this path, by measuring
the delay from the time the message is already available
at some nodev on the pathp(a) to the time the message
has already reached the following nodew on the path
(though not necessarily via a transmission fromv). Hence
conceptually, the message progress can be viewed as
traversing the pathp(a) by alternating (flipping) between
chains of fast transmission edges connecting nodes of
the same rank and slow transmission steps over edges,
connecting higher ranked nodes to lower ranked nodes.

Next we describe the schedule governing these trans-
missions. During the broadcasting process the nodes in
the tree use the following pattern of transmissions. Let
rmax ≤ dlog ne be the largest rank in the tree. Consider
a nodev of rank j, where1 ≤ j ≤ rmax on BFS layer
Li with a child w also of rankj at the next BFS layer
Li+1. Thenv is set to perform a fast transmission tow in
time stepst satisfyingt ≡ i + 6(rmax − j) mod 6rmax.
Observe that in real terms,v will perform such a fast
transmission exactly once, on the first appropriate time
slot after it receives the message for the first time. The
slow transmissions on BFS layerLi are performed in
time stepst satisfying t ≡ i + 3 mod 6. Note that this
pattern of transmissions separates the fast and the slow
transmissions at any BFS layer by three units of time.
Thus there are no collisions between the fast and the
slow transmissions at the same BFS layer. The pattern also
ensures that at any time step, transmissions are performed
on BFS layers at distances that are multiples of 3 apart.
Thus there will be no conflicts between transmissions
coming from different BFS layers.

Note also that once the broadcast message arrives at
the first nodev of a fast segmentpF

i (a) of the route
with a particular rankj, it may have to wait for at
most 6 (e.g. O(1)) time steps if the parent ofv in
the GST has rankj + 1, otherwise it has to wait at
most 6(rank(parent(v)) − j), but then, when finally
transmitted to the next BFS layer, it will be forwarded
through the fast segmentpF

i (a) without further delays.
Once reaching the end nodeu of the fast segment

pF
i (a), the message has to be transmitted from some node

on u’s BFS layer to the next nodew on p(a), which is of
lower rank, using a slow transmissions mechanism pro-
cedurePB which was discussed in Lemma 6. The slow
transmission mechanism is run repeatedly in a periodic
manner at every BFS layer of the tree. In particular, at any

BFS layer, the steps of the slow transmission procedure
PB are performed in every 6th step of the broadcasting
schedule.

Hence, suppose the broadcast message traversing to-
wards any destinationa in the tree has reached a node
u of BFS layerLj on its pathp(a), such that the next
edge(u, w) on the path is a slow transmission edge. It
is possible that neitheru nor any other neighbor ofw
on BFS layerLj participates in the current activation of
procedure PB onLj (possibly because neither of those
nodes had the message at the last time the procedure
was activated). Nevertheless,u will participate in the
next activation of procedure PB on BFS layerLj, which
will be started within at mostO(1) time (namely, the
time required for the current activation to terminate).
Moreover, it is guaranteed that by the time that activation
of procedure PB terminates,w will have the message
(although it may get it from any of its neighbors inLj,
and not necessarily directly fromu). Hence this entire
stage can be thought of as a slow transmission operation
on the edge(u, w), taking a total of at mostO(1) time
steps.

In the view of these observations, the total time
required for the broadcast message to reach a leaf
a in the tree can be bounded as follows. LetDi,
for 1 ≤ i ≤ rmax, denote the length ofpF

i (a),
the ith fast segment of the routep(a) used by the
broadcast message to reacha. Thus the time required
for the broadcast message to reacha is bounded by
O(1) + D1 + O(1) + D2 + . . . + O(1) + Drmax

≤
D + O(log n) for the fast transmissions plus
rmax · O(1) = O(log n) for the slow transmissions,
yielding a total of D + O(log n). Thus we have the
following theorem.

Theorem 7:There exists a deterministic polynomial
time algorithm that constructs, for any planar graph of
sizen and diameterD, a broadcasting schedule of length
D + O(log n).

C. An example of the broadcasting schedule

In this section, we give an example for our broadcasting
schedule.

(i) Construction of a gathering spanning tree. (See Figure
4.)
(ii) The transmission pattern (fast:

f
→; slow:

s
→).

Steps Transmissions
(1) 1

s
→ 2 || 1

s
→ 3 || 1

s
→ 4 ||

1
s
→ 5 || 1

s
→ 6 || 1

s
→ 7 ||

(2) 3
f
→ 8 || 4

f
→ 12 ||

(3) 12
f
→ 18 ||

(4) 18
f
→ 24 || 3

s
→ 9 || 4

s
→ 10 || 4

s
→ 11 ||

(5) 8
s
→ 14 || 8

s
→ 15 ||

(6) 15
s
→ 21 || 15

s
→ 22 || 18

s
→ 23 ||

(7) 24
s
→ 27 || 24

s
→ 30 ||
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1

2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 17 18 19

20 21 22 23 24 25

26 27 28 29 30 31

32 33 34 35 36 37

1

2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 17 18 19

20 21 22 23 24 25

26 27 28 29 30 31

32 33 34 35 36 37

y y: ID of v;node: v; z: rank of v;

4

3 3

3 3

3

3

2 2

2

2 2

1 1 1 1

1 1 1 1

111

1 1 1 1

1

111111

1 1 1

z

Figure 4. Construct a gathering spanning tree from the original
planar graph.

(8) 27
s
→ 32 || 27

s
→ 33 || 30

s
→ 36 ||

(9) 14
f
→ 20 ||

(10) 20
s
→ 26 || 20

s
→ 28 || 7

f
→ 13 ||

(11) 9
f
→ 16 || 11

f
→ 17 || 13

f
→ 19 ||

30
s
→ 35 ||

(12) 19
f
→ 25 ||

(13) 23
f
→ 29 || 25

f
→ 31 ||

(14) 28
f
→ 34 || 31

f
→ 37 ||

III. FAULT-TOLERANT BROADCASTING

In this section, we show how a fault-tolerant protocol
for the broadcasting task in any planar graph could be
achieved in time2D + O(log n). This has almost same
time complexity as the fault-free broadcasting schedule
we proposed in the previous section.

A. The model

We now assume that all nodes have distinct identities,
and each node has full knowledge about the topology of
the network. The network now contains a constant number
of edge failures but the nodes do not know which edges
are at fault. Furthermore, we assume that there are no
further edge failures during the execution of our fault-
tolerant algorithm. To make the broadcasting problem
feasible, we have to assume that the fault edges would
not disconnect the graph.

Under these assumptions, the following lemma holds.

Lemma 8:Let D and D′ denote the diameters of
original graph and the fault-tolerant graph respectively,
thenD′ = D + O(1).

B. The broadcasting protocol

Our fault-tolerant broadcasting protocol consists of
three consecutive and disjoint stages labeled DETEC-
TION, CONVERGECAST, and BROADCAST respec-
tively. In the DETECTION stage, all the fault edges
that are used in the fault-free broadcasting schedule in
Section II are detected. In the CONVERGECAST stage,

all detected information about edge failures from the
previous stage are collected at the source nodes. Finally,
in the BROADCAST stage, the combined information of
the source message, updated knowledge of the topology of
the network, and a fault-free broadcasting schedule which
computed ats is distributed to all nodes froms.

Let c denote the number of edge failures. We use the
notation TD(n, D, c), TC(n, D, c), and TB(n, D, c), to
denote the number of rounds used by DETECTION,
CONVERGECAST, and BROADCAST respectively.
It is then clear that our fault-tolerant broadcasting
protocol solves the broadcasting problem in time
TD(n, D, c) + TC(n, D, c) + TB(n, D, c). We formulate
this in the following result.

Lemma 9: If the protocols DETECTION, CON-
VERGECAST, and BROADCAST used in the fault-
tolerant broadcasting protocol complete their assigned
task, then the fault-tolerant broadcasting protocol com-
pletes the broadcasting task in timeTD(n, D, c) +
TC(n, D, c) + TB(n, D, c).

C. The DETECTION stage

During this stage, all fault edges that are used in the
fault-free broadcasting schedule in Section II are marked.

All nodes first compute the rankedgathering spanning
treeGST rooted ats. The communication process is now
split into consecutive blocks of6 time units each. The
first 3 units of each block are used for fast transmissions
from the setF , and the remaining 3 units are reserved
for slow transmissions from the setS. We use 3 units
of time for each type of transmission in order to prevent
collisions between neighbouring BFS layers, which is the
same approach as in [10], [23], [30].

Recall that we can inform all children of the nodes in
Sk

j in GST within 3 time units due to Lemma 6.
We compute for each nodev ∈ Sk

j at layer k the
number of a step1 ≤ s(v) ≤ 3 in which nodev can
transmit without interruption from other nodes inSk

j also
in layer k. Let v be a node with rankj in the GST.

Depending on ifv belongs to the setF , or to the set
S, it will transmit in the time blockt(v) given by:

t(v) =

{

3 · (j − 1) + 1 if v ∈ F
3 · (j − 1) + s(v) if v ∈ S

We observe that any nodev at layerk in the GST is
required to wait at mostO(log n) time units to transmit.
Further, due to the properties of theGST and Lemma
6, any nodew will wait for at mostO(log n) time units
to receive the message successfully from their parents
in the fault-freeGST. Also note thatw will know the
exact time when it is supposed to receive the message.
Furthermore, if the message failed to get to the node
w from its parentv by the scheduled time, thenw will
response to report this failure to the source nodes in the
CONVERGECAST stage. We call such a nodew, as a
corresponding node. Moreover, the above definition of
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t(v) results in the following lemma.

Lemma 10:All edge failures in theGST can be de-
tected by the corresponding nodes in timeO(log n). Thus
TD(n, D, c) = O(log n).

D. The CONVERGECAST stage

In this stage, all information computed from previous
stage related to the edge failures will be collected at the
source nodes.

1) Resolving competition:The main difficulty that oc-
curs in radio communication is the presence of collisions.
It has been shown before, see, e.g., [7], [9], [20], [24],
that the most efficient tools designed for collision reso-
lution are based on combinatorial structures possessing
a selectivity property. We say that a setR hits a setZ
on elementz, if R ∩ Z = {z}, and a family of sets
F hits a setZ on elementz, if R ∩ Z = {z} for at
least oneR ∈ F . In [9] a family of subsets of the
set {0, 1, . . . , N − 1} ≡ [N ] is defined that hits each
subset of[N ] of size at mostk ≤ N on all of its k
elements. This family of subsets is referred to as being
stronglyk−selective. It is also shown that there exists
such a family of sizeO(k2 log N) = O(k2 log n), which
is also referred to as a strongk−selector. The work
presented in [7] defines a family of subsets of the set
{0, 1, . . . , N − 1} ≡ [N ] that hits each subset of[N ] of
size at mostk on at leastk/2 distinct elements, where
N ≥ k ≥ 1. This family is referred to as ak−selector
and such a family of sizeO(k log N) = O(k log n) is
shown to exist.

In the following we show how to cope with collisions
that occur during the competition process through the use
of selective families and selectors.

2) Promoting messages in bipartite graphs:Assume
that we have a connected bipartite graphB in which nodes
are partitioned into two setsU andL. While, in general,
nodes inU andL are aware of the presence of each other,
we assume here that each nodev ∈ L is associated with
exactly one of its neighborsu ∈ U (labeled as theparent
of v) and that this relation is known to both of them. Note
that a node inU can be the parent of several nodes inL.
Due to the edge failures observed by the corresponding
nodes, the corresponding nodes inL must to choose a new
parent inU . In what follows we show how to move at
mostc messages which indicated the edge failures that are
available at the corresponding nodes ofL, to the parent
nodes inU in time O(c log n), if the edge between a
corresponding nodev and the parentv chose is fault-free,
where the constantc is upper bound of the edge failures
in the network.

It is known that a communication mechanism based on
the selector idea allows a fraction (e.g., a half) of thec
competing nodes inL to deliver their messages to their
parents inU in time O(c log n) [7]. Let S(c) represent
the collision resolution mechanism based on selectors.
Note thatS(c), if applied in undirected networks, can be
supported by anacknowledgement of deliverymechanism

in which each transmission from the participating nodes in
L is alternated with an acknowledgement message coming
from the parent nodeu ∈ U . If during the execution
of S(c) a transmission fromv towards u is success-
ful, i.e., one ofu neighbors succeeds in delivering its
message, the acknowledgement issued byu and returned
to v confirms the successful transmission; otherwise the
acknowledgement is null. LetS(c) be the mechanism
with this acknowledgement feature added toS(c). In
other words, the use ofS(c) allows us to exclude all
nodes inL that have managed to deliver their message
to their parent inU during the execution ofS(c) from
further transmissions. Note that the duration ofS(c) is
O(c log n), see [7].

Let S∗(i) be the communication mechanism based
on the concatenation (superposition) ofi selectors
S(2i), S(2i−1), . . . , S(21). We call this a descending
selector. The descending selector extended by the
acknowledgement mechanism, i.e., the concatenation of
S(2i),S(2i−1), . . . ,S(21), forms a promoterand it is
denoted byS∗(c). Note that the duration ofS∗(c) is
O(c log n).

Lemma 11:The message from a corresponding node
v from one partition of a bipartite graph can be sent to
its parentu in another partition in timeO(c log n), if the
edge(v, u) is fault-free.

Proof. The proof is done by induction, and is based
on the fact that after the execution of eachS(2j), for
j = dlog ce, . . . , 1, the number of competing nodes inL
is bounded by2j−1.

We run thedescending selectorc times to guarantee
that each corresponding node inL will choose a fault-free
parentu ∈ U properly, if there exists such au. Note
that a corresponding node will propose a new potential
parent node if it failed to get one in previous rounds.

Corollary 12: All messages from at most c
corresponding nodes can be collected from one
partition of a bipartite graph to another partition in time
O(c2 log n), if there exists at least one fault-free edge
between the nodeu ∈ U and each corresponding node
in L.

In the case that there does not exist any fault-free edge
between a corresponding nodev in L and any nodeu ∈
U , the nodev arbitrarily picks one of its neighboring
nodes in the highest BFS layer as it parent. Due to Lemma
8, the time complexity will be same as for the former case.
From now on, we only analyse the former case.

3) 1-reduction approach in bipartite graphs:The 1-
reduction approach is used to collect all the messages
from the c corresponding nodes inL to at mostc − 1
nodes inU , when the collision occurs.

When each corresponding nodev ∈ L promots the
message to its parentu ∈ U , this relation is known to
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both of them. Furthermore, eachv ∈ L is associated with
exactly one nodeu ∈ U. This also means that the edge
between a corresponding nodev and its parentu is fault-
free. In the1-reduction approach, we will use these fault-
free edges for communication.

Our 1-reduction approach consists of three consecutive
phases. The first phase is to inform the corresponding
nodes about the fault-free edges between it and other
parent nodes. This could be done by running astrong
selector(of sizeO(c2 log n)) on the parent nodes. In the
second phase, a corresponding nodev will choose a new
parentu such that(v, u) is a fault-free edge, and the
identity of u is smaller than its current parent, whereu is
a parent node for other corresponding nodes. This can be
performed by execution of adescending selectorto inform
the new parent ofv. It is clear that there exists at least one
parent nodes with two children from the corresponding
nodes. The third phase is to withdraw the relationship
between the corresponding nodev and its previous parent.
Similarly, it could be also achieved by execution of a
descending selector.

Due to Lemma 11 and the properties of thestrong
selectorwe employed, the following lemma holds.

Lemma 13:After one execution of the1-reduction
approach at least two messages from competing nodes
will be grouped together by one of their parents in time
O(c2 log n), wherec is the upper bound of the number
of edge failures in the network.

In our further considerations, the setsU and L will
correspond to two adjacent BFS levels, upper and lower
respectively, in a gathering spanning tree ofG.

The messages from the corresponding nodes will pro-
mot to the source nodec along the path on the modified
gathering spanning tree using the fault-free edges layer
by layer from bottom to top.

We observe that any corresponding nodev in the
modified GST requires at mostD + O(1) collision-free
transmissions,c executions of the1-reduction approach
to deliver its message to the source nodes. This results
in the following lemma.

Lemma 14:All messages about the edge failures can
be collected at the source nodes in time D+O(c2 log n).

Corollary 15: TC(n, D, c) = D + O(c2 log n) = D +
O(log n).

E. The BROADCAST stage

When the source nodes has received all information
about the edge failures,s could update the knowledge
of the topology of the network, and compute a fault-free
broadcasting schedule. Finally, the compound message of
the source message, the updated topology information of
the network, and the fault-free broadcasting schedule is
broadcast by the source nodes to the other nodes in the
network according to the offline fault-free broadcasting

schedule. This can be achieved in timeD + O(log n)
due to Theorem 7.

Lemma 16:TB(n, D, c) = D + O(log n).

Combining Lemma 9, Lemma 10, Corollary 15, and
Lemma 16, we get the desired result.

Theorem 17:The fault-tolerant broadcasting problem
with constant number of edge failures for any planar graph
of size n and diameterD, can be solved in timeD +
O(log n).

IV. CONCLUSION

We have proposed an efficient (polynomial time) con-
struction of a deterministic schedule that performs radio
broadcasting in timeD + O(log n) in planar graphs of
sizen, and with diameterD. The evident open problem is
whether there exists a deterministic broadcasting schedule
of time D+O(1) for planar graphs. In this paper, we also
considered reliability issues. Fault-tolerant broadcasting
with a large number of edge failures is left as an intriguing
open problem.
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[17] M. Christersson, L. Gąsieniec, and A. Lingas, Gossiping
with bounded size messages in ad-hoc radio networks,
29th International Colloquium on Automata, Languages
and Programming, ICALP’02, pp. 377-389.
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