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Abstract

We present a scalable framework for parallelizing greedy graph coloring algorithms on distributed-memory computers. The framework unifies
several existing algorithms and blends a variety of techniques for creating or facilitating concurrency. The latter techniques include exploiting
features of the initial data distribution, the use of speculative coloring and randomization, and a BSP-style organization of computation and
communication. We experimentally study the performance of several specialized algorithms designed using the framework and implemented
using MPI. The experiments are conducted on two different platforms and the test cases include large-size synthetic graphs as well as real
graphs drawn from various application areas. Computational results show that implementations that yield good speedup while at the same time
using about the same number of colors as a sequential greedy algorithm can be achieved by setting parameters of the framework in accordance
with the size and structure of the graph being colored. Our implementation is freely available as part of the Zoltan parallel data management
and load-balancing library.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In parallel scientific computing applications, computa-
tional dependency is often modeled using a graph. A vertex
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coloring of the graph is then used as a routine to identify in-
dependent subtasks that can be performed concurrently. Exam-
ples of cases where coloring is used for such a purpose include
iterative solution of sparse linear systems [20], preconditioners
[26], sparse tiling [27], and eigenvalue computation [24]. The
computational (model) graph in such contexts is often already
distributed among processors and therefore the coloring needs
to be performed in parallel. The alternative approach of gath-
ering the graph on one processor for a subsequent sequential
coloring (by the same processor) is prohibitively time consum-
ing or even infeasible due to memory constraints.

Theoretical results on graph coloring do not offer much good
news: even approximating the chromatic number of a graph is
known to be NP-hard [2]. For the computational graphs men-
tioned earlier as well as many other graphs that arise in practice,
however, greedy, linear-time, serial coloring heuristics give so-
lutions of acceptable quality and are often preferable to slower,
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iterative heuristics that may use fewer colors. An example of
an application in which greedy graph coloring algorithms pro-
vide satisfactory solutions is the efficient computation of sparse
derivative matrices [14].

This paper is concerned with the design and implementa-
tion of efficient, parallel, greedy coloring heuristics suitable
for distributed-memory computers. The focus is on the realis-
tic setting where the number of available processors is several
orders of magnitude less than the number of vertices in the in-
put graph. The goal is to develop parallel algorithms that sat-
isfy the following two requirements simultaneously. First, the
execution time of an implementation decreases with increasing
number of processors. Second, the number of colors used by a
parallel heuristic is fairly close to the number used by a serial
heuristic.

Since greedy coloring heuristics are inherently sequential,
the task at hand is difficult. A similar task had been the sub-
ject of several other studies, including the works of Gjertsen
et al. [17,21]; Allwright et al. [1]; Finocchi et al. [9]; and
Johansson [19]. Some of these studies reported discouraging
speedup results [1,17,21], while others relied on only sim-
ulations without providing actual parallel implementations
[9,19]. In contrast, Gebremedhin, Manne, Pothen, and Woods
reported encouraging speedup results on shared-memory im-
plementations of algorithms they developed in a series of inter-
related works [12,13,15]. Gebremedhin et al. [11] extended
one of these algorithms to the Coarse Grained Multicomputer
model.

Building upon experiences from earlier efforts and introduc-
ing several new ideas, in this paper, we present a comprehen-
sive description and evaluation of an efficient framework for
parallelizing greedy coloring algorithms (preliminary results of
this work have been presented in [4]). The basic features of
the framework could be summarized as follows. Given a graph
partitioned among the processors of a distributed-memory ma-
chine, each processor speculatively colors the vertices assigned
to it in a series of rounds. Each round consists of a tentative
coloring and a conflict-detection phase. The coloring phase in
a round is further broken down into supersteps in which a pro-
cessor first colors a pre-specified number s?1 of its assigned
vertices sequentially and then exchanges recent color informa-
tion with other, relevant processors. In the conflict-detection
phase, each processor examines those of its vertices that are
colored in the current round for consistency and identifies a set
of vertices that needs to be recolored in the next round to re-
solve any detected conflicts. The scheme terminates when no
more conflicts remain to be resolved.

We implemented (using the message-passing library MPI)
several variant algorithms derived from this framework. The
various implementations are experimentally analyzed so as to
determine the best way in which various parameters of the
framework need to be combined in order to reduce both runtime
and number of colors. With this objective in mind, we attempt
to answer the following questions. How large should the su-
perstep size s be? Should the supersteps be run synchronously
or asynchronously? Should interior vertices be colored before,
after, or interleaved with boundary vertices? How should a

processor choose a color for a vertex? Should inter-processor
communication be customized or broadcast-based?

The experiments are carried out on two different PC Linux
clusters. The testbed consists of large-size synthetic graphs as
well as real graphs drawn from various application areas. The
computational results we obtained suggest that, for large-size,
structured graphs (i.e., graphs where the percentage of bound-
ary vertices in a given partition is fairly low), a combination of
parameters in which

(1) a superstep size in the order of a thousand is used,
(2) supersteps are run asynchronously,
(3) each processor colors its assigned vertices in an order where

interior vertices appear either strictly before or strictly after
boundary vertices,

(4) a processor chooses a color for a vertex using a First-Fit
(FF) scheme, and

(5) inter-processor communication is customized,

gives an overall best performance. Furthermore, the choice of
the coloring order in (3) offers a trade-off between number
of colors and execution time: coloring interior vertices first
gives a faster and slightly more scalable algorithm whereas
an algorithm in which boundary vertices are colored first uses
fewer colors. The number of colors used even when interior
vertices are colored first is fairly close to the number used by
a sequential greedy algorithm. For unstructured graphs (i.e.,
graphs where the vast majority of the vertices are boundary),
good performance is observed by using a superstep size close
to a hundred in item (1), a broadcast-based communication
mode in item (5), and by keeping the remaining parameters as
in the structured case. For almost all of the test graphs used
in our experiments, the variants of our framework with the
aforementioned combination of parameters converged rapidly
(within at most six rounds) and yielded fairly good speedup
with increasing number of processors.

The remainder of this paper is organized as follows. In
Section 2 we discuss relevant previous work on parallel (and
distributed) coloring. In Section 3 we present the unifying par-
allelization framework proposed in this paper and discuss the
several directions in which it can be specialized. In Section 4
we present extensive experimental results on our implemen-
tations of various specialized algorithms designed using the
framework. We conclude in Section 5.

2. Background

2.1. Sequential coloring

A coloring of a graph is an assignment of positive integers
(colors) to vertices such that every pair of adjacent vertices
receives different colors. The graph coloring problem, whose
objective is to minimize the number of colors used, is known to
be NP-hard [10]. The current best known approximation ratio

for the problem is O(n
(log log n)2

(log n)3 ), where n is the number of
vertices in the graph. Moreover, the problem is known to be
not approximable within n1/7−! for any ! > 0 [2].
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Despite these rather pessimistic results, greedy sequential
coloring heuristics are quite effective in practice [6]. A greedy
coloring heuristic iterates over the set of vertices in some order,
at each step assigning a vertex the smallest permissible color
(a FF strategy). Vertex ordering techniques that have proven
to be effective in practice include Largest Degree First, Small-
est Degree Last, Incidence Degree, and Saturation Degree or-
dering; see [14] for a review of these techniques. Any greedy
heuristic that employs a FF coloring strategy uses no more (but
often many fewer) than !+ 1 colors, where ! is the maximum
degree in the graph.

2.2. Related previous work on parallel coloring

A number of the existing parallel algorithms for greedy graph
coloring rely on Luby’s algorithm for computing a maximal in-
dependent set in parallel [23]. In Luby’s algorithm, each vertex
v in the input graph is assigned a random number r(v), and an
initially empty independent set I is successively populated in
the following manner. In each iteration, if a vertex v dominates
its neighborhood N(v), i.e., if r(v) > r(w) for all w ∈ N(v),
then the vertex v is added to the set I and v as well as the
vertices in N(v) are deleted from the graph. This procedure is
then recursively applied on the graph induced by the remaining
vertices, and the process terminates when the graph becomes
empty, at which point I is a maximal independent set.

Luby’s parallel algorithm for computing a maximal indepen-
dent set can easily be turned into a parallel (or a distributed)
coloring algorithm: Instead of removing a dominating vertex v

(a vertex whose random value is larger than the value of any
of its uncolored neighbors) and its neighbors N(v) from the
current (reduced) graph, assign the vertex v the smallest color
that is not used by any of its already colored neighbors. If one
proceeds in this manner, then a pair of adjacent vertices surely
gets different colors, and once assigned, the color of a vertex
remains unchanged during the course of the algorithm.

Each of the works of Jones and Plassmann [21], Gjertsen
et al. [17], and Allwright et al. [1] is essentially a variation of
this general scheme. In each algorithm, the input graph is as-
sumed to be partitioned among the available processors, and
each processor is responsible for coloring the vertices assigned
to it. The interior vertices on each processor are trivially col-
ored in parallel (using a sequential algorithm on each proces-
sor), and a variant of Luby’s coloring algorithm is applied on
the interface graph, the subgraph induced by the boundary ver-
tices. A related algorithm that could be considered here is one
in which the interface graph is built on and colored by one
processor. In Section 3.4 we discuss this variation as well as
a variant of the Jones–Plassmann algorithm [21] that we have
implemented for the purposes of experimental comparison.

In the algorithms discussed in the previous paragraph, a pair
of adjacent vertices is necessarily colored at different com-
putational steps. Thus, once the random function that is used
for determining dominating vertices has been set, the longest
monotone path in the graph gives an upper bound on the par-
allel runtime of the algorithm. As the work of Johansson [19]

shows, this inherent sequentiality can be overcome by using
randomization in the selection of a color for a vertex. In particu-
lar, Johansson analyzed a distributed coloring algorithm where
each processor is assigned exactly one vertex and the vertices
are colored simultaneously by randomly choosing a color from
the set {1, . . . ,! + 1}, where ! is the maximum degree in the
graph. Since this may lead to an inconsistent coloring, the pro-
cess is repeated recursively on the vertices that did not receive
permissible colors.

More recently, Finocchi et al. [9] have performed extensive
(sequential) simulations on a set of inter-related algorithms that
each resemble Johansson’s algorithm. In the basic variant of
their algorithms, the upper bound on the range of permissible
colors is initially set to be smaller than ! + 1 and is increased
later only when needed. Another feature of their algorithm is
that in a post-processing step at the end of each round, Luby’s
algorithm is applied on each subgraph induced by a color class.
Specifically, the post-processing step is used to find a maximal
independent set of vertices whose colors can be declared final.

2.3. Precursory work on parallel coloring

Each of the works surveyed in Section 2.2 has one or more of
the following weaknesses: (i) no actual parallel implementation
is given, (ii) the number of colors used, although bounded by
!+1, is far from the number used by a sequential greedy algo-
rithm, or (iii) an implementation yields poor parallel speedup on
unstructured graphs. Overcoming these weaknesses had been
the subject of several previous efforts in which at least a subset
of the authors of the current paper have been involved.

Gebremedhin and Manne [12] developed a simple, shared-
memory parallel coloring algorithm that gave fairly good
speedup in practice. In their algorithm, the vertex set is equi-
partitioned among the available processors and each processor
colors its assigned set of vertices in a sequential fashion, at
each step assigning a vertex the smallest color not used by any
of its on- or off-processor neighbors; the assigned color infor-
mation is immediately made available to other processors by
writing to shared memory. Inconsistencies—which arise only
when a pair of adjacent vertices residing on different processors
is colored simultaneously—are then detected in a subsequent
parallel phase and resolved in a final sequential phase.

Gebremedhin et al. [13] extended the algorithms in [12] to
the distance-2 and star coloring problems, models that occur
in the computation of Jacobian and Hessian matrices. The al-
gorithms in [13] also used randomized techniques in selecting
a color for a vertex to reduce the likelihood of conflicts. Ge-
bremedhin et al. [15] enhanced these algorithms by employing
graph partitioning tools to obtain more effective assignment of
vertices to processors and by using vertex orderings to mini-
mize cache misses in a shared-memory implementation.

In a different direction, Gebremedhin et al. [11] extended
the algorithm in [12] to the Coarse Grained Multicomputer
(CGM) model of parallel computation, thus making the algo-
rithm feasible for distributed-memory architectures as well. The
CGM model is a simplified version of the Bulk Synchronous
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Parallel (BSP) model introduced by Valiant [3,32]. Besides pay-
ing attention to cost associated with non-local data access, the
randomized as well as deterministic CGM-coloring algorithms
proposed in [11] differed from the shared-memory algorithm in
[12] in two ways. First, in the CGM-algorithms processors ex-
change information only after a group of vertices (rather than
a single vertex) have been colored. Second, in the CGM algo-
rithms potential conflicts are identified a priori and dealt with
in a recursive fashion. The algorithms in [11] were not imple-
mented, but we believe the first item would certainly translate
into practical gain while the second item may not, since a re-
cursive implementation is likely to be inefficient in practice.

3. A unifying framework

Building upon ideas and experiences gained from the efforts
mentioned in Section 2.3, we have developed a framework for
scalable parallel graph coloring on distributed-memory com-
puters. In this section, we describe the framework in detail and
show how it helps unify several existing algorithms.

3.1. The basic scheme

We assume that the input graph is partitioned among the p
available processors in some reasonable way. Typically, this is
achieved by employing a graph partitioning tool such as Metis
[22]. The partitioning used (regardless of how it is achieved)
classifies the vertices into two categories: interior and boundary.
An interior vertex is a vertex all of whose neighbors are located
on the same processor as itself whereas a boundary vertex has at
least one neighbor located on a different processor. Clearly, the
subgraphs induced by interior vertices are independent of each
other and hence can be colored concurrently trivially. Parallel
coloring of the remainder of graph, however, requires inter-
processor communication and coordination, and is a major issue
in the scheme being described.

At the highest level, our scheme proceeds in rounds. Each
round consists of a tentative coloring and a conflict-detection
phase. In the spirit of the BSP model, the coloring phase of a
round is organized as a sequence of supersteps, 2 where each
superstep has distinct computation and communication sub-
phases. Since the conflict-detection phase does not involve com-
munication, it does not need to be organized in supersteps.

In every superstep, each processor colors a pre-specified
number s of vertices in a sequential fashion, using color in-
formation available at the beginning of the superstep, and then
exchanges recent color information with other processors. In
particular, in the communication phase of a superstep, a proces-
sor sends the colors of its recently colored boundary vertices to
other processors and receives relevant color information from
other processors. In this scenario, if two adjacent vertices lo-
cated on two different processors are colored in the same su-
perstep, they may receive the same color and cause a conflict.

2 We use the word superstep in a looser sense than its usage in the BSP
model.

Algorithm 1. A Scalable Parallel Coloring Framework. Input:
graph G = (V , E) and superstep size s. Initial data distribu-
tion: V is partitioned into p subsets V1, . . . , Vp; processor Pi

owns Vi , stores edges Ei incident on Vi , and stores the identity
of processors hosting the other endpoints of Ei .

1: procedure SPCFramework(G = (V , E), s)
2: on each processor Pi , i ∈ I = {1, . . . , p}
3: for each bound. vtx v ∈ V ′

i = {u|(u, v) ∈ Ei} do
4: Assign v a random number r(v) generated using

v’s ID as seed
5: Ui ← Vi ! Ui : current set of vtxs to be colored
6: while ∃j ∈ I, Uj '= ∅ do
7: if Ui '= ∅ then
8: Partition Ui into !i subsets

Ui,1, Ui,2, . . . , Ui,!i , each of size s

9: for k ← 1 to !i do
10: for each v ∈ Ui,k do
11: assign v a “permissible” color c(v)

12: Send colors of boundary vertices in Ui,k

to other processors
13: Receive color information from other

processors
14: Wait until all incoming messages are suc-

cessfully received
15: Ri ← ∅ ! Ri is a set of vtxs to be recolored
16: for each boundary vertex v ∈ Ui do
17: if ∃ (v, w) ∈ Ei where c(v) = c(w) and

r(v) < r(w) then
18: Ri ← Ri ∪ {v}
19: Ui ← Ri

20: end on
21: end procedure

The purpose of the second phase of a round is to detect con-
flicts and accumulate on each processor a list of vertices to be
recolored in the next round. Given a conflict-edge, only one of
its two endpoints needs to be recolored to resolve the conflict.
The vertex to be recolored is determined in a random fashion so
that the workload in the next round is distributed more or less
evenly among the processors; we shall shortly discuss how the
random selection is done. The conflict-detection phase does not
require communication since by the end of the tentative color-
ing phase every processor has gathered complete information
about the colors of the neighbors of its vertices. The scheme
terminates when every processor is left with an empty list of
vertices to be recolored. Algorithm 1 outlines this scheme with
some more details. The scheme is hereafter referred to as Scal-
able Parallel Coloring Framework (SPCFRAMEWORK).

In each round of SPCFRAMEWORK, the vertices to be recol-
ored in the subsequent round are determined by making use of a
uniformly distributed random function over boundary vertices,
defined at the beginning of the scheme; interior vertices need
not be considered since they do not cause conflicts. For each
conflict-edge detected in a round, the vertex with the lower
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random value is selected to be recolored while the other
vertex retains its color (see the for-loop in Line 16 of
SPCFRAMEWORK). Notice that the set of vertices that retain
their colors in a round in this manner is exactly the set that
would be obtained by running one step of Luby’s algorithm
(discussed in Section 2.2) on the set of vertices involved in
conflicts.

In a distributed setting such as ours, the random numbers
assigned to boundary vertices need to be computed in a care-
ful way in order to avoid the need for communication between
processors to exchange these values. The for-loop in Line 3 of
SPCFRAMEWORK is needed for that purpose. There, notice that
each processor Pi generates random values not only for bound-
ary vertices in its own set Vi but also for adjacent boundary
vertices residing on other processors. Since the (global) unique
ID of a vertex is used in the random number generation, the
random value computed for a vertex on one processor is the
same as the value computed for the same vertex on another pro-
cessor. Thus processors avoid inquiring each other of random
values.

The coloring phase of a round is divided into supersteps
(rather than communicating after a single vertex is colored) to
reduce communication frequency and thereby the associated
cost. However, the number of supersteps used (or, equivalently,
the number of vertices colored in a superstep) is also closely
related to the likelihood of conflicts and consequently the num-
ber of rounds. The lower the number of supersteps the higher
the likelihood of conflicts and hence the higher the number of
rounds required. Choosing a value for the parameter s that min-
imizes the overall runtime is therefore a compromise between
these two contradicting requirements. An optimal value for s
would depend on such factors as the size and density of the in-
put graph, the number of processors available, and the machine
architecture and network.

3.2. Variations of the scheme

SPCFRAMEWORK has been deliberately presented in a gen-
eral form. Here we discuss several ways in which it can be
specialized.

3.2.1. Color selection strategies
In Line 11 of SPCFRAMEWORK, the choice of a color, per-

missible relative to the currently available color information,
can be made in different ways. The strategy employed affects
the number of colors used by the algorithm and the likelihood
of conflicts (and thus the number of rounds required by the al-
gorithm). Both of these quantities are desired to be as small
as possible. A coloring strategy typically reduces one of these
quantities at the expense of the other. Here, we present two
strategies, dubbed FF and Staggered First Fit (SFF).

In the FF strategy each processor Pi chooses the smallest
permissible color from the set {1, . . . , Ci}, where Ci , initially
set to be one, is the current largest (local) color used. If no such
color exists, Ci is incremented by one and the new value of Ci

is chosen as a color. In contrast, the SFF strategy relies on an

initial estimate K of the number of colors needed for the input
graph, and each processor Pi chooses the smallest permissible
color from the set {* iK

p +, . . . , K}. If no such color exists, then

the smallest permissible color in {1, . . . , , iK
p -} is chosen. If

there still is no such color, the smallest permissible color greater
than K is chosen. Notice that, unlike FF, the search for a color
in SFF starts from different “base colors” for each processor.
Therefore SFF is likely to result in fewer conflicts than FF. On
a negative side, the fact that the search for a color starts from
a base larger than one makes SFF likely to require more colors
than FF.

The SFF strategy is similar to the strategy used in the al-
gorithms of Finocchi et al. [9], specifically, to the variants
they refer to as Brooks–Vizing coloring algorithms. The es-
sential difference between their color choice strategy and SFF
is that in their approach the color for a vertex is randomly
picked out of an appropriate range, whereas in SFF the small-
est available color in a similar range is searched for and cho-
sen. Taking the comparison further, note that the formulation
of SPCFRAMEWORK is general enough to encompass the (en-
tire) algorithms of Finocchi et al. as well as the algorithm of
Johansson [19]. Specifically, one arrives at the latter algorithms
by letting the number of processors be equal to the number of
vertices in the graph (which implies a superstep size s = 1)
and by choosing the color of a vertex in Line 11 appropriately.

Other color selection strategies that can be used in
SPCFRAMEWORK include: the Least Used strategy where the
(locally) least used color so far is picked so that a more even
color distribution is achieved, and the randomized methods of
Gebremedhin et al. [13].

3.2.2. Coloring order
As mentioned earlier, the subgraphs induced by interior ver-

tices are independent of each other and can therefore be col-
ored concurrently without any communication. As a result,
in the context of SPCFRAMEWORK, interior vertices can be
colored before, after or interleaved with boundary vertices.
SPCFRAMEWORK is presented assuming an interleaved order,
wherein computational load is likely to be evenly balanced and
communication is expected to be more evenly spaced out in
time, avoiding congestion as a result. On the other hand, an in-
terleaved order may involve communication of a higher number
of messages of smaller size, which in turn degrades execution
speed and scalability. Overall, a non-interleaved order, wherein
interior vertices are colored strictly before or after boundary
vertices, is likely to yield better performance. Furthermore, col-
oring interior vertices first is likely to produce fewer conflicts
when used in combination with a FF coloring scheme, since the
subsequent coloring of boundary vertices is performed with a
larger spectrum of available colors. Coloring boundary vertices
first might be advantageous when used together with the SFF
color selection strategy.

3.2.3. Vertex ordering strategies
Regardless of whether interior and boundary vertices are

colored in separate or interleaved order, SPCFRAMEWORK
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provides another degree of freedom in the choice of the order
in which vertices on each processor are colored in each round.
Specifically, in Line 10 of SPCFRAMEWORK, the given order
in which the vertices appear in the input graph, or any one of
the effective (re)ordering techniques discussed in Section 2.1
could be used.

3.2.4. Synchronous vs. asynchronous supersteps
In SPCFRAMEWORK, the supersteps can be made to run in

a synchronous fashion by introducing explicit synchronization
barriers at the end of each superstep. An advantage of this mode
is that in the conflict-detection phase, the color of a boundary
vertex needs to be checked only against off-processor neighbors
colored during the same superstep. The obvious disadvantage
is that the barriers, in addition to the associated overhead, cause
some processors to be idle while others are busy completing
their supersteps.

Alternatively, the supersteps can be made to run asyn-
chronously, without explicit barriers at the end of each su-
perstep. Each processor would then only process and use the
color information that has been completely received when it is
checking for incoming messages. Any color information that
has not reached a processor at this stage would be deferred to
a later superstep. Due to this, in the conflict-detection phase,
the color of a boundary vertex needs to be checked against all
of its off-processor neighbors.

3.2.5. Inter-processor communication
Sending color information in Line 12 of SPCFRAMEWORK

can be done in one of two ways. First, a processor may send
the color of a boundary vertex v to another processor only if
the latter owns at least one neighbor of the vertex v. Although
this helps avoid unnecessary communication, the customiza-
tion of messages incurs computational overhead. An alterna-
tive approach is for a processor to send the color information
of all of its boundary vertices to every other processor without
customizing the messages (broadcast). This approach might be
more efficient when most of the boundary vertices have neigh-
bors on a considerable portion of the processors in the system.

3.3. How then should all these various options be combined?

As we have been discussing in Section 3.2, there are as many
as five axes along which SPCFRAMEWORK could be special-
ized. Each axis in turn offers at least two alternatives each
having its own advantages and disadvantages. The final deter-
mination of how various options need to be put together to ulti-
mately reduce both runtime and number of colors used is bound
to rely on experimentation since it involves a complex set of
factors, including the size and density of the input graph, the
number of processors employed and the quality of the initial
partitioning among the processors, and the specific characteris-
tics of the platform on which the implementations are run. We
have therefore experimentally studied the performance of sev-
eral specialized implementations of SPCFRAMEWORK on two
different platforms. The results will be presented in Section 4.

3.4. Related algorithms

For the purposes of comparison in our experiments, we
have in addition implemented three other algorithms related to
SPCFRAMEWORK. We briefly describe these algorithms in the
sequel; in each case, the input graph is assumed to be already
partitioned among the available processors.

3.4.1. Sequential Boundary Coloring Algorithm (SBC)
In this algorithm parallel processing is applied only on inte-

rior vertices, whereas the graph induced by boundary vertices
is constructed on one dedicated processor and then colored se-
quentially by the same processor.

3.4.2. Sequential Conflict Resolution Algorithm (SCR)
This is a variant in which SPCFRAMEWORK is restricted to

one round, and the conflicts detected at the end of the round are
resolved sequentially on one processor. Here, only the graph in-
duced by boundary vertices involved in conflicts is constructed
on one dedicated processor and then colored sequentially by
the same processor. Note that the algorithm of Gebremedhin
and Manne [12] is a special case of SCR where the superstep
size s is equal to identity.

3.4.3. Modified Jones and Plassmann Algorithm (JP)
This is a synchronous variant of the Jones–Plassmann (JP)

algorithm first mentioned in Section 2.2. Given a graph parti-
tioned among the available processors, we describe the steps
applied on only boundary vertices; interior vertices are triv-
ially colored in parallel in a final phase. In each round j of the
algorithm, each processor Pi maintains a list Di of dominat-
ing vertices—vertices that are assigned larger random numbers
than their uncolored neighbors. The vertices in the list Di are
colored sequentially (by processor Pi) in the round j. Then,
processor Pi sends the recent color information to processors
who own vertices adjacent to elements of the list Di , and re-
ceives corresponding information from other processors. For
each off-processor vertex v whose color is received, the list Di

is updated in the following manner. If the coloring of the vertex
v has made any uncolored on-processor neighbor vertex w of
the vertex v dominate the uncolored neighbors of w, then the
vertex w is included in the list Di . In this way only vertices
that are dominated by off-processor neighbors will be left un-
colored at the end of the round j. The procedure is repeated in
subsequent rounds until all boundary vertices are colored.

We claim that SPCFRAMEWORK uses fewer or at most as
many rounds as the JP algorithm just described. Here is the ar-
gument. Suppose the two algorithms begin a particular round k
with identical sets of uncolored vertices and random values. In
SPCFRAMEWORK any vertex that needs to be recolored after the
round k must have had an off-processor neighbor with the same
color and with a larger random value. Clearly, in the JP algo-
rithm, such a vertex would not have been colored in the round
k. Thus the JP algorithm would require at least as many rounds
as SPCFRAMEWORK. To see that SPCFRAMEWORK could use
fewer rounds than the JP algorithm, consider a vertex v where
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each off-processor neighbor with a larger random value (than
that of v) receives a different color (from that of v). Then v can
keep its color as final in SPCFRAMEWORK, whereas v would
not have been colored in the JP algorithm.

4. Experiments

This section presents results from an experimental study of
the various algorithms discussed in the previous section. The al-
gorithms are implemented in C using the MPI message-passing
library.

Table 1
The two platforms used in the experiments

Name CPU Memory Cache size Network Bandwidth Latency

I2 900 MHz Itanium 2 4 GB 512 KB Myrinet 2000 240 MB/s 11"s
P4 2.4 GHz Pentium 4 4 GB 1.5 MB Infiniband 888 MB/s 7"s

Table 2
Structural properties of the real test graphs used in the experiments, classified
according to their application area and source

Name |V | Degree Sequential FF

Max Avg Colors TI2 (ms)

Molecular dynamics [28]
popc-br-4 24,916 43 20 21 28
er-gre-4 36,573 42 25 19 48
apoa1-4 92,224 43 25 20 120

Finite elements [12]
144 144,649 26 15 12 137
598a 110,971 26 13 11 98
auto 448,695 37 15 13 462

Linear car analysis [29]
bmw3_2 227,362 335 49 48 561
bmw7st1 141,347 434 51 54 364
inline1 503,712 842 72 51 1818

Structural engineering [31]
pwtk 217,918 179 52 48 564
nasasrb 54,870 275 48 41 130
ct20stif 52,329 206 51 49 132

Automotive [31]
hood 220,542 76 48 42 541
msdoor 415,863 76 48 42 1020
ldoor 952,203 76 48 42 2362

Civil engineering [31]
pkustk10 80,676 89 52 42 213
pkustk11 87,804 131 58 66 258
pkustk13 94,893 299 69 57 317

Ship section [29]
shipsec1 140,874 101 54 48 382
shipsec5 179,860 125 55 50 491
shipsec8 114,919 131 57 54 322

Also shown is the number of colors used by and the runtime of a sequential First Fit algorithm run on a single node of the Itanium 2 cluster.

4.1. Experimental setup

Our experiments are conducted on two different platforms,
each of which is a PC cluster running Linux. Table 1 gives the
essential features of the platforms.

The testbed consists of very large-size real as well as syn-
thetic graphs. The real graphs (21 in total) are obtained from
various application areas, including molecular dynamics, finite
element, structural engineering, civil engineering, and auto-
motive and ship industry [12,29,28,31]. The first four columns
in Table 2 display data concerning structural properties of
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Table 3
Structural properties of the synthetic test graphs used in the experiments

Name |V | Degree Sequential FF

Max Avg Colors TI2 (ms) TP 4 (ms)

Clique based [16]
cliq-1 40,000 44 40 41 127 33
cliq-2 40,000 61 47 42 103 40
cliq-3 40,000 81 59 43 87 47

Planar [25]
plan-1 4,072,937 40 6 9 4780 3725

Random [18]
rand-1 400,000 27 10 9 461 626
rand-2 400,000 61 30 15 1189 1750
rand-3 400,000 84 50 20 1865 2857
rand-4 400,000 112 70 25 2972 4074

Also shown is the number of colors used by and the runtime of a sequential First Fit algorithm run on a single node of each of the two test platforms.

Table 4
Configurations of SPCFRAMEWORK used in the experiments

Name Color choice Coloring order Supersteps Communication

FIAC First Fit Interior first Asynchronous Customized
FBAC First Fit Boundary first Asynchronous Customized
FUAC First Fit Un-ordered Asynchronous Customized
FISC First Fit Interior first Synchronous Customized
SIAC Staggered FF Interior first Asynchronous Customized
SBAC Staggered FF Boundary first Asynchronous Customized
FIAB First Fit Interior first Asynchronous Broadcast
FBAB First Fit Boundary first Asynchronous Broadcast
FIAC-block First Fit Interior first Asynchronous Customized

In each algorithm, vertices on each processor are colored in their natural order; “-block” indicates the initial data distribution is obtained via simple block
partitioning, in all other cases graph partitioning is used.

these graphs and the source application areas. The last two
columns show certain computed values—the number of colors
used by and the runtime in milliseconds of a serial FF algorithm
run on a single node of the Itanium 2 cluster; these values will
be used as normalizing quantities in the presentation of relevant
experimental results later in this section.

The synthetic graphs used in our experiment include in-
stances drawn from three different classes: random, planar and
clique-based. The random graphs belong to the Erdös–Renyi
class and are generated using the GTgraph Synthetic Graph
Generator Suite [18]. The planar graphs are maximally planar—
the degree of every vertex is at least five—and are generated
using the expansion method described in [25]; the generator
is a part of the graph suite for the Second DIMACS Chal-
lenge [30]. Finally, the clique-based graphs are obtained using
P. Ross’s graph-coloring generator, which is a part of the Test
Problem Generators for Evolutionary Algorithms [16]. Each of
the clique-based graphs we generated consists of 1000 cliques
of size 40 each, and the cliques are in turn interconnected by
adding edges according to a probabilistic function. Table 3 dis-
plays structural information about the synthetic test graphs in
a manner analogous to Table 2.

4.2. Algorithms compared

As discussed in Section 3.2, there are five orthogonal axes of
specializations for SPCFRAMEWORK. Further, there are multi-
ple options to be considered along each axis, making the pos-
sible combinations (configurations) exponentially many. We
describe below the configurations we have considered in our
experiments either for their potential performance worth or for
benchmarking purposes.

For the initial data distribution, we consider two scenarios.
In the first scenario, the input graph is partitioned among the
processors using the software tool Metis [22] and its VMetis
option. This option aims at minimizing both the number of
boundary vertices and the communication volume. In the sec-
ond scenario, the input graph is block partitioned, a case where
the vertex set is simply equi-partitioned among the processors
without any effort to minimize cross-edges.

For vertex ordering, we use the natural order in which ver-
tices appear in the input graph. We forgo considering other ver-
tex orderings, since our primary objective is to study issues that
have relevance to parallel performance. In terms of coloring or-
der, we consider three options: coloring interior vertices first,
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coloring boundary vertices first or coloring in an un-ordered
(interleaved) fashion. Each of the remaining three axes—the
manner in which a color is chosen for a vertex, supersteps
are run, and inter-processor communication is handled—offers
two options. Table 4 summarizes the configurations we have
considered in our experiments and the acronyms we use in re-
ferring to each.

In addition to the nine algorithms listed in Table 4, we
have implemented and tested the three algorithms—Sequential
Boundary Coloring (SBC), Sequential Conflict Resolution
(SCR), and Modified Jones–Plassmann (JP)—discussed in
Section 3.4.

Another configurable parameter of SPCFRAMEWORK is the
size s of a superstep, the number of vertices sequentially col-
ored by a processor before communication takes place. After
several preliminary tests, we determined that a value of s close
to a thousand is a good choice for cases where customized com-
munication is preferable. Similarly, for cases where broadcast
is a better choice, a value of s close to a hundred was found
to be a good choice. For the results reported in the rest of this
section, we use s = 800 for the former case and s = 125 for
the latter.

4.3. Performance profiles

For much of our experimental analysis in this section, we use
performance profiles, a generic tool introduced by Dolan and
Moré [8] for comparing a set of methods over a large set of test
cases with regard to a specific performance metric. The essen-
tial idea behind performance profiles (which we review below)
is to use a cumulative distribution function for a performance
metric, instead of, for example, taking averages or sum-totals
over all the test cases.

Let S denote the set of methods (solvers) being compared, P
denote the set of test cases (problems) used, and t denote the
metric of interest, which is desired to be as small as possible.
For a specific method s ∈ S and a specific problem p ∈ P ,
let tp,s denote the quantity with regard to metric t used by
method s in solving problem p. Similarly, let t∗p,S correspond
to the best performance by any solver in S on the problem p.
For example, if the performance metric of interest is runtime of
algorithms, then tp,s is the time used by algorithm s in solving
problem p, and t∗p,S is the time used by the fastest algorithm in
S in solving the problem p. The ratio tp,s/t∗p,S is known as the
performance ratio of method s on problem p and is denoted by
rp,s . The lower the value of rp,s , the closer method s is to the
best method in S for solving problem p. In particular, rp,s = 1
means that method s is the best solver in S for problem p. Now
define a function " as follows:

"s(#) = |P ′|/|P | where P ′ = {p ∈ P : rp,s "#}.

The value "s(#) is then the probability for solver s ∈ S that
the performance ratio rp,s is within a factor of # of the best
possible ratio, and the function "s is the cumulative distribution
function for the performance ratio. In the performance profile
plots presented in this section we label the axis corresponding

to "s(#) as “Fraction of wins”, to indicate that this quantity
corresponds to the fraction of the test cases for which method s
is a winner (among its competitors in S) considering a solution
within a factor of # of the best possible as the criterion for
comparison.

4.4. Results and discussion: identifying the “best” algorithms

4.4.1. Fix color choice strategy and communication mode,
vary other parameters

In our first set of experiments, we compare the performance
(in terms of runtime and number of colors) of configurations of
SPCFRAMEWORK obtained by fixing the color selection strategy
to be FF and the communication mode to be Customized and
by varying the remaining three parameters listed in Table 4.

Fig. 1 shows runtime performance profile plots (for various
number of processors) of the resulting five algorithms, FIAC,
FISC, FBAC, FUAC, and FIAC-block. Fig. 2 shows similar
plots for number of colors, where, in addition to these five
parallel algorithms, a sequential FF algorithm is included as a
baseline. The test set in both figures is the set of application
graphs listed in Table 2 and the experiments are conducted on
the Itanium 2 cluster.

We illustrate how performance profiles are to be “read” using
Fig. 1(c) as an example. In that example, one can see that for
nearly every testcase, FIAC has the least runtime among the five
algorithms being compared (see the values on the vertical line
# = 1). In almost 90% of the cases, FISC is nearly equally fast.
Suppose we are interested in identifying methods that would
solve every testcase within a factor of 1.2 of the best time. Then
FBAC would clearly join the company of FIAC and FISC. In
general, Fig. 1 clearly shows that Algorithms FIAC and FISC
are the fastest among the five for every value of p and are almost
indistinguishable from each other. The two algorithms are very
closely followed by FBAC.

In terms of number of colors, Fig. 2 shows that FBAC is
the best candidate. Its performance is almost as good as the
sequential algorithm. A major reason for this rather impressive
performance is that algorithm FBAC has the flavor of a Largest
Degree First sequential algorithm, since vertices of large degree
are in general likely to be boundary vertices in a partition,
and these are colored first in the FBAC configuration. In the
sequential baseline algorithm, on the other hand, vertices are
colored in their natural order. Further in Fig. 2, we observe that
algorithms FUAC, FIAC, and FISC have fairly similar behavior
with each other, and in general use 5–15% more colors than that
used by the sequential algorithm. This in itself is a rather “good”
performance considering the facts that the number of colors
used by a sequential algorithm is very close to the average
degree in the test graphs (see Table 2) and that existing parallel
(distributed) coloring algorithms commonly try to only bound
the number by maximum degree.

Based on observations made from Figs. 1 and 2, we pick
the two algorithms FIAC and FBAC as the most preferred
choices, which in turn offer a runtime-quality tradeoff. We use
these algorithms in the rest of the experiments described in this
section.
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Fig. 1. Algorithms compared: five variants of SPCFRAMEWORK. Plots: performance profiles. Metric: runtime. Test set: (a) through (e), application graphs
listed in Table 2; (f), set of all processor–graph pairs (p, G), for p ∈ {8, 16, 24, 32, 40} and G drawn from Table 2. Platform: Itanium 2. s = 800. (a) p = 8,
(b) p = 16, (c) p = 24, (d) p = 32, (e) p = 40, (f) p ∈ {8, 16, 24, 32, 40}.
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Fig. 2. Algorithms compared: five variants of SPCFRAMEWORK. Plots: performance profiles. Metric: number of colors. Test set: (a) through (e), application
graphs listed in Table 2; (f), set of all processor–graph pairs (p, G), for p ∈ {8, 16, 24, 32, 40} and G drawn from Table 2. Platform: Itanium 2. s = 800.
(a) p = 8, (b) p = 16, (c) p = 24, (d) p = 32, (e) p = 40, (f) p ∈ {8, 16, 24, 32, 40}.
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Fig. 3. Algorithms compared: two variants of SPCFRAMEWORK (FIAC and FBAC) and algorithms SCR, SBC and JP. Plots: performance profiles. Metric:
runtime. Test set: (a) through (e), graphs listed in Table 2; (f), set of all processor–graph pairs (p, G), for p ∈ {8, 16, 24, 32, 40} and G drawn from Table 2.
Platform: Itanium 2. s = 800. (a) p = 8, (b) p = 16, (c) p = 24, (d) p = 32, (e) p = 40, (f) p ∈ {8, 16, 24, 32, 40}.
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Fig. 4. Algorithms compared: two variants of SPCFRAMEWORK (FIAC and FBAC) and algorithms SCR, JP and Sequential. Plots: performance profiles.
Metric: number of colors. Test set: (a) through (e), graphs listed in Table 2; (f), set of all processor–graph pairs (p, G), for p ∈ {8, 16, 24, 32, 40} and G
drawn from Table 2. Platform: Itanium 2. s = 800. (a) p = 8, (b) p = 16, (c) p = 24, (d) p = 32, (e) p = 40, (f) p ∈ {8, 16, 24, 32, 40}.
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Fig. 5. Algorithms compared: variants xIAC and xBAC of SPCFRAMEWORK where the color selection strategy x is either F (First Fit) or S (Staggered FF).
Plots: performance profiles. Test set: application graphs listed in Table 2. Platform: Itanium 2, p = 40, s = 800. (a) Runtime, (b) number of colors.
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Fig. 6. Algorithms compared: variant FIAx of SPCFRAMEWORK where the communication mode x is either Customized (C) or Broadcast-based (B). Plots:
standard. Metric: speedup. For FIAC, s = 800; for FIAB, s = 125. (a) Itanium 2, (b) Pentium 4.

4.4.2. Comparison with related algorithms
In our second set of experiments, whose results are sum-

marized in the performance profile plots shown in Figs. 3 and
4, we compare FIAC and FBAC with the three other algo-
rithms in our study: JP, SCR, and SBC. A more elaborate set
of experimental data comparing these algorithms is available in
Tables A1–A5 in the Appendix.

The conclusion to be drawn from the runtime plots in
Fig. 3 is straightforward: algorithms FIAC and FBAC signif-
icantly outperform their competitors, which could further be

ranked in a decreasing order of execution speed as SCR, JP,
and SBC. The underlying reasons for this phenomenon are
obvious, but it is worth pointing out that the relative slowness
of the JP algorithm is due to the many rounds it requires.

In terms of number of colors, Fig. 4 shows that, in general,
algorithms JP and SCR use (slightly) fewer colors than both
FBAC and FIAC. Notice that the difference in the quality of
the solution obtained by the various algorithms here is fairly
marginal: the # values for more than 90% of the test cases range
between 1 and 1.15, indicating that the worst algorithm (FIAC)
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Fig. 7. Performance on select application graphs using s = 800. (a) FIAC on I2, (b) FBAC on I2, (c) JP on I2, (d) FIAC on P4, (e) FBAC on P4, (f) JP on
P4, (g) FIAC, (h) FBAC, (i) JP.

uses in the worst case, only 15% more colors than that used by
the best algorithm (JP).

4.4.3. Effects of color selection
The purpose of our third set of experiments is to compare

the FF and SFF color selection strategies while using the xIAC
and xBAC configuration, i.e., algorithms FIAC, SIAC, FBAC
and SBAC. For SFF, we used the number of colors obtained
by running the sequential FF algorithm as our estimate for K.
Fig. 5 shows performance profile plots corresponding to these
experiments.

As can be seen in Fig. 5(a), there is little difference in runtime
between FF and SFF when used in combination with an interior-
first coloring order (xIAC), but with boundary-first ordering
(xBAC), SFF is slightly faster. This is expected since SFF is
likely to involve fewer conflicts than FF. Fig. 5(b) shows, again
as expected, that SFF uses more colors than FF in both cases.

4.4.4. Effects of communication mode
In the fourth set of experiments we consider the FIAC and

FIAB configurations in order to compare the two communi-
cation modes, Customized and Broadcast. We consider three



530 D. Bozdağ et al. / J. Parallel Distrib. Comput. 68 (2008) 515–535

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

45

50

Number of processors

S
p

e
e

d
u

p

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

45

50

Number of processors

S
p

e
e

d
u

p

0

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

45

50

Number of processors

S
p

e
e

d
u

p

5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

Number of processors

S
p

e
e
d

u
p

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

Number of processors

S
p

e
e
d

u
p

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

Number of processors

S
p

e
e
d

u
p

0 5 10 15 20 25 30 35 40

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Number of processors

N
o

rm
a
li

z
e
d

 n
u

m
b

e
r 

o
f 

c
o

lo
rs

0 5 10 15 20 25 30 35 40

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Number of processors

N
o

rm
a
li

z
e
d

 n
u

m
b

e
r 

o
f 

c
o

lo
rs

0 5 10 15 20 25 30 35 40

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Number of processors

N
o

rm
a
li

z
e
d

 n
u

m
b

e
r 

o
f 

c
o

lo
rs

plan−1
rand−1
rand−4
cliq−1
cliq−3

plan−1
rand−1
rand−4
cliq−1
cliq−3

plan−1
rand−1
rand−4
cliq−1
cliq−3

plan−1
rand−1
rand−4
cliq−1
cliq−3

plan−1
rand−1
rand−4
cliq−1
cliq−3

plan−1
rand−1
rand−4
cliq−1
cliq−3

plan−1
rand−1
rand−4
cliq−1
cliq−3

plan−1
rand−1
rand−4
cliq−1
cliq−3

plan−1
rand−1
rand−4
cliq−1
cliq−3

Fig. 8. Performance on select synthetic graphs using s = 125. (a) FIAB on I2, (b) FBAB on I2, (c) JP on I2, (d) FIAB on P4, (e) FBAB on P4, (f) JP on
P4, (g) FIAB, (h) FBAB, (i) JP.

graphs: the largest application graph ldoor from Table 2 and
the two random graphs rand-1 and rand-4 (which are of vary-
ing density) from Table 3. These examples are chosen to be
representatives of well partitionable (requiring low communi-
cation) and poorly partitionable (requiring high communica-
tion) graphs. As can be seen in the tables in the Appendix, the
ratio of boundary vertices to total vertices for p = 24 (say) is
only 4% for ldoor whereas it is nearly 100% for the random
graphs.

Fig. 6 shows speedup plots for algorithms FIAC and FIAB
on the two test platforms Itanium 2 and Pentium 4. One can
see that the difference in performance between FIAB and FIAC
is negligible for the well-partitionable graph ldoor, whereas

FIAB is in general better than FIAC for the random graphs, the
difference being more pronounced for the denser graph rand-4.

4.5. Results and discussion: scalability

From the four set of experiments we have discussed thus far,
we can fairly conclude that algorithms FIAC and FBAC are
the best choices (offering runtime-quality tradeoff) for well-
partitionable graphs, while the corresponding choices for poorly
partitionable graphs are FIAB and FBAB. The results we pre-
sented so far showed how the various algorithms compared
against each other, but not the performance of each consid-
ered separately. We now present results where the latter aspect
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Fig. 9. Weak scaling of algorithms FIAB and JP on select synthetic graphs, s = 125. (a) Itanium 2, (b) Pentium 4.

is addressed for the configurations FIAC, FBAC, FIAB and
FBAB.

4.5.1. Strong scalability
Application graphs: Figs. 7(a) through (c) show strong scal-

ability results regarding algorithms FIAC, FBAC, and JP on
five test graphs drawn from Table 2. The test graphs are se-
lected from five different application areas, and each graph is
the largest in its group. The test platform used is Itanium 2. A
similar set of results for the Pentium 4 platform is shown in
Figs. 7(d)–(f). Figs. 7(g)–(i) show the number of colors used
by the three algorithms, each normalized with respect to the
number obtained using a sequential FF algorithm.

The results in Fig. 7 show that both FIAC and FBAC scale
well for these graphs in both platforms. In general we ob-
serve higher speedup for sparser graphs. The JP algorithm
showed some speedup, albeit small, largely due to the well-
partitionability of the graphs. We also observe that the number
of colors used by the three algorithms is fairly close the number
used by a sequential algorithm.

Synthetic graphs: Fig. 8 shows a set of figures similar to
those shown in Fig. 7, except now that the algorithms con-
sidered are FIAB, FBAB and JP and the test graphs are five
synthetic graphs drawn from Table 3. One of the five graphs,
planar-1, is extremely well partitionable (almost all of its ver-
tices are interior in a given partition, see Table A4). The oppo-
site is true for the other four graphs, rand-1, rand-4, cliq-1 and
cliq-3.

The strong scalability results in Figs. 8(a) through (f) agree
well with one’s expectation: good speedup on well-partitionable
graphs and poor speedup on poorly partitionable graphs. The
fact that both FIAB and FBAB actually yielded some reason-

able speedup (especially on the P4 platform) for the random
and clique-based graphs, however, is worth emphasizing: for
such graphs the speedup stems solely from the “core” algo-
rithm in SPCFRAMEWORK, without any contribution from par-
allelization due to partitioning.

The speedup results in Figs. 7 and 8 also show how the
nature of a platform affects the performance of the algorithms.
For poorly partitionable graphs, where relatively high inter-
processor communication is needed due to the large number of
boundary vertices, the Pentium 4 cluster with its lower latency
and higher network bandwidth, gave better scalability. For well-
partitionable graphs, on the other hand, although linear or even
super-linear speedup can be achieved on both platforms, the
Itanium 2 cluster was observed to be a better environment,
primarily due to its larger cache.

4.5.2. Weak scalability
Our final experimental result is on weak scalability, where

both problem size and number of processors are increased in
proportion so as to result in nearly constant runtime. Fig. 9
shows weak scaling result on random and planar graphs. (The
complete experimental data are available in Table A5.)

From Fig. 9 we observe that runtime grows slowly with in-
creasing number of processors for both JP and FIAB on planar
graphs, but there is a dramatic difference for random graphs.
While FIAB takes only slightly more than a constant time on
planar graphs, the runtime for JP grows almost linearly with
number of processors. This demonstrates that our framework
(FIAB in particular) is clearly more scalable than JP on ran-
dom graphs. This is due to the large number of boundary ver-
tices, where JP performs poorly due to the many rounds it
requires.
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5. Conclusion

We have developed an efficient and scalable parallel graph
coloring algorithmic framework suitable for distributed-
memory computers. The framework is tunable to suit the
structure of the graph being colored and the specifics of the
hardware being used.

The scalability of several algorithms developed using the
framework has been experimentally demonstrated on platforms
of modest size processors. For almost all graphs tested in our
experiments, the variants of our framework yielded fairly good
speedup with increasing number of processors and the number
of colors used was close to the number used by a sequential
greedy algorithm. Furthermore, we observed that customizing
inter-processor communication and using a superstep size in
the order of a thousand improved the scalability of the algo-
rithms for structured graphs. For unstructured graphs, good per-
formance was observed by using a broadcast-based communi-
cation mode and using a superstep size close to a hundred. The
computational results we obtained also suggest that, coloring
interior vertices first gives a faster and slightly more scalable

Table A1
Comparison of algorithms for the application graphs on the Itanium 2 cluster
using s = 800 and p = 8

Name Speedup Colors Rounds
|VB|
|V | (%)

time on VB

total time
(%)

FIAC FBAC JP SCR SBC FIAC FBAC JP SCR FIAC FBAC JP FIAC FBAC JP

popc-br-4 4.5 3.7 2.5 4.6 2.6 21 20 19 20 4 4 22 22 56 56 67
er-gre-4 4.7 4.4 3.3 4.7 2.2 22 19 19 19 4 5 21 27 56 56 66
apoa1-4 5.3 5.0 4.0 5.0 2.9 21 20 20 20 5 5 22 18 43 43 53

144 5.8 5.6 5.1 6.0 4.3 13 12 12 12 4 4 14 10 34 33 39
598a 6.2 5.9 5.2 6.1 4.6 12 12 11 11 4 4 13 9 30 30 38
auto 6.4 6.3 5.2 7.0 5.6 13 13 13 13 4 5 14 6 28 27 39

bmw3_2 6.6 6.3 5.6 6.6 4.9 51 48 48 48 5 5 30 6 20 20 26
bmw7st1 6.5 6.1 5.4 6.6 4.7 54 53 52 54 5 6 31 6 21 23 31
inline1 6.9 6.3 5.0 6.8 5.6 58 52 51 51 5 5 45 4 16 19 25

pwtk 6.8 6.7 6.0 6.8 5.8 45 43 42 45 5 6 30 3 15 12 22
nasasrb 6.0 5.6 4.5 6.1 4.0 38 40 40 40 5 5 30 10 29 29 43
ct20stif 5.4 4.3 3.8 5.4 3.1 49 50 48 49 5 5 39 15 43 50 55

hood 6.9 6.8 5.8 7.0 6.0 45 42 42 42 5 5 29 3 14 12 23
msdoor 7.1 6.8 6.0 7.2 6.3 42 42 42 42 5 5 29 2 11 12 16
ldoor 7.3 7.1 6.1 7.3 6.8 47 43 43 42 5 5 29 2 8 8 21

pkutsk10 6.1 5.6 4.6 6.0 3.6 50 46 45 46 5 7 39 12 30 33 45
pkutsk11 6.0 5.7 4.5 5.9 3.3 66 66 66 66 5 5 43 13 35 35 48
pkutsk13 5.8 5.2 4.2 5.6 2.9 57 57 57 57 4 5 46 16 38 41 52

shipsec1 6.2 6.1 5.1 6.1 4.0 53 50 48 50 6 6 36 10 28 27 39
shipsec5 6.1 5.8 5.2 6.1 3.9 54 48 49 51 5 5 36 10 29 28 36
shipsec8 6.0 5.7 4.8 6.0 3.7 54 50 48 50 5 6 39 13 33 32 44

|VB| denotes the total number of boundary vertices after partitioning.

algorithm whereas an algorithm in which boundary vertices are
colored first uses fewer colors.

Our implementation has been incorporated into Zoltan, a
freely available parallel data management and load-balancing
library [7]. We plan to extend our work to other coloring prob-
lems such as the distance-2 graph coloring and the hypergraph
coloring problems, which arise in the efficient computation of
derivative matrices. A preliminary work we have done on par-
allel distance-2 coloring is available in [5].
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Appendix A.

A set of experimental data comparing FIAC and FBAC with
the three other algorithms in our study: JP, SCR, and SBC is
shown in Tables A1–A5.
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Table A2
Comparison of algorithms for the application graphs on the Itanium 2 cluster using s = 800 and p = 24

Name Speedup Colors Rounds
|VB|
|V | (%)

time on VB

total time
(%)

FIAC FBAC JP SCR SBC FIAC FBAC JP SCR FIAC FBAC JP FIAC FBAC JP

popc-br-4 6.1 4.8 1.5 4.3 1.9 20 20 20 19 4 5 22 37 82 81 81
er-gre-4 7.4 6.1 3.2 4.9 1.6 20 20 21 20 4 5 20 43 81 83 91
apoa1-4 9.8 9.0 4.8 6.8 2.2 21 20 21 20 5 5 25 32 71 68 83

144 12.3 10.4 7.2 8.5 3.9 13 13 13 12 4 5 15 18 58 61 73
598a 11.8 9.7 6.8 8.2 3.9 12 12 11 12 4 5 13 17 61 64 76
auto 15.2 13.4 9.3 11.9 5.6 14 13 13 13 4 5 15 13 49 51 65

bmw3_2 16.1 14.4 9.6 13.3 5.3 49 49 48 48 5 5 31 11 38 38 59
bmw7st1 14.9 12.9 3.6 12.8 4.6 49 52 48 54 5 6 34 13 44 47 48
inline1 17.0 15.2 8.7 14.8 5.4 57 52 51 52 6 6 58 10 35 36 64

pwtk 16.6 14.8 10.4 12.6 5.4 45 43 41 44 5 6 32 11 36 38 58
nasasrb 11.8 10.1 5.0 8.2 2.7 45 41 39 38 5 5 32 25 63 63 83
ct20stif 10.4 8.4 3.7 7.7 2.3 54 51 47 48 5 6 43 27 69 66 84

hood 17.2 15.6 10.0 15.3 6.5 43 42 42 42 5 6 31 8 32 34 58
msdoor 18.0 16.8 11.2 17.1 9.2 46 42 42 42 5 5 30 5 27 28 52
ldoor 19.0 18.3 12.2 18.3 11.0 49 42 42 42 6 6 32 4 22 21 48

pkutsk10 13.0 11.1 6.3 9.6 2.9 48 45 44 47 5 5 33 23 58 58 76
pkutsk11 12.5 10.7 7.0 9.3 2.2 66 65 62 61 5 5 48 26 64 64 83
pkutsk13 12.3 9.9 7.5 9.2 2.3 57 57 57 57 5 6 49 29 64 65 82

shipsec1 13.8 11.8 7.7 9.4 3.1 50 48 47 47 5 6 36 21 53 54 71
shipsec5 14.5 12.7 8.3 10.2 3.5 53 52 49 48 5 6 37 18 49 51 67
shipsec8 13.2 11.3 6.2 9.0 2.8 55 53 47 49 5 5 40 24 57 58 90

|VB| denotes the total number of boundary vertices after partitioning.

Table A3
Comparison of algorithms for the application graphs on the Itanium 2 cluster using s = 800 and p = 40

Name Speedup Colors Rounds
|VB|
|V | (%)

time on VB

total time
(%)

FIAC FBAC JP SCR SBC FIAC FBAC JP SCR FIAC FBAC JP FIAC FBAC JP

popc-br-4 5.4 4.5 1.2 3.0 1.5 22 21 19 20 4 5 24 46 91 90 97
er-gre-4 6.8 6.5 2.1 3.9 1.3 21 20 20 18 5 5 24 51 90 89 97
apoa1-4 11.2 10.3 4.5 5.9 1.8 21 20 20 20 5 5 22 38 81 78 91

144 13.1 12.0 6.2 7.8 3.3 13 12 12 12 5 5 17 22 75 74 87
598a 11.6 10.5 5.4 7.1 3.3 13 12 11 11 5 5 15 22 78 78 88
auto 19.6 16.5 14.4 12.2 4.8 14 13 13 13 4 5 16 16 62 64 76

bmw3_2 21.8 18.6 9.2 14.5 4.3 48 48 48 48 5 6 34 14 52 51 76
bmw7st1 19.2 15.2 7.5 12.6 3.6 54 48 49 53 5 7 35 19 59 63 81
inline1 24.1 19.9 9.9 16.7 4.5 57 55 51 51 5 6 57 14 48 51 77

pwtk 21.1 19.4 10.4 12.6 4.1 47 44 42 44 6 6 34 16 54 55 78
nasasrb 13.2 10.9 4.6 7.2 2.1 43 40 38 39 5 6 33 32 77 77 94
ct20stif 11.8 10.3 3.6 7.2 1.8 52 51 48 48 5 5 43 36 81 77 94

hood 23.6 20.2 10.8 17.1 5.5 45 42 42 42 5 6 30 11 46 49 74
msdoor 26.1 23.9 10.9 21.3 8.4 47 42 42 42 5 5 40 7 37 38 72
ldoor 27.8 27.3 15.2 24.3 10.1 47 42 42 42 6 5 31 5 32 31 61

pkutsk10 14.7 14.6 5.0 9.4 2.5 48 47 44 48 6 5 39 28 73 68 89
pkutsk11 14.8 13.7 4.3 8.8 1.8 64 60 58 62 6 5 55 33 77 72 91
pkutsk13 15.9 13.8 4.9 9.3 1.8 58 57 57 57 5 5 54 37 75 72 90

shipsec1 17.9 15.2 6.5 9.7 2.6 53 50 45 49 5 6 44 26 66 66 85
shipsec5 19.7 16.6 8.4 10.7 2.9 54 53 49 50 5 6 38 23 61 62 81
shipsec8 16.6 14.7 6.0 9.2 2.2 54 52 50 51 6 5 42 29 70 68 87

|VB| denotes the total number of boundary vertices after partitioning.



534 D. Bozdağ et al. / J. Parallel Distrib. Comput. 68 (2008) 515–535

Table A4
Comparison of algorithms for the synthetic graphs using s = 125

p Name
|VB|
|V | (%) Colors Speedup on Itanium 2 Speedup on Pentium 4

FIAC FBAC JP FIAC FBAC JP FIAC FBAC JP

8 rand-1 99.5 9 9 9 2.8 2.8 0.8 5.1 5.1 1.6
rand-2 100.0 16 16 15 3.1 3.1 0.5 5.7 5.6 1.3
rand-3 100.0 21 21 21 3.2 3.1 0.5 5.8 5.8 1.3
rand-4 100.0 27 26 26 3.4 3.8 0.6 6.0 6.0 1.3
plan-1 0.0 9 9 9 11.4 11.9 12.8 11.2 11.1 9.0
cliq-1 64.8 41 41 41 4.9 4.9 3.0 4.1 4.0 2.3
cliq-2 100.0 42 42 42 2.4 2.4 1.0 2.1 2.0 0.6
cliq-3 100.0 43 43 42 2.5 2.6 0.8 2.3 2.2 0.5

24 rand-1 99.8 9 10 9 4.6 4.7 1.7 9.4 9.3 3.5
rand-2 100.0 16 16 15 6.2 6.2 1.1 12.5 12.2 2.5
rand-3 100.0 22 22 21 6.3 6.4 1.4 12.5 13.0 2.2
rand-4 100.0 27 27 25 7.5 7.3 1.5 14.4 14.5 2.0
plan-1 0.1 9 9 9 37.0 33.3 27.9 36.3 31.9 20.2
cliq-1 60.3 42 41 41 8.7 7.6 4.1 5.1 5.0 2.4
cliq-2 100.0 42 42 42 2.9 2.9 1.3 2.1 2.0 0.7
cliq-3 100.0 43 43 43 2.9 2.9 1.0 2.1 2.0 0.5

40 rand-1 99.8 10 9 9 5.2 5.2 2.4 10.7 10.7 4.8
rand-2 100.0 17 17 15 7.2 6.7 1.4 16.5 16.3 3.3
rand-3 100.0 23 23 20 8.2 8.0 1.1 18.4 18.5 2.8
rand-4 100.0 28 28 26 10.0 9.1 1.1 20.4 19.7 2.6
plan-1 0.2 9 8 9 53.4 52.6 34.5 50.6 43.1 24.1
cliq-1 63.3 41 41 41 7.3 6.8 3.5 4.1 4.4 2.0
cliq-2 100.0 42 42 42 2.9 2.9 1.1 1.8 1.8 0.6
cliq-3 100.0 43 43 43 3.0 3.0 0.9 1.9 1.8 0.5

|VB| denotes the total number of boundary vertices after partitioning.

Table A5
Weak scaling on synthetic graphs using s = 125

Name Degree Seq. colors p |VI| |VB| Colors Runtime on Itanium 2 Runtime on Pentium 4

Max Avg FIAC FBAC JP FIAC FBAC JP FIAC FBAC JP

rand-5 80 50 20 1 10,000 0 20 20 20 26 26 26 10 10 10
rand-6 79 50 20 2 0 20,000 20 20 20 29 29 86 18 17 64
rand-7 82 50 20 8 0 80,000 22 22 21 48 80 375 40 46 284
rand-8 91 50 21 16 0 160,000 22 22 20 106 110 742 85 88 544
rand-9 86 50 21 24 0 240,000 22 22 21 178 142 1146 120 121 759
rand-10 86 50 20 32 0 320,000 23 22 21 196 193 1469 140 140 889
rand-11 84 50 20 40 0 400,000 23 23 20 227 232 1695 156 155 1007

plan-2 35 6 8 1 102,093 0 8 8 8 49 49 49 28 28 28
plan-3 29 6 8 2 101,988 74 8 8 8 38 38 39 29 31 33
plan-4 32 6 9 8 102,248 1,521 9 9 9 43 62 50 37 39 51
plan-5 37 6 8 16 101,448 2,811 8 8 8 69 69 87 45 51 79
plan-6 40 6 9 24 101,522 4,539 9 9 9 72 76 102 51 61 103
plan-7 43 6 9 32 101,394 6,347 9 9 9 83 83 116 60 71 123
plan-8 40 6 9 40 101,655 6,750 9 8 9 90 91 139 77 86 155

|VI| is the average number of internal vertices on each processor, and |VB| is the total number of boundary vertices after partitioning.
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