
Optimal Partitioning of Sequences

Fredrik Manne∗ and Tor Sørevik†

Abstract

The problem of partitioning a sequence of n real numbers into p intervals
is considered. The goal is to find a partition such that the cost of the most
expensive interval measured with a cost function f is minimized. An efficient
algorithm which solves the problem in time O(p(n − p) log p) is developed. The
algorithm is based on finding a sequence of feasible non-optimal partitions, each
having only one way it can be improved to get a better partition. Finally a
number of related problems are considered and shown to be solvable by slight
modifications of our main algorithm.

∗Norsk Hydro a.s., N-5020 Bergen, Norway, fmanne@bg.nho.hydro.com
†Department of Informatics, University of Bergen, N-5020 Bergen, Norway, Tor.Sorevik@ii.uib.no

1

1 Introduction and motivation

In parallel computing one often spends effort on certain kinds of precomputations in

order to make the actual parallel algorithm execute faster. These precomputations fall

into two main categories:

1. Precomputations in order to reduce dependencies among the different subtasks.

2. Determination of how to schedule subtasks to processors.

The goal of 1 is to get as many independent tasks as possible to make the problem

more suitable for parallel computations, while the goal of 2 is to minimize the time

when the last processor finishes. An example of 1 is to restructure a matrix to make

it more suitable for parallel factorization [7]. In 2 there might be certain constraints

on how to schedule the tasks to the processors. There might for example be a partial

ordering on the subtasks or a release time when each task can first be executed.

While precomputations to reduce dependencies among subtasks are more ad hoc

and problem specific, there exists a rich literature on how to schedule tasks to proces-

sors. For an overview see [4]. With no special constraints on the jobs or the processors,

minimizing the total completion time is known to be NP-hard [3], even for two proces-

sors.

In this paper we present efficient algorithms for a number of restricted scheduling

problems. In Section 2, we give a formal description of the main problem of the present

paper and give a simple algorithm for obtaining a solution as close to the optimal

as desired. In Section 3 we develop a new exact algorithm and prove its correctness.

We also show that the running time of this algorithm is O((n − p)p log p). A number

of related problems and their solutions are discussed in Section 4. In Section 5 we

summarize and point to areas for future work.

2 Partitioning of sequences

We consider a restricted version of the scheduling problem. We assume that if job i is

assigned to processor j then jobs with lower index than i must be assigned to processors

numbered at most j and jobs with higher index than i must be assigned to processors

numbered at least j. Our goal is to minimize the time before the last processor finishes.

2

To motivate why this particular problem is of interest consider the following example

from Bokhari [2]:

In communication systems it is often the case that a continuous stream of data

packages have to be received and processed in real time. The processing can among

other things include demodulation, error correction and possibly decryption of each

incoming data package before the contents of the package can be accessed [5]. Assume

that n computational operations are to be performed in a pipelined fashion on a con-

tinuous sequence of incoming data packages. If we have n processors we can assign

one operation to each processor and connect the processors in a chain. The time to

process the data will now be dominated by the processor that has to perform the most

time consuming operation. With this mapping of the operations to the processors, a

processor will be idle once it is done with its operation and have to wait until the

processor that has the most time consuming operation is done, before it can get a new

data package. This is inefficient if the time to perform each task varies greatly. Thus

to be able to utilize the processors more efficiently we get the following problem: Given

n consecutively ordered tasks, each taking f(i) time, and p processors. Partition the

tasks into p consecutive intervals such that the maximum time needed to execute the

tasks in each interval is minimized.

Bokhari [2] also described how a solution to this problem can be used in parallel

processing as compared to pipelined. Mehrmann [9] shows how this particular parti-

tioning problem arises when solving a block tridiagonal system on a parallel computer.

We now give the formal definition of the problem:

Let the two integers p ≤ n be given and let {σ0, σ1, ..., σn−1} be a finite ordered set

of real numbers. Let R = {r0, r1, ..., rp} be a set of integers such that r0 = 0 ≤ r1 ≤

... ≤ rp−1 ≤ rp = n. Then R defines a partition of {σ0, σ1, ..., σn−1} into p intervals:

{σr0 , σ1, ..., σr1−1}, {σr1 , ..., σr2−1},..., {σrp−1
, ..., σrp−1}. If ri = ri+1 then the interval

{σri , ..., σri+1−1} is empty.

Let f be a function, defined on intervals taken from the sequence {σ0, σ1, ..., σn−1},

that satisfies the following three conditions:

f(σi, σi+1, ..., σj) ≥ 0 (1)

for 0 ≤ i, j ≤ n− 1, with equality if and only if j < i.

f(σi+1, σi+2, ..., σj) < f(σi, σi+1, ..., σj) (2)

3

for 0 ≤ i ≤ j ≤ n− 1 and

f(σi, σi+1, ..., σj) < f(σi, σi+1, ..., σj+1) (3)

for 0 ≤ i ≤ j < n− 1.

The problem is then:

MinMax Find a partition R such that maxp−1
i=0 {f(σri , ..., σri+1−1)} is minimum over

all partitions of {σ0, ..., σn−1}.

Note that as the MinMax problem is stated there is no advantage in allowing an

interval of zero length. We will, however, in Section 4.1 look at a related problem

where we will need intervals of zero length. So far we have not said anything about the

complexity of computing the cost function f . For most realistic problems we expect

the two following criteria to be satisfied:

1. The function f(σj) can be computed in time O(1).

2. Given the value of f(σl, σl+1, ..., σk) we can calculate f in time O(1), where either

k or l has been increased or decreased by one.

A straightforward example of such a function is f(σl, σl+1, ..., σk) = Σk
i=l|σi|, where

σi 6= 0 for 0 ≤ i ≤ n− 1.

When there is no possibility for confusion we will use the simplified notation ϕj

instead of f(σrj , ..., σrj+1−1). We will write [rj , rj+1] for the sequence {σrj , ..., σrj+1−1}.

From now on we assume that r0 = 0 and rp = n.

The first reference to the MinMax problem that we are aware of is by Bokhari

[2] who presented an O(n3p) algorithm using a bottleneck-path algorithm. Anily and

Federgruen [1] and Hansen and Lih [6] independently presented the same dynamic

programming algorithm with time complexity O(n2p). The dynamic programming

algorithm is as follows:

Let g(i, k) be the cost of the most expensive interval in an optimal partition of

σi, σi+1, ..., σn−1 into k intervals, 0 ≤ i ≤ n − k and 1 ≤ k ≤ p. The cost of an

optimal solution to the MinMax problem is then g(0, p). The initial values are given

by g(i, 1) = f(σi, ..., σn−1) and g(i, n− i) = maxi≤j<n{f(σj)}. The following recursion

4

λ := f(σ0, σ2, ..., σn−1);
τ := maxn−1

j=0{f(σj)};
Repeat

ρ := (λ+ τ)/2;

If we can find a partition such that maxp−1
j=0{ϕj} ≤ ρ

then λ := ρ;
else τ := ρ;

Until (τ + ǫ ≥ λ);

Figure 1: The Bisection algorithm

shows how g(i, k) can be computed for 2 ≤ k < n− i:

g(i, k) = min
i≤j≤n−k

{max{f(σi, ..., σj), g(j + 1, k − 1)}}

We can now solve the problem for k = 1 to p, and for each value of k for i = n − k

down to 0. This gives a time complexity of O(n2p) and a space complexity of O(n) to

compute g(0, p). Once g(0, p) is known the actual placement of the delimiters can be

computed in time O(n).

The MinMax problem can also be solved by a bisection method. Since we can easily

find an upper and lower limit on maxp−1
j=0{ϕj} we can get as good an approximation as

we want by using bisection. We assume that p < n and let ǫ be the desired precision.

The algorithm is shown in Figure 1.

Note that if f is integer valued and ǫ = 1 the bisection method will produce an

optimal partition. We can determine if there exists a partition such that maxp−1
j=0{ϕj} ≤

ρ in O(n) time. This is done by adding as many elements as possible to the interval

[r0, r1] while keeping ϕ0 ≤ ρ. This process is then repeated for each consecutive interval.

The overall time complexity of the bisection method is then O(n log((λ− τ)/ǫ)) where

λ = f(σ0, σ1, ..., σn−1) and τ = maxn−1
j=0{f(σj)}. The running time of this algorithm is

polynomial in the input size but it is dependent on f and the values of σ. In Section

3 we will present a new algorithm for solving the MinMax problem which has running

time O((n−p)p log p). This is more efficient than the bisection method if log((λ−τ)/ǫ)

is large compared to p log p.

5

3 A new algorithm

In this section we present an efficient iterative algorithm that finds an optimal partition

for the MinMax problem. Our algorithm is based on finding a sequence of feasible non-

optimal partitions such that there exists only one way each partition can be improved.

This idea has also been used to partition acyclic graphs [8].

3.1 The MinMax algorithm

First we introduce a special kind of partition which is essential to our algorithm.

Definition 1 (A Leftist Partition (LP)) Let R = {r0, r1, ..., rp} be a partition of

{σ0, ..., σn−1} into p intervals where [rj, rj+1] is a most expensive interval of cost ϕj = γ.

Then R is a leftist partition if the following condition is satisfied:

Let [rk, rk+1] be the leftmost interval containing at least two elements. Then

for any value of i, k < i < p, moving ri one place to the left gives ϕi ≥ γ.

Let R = {r0, ..., rp} define an LP such that [rj, rj+1] is a most expensive interval of

cost γ. If rj+1 = rj + 1 so that the interval [rj , rj+1] contains only one element, then

the partition is optimal. Suppose therefore that the most expensive interval contains

at least two elements. Our algorithm is then based on trying to find a new partition

of lower cost by moving the delimiters ri, i ≤ j, further to the right. We do this by

adjusting ϕi downward by removing solely the leading σ from [ri, ri+1]. The formal

definition of the reordering step is as follows:

Reordering Step
γ := ϕj;
While (ϕj ≥ γ) and (j > 0)

rj := rj + 1;
If (ϕj < γ)

then j := j − 1;
End While

If we terminate with ϕ0 ≥ γ the reordering step was unsuccessful in finding a new

partition of less cost than γ, and we restore our original partition.

We now show that given an LP, if we apply our reordering step the resulting partition

will also be an LP.

6

Lemma 2 The partition obtained after successful application of the reordering step to

an LP is also an LP.

Proof: Let [rj , rj+1] be the interval from which we start the reordering step. Then

prior to the reordering step [rj , rj+1] is an interval of maximum cost γ. Let further

ω ≤ γ be the cost of a most expensive interval after the reordering and let rl be the

leftmost delimiter such that the position of rl was changed during the reordering. (If

ω = γ then there was more than one interval of cost γ in our original partition.) Note

first that ri < ri+1, l ≤ i ≤ j, after the reordering step terminates. This is because

the only way we can get ri = ri+1 is if there is an element σk that lies to the left of

[rj, rj+1] for which f(σk) = γ. But this would cause ϕ0 ≥ γ when the reordering step

terminates, contradicting the fact that we performed a successful application of the

reordering step. We now look at each interval [rq, rq+1] and show that it satisfies the

conditions of an LP.

• 0 ≤ q < l − 1 and j < q < p. These intervals remain unchanged and since ω ≤ γ

they still satisfy the condition of an LP.

• q = l−1. The interval [rl−1, rl] satisfies the condition since the cost of this interval

increased.

• l ≤ q ≤ j. Each of these intervals satisfies the condition since moving rq one

place to the left will give ϕq ≥ γ ≥ ω.

Thus we see that after performing a successful iteration of the reordering step on

an LP we still have an LP. This concludes the proof. 2

If the reordering procedure fails to improve the partition, the following lemma tells

us that the starting partition was optimal.

Lemma 3 If the reordering step on an LP is unsuccessful then this LP is optimal.

Proof: Let R be a partition to which the reordering step was applied but proved

unsuccessful, and let [rj, rj+1] be the interval of maximum cost ϕj = γ on which the

reordering step began. Let R′ be a partition of {σ0, σ1, ..., σn−1} given by 0 = r′0 ≤ r′1 ≤

... ≤ r′p−1 ≤ r′p = n. If r′j ≤ rj and r′j+1 ≥ rj+1, clearly the cost associated with R′ is

7

no smaller than that associated with R. In other words, R′ cannot possibly cost less

than R unless r′j > rj or r
′
j+1 < rj+1.

The reordering step starts by moving rj one place to the right. Since the reordering

step was unsuccessful there does not exist a partioning of [r0, rj + 1] into j intervals

such that the maximum cost is less than γ. It follows that if r′j > rj the cost of R′ is

greater than or equal to γ.

From Definition 1 it follows that any partition of [rj+1−1, rp] into p−j−1 intervals

will be of cost at least γ. Thus if r′j+1 < rj+1 the cost of R
′ will be at least γ. It follows

that there exists no partition of {σ0, σ1, ..., σn−1} into p intervals of cost less than γ. 2

We have now seen that a successful reordering of an LP gives a new LP and that

an LP must be optimal if the reordering step is unsuccessful. It remains to find the

first LP to start the algorithm. But this is easy: we set rj = j for 1 ≤ j < p. The

p − 1 leftmost intervals are each of length one and interval [rp−1, rp] contains the rest

of the numbers. Thus this placement of the delimiters gives an LP from which we can

start. This also shows that there must exist an optimal LP since we can move each ri

at most n− p places. Note that if the most expensive interval in the initial LP is any

other than [rp−1, rp] the starting LP is optimal.

The complete algorithm for solving the MinMax problem is given in Figure 2.

To simplify finding a most expensive interval we maintain ϕj for each interval in a

heap ordered by decreasing cost. This heap is updated each time we move a delimiter.

3.2 The complexity of the MinMax algorithm

We now give both the time complexity of the worst case and the average case for the

MinMax algorithm. In the worst case each of the p−1 interior delimiters is moved n−p

places. Thus we see that the total number of moves is never more than (n− p)(p− 1).

We must find an interval of maximum cost before each iteration of the reordering step.

Since we maintain the costs of the intervals in a heap this can be done in O(1) time.

The heap is updated each time we move a delimiter at a cost of O(log p). Thus we see

that we never do more than (n− p)(p− 1) updates for a total cost of O((n− p)p log p).

We note that for p = n the algorithm has time complexity O(n).

It is easy to construct examples for which the MinMax algorithm will perform

(n − p)(p − 1) moves of the delimiters. Thus this is a sharp bound on the number of

8

r0 := 0;
rp := n;
For i := 1 to p− 1

ri := i;
Repeat

i := {j | ϕj is maximum over all j};
γ := ϕi;
If (ri+1 = ri + 1)

then exit;
While (ϕi ≥ γ) and (i > 0)

ri := ri + 1;
If ϕi < γ

then i := i− 1;
End While

Until (ϕ0 ≥ γ);
Restore the last partition;

Figure 2: The MinMax algorithm

moves. However, we do not know if there exist problems where one has to do Θ((n−p)p)

updates on the heap where each update costs Θ(log p).

If each possible partition has the same probability of being optimal, the average

number of moves in the MinMax algorithm is half the number of moves performed

in the worst case. To see this let T be the set of all possible partitions of the form

{r0, r1, ..., rp}. The number of moves needed to reach a particular partition in T is

Σp−1
i=1 (ri − i). For each partition in T there exists a unique dual partition {0 = n −

rp, n − rp−1, n − rp−2, ..., n − r1, n = n − r0}. To reach this dual partition we need to

make Σp−1
i=1 (n− rp−i − i) moves. The number of moves needed to reach a partition and

its dual is then (n− p)(p− 1), so that the total number of moves needed to reach each

partition twice is |T |(n − p)(p − 1). Thus the average number of moves to reach a

partition in T is (n− p)(p− 1)/2, which is exactly half the number of moves needed in

the worst case.

9

4 Related problems

We have now seen three different ways in which the MinMax problem can be solved.

We have seen that the MinMax algorithm has lower complexity than the dynamic

programming algorithm, and that for an approximate solution either the bisection

method or the MinMax algorithm is the best choice depending on the data and the

desired precision. In this section we will look at some related problems which at first

might seem to be more difficult than the MinMax problem. For each of these problems

we will show how it can be solved by simple modifications of the MinMax algorithm.

For each problem we also show how the bisection method can be used.

4.1 Charging for the number of intervals

When scheduling tasks to processors there might be an extra cost associated with

splitting the problem and/or combining the partial solutions in order to obtain a global

solution. An example of an algorithm which solves such a problem can be found in [11].

The total execution time of these algorithms is then maxp−1
j=0{ϕj}+ h(p) for 1 ≤ p ≤ n.

Here h(p) is the extra cost of splitting/combining the problem. Since maxp−1
j=0{ϕj}+h(p)

is a non-smooth integer function the only way to find its minimum is to evaluate the

function for all values of p. In this section we show how this can be done by modifying

the MinMax algorithm so that we solve the MinMax problem for each value of p between

1 and n.

As we presented the MinMax algorithm in Section 2 we never encounter intervals

of length zero. However, neither the definition of an LP nor the proofs of Lemmas 2

and 3 prohibit us from redefining an LP to allow intervals furthest to the left of zero

length. It follows that the MinMax algorithm will return an optimal partition from

such an LP. Consider the trivial partition obtained by setting rj = 0 for 0 ≤ j < p.

If this is used as the starting partition for the MinMax algorithm we have to perform

(n− p/2)(p− 1) moves of the delimiters in the worst case.

Assume that we have some leftist partition where we have divided the sequence into

k intervals 1 ≤ k < n. We now add a new delimiter in position zero thus giving the

first interval length zero. This partition is still leftist and if we continue the MinMax

algorithm we end up with an optimal partition for k + 1 intervals.

To solve the MinMax problem for each value of p we first evaluate the cost function

for p = 1 before solving it for p = 2. In the last reordering step when we get ϕ0 ≥ γ and

10

it becomes clear that the previous partition was optimal, we evaluate the cost function

for the optimal partition. This value is compared with the previous lowest value. When

this is done we introduce a new empty interval in position zero and continue and solve

the problem for p = 3. This is then repeated for each consecutive value of p ≤ n. In

this way we will find the value of p which minimizes maxp−1
j=0{ϕj}+h(p). The maximum

number of steps we have to move the delimiters is n(n − 1)/2 giving an overall time

complexity of O(n2 log n).

If we use the bisection method for each value of p to find an optimal partition we

get a total time complexity of O(n2 log(λ− τ)/ǫ)).

4.2 Bounds on the intervals

In this section we will consider the MinMax problem with the added restriction that

each σi has a size and there is a limit on the maximum size of each interval. This is

the case when scheduling jobs to processors and each processor has a limited amount

of memory to store its job queue.

Let s be a function defined on continuous intervals of {σ0, σ1, ..., σp−1} in the same

way that f was defined in Section 2. We call s(i, j) the size of the interval {σi, ..., σj}.

Formally the problem now becomes:

Bounded MinMax Given positive real numbers U0, U1, ..., Up−1, find an optimal

partition for the MinMax problem with the constraint that s(rj, rj+1 − 1) ≤ Uj for

0 ≤ j ≤ p− 1.

Note that there might not exist a solution to the bounded MinMax problem. This

can in fact be determined by testing if the starting partition satisfies the size constraints.

The starting partition is given by setting the delimiters as far left as possible while

maintaining the restrictions on the size of each interval. More formally the starting

partition is given by r0 = 0, rp = n and the following formula: ri = min{j | j ≥

0 ∧ s(j, ri+1 − 1) ≤ Ui ∧ s(rk, rk+1 − 1) ≤ Uk, i < k < n}, 0 < i < n. If this gives

us s(0, r1 − 1) > U0 then there exists no solution to the bounded MinMax problem;

otherwise, there exists a solution.

Let rk be the leftmost nonzero delimiter, and let γ be the cost of a most expensive

interval. We now define a leftist partition such that moving ri to the left for k ≤ i < p

causes at least one of the following two events to occur:

11

1. ϕi ≥ γ

2. s(ri, ri+1 − 1) > Ui

Our reordering step is as follows:

i := {j | ϕj is maximum over all j};
γ := ϕi;
While ((s(ri, ri+1 − 1) > Ui) or (ϕi ≥ γ)) and (i > 0)

ri := ri + 1;
If s(ri, ri+1 − 1) ≤ Ui and (ϕi < γ)

then i := i− 1;
End While

If we terminate with ϕ0 ≥ γ or s(0, r1−1) > U0 the reordering step was unsuccessful

and we restore our original partition.

It is straightforward to modify the proofs of Lemmas 2 and 3 to show that repeated

applications of the reordering step will converge to an optimal partition. Since each

delimiter might be moved O(n) times, the time complexity of this method is O(np log p).

The bisection method can also be used to solve this method without altering its

time complexity.

Note that if s(ri, ri+1 − 1) = ri+1 − ri (the number of elements in each interval)

and each Uk is a positive integer then we can use the following starting partition:

ri = max{i, n− Σp−1
l=i Ul}, 0 < i < p. This gives a time complexity of O((n− p)p log p).

4.3 Cyclic sequences

In this section we consider the problem when the data is organized in a ring. This

means that the sequence {σrp−1
, ..., σn−1, σ0..., σr0−1} is now interval p. We assume that

the data is numbered clockwise σ0, σ1, ..., σn−1. The problem now becomes: Find a

partition R = {r0, r1, ..., rp−1} such that maxp−1
j=0{ϕj} is minimum.

Note that we no longer require r0 = 0 and that we do not make use of rp.

Our reordering step is similar to the one used in the MinMax algorithm. The main

difference is that where in the MinMax algorithm we would have terminated when

ϕ0 ≥ γ, we now continue and try to move r0 to make the interval [r0, r1] less expensive.

12

For i := 0 to p− 1
ri := i;

While (rp−1 6= 0)
i := {j | ϕj is maximal over all j};
γ := ϕi;
If r(i+1) mod p = ((ri + 1) mod n)

then exit;
While (ϕi ≥ γ) and (rp−1 6= 1)

ri := (ri + 1) mod n;
If ϕi < γ

then i := (i− 1) mod p;
End While

End While
Restore the previous best partition;

Figure 3: The cyclic MinMax algorithm

We continue to run the algorithm until rp−1 = 0. The algorithm is as shown in Figure

3.

If the algorithm exits with ri+1 = ri + 1, we know that the partition is optimal. As

the following lemma shows this is also the case if the algorithm exits with rp−1 = 0.

Lemma 4 When rp−1 = 0 we have encountered an optimal partition at some stage of

the algorithm.

Proof: Let t0, t1, ..., tp−1 be an optimal placement of the delimiters such that tj < tj+1

for 0 ≤ j < p− 1, and the most expensive interval is of cost γ. In the starting position

we know that rj ≤ tj for 0 ≤ j ≤ p − 1. Let ri be the first delimiter which is moved

past ti. Let further π be the cost that we are trying to get ϕi below. When ri = ti we

know that π ≤ ϕi. We also know that ϕi ≤ γ since ri+1 has not been moved past ti+1.

This implies that π ≤ γ. But since γ was the optimal solution we must have π = γ.

Thus at some point of our algorithm we had a partition that was optimal. 2

As soon as rp−1 has been moved to position 0 we know that at least one rj has been

moved passed tj (since tp−1 ≤ n− 1) and that further moving of the delimiters will not

13

decrease the cost of the most expensive interval. We can now restore the previous best

partition knowing that it is optimal. It is clear that this algorithm has running time

O((n− p)p log p).

To solve for all values of p we will have to restart the algorithm from scratch each

time. This gives a running time of O(n3 log n).

The initial problem can also be solved using the bisection method. First we parti-

tion {σ0, σ1, ..., σn−1} into p intervals such that no interval contains more than ⌈n/p⌉

elements. Let ϕi be a most expensive interval. Then if we start the bisection method

starting from each σj where ri ≤ j ≤ ri+1 we will find an optimal partitioning. To see

this note that any partitioning that does not contain a delimiter in the interval [ri, ri+1]

will be of cost > ϕi. The time complexity of this method is O(n2/p log((λ − µ)/ǫ)).

If we want to solve the problem for each value of p the time complexity becomes

O(n2 log n log((λ− µ)/ǫ)).

4.4 The MaxMin problem

When solving the MinMax algorithm we try to make the cost of the most expensive

interval as low as possible by leveling out the cost of the intervals. Another way to

level out the cost of the intervals is to ask for a partition such that the cost of the least

expensive interval is as high as possible. The definition of this problem is as follows:

MaxMin Let f be as for the MinMax problem. Find a partition such that

minp−1
j=0{ϕj} is maximum over all partitions of σ0, ..., σn−1.

Note that both the bisection method and the dynamic programming approach can

be modified to solve the MaxMin problem.

As we did for the MinMax problem we first define a special kind of partition.

Definition 5 (A MaxMin Partition (MP)) Let R = {r0 = 0, r1, ..., rp−1, rp = n}

define a placement of the delimiters such that [rj, rj+1] is a least expensive interval of

cost ϕj = γ. Then R is an MP if the following condition is satisfied:

• Moving ri, 0 < i < p, one place to the left gives ϕi−1 ≤ γ.

14

r0 := 0;
rp := n;
For i := 1 to p− 1

ri := i
Repeat

i := max{j | ϕj is minimal over all j}
γ := ϕi;
While (ϕi ≤ γ) and (i 6= p− 1)

ri+1 := ri+1 + 1;
If ϕi > γ

then i := i+ 1;
End While

Until (ϕp−1 ≤ γ);
Restore the last partition;

Figure 4: The MaxMin algorithm

Note that the starting partition for the MinMax algorithm also is an MP. This

follows since moving ri, 0 < i < p, will make ri−1 = ri and thus ϕi−1 = 0. If [rp−1, rp]

is a least expensive interval this MP is clearly optimal.

The main difference between the MinMax algorithm and the MaxMin algorithm

is that in the MaxMin algorithm we move the right delimiter of the current interval

instead of the left. Also, once the current interval has reached the desired size we

continue to work with the interval to its right. The algorithm is shown in Figure 4.

The reason for breaking ties by choosing the rightmost eligible interval is to avoid

moving some rk past rk+1. To see that this has the desired effect we need the following

lemma:

Lemma 6 Let rj, ..., rl be the delimiters that are moved during one iteration of the

Repeat-Until loop in the MaxMin algorithm. Then ri < ri+1, j ≤ i ≤ l, after the

iteration.

Proof: Let γ be the initial cost of ϕj−1. We first show that ri ≤ ri+1, j ≤ i ≤ l,

after the iteration of the Repeat-Until loop. The proof is by induction on the number

of delimiters moved in the while-loop. The first delimiter which is moved is rj. Since

initially rj+1 > rj and because rj is moved only one place, the induction hypothesis

remains true after rj has been moved.

15

Assume that the while-loop has progressed to ϕk−1, j < k, and that ri ≤ ri+1 for

j ≤ i < k. If ϕk−1 > γ or k = p the reordering step is done and the induction hy-

pothesis remains true. Assume therefore that ϕk−1 ≤ γ and k < p. By the way j was

chosen we have ϕk > γ. This implies that moving rk until rk = rk+1 will give ϕk−1 > γ.

Therefore rk is never moved past rk+1 and the induction hypothesis remains true. The

main result now follows since after each iteration of the Repeat-Until loop we have

0 < γ < ϕi for j − 1 ≤ i ≤ l (with the possible exception of ϕp−1). By the way f is

defined this implies that ri < ri+1, j ≤ i < l. 2

The following two lemmas show that the MaxMin algorithm does produce an opti-

mal partition. Their proofs are similar to the proofs of Lemma 2 and 3 and are omitted

here.

Lemma 7 The partition obtained after a successful application of the reordering step

on an MP is also an MP. 2

Lemma 8 If the reordering step on an MP is unsuccessful then the MP is optimal. 2

It is not difficult to show that the MaxMin algorithm has both the same upper limit

on the time complexity in the worst case and the same average case time complexity

as the MinMax algorithm.

5 Conclusion

We have shown algorithms for the MinMax problem and several variations of this

problem. The time complexity of the algorithm for the initial problem was shown to

be O((n − p)p log p). This was compared to other algorithms which either had worse

time complexity or had a time complexity which was dependent on the f function and

the size of the numbers in the sequence. We based our algorithm on finding sequences

of non-optimal partitions, each having only one way it can be improved. This seems to

be a useful technique in the design of algorithms.

In a recent development Olstad and Manne [10] have improved the dynamic pro-

gramming approach for solving the MinMax problem to O(p(n − p)). However, since

their method uses dynamic programming it must perform p(n− p) steps on any input,

16

where our algorithm might perform fewer than (n − p)p log p steps depending on the

input.

A problem similar to the MinMax and MaxMin problems is to find the partition

such that maxp−1
j=0{ϕj}−minp−1

j=0{ϕj} is minimum over all partitions. One could be lead

to believe that it is possible to solve the MinMax problem and the MaxMin problem

simultaneously thus giving an optimal solution. This however is not the case as the fol-

lowing example shows. Consider the sequence {3, 3, 1, 5, 2} with f(σl, ..., σk) = Σk
i=lσi.

If we partition this sequence into p = 3 intervals the MinMax problem has the unique

solution f(3, 3) = 6, f(1, 5) = 6 and f(2) = 2. While the MaxMin problem has unique

solution f(3) = 3, f(3) = 3 and f(1, 5, 2) = 8. Thus we see that in general it is not

possible to solve both problems at the same time.

An approximation to this problem can be found by first running the MinMax algo-

rithm. Once a most expensive interval [rj, rj+1] has been found, the MaxMin algorithm

can be run to partition [r0, rj] into j intervals and [rj+1, rp] into n − j − 1 intervals.

This can also be done by running the MaxMin algorithm first followed by the MinMax

algorithm.

Finally, we note that the MinMax problem can be generalized to higher dimensions

than 1. In 2 dimensions the problem becomes how to partition a matrix A by drawing

p1 horizontal lines between the rows of A and p2 vertical lines between the columns,

such that the maximum value of some cost function f on each resulting rectangle is

minimum. However, we do not know of any solutions to the partitioning problem for

dimensions larger than one.

6 Acknowledgment

The authors thank Sven Olai Høyland for drawing their attention to the bisection

approach in Section 2. They also thank Bengt Aspvall for constructive comments.

References

[1] S. Anily and A. Federgruen, Structured partitioning problems, Operations
Research, 13 (1991), pp. 130–149.

[2] S. H. Bokhari, Partitioning problems in parallel, pipelined, and distributed com-

puting, IEEE Trans. Comput., 37 (1988), pp. 48–57.

17

[3] M. R. Garey and D. S. Johnson, Complexity results for multiprocessor

scheduling under resource constraints, SIAM J. Comput., 4 (1975), pp. 397–411.

[4] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan,
Optimization and approximation in deterministic sequencing and scheduling: A

survey, Annals of Discrete Mathematics, 5 (1979), pp. 287–326.

[5] F. Halsall, Data Communications, Computer Networks and OSI, Addison Wes-
ley, 1988.

[6] P. Hansen and K.-W. Lih, Improved algorithms for partitioning problems in

parallel, pipelined, and distributed computing, IEEE Trans. Comput., 41 (1992),
pp. 769–771.

[7] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J.
Matrix Anal. Appl., 11 (1990), pp. 134–172.

[8] F. Manne, An algorithm for computing an elimination tree of minimum height

for a tree, Tech. Report CS-91-59, University of Bergen, Norway, 1992.

[9] V. Mehrmann, Divide and conquer methods for block tridiagonal systems, tech.
report, Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Ger-
many, 1991.

[10] B. Olstad and F. Manne, Efficient partitioning of sequences with an applica-

tion to sparse matrix computations, Tech. Report CS-93-83, University of Bergen,
Norway, 1993.

[11] S. J. Wright, Parallel algorithms for banded linear systems, SIAM J. Sci. Statist.
Comput., 12 (1991), pp. 824–842.

18

