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1.3:2 . J. Langguth et al.

1. INTRODUCTION

The bipartite cardinality matching problem is defined as follows:

Given an undirected bipartite graph G = (V1, V3, E),E C V; x Vs, find a
maximum cardinality subset M C E of pairwise nonadjacent edges. This set
M is called a perfect matching if |V;| = |V3| = |M|. Clearly, not all bipartite
graphs have a perfect matching.

The bipartite matching problem is a classical topic in combinatorial opti-
mization that has been studied for almost a century. It has many applications
[Ahuja et al. 1993] in various fields, and it is relevant for numerical computa-
tions due to the fact that it can be used to compute improved pivoting strategies
in linear solvers [Schenk et al. 2003; Sangiovanni-Vincentelli 1976], making it
an important problem in combinatorial scientific computing.

To that end, for a given n x n’ matrix A, we define G4 = (V1, Vo, E), |V1| = n,
Vol =n', E ={{i, j} € Vi x Vo :a; ; # 0}, |E| = m as the graph derived from A.
Since we will be dealing with square matrices that do not contain all-zero rows
or columns, G 4 will have a perfect matching as long as A has full structural
rank.

As any edge included in such a matching corresponds to an entry of A being
permuted to the main diagonal, any perfect matching describes a pivot strategy
that is optimal in the Brayton’s sense, that is, Gaussian elimination performs
the minimum number of arithmetic operations. This requires pivot elements to
be nonzero, since otherwise a computation is performed to compute something
which is always zero [Brayton et al. 1970; Sangiovanni-Vincentelli 1976].

Since the problem is easy for dense matrices, we restrict our attention to
sparse instances only. Note that a solution can still be improved upon by in-
creasing the weight of the matched edges. This can be achieved either by directly
solving the considerably more difficult weighted perfect matching problem or
by improving a perfect matching through repeated searches for weight aug-
menting cycles. In both cases, heuristic initializations can speed up the exact
computations.

It is a well-known fact that most matching algorithms, with the exception of
the Push-relabel algorithm [Cherkassky et al. 1998], can be accelerated by ini-
tializing them with an approximate matching. However, fast exact algorithms
are available. One of the best theoretical bounds is O (n./mn/logn) for the algo-
rithm by Alt et al. [1991]. Furthermore, experimental studies have shown that
the running times of many exact algorithms increase only slightly more than
linearly with instance size for most test sets [Setubal 1996].

Thus, all initializations should have linear running time, which generally
restricts them to local selection rules that are applied to all vertices. It is easy
to see that the global Hall condition [Korte and Vygen 2006], which is neces-
sary and sufficient for the existence of a perfect bipartite matching cannot be
guaranteed to be fulfilled by such a local selection rule. Therefore, it is unlikely
that a linear time exact algorithm for matching exists.

In this article, we analyze the effects of various initializations on the total
running times of several exact algorithms. Our results show that these effects
can be quite dramatic. Even the Push-relabel algorithm can be accelerated on
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many instances. In addition, we present a new initialization heuristic that is
geared towards application in linear solvers and compare it with the known
heuristics in regard to performance, solution quality, and usefulness as an
initialization routine. We provide an overview of known matching heuristics
in Section 2. Section 3 introduces our new approach, and we present our ex-
perimental results in Section 4, followed by our conclusions in Section 5. The
appendix contains the results from our experiments.

2. MATCHING HEURISTICS

Matching heuristics have been studied for more than 30 years. Here, we give
an overview of the most commonly known heuristics. They serve as a basis for
comparison in our experiments. Although we focus only on bipartite graphs,
these heuristics are suited for general graphs as well.

2.1 Simple Greedy

Probably the simplest and most widely used selection rule is Simple Greedy:
For each vertex, find an unmatched neighbor and add the respective edge
to the matching. If all neighbors are matched, leave the vertex unmatched.
Even though its approximation ratio is only %, studies have shown that Simple
Greedy usually produces solutions within at least % of the optimum [Mo6hring
and Miller-Hannemann 1995; Magun 1998]. Its worst-case running time is
O(m), and the expected running time is O(n) if vertices are picked in random
order.

2.2 Dynamic Mindegree

More sophisticated approaches exploit the fact that generally, the chance to
match a vertex in such a way that one of its neighbors can no longer be matched
is lower if vertices are preferably matched to vertices of low degree. This obser-
vation gives rise to the family of degree-based heuristics known as Mindegree.
Their basic concept works as follows:

The algorithm determines the degree of each vertex and repeatedly picks one
vertex of minimum degree and an unmatched neighbor to be matched to it. The
matched edge and its incident vertices are removed from the graph and all of
their neighbors have their degrees reduced by one, possibly changing the order
in which further vertices are picked. The process is repeated until no further
vertex can be matched. A natural approach for implementation would be to use
a priority queue to keep track of the lowest degree vertices.

Depending on whether the neighbor is chosen randomly or also chosen by
minimum degree, we speak of One-Sided Mindegree or Double-Sided Minde-
gree. Many variants of this scheme are possible.

2.3 Static Mindegree

This heuristic differs from Dynamic Mindegree in so far that after deleting a
vertex, the degree of its neighbors is simply not updated. This saves a consid-
erable amount of work, since each deletion of an edge {u, v} now takes O(1)
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1.3:4 . J. Langguth et al.

instead of O(deg(u) + deg(v)) time, where deg(v) is the degree i.e., the number
of neighbors of the vertex v. However, the speedup that is achieved in this way
comes at a high cost in terms of solution quality [Setubal 1996; Magun 1998].
Like Dynamic Mindegree, Static Mindegree can be implemented either one- or
double-sided, but due to the fact that degrees are not updated, searching for
a neighbor of minimum degree promises a smaller increase in solution qual-
ity in comparison to Double-Sided Dynamic Mindegree, at the same cost in
running article. Thus, only One-Sided Static Mindegree will be treated in this
article.

2.4 Limited Mindegree (Karp-Sipser)

It is also possible to restrict the Mindegree approach to vertices of low degree. In
this case, if the lowest degree among all vertices in the graph is above a certain
limit, the next vertex to be matched is selected randomly instead of picking a
minimum degree vertex. If the lowest degree is below the limit, however, the
next vertex is selected according to the Mindegree rule. This obviates the need of
keeping track of the degree of many vertices while running the heuristic. How-
ever, this does not simplify the implementation significantly, and unlike Static
Mindegree, only saves a constant amount of effort per vertex. The most notable
application of this strategy is the Karp-Sipser heuristic [Karp and Sipser 1981],
which only keeps track of vertices of degree 1. If there are no such vertices in the
current graph, it behaves like Simple Greedy. Thus, it can be described as One-
Sided Dynamic Mindegree limited to degree 1. As shown in the next sections,
this is a very effective strategy. It is unclear whether limits other than 1 have
any practical application. Preliminary experiments did not show improvements
in running time in comparison to full (i.e., unrestricted Mindegree).

2.5 Initialization Considerations

All these techniques represent a trade-off between speed and expected solu-
tion quality. This has been studied before (see Magun [1998] and Mohring and
Miller-Hannemann [1995]), but for our application of these heuristics as a pre-
liminary step in exact algorithms, we face the additional difficulty that we are
ultimately not interested in the performance or solution quality of the heuristics
as such, but in the effect they have on the total running time of the algorithm
for which we use them as initializations.

As this is not directly proportional to the quality of the initialization, but
largely dependent on the exact algorithm used, we have to compare pairings of
heuristics and exact algorithms for a proper analysis.

The heuristics discussed here all have in common that they return maximal
matchings, which implies that they are at least %-approximation algorithms.
However, for practical purposes the approximation guarantees yield little in-
formation. Instead, we consider the actual average quality, which is usually far
better than % or % Therefore, we ignore the approximation ratios of the algo-
rithms discussed here and refer to them as heuristics and not approximation

algorithms.
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3. THE ALTERNATING COMPONENT HEURISTIC

In this section, we present a new cardinality matching heuristic for sparse
bipartite graphs. Our heuristic is based on the Double-Sided Dynamic Min-
degree heuristic enhanced by a special treatment for vertices of degree 2,
which is crucial for the improved solution quality. Unlike other heuristics,
it is designed for bipartite graphs only. It can be used on general graphs,
but for those it cannot be expected to produce better solutions than Double-
Sided Dynamic Mindegree. Thus, in the following, we assume a bipartite graph
G=(V,Vy,E),E CVy x Vs

3.1 Degree-Based Reductions

Similar to all other Dynamic Mindegree heuristics, vertices of higher degree
are only considered after all vertices of degree 1 have been matched. Karp and
Sipser [1981] show that it is always safe to do so and label this a degree 1
reduction. Denote by I'(zz) the neighborhood of u, that is, the set of vertices
adjacent to u. For a set of vertices, S let I'(S) = | ,.g [ ().

TueoreEM 3.1 (DEGREE 1 REDUCTION [KARP AND SiPSER 1981]). Given a graph
H = (V, E) and vertices u,w € V with deg(u) = 1 and I'(u) = {w}, then there is
always a maximum matching M on H with {v,w} e M

Obviously, if deg(u) = 1 and a perfect matching exists, unlike heuristics such
as Simple Greedy, a Dynamic Mindegree heuristic cannot create a suboptimal
matching by selecting the neighbor w of u to be matched with a different vertex.
For deg(u) = 2, we can exploit the fact that one out of the two incident edges
must be used, as shown in the next reduction by Karp and Sipser [1981].

THEOREM 3.2 (DEGREE 2 REDUCTION [KARP AND SIPSER 1981]). Given a graph
H = (V, E)and vertices u,wi,ws € V with deg(u) = 2and I'(u) = {w1, wa}, then
there is always a maximum matching M on H with {u,w.} € M or {u,ws} € M.

Using this reduction, it is easy to find a matching in H by first finding a
matching in H' = (V’, E’) where V' = V U{w'}\ {u, w1, we} and I'(w’) = {T'(w1)U
C(w2)} \ {u}. If w’ is matched in H’, then u is matched to either w; or we in H
and the number of unmatched vertices in H' and H is the same. On the other
hand, if w’ is not matched in H’, then u can be matched to either w; or wy in
H. Again, the number of unmatched vertices in H' and H is the same. Thus, a
maximum matching in H' implies a maximum matching in H. For a complete
proof, see Karp and Sipser [1981].

3.2 Alternating Components

The Mindegree heuristic always performs degree 1 reductions automatically.
However, implementing degree 2 reductions in an explicit, straightforward way
does not suggest itself for high performance, as it requires either a flexible and
thereby slow data structure or additional running time to search through the
edges of the vertices to be merged. Therefore, we propose Algorithm 1, which
exploits these reductions implicitly. As a first step, we introduce the concept of
alternating components.
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1.3:6 . J. Langguth et al.

Algorithm 1. Component-Based Heuristic

1:Setl(v) :==vVveV,V,

2: Keep vertices sorted by degree in a priority queue P @

: Pick an unmarked vertex v of minimum degree from P Q. If PQ = ¥ output M and
stop.

cif deg(v) = 1 then

add {v,w} to M, remove v and w (and their incident edges) from G

goto line 3

: end if

cif deg(v) = 2 then

Find a maximal path P containing v with deg(w) =2V w € P

10: Markallw € P

11: if P is a cycle then

w

12: select a vertex w € I'(v) from G

13: add {v, w} to M, remove v and w (and all incident edges) from G
14: else

15: if P is of even length then

16: ifl(w) =1W) for u,u’ € T'(P)\ P then

17: select a vertex w € I'(v) from G

18: add {v, w} to M, remove v and w (and all incident edges) from G
19: else

20: L) :=1W)

21: end if

22: end if

23: end if

24: goto line 3

25: end if

26: if deg(v) > 2 then

27:  select a vertex w € I'(v) from G

28: add {v, w} to M, remove v and w (and all incident edges) from G
29: goto line 3

30: end if

Definition 3.3. Let P be the subgraph of G formed by the union of all paths
in G that have two distinct endpoints of degree greater than 2, even length,
and contain only interior vertices of degree 2. We call a connected component
A of P an alternating component.

Now, our heuristic works as follows: Upon initialization, sort all vertices in G
into a priority queue according to their degrees and maintain this queue until
it is empty and the heuristic finishes. Vertices of degree 0 are immediately
dropped from the queue.

Furthermore, all vertices of degree 2 are initialized as unmarked. Following
the Mindegree heuristic, degree 1 vertices in the graph are matched and suc-
cessively removed from G along with their neighbors. As soon as no degree 1
vertices exist in the current graph, check for unscanned degree 2 vertices. To
scan such a vertex, we consider the degrees of both its neighbors. If a neighbor
has degree 2 and is unscanned, we scan it in the same manner.

Otherwise, we have found an endpoint of degree greater than 2. If the search
fails to find two vertices of degree greater than 2, we have discovered a simple
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cycle. Because G is bipartite, the cycle has even length, and we can match it
immediately by arbitrarily choosing one of its edges. After matching this edge,
or any other edge on the cycle, a degree 1 vertex appears on the cycle. Its incident
edge, which must be part of the cycle, is matched immediately by the heuristic.
In this manner, the entire cycle will be matched.

If the search finds two vertices of degree greater than 2, we label both
endpoint vertices as belonging to the same component, provided the path be-
tween them is of even length. In order to keep track of which endpoints be-
long to the same alternating component, we use a union-find data structure.
If both vertices already belong to the same component, we have also found
a cycle. Again, it can be matched immediately as described earlier in the
text. Note that we do not label vertices that are connected by a path of odd
length.

If all degree 2 vertices in the current graph are scanned, the heuristic
matches vertices of degree three and higher according to the Double-Sided
Mindegree heuristic. Since matched vertices are removed from the graph, the
degree of their neighbors decreases. This means that new vertices of degree
1 or 2 will appear, which are matched or scanned, as described earlier in the
text. Thus, until we obtain a maximal matching existing components can grow,
become cyclic, and, therefore, become matched.

Note that our Mindegree selection rule skips vertices of degree 2, but other
vertices can be selected to be matched, even if they belong to an alternating
component. A vertex in an alternating component can also be matched from a
neighbor outside of the component.

To further enhance solution quality, for each alternating component A, we
keep track of the vertex v in A that has the largest neighborhood outside of
A. If a vertex in A is selected to be matched by the Double-Sided Mindegree
heuristic, we instead match v to a vertex in its neighborhood outside of A. When
we remove v from A, we obtain a perfect matching for the remaining vertices
in A.

LEmma 3.4. Let degn(u) be the degree of u in the current graph G. After
removing a vertex u of degq(w) > 2 from a cycle-free alternating component A,
there is a unique perfect matching M 5 in A. Furthermore, M s can be found by
repeated degree 1 reductions.

Proor. By the definition of an alternating component, all neighbors of u
in A are of degree 2. Thus, for each neighbor v of u in A, removing u creates
one path that contains an odd number of degree 2 vertices. Let w, w # u be
the endpoint of this path and let y be the unique neighbor of w on this path.
Clearly, deg(w) > 2 and degg(y) = 2.

Let A, be the (possibly empty) cycle-free alternating component that is
reachable from I'(w) \ {y}. Note that A,, C A.

After removing u, the path is matched entirely by degree 1 reduction, starting
with v and its remaining neighbor. Because the path contains an odd number
of degree 2 vertices, w will be matched to y, thus removing it from A,,. If the
path contains only one degree 2 vertex, then y = v.
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1.3:8 . J. Langguth et al.

Because degg(w) > 2 before the removal of w, all its neighbors in A,, are
again of degree 2. Thus, removing w creates one new cycle-free alternating
component connected to a degree 1 vertex for each other neighbor of w in A,,.
Each of these has again a perfect matching, as described earlier in the text.
Therefore, a unique maximum matching in A \ {u} is obtained by repeated
degree 1 reductions. O

Note that in case of a cyclic alternating component, a perfect matching is
obtained as soon as a cycle is discovered:

LemMma 3.5. Ifan alternating component A contains a single cycle, A has two
perfect matchings.

Proor. Because G is bipartite, the cycle itself is of even length and thus
has two perfect matchings. Since it is the only cycle in A, after its removal A
is a forest. Each connected component in this forest is a cycle-free alternating
component connected to a degree 1 vertex v, and thus has a unique perfect
matching, as shown in Lemma 3.4. O

Removing a vertex of degree 2 would simply split the component in two. This
cannot happen during the heuristic, so we do not investigate this event further.
However, we have not yet considered the case of an alternating component with
more than one cycle.

Lemma 3.6. If an alternating component A contains multiple cycles, it has
no perfect matching.

Proor. By Lemma 3.4, all trees connected to a cycle or a path between
cycles have a unique perfect matching once the connecting vertex is removed.
Therefore, we can ignore these trees and focus on cycles and paths connecting
them. Let v be a vertex belonging to a cycle C in A, and let deg;(v) > 2. Suppose
for some perfect matching M that v is matched to a vertex not in C. Then, by
parity there must be another vertex v’ € C with deg,(v') > 2 that is also not
matched to a vertex in C. Without loss of generality, we can assume that each
vertex on the path between v and v’ in C is matched to a vertex in C. Then
we have a path of even length between v and v’, containing an odd number of
additional vertices. Clearly, these cannot all be matched without using a vertex
outside C, and thus, contradicting the perfectness of M.

This means that in any perfect matching M’, each cycle is matched using
only edges from C. Thus, since A contains multiple cycles and A is connected,
there must be a path P connecting two cycles. However, P must be of even
length and thus contain an odd number of vertices. Therefore, it cannot have a
perfect matching. This means that if A is connected and has a perfect matching,
it cannot contain more than one cycle. O

To obtain a perfect matching on a cyclic component, it is, therefore, sufficient
to start matching as soon as the first cycle in a component is discovered.
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3.3 Variant Approaches

Our suggested heuristic is the result of several series of experiments with sim-
ilar approaches. Among these, we selected the variant that turned out to be the
most promising. Tested variants that were discarded due to poor performance
include the following:

The Component-Based heuristic can be modified to avoid matching vertices
that belong to a component. In that case, components grow until a cycle appears.
If this does not happen, the component must be matched when the heuristic
finishes by selecting a vertex that remains unmatched, and match the rest of
the acyclic component according to Lemma 3.4. However, experiments show
that this is not advisable, since the number of components that remain acyclic
in this scheme usually outweighs the errors our unmodified heuristic makes by
matching acyclic components by far, resulting in lower solution quality.

In addition, we considered a variant using the limited Mindegree approach
instead of full Mindegree for vertices with degree greater than 2, which means
that these vertices are selected in arbitrary order, instead of being selected by
degree precedence. This can be described as a Karp-Sipser heuristic with the
addition of the build-up of alternating components, as explained in this section.
However, this approach gave solutions of poor quality even in comparison to
the unmodified Karp-Sipser heuristic which is also faster on the average.

In general, it is necessary to consider the effect that degree 2 reductions have
on the Mindegree heuristic. The contraction removes 2 vertices and replaces
them by a single vertex of their combined degree, thereby skewing the result of
the Mindegree process. Any such heuristic that makes use of degree 2 reductions
will have to deal with this effect in some way. We avoid this because we do not
explicitly contract edges.

3.4 Greedy Enhancement

For graphs that have a perfect matching, we experimented with the following
Greedy-Enhanced version of our Component-Based approach: Run the Simple
Greedy heuristic and count the unmatched edges. If less than & vertices remain
unmatched then keep the result. Otherwise, run the Component-Based heuris-
tic, as described earlier in the text. To determine % for a given graph, we used the
experimentally determined solution quality of the Component-Based heuristic,
which matches about 99.9% of all vertices as a guideline since we want our
heuristic to be invoked only if an improved solution can be expected. Further
experiments suggested that setting £ to 0.005|E| is a good rule of thumb. Note
that our target application, that is, graphs derived from matrices of full struc-
tural rank, always have a perfect matching, making this approach particularly
suitable.

4. EXPERIMENTS

In order to analyze our Component-Based heuristic, we compare it along with
the other heuristics described in Section 2 in regard to performance and quality,
that is, the ratio between unmatched vertices and total vertices. We then use
these heuristics as an initialization for exact matching algorithms and measure
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the combined running time in order to find fast combined methods for solving
the maximum cardinality matching problem, and estimate whether our heuris-
tic yields competitive combinations.

4.1 Algorithms

The exact algorithms we use are Breadth-First-Search (BFS) for augment-
ing paths and the Hopcroft-Karp algorithm [Hopcroft and Karp 1973], both
implemented by Florin Dobrian, and ABMP, a refinement of the Hopcroft-
Karp algorithm by Alt et al. [1991] as well as the Push-relabel algorithm
[Gabow and Tarjan 1988]. The latter two were implemented by Joao C. Setubal
[1996].

All experiments were performed on an Intel Core2 Duo 2.4Ghz with 2GB
memory running Fedora 8 (Linux Kernel 2.6.26.6-49.fc8). All codes were written
in C++ and compiled using g++ version 4.1.2 20070925 (Red Hat 4.1.2-33) using
the -O3 optimization option.

4.2 Test Instances

We used two test sets in our experiments. Test Set 1 contains 900 test instances,
while Test Set 2 contains 72 test instances. The instances come from two differ-
ent sources, one being a large collection of real-world matrices and the other a
set of randomly generated graphs. Computational results and more details on
the experimental setup can be found in the appendix.

4.2.1 Generated Instances. We used the HiLo and the Rbg random instance
generators introduced in Cherkassky et al. [1998] and Setubal [1996] to gen-
erate two groups of random instances, each consisting of 13 different graphs.
By design, these instances are difficult to solve with most exact matching algo-
rithms. They are contained in both test sets.

The HiLo generator creates graphs with a unique perfect matching
[Cherkassky et al. 1998]. It generates instances that are “difficult” for most
exact algorithms, provided a random vertex permutation is used.

Let G = (V1 U Vy, E) be a graph produced by this generator. This graph is
defined by three parameters, [, %, and d. Vertices of V; are partitioned into
! groups, each containing & vertices. For 1 < i < k,1 < j < [, we refer to
the i-th vertex in group j by x] . Vertices of V5 are partitioned similarly, and
y] is defined similarly to x/ . Each vertex x] is connected to vertices y; for
max(1;i —d) < p <i and, if j <[, to vertices y{,“ for max(1;i —d) < p <1.
There are no other edges. Unlike Cherkassky et al. [1998], we set the number
of groups [ to values higher than 1, which results in significantly more difficult
instances for all algorithms. We also permute vertices randomly. Table I shows
the parameters used in the test instances.

The Rbg generators produce random bipartite graphs where the vertices of
both partitions V; and Vs, are divided into 2 groups of equal size. For each
vertex of the j -th group of V7, the generator chooses y random neighbors from
the (i — 1)-th through (i + 1)-th groups of Vy (with wrap-around), where y is
binomially distributed with mean d (thus, d equals mean vertex degree). The
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Table I. Properties and Runtimes for the Test Instances from the HiL.o Generator

Vertices Average ABMP PR BFS HK
Matrix Per Side Degree  Groups Greedy Greedy Greedy Greedy
hilo640_1_10.mtx 640,000 10 1 9.01 52.65 3 52.73
Hilo640_2_10.mtx 640,000 10 2 21.74 88.2 5.48 79.02
hilo640.128_5.mtx 640,000 5 128 78.32 1 110.48 190.02 494.99
hilo640.128_10.mtx 640,000 10 128 262.99 319.69 555.6 685.62
Hilo640_256_5.mtx 640,000 5 256 95.69 110.24 280.96 599.68
Hilo640_512_5.mtx 640,000 5 512 83.65 101.11 346.62 67041
Hilo640.1024 5.mtx 640,000 5 1,024 80.71 97.09 278.85 654.56
Hilo600-10000_5.mtx 600,000 5 10,000 46.33 148.24 46.47  482.22
Hilo600.1000_5.mtx 600,000 5 1,000 72.51 85.42 249.19 597.88
hilo320.128_10.mtx 320,000 10 128 97.74 116.6 211.61 322.97
hilo160.128_10.mtx 160,000 10 128 29.1 37.55 49.18 74.04
hilo80.128_10.mtx 80,000 10 128 11.37 12.59 12.88 18.76
hilo40_128_10.mtx 40,000 10 128 3.99 4.28 2.89 4.57
Average 483,076.92 7.69 — 68.7 98.78 171.75 364.42

For Karp-Sipser, dynamic mindegree, and component-based initialization, the combined runtimes are equal
to the heuristic runtimes (see Table IV). All runtimes are given in seconds.

Table II. Properties and Runtimes for the Test Instances from the Rbg Generator

Vertices  Average ABMP PR BFS HK
Matrix per Side Degree Groups Greedy Greedy Greedy Greedy
rbg2 512.128_10.max 512,000 10 128 1.11 9.57 8.89 3.58
rbg2.512_25600_10.max 512,000 10 25,600 0.85 5.23 0.26 1.99
rbg2.512.2560_10.max 512,000 10 2,560 1.18 7.1 0.58 3.21
rbg2 512_256_10.mtx 512,000 10 256 1.18 7.66 3.76 3.35
rbg2 512_256_40.mtx 512,000 40 256 5.19 1.12 5.37 5.28
rbg2 512_256_5.mtx 512,000 5 256 2 7.77 4.66 4.35
rbg2 512_32_10.mtx 512,000 10 32 0.93 7.97 35.58 2.66
rbg2.512_32_40.mtx 512,000 40 32 4.02 1.42 92.33 3.03
rbg2.512_32_5.mtx 512,000 5 32 0.87 2.04 14.9 4.64
rbg2.51.256_10.mtx 51,200 10 256 0.08 0.04 0.02 0.07
rbg256_10.mtx 256,000 10 0.95 7.94 0.92 1.73
rbg256_40.mtx 256,000 40 1.59 1.15 0.26 0.73
rbg256_5.mtx 256,000 5 0.86 4.42 2.82 3.39
Average 417,476.92  15.77 1.6 4.88 13.1 2.92

Runtimes are given in seconds.

indices i and j are not related because vertices in V; are randomly shuffled
before neighbors in Vy are assigned.

In Cherkassky et al. [1998] two families of problems are considered. These
are called fewg (32 groups) and manyg (256 groups). Both have d = 5. In
addition to these, we consider other numbers of groups and higher densities.
Table II shows the parameters used in the test instances.

4.2.2 Real-World Instances. In addition to the generated graphs, we ob-
tained real-world instances from the University of Florida Sparse Matrix Col-
lection [Davis 2007]. We added a small group of 46 matrices of similar size to
Test Set 2 in order to test combinations of heuristics and exact algorithms, and
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added an additional 828 matrices to Test Set 1 in order to test speed and quality
of the heuristics. Thus, the test sets comprise a total of 72 and 900 instances,
respectively, with Test Set 2 being a subset of Test Set 1. The instances were se-
lected from the UF sparse matrix collection by removing nonquadratic matrices,
matrices that are too large for the available memory, some very small matrices,
and some extremely sparse matrices with very small maximum matchings.

4.3 Heuristic Results

We compared the Component-Based heuristic and its Greedy-Enhanced version
with several other heuristics regarding their solution quality and performance.
These heuristics are Simple Greedy, Static Mindegree, Single- and Double-
Sided Karp-Sipser, as well as Single- and Double-Sided Dynamic Mindegree.
We used Test Set 1 for these experiments.

Generally, the performance behaved as expected, with Simple Greedy being
the fastest and our Component-Based heuristic which obviously requires the
most work per vertex being the slowest. Running time for Simple Greedy is
primarily determined by the number of vertices, and it generally grows almost
linearly with the number of vertices for a given graph structure and average
degree. The more elaborate heuristics are more strongly affected by the number
of edges and by graph structure than the simpler ones, although this effect is
somewhat unpredictable.

The quality generally also behaved as expected, with the slower heuristics
delivering noticeably better results. This means that selecting a heuristic as
an initialization for an exact algorithm is generally a trade-off between quality
and speed, but the effect on the total running time is far from predictable. Of
course, the quality is independent of the number of vertices, but denser graphs
usually show less unmatched vertices.

4.3.1 Results on Real-World Matrices. For the real world instances, the
Component-Based heuristic usually matched almost 99.9% of the vertices, while
Simple Greedy matched about 95%. The results of the Simple Greedy heuris-
tic are more susceptible to implementation details such as the order in which
vertices are scanned. This could be circumvented by picking vertices randomly,
but doing so is not advisable for performance reasons.

4.3.2 Results on Generated Graphs. In the HiLo instances which have a
unique perfect matching, the Karp-Sipser, Component-Based, and Dynamic
Mindegree heuristics give optimal solutions. It is easy to show that any heuristic
which gives precedence to degree 1 reductions and performs them repeatedly
will find a perfect matching here [Gilbert 2009]. The other heuristics yielded
results comparable to their performance on real-world instances. For a setting
of l = 1 and d = 10, the greedy matching paired about 96% of the vertices,
provided that the vertices are initially permuted randomly. For both the Simple
Greedy and the Static Mindegree heuristics values of [ > 1 result in worse
solutions, while a higher average degree results in better solutions. Details can
be found in Tables III and IV. The running times are noticeably influenced by
the number of edges but also by the number of groups. For a setting of d = 5,
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Table III. Approximation by Various Heuristics for the Test Instances from the HiLo

Generator
Greedy Static Karp- Dynamic Component
Matrix Match Mindegree Sipser Mindeg. Based
hilo640_1_10.mtx 49,850 55,964 0 0 0
Hilo640_2_10.mtx 166,840 45,602 0 0 0
hilo640_128_5.mtx 62,626 75,956 0 0 0
hilo640.128_10.mtx 21,018 25,912 0 0 0
Hilo640_256_5.mtx 61,330 75,510 0 0 0
Hilo640_512_5.mtx 61,586 74,774 0 0 0
Hilo640.1024_5.mtx 62,112 75,300 0 0 0
Hilo600.10000_5.mtx 84,130 83,446 0 0 0
Hilo600-1000_5.mtx 58,756 69,762 0 0 0
hilo320.128_10.mtx 21,018 25,912 0 0 0
hilo160.128_10.mtx 21,018 13,990 0 0 0
hilo80.128_10.mtx 5,838 6,752 0 0 0
hilo40-128_10.mtx 3,356 3,738 0 0 0
Average 52,267.54 48,662.92 0 0 0

The values denote the total number of unmatched vertices on both sides. Thus, the number of unmatched
edges is half that figure.

Table IV. Running Times for Various Heuristics for the Test Instances from the
HiLo Generator

Greedy Static Karp- Dynamic Component

Matrix Match  Mindegree Sipser  Mindeg. Based
hilo640_1_10.mtx 0.16 0.39 0.49 0.72 0.63
Hilo640-2_10.mtx 0.17 0.35 0.59 0.84 0.87
hilo640_128_5.mtx 0.16 041 0.55 0.76 0.79
hilo640-128_10.mtx 0.19 0.55 0.67 1.1 1.21
Hilo640-256_5.mtx 0.17 041 0.53 0.73 0.75
Hilo640.512_5.mtx 0.16 0.4 0.59 0.72 0.74
Hilo640.1024_5.mtx 0.16 0.4 0.56 0.82 0.92
Hilo600-10000_5.mtx 0.15 0.4 0.64 1.14 1.2
Hilo600-1000._5.mtx 0.15 0.38 0.5 0.77 0.83
hilo320-128_10.mtx 0.09 0.25 0.32 0.53 0.57
hilo160_128_10.mtx 0.04 0.12 0.14 0.24 0.26
hilo80.128_10.mtx 0.01 0.04 0.06 0.12 0.11
hilo40_128_10.mtx 0.01 0.02 0.03 0.06 0.05
Average 0.12 0.32 0.44 0.66 0.69

For Karp-Sipser, dynamic mindegree and component-based initialization, a perfect matching
is obtained without starting an exact algorithm. Thus, times given here for these heuristics can
be compared to combined running times. All running times are given in seconds.

a total of 640,000 vertices, and [ at various powers of 2, the running time for
most algorithms peaked at ! = 256 (i.e., 256 groups).

In the Rbg instances, running time is more dependent on the number of edges
than on the number of groups. The Component-Based and Dynamic Mindegree
heuristics are strongly affected, while the running times for Simple Greedy
and Static Mindegree are almost independent of graph density. Simple Greedy
matches only about 86% of the vertices here. Other heuristics are significantly
better. The quality of the Component-Based heuristic is close to the optimum
(see Tables V and VI).
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Table V. Number of Unmatched Vertices for Various Heuristics for the Test Instances from

the Rbg Generator
Greedy Static Karp- Dynamic Component Exact
Matrix Match  Mindegree Sipser  Mindeg. Based Solution
rbg2 512_128_10.mtx 17,726 6,415 172 24 24 24
rbg2 51225600_10.mtx 15,430 5,902 5,916 722 652 24
rbg2 512_2560_10.mtx 17,546 6,281 1,480 30 28 28
rbg2 512_256_10.mtx 17,710 6,386 304 30 30 30
rbg2 512_256_40.mtx 4,465 2,330 264 0 0 0
rbg2 512_256_5.mtx 17,700 6,378 274 24 24 24
rbg2.512_32_10.mtx 17,553 6,512 118 34 34 34
rbg2 512_32_40.mtx 4,433 2,386 40 0 0 0
rbg2.512_32_5.mtx 35,456 12,309 3,886 3,838 3,842 3,836
rbg2 51.256_10.mtx 1,765 621 142 2 2 2
rbg256_10.mtx 17,765 6,476 46 26 30 26
rbg256_40.mtx 4,448 2,332 8 2 2 0
rbg256_5.mtx 35,168 12,247 3,724 3,716 3,714 3,714
Average 15,935.77  5,890.38 1,259.54 649.85 644.77 595.54

Note that a perfect matching exists only for some of the instances. The last column shows the minimum
number of unmatched vertices for the instance.

Table VI. Running Times for Various Heuristics for the Test Instances from the Rbg

Generator
Greedy Static Karp- Dynamic Component

Matrix Match  Mindegree Sipser  Mindeg. Based
rbg2.512_128_10.mtx 0.06 0.16 0.3 0.43 0.44
rbg2 512_25600-10.mtx 0.05 0.15 0.23 0.26 0.3
rbg2.512_2560_10.mtx 0.05 0.16 0.28 0.29 0.34
rbg2 512_256_10.mtx 0.06 0.16 0.29 0.38 04
rbg2.512_256_40.mtx 0.08 0.32 0.85 1.2 1.18
rbg2 512 256_5.mtx 0.06 0.19 0.29 0.37 0.39
rbg2.512_32_10.mtx 0.06 0.16 0.3 0.61 0.61
rbg2 512_32_40.mtx 0.08 0.32 0.86 2.46 2.29
rbg2.512_32_5.mtx 0.05 0.12 0.21 0.32 04
rbg2 51_256_10.mtx 0.01 0.01 0.02 0.02 0.02
rbg256_10.mtx 0.05 0.17 0.3 0.75 0.74
rbg256_40.mtx 0.08 0.33 0.88 3.3 3.04
rbg256_5.mtx 0.05 0.12 0.21 0.36 0.41
Average 0.06 0.18 0.39 0.83 0.81

All running times are given in seconds.

4.3.3 Comparing the Heuristics.

Figure 1 shows that Simple Greedy and
Static Mindegree trade quality for speed. Static Mindegree was approximately
twice as fast as the Karp-Sipser heuristic, and Simple Greedy was again twice as
fast as Static Mindegree. However, the number of errors was about 25 (Static
Mindegree) and 40 (Simple Greedy) times higher than that of Karp-Sipser,
which means that with these initializations the exact algorithms will have
significantly more work to do.

Among the Dynamic Mindegree heuristics, the two-sided approach showed
better quality than the one-sided approach while using comparable running
time. Thus, we discarded the one-sided approach in further experiments.
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Fig. 1. Error ratios and average running times for heuristics on Test Set 1. Running time is
denoted in seconds. Differences between one sided (1s) and two-sided (2s) heuristics are visible.
Static refers to the Static Mindegree heuristic and KS to the Karp-Sipser heuristic. Comp is the
Component-Based heuristic and Greedy comp is the Greedy-Enhanced version with a threshold of
0.005. Error ratio is the ratio between unmatched vertices and total vertices.

However, both their running times are only slightly better than the Component-
Based heuristic which offers noticeably better solution quality, and thus faster
exact computations (see Section 4.4).

In our experiments for the Karp-Sipser heuristic the one-sided approach
was far superior to the two-sided approach. Consequently, only the one-sided
approach was used in the following experiments. Furthermore, even though
algorithmically the Karp-Sipser heuristic differs only in the limited size of the
priority queue from the full Dynamic Mindegree heuristic and differences be-
tween the implementations go only as far as necessary, it ran approximately
twice as fast and gave better average solution quality as well.

Mo6hring and Miller-Hannemann [1995], who performed a similar study for
general matching on random graphs and obtained comparable results regarding
the trade-off between quality and performance, also observed that the trade-
off for the one-sided Karp-Sipser heuristic is comparatively good, making it
preferable to One-Sided Dynamic Mindegree for performance reasons and to
Static Mindegree for quality reasons. However, in their study the number of
unmatched vertices for the One-Sided Dynamic Mindegree heuristic was ap-
proximately half the number of unmatched vertices for Karp-Sipser. In our
experiments, the situation is similar for the Rbg instances (see Table V). On
the other instance groups the Karp-Sipser heuristic and Dynamic Mindegree
provided comparable solution quality.

A comparison between the Component-Based heuristic and Karp-Sipser is
somewhat more difficult. Karp-Sipser is clearly faster, but the Component-
Based heuristic consistently offered a slightly better average solution quality.
Furthermore, the Component-Based heuristic achieves a maximum matching
more often. If the maximum matching is perfect, maximality can be detected
trivially by counting the number of unmatched vertices. In such a case, there
is no need to start the exact algorithm, thus allowing significantly saving on
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running time. While our experiments include graphs without a perfect match-
ing, the target application, that is, linear solvers, does not; therefore, this fea-
ture becomes a distinct advantage for the Component-Based heuristic.

Also, the correlation between the results of the Component-Based heuris-
tic and Simple Greedy is weaker than that between Simple Greedy and the
Karp-Sipser heuristic. This result inspired the Greedy Enhanced heuristic,
which runs Simple Greedy and counts the number of unmatched vertices (see
Section 3.4). If this number is greater than a given threshold, the Component-
Based heuristic is used to improve the solution. Of course, the Simple Greedy
result is retained if it is still better. This approach is very sensitive to the value
of the threshold. Obviously, the threshold should be between the expected error
ratio of the Simple Greedy and the Component-Based heuristic (i.e., between ap-
proximately 95% and 99.9%). Thresholds lower than 98% yielded lower quality
than the unmodified Component-Based heuristics. Our experiments gave very
good results for a threshold of 99.5%, reducing the error rate by about 20% and
increasing performance by 40% compared to the Component-Based heuristic.

4.4 Initialized Exact Algorithms

In the previous section, we showed that all heuristics offer a trade-off between
quality and performance. In order to find the heuristic that provides the largest
performance improvement for the exact algorithms, we tested combinations
between the heuristics and the ABMP, Push-relabel, Hopcroft-Karp, and BFS
algorithms, and considered their combined running time on Test Set 2.

In general, we can state that both Simple Greedy and Static Mindegree show
poor combined performance. This is to be expected for the generated graphs,
as they are designed to be “difficult” for simple strategies, but even on the
real-world instances the more sophisticated heuristics result in combined algo-
rithms that are often faster by a factor of 5. Compared to this, the differences
among the other heuristics are rather small.

Although there is no direct correlation between the number of matching
errors made by the heuristic and the total running time for a given instance,
the heuristics that gave the best trade-off between quality and performance,
that is, Karp-Sipser and the Component-Based approach, also result in the best
combined running times here.

Among the test instances, the HiLLo graphs are an extreme case, since they
are very hard to solve for most exact algorithms, yet they are easy for the
Karp-Sipser, Component-Based, and Dynamic Mindegree heuristics. Therefore,
using these heuristics instead of Simple Greedy provides extremely high speed-
ups, which lie between a factor of 100 and 600. Running times using greedy
initializations can be found in Table I. For Karp-Sipser, Component-Based,
and Dynamic Mindegree initialization, the combined running time is equal to
the heuristic running time, which is shown in Table V.

A similar effect can be observed in the Rbg instances, but since no heuris-
tic consistently finds optimum solutions here, the effect is far weaker. Still,
initialization using the Karp-Sipser, Component-Based, or Dynamic Minde-
gree heuristic improves overall performance noticeably, especially for the BF'S
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Table VII. Running Times for Combined Algorithms for the Test Instances from the Rbg

Generator
Comp KS Comp KS Comp KS Comp KS
Matrix ABMP ABMP PR PR. BFS BFS HK HK
rbg2 512_128_10.mtx 0.65 091 11.64 1158 0.58 1.19 0.55 2.59

rbg2.512.25600_10.mtx  0.92 0.89 9.75 9.7 0.58 0.5 7.24 56.43
rbg2_512_2560_-10.mtx 0.44 1.26 10.07 9.94 048 087 047 18.06

rbg2_512_256_10.mtx 0.56 1.05 8.97 882 053 1.09 0.1 4.18
rbg2_512_256_40.mtx 1.17 4.78 19.02 17.82 127 234 126 8.31
rbg2_512_256_5.mtx 2.4 2.22 9.07 891 052 135 0.51 3.86
rbg2.512_32_10.mtx 0.94 0.68 10.73 1031 0.73 1.16 0.72 1.96
rbg2_512_32_40.mtx 2.24 3.4 20.89 19.16 246 195 243 2.17
rbg2.512_32_5.mtx 0.63 0.45 8.49 838 126 127 0.74 1.09
rbg2_51_256_10.mtx 0.03 0.06 0.54 0.56 0.04 0.06 0.04 0.11
rbg256_10.mtx 1.06 0.63 1093 1052 091 046 0.92 0.46
rbg256_40.mtx 4.44 2.22 23.08 20.02 3.19 1.02 3.21 1.03
rbg256_5.mtx 0.58 0.39 8.95 8.75 054 037 054 0.36
Average 1.24 1.46 11.7 11.11  1.01  1.05 1.47 7.74

We compare the component-based (Comp) heuristic with Karp-Sipser (KS). PR denotes Push-relabel and
HK the Hopcroft-Karp algorithm. All running times are given in seconds.

algorithm (see Table VII). However, for denser graphs the performance gain
declines. This stems from the fact that the performance of those heuristics is
more dependent on the number of edges than Simple Greedy, which also has
a strong tendency to provide solutions of higher quality in denser graphs. To-
gether, this provides a very fast heuristic with good solution quality on dense
graphs, which results in fast combined running times (see Table II). Still, even
at d = 40, the Push-relabel algorithm using Simple Greedy initialization is
only faster than the same algorithm using Component-Based initialization by
a small margin.

4.4.1 ABMP and Push-Relabel. For the ABMP and the Push-relabel al-
gorithm, all heuristics except Simple Greedy and Static Mindegree showed
roughly the same behavior. They provided a speed-up by a factor of 3 for Push-
relabel and up to 20 for ABMP compared to Simple Greedy initialization, as
shown in Figure 2. The problems with using heuristic initialization for Push-
relabel have been described before [Cherkassky et al. 1998]. In our test cases, it
is certainly worthwhile to use this initialization, mostly due to high speed-ups
on the HiLo instances. The Static Mindegree heuristic performed extremely
poorly here. We recommend not to use it for initialization.

Note that because even the Simple Greedy heuristic solves many instances
well, most significant speed-ups obtained by using more elaborate heuristics
arise from large gains on a small number of matrices. The differences in me-
dian running time are far less pronounced. This is partially due to many
running times being close to 0 and because of measurement inaccuracies,
differences in running times that are smaller than 0.01 seconds are not
registered.

For ABMP and Push-relabel, the Karp-Sipser heuristic “wins” against the
Component-Based approach and against the Mindegree heuristics by a small
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Fig. 2. Average running times in seconds for initialized exact algorithms on Test Set 2. Differences
between one-sided (1s) and two-sided (2s) heuristics are visible. Static refers to the Static Mindegree
heuristic and KS to the Karp-Sipser heuristic. Comp is the Component-Based heuristic and Greedy
comp is the Greedy-Enhanced version with a threshold of 0.005. The Greedy-Enhanced version
“wins” because it can more often avoid starting the costly exact algorithm entirely. ABMP profits
significantly more from good initialization than Push-relabel.

margin, mostly due to better speed-up on ABMP. The Greedy-Enhanced
Component-Based heuristic offers approximately the same speed-up on ABMP
and the best running times for Push-relabel. This is due to finding a perfect
matching more often, and thereby eschewing the need to start up any exact
algorithm. The exact numbers can be found in Table VII.

4.4.2 Hopcroft-Karp and BFS. For the Hopcroft-Karp and augmenting
path BF'S algorithms, we focused on the results provided by the best heuristic
initializations and compared them to Simple Greedy initialization.

The Hopcroft-Karp algorithm with Simple Greedy initialization showed very
good performance on the real-world instances and weak performance on HiLo
and Rbg. Thus, the algorithm benefits strongly from using better heuristic ini-
tialization in the latter two cases, but not so much in the former.

In comparison to Hopcroft-Karp, BFS performed much better on HiLo, but
generally worse on the other test sets. In all experiments, it profits from
Component-Based initialization, although obviously not on every instance.
An exceptional case were experiments on the matrix Hamrle3, where BFS
with Simple Greedy initialization was more than 20 times faster than either
Hopcroft-Karp with Simple Greedy or both algorithms with Component-Based
initialization. Furthermore, the Component-Based heuristic reduced the num-
ber of unmatched vertices by 90% compared to Simple Greedy here, but this led
to short augmenting paths being used up by the Component-Based heuristic,
thus requiring the exact algorithms to find relatively long augmenting paths,
thereby taking significant extra time. Note that this matrix can be considered
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Fig. 3. Running times for differently initialized exact algorithms on Test Set 2. The Karp-Sipser
(KS) heuristic spends less time on the initialization, resulting in longer running times for the
exact algorithm. For BFS, the sum is almost the same as for the Greedy-Enhanced Component-
Based heuristic. The Hopcroft-Karp algorithm takes somewhat longer due to the increased start-up
cost, and performs poorly with Karp-Sipser initialization due to exceptionally weak results on two
matrices.

a very special case. We did not observe comparable behavior on any other test
instance.

For Test Set 2, Karp-Sipser performed somewhat better on the average than
the unmodified Component-Based heuristic when used with BFS, as shown in
Figure 3. The Greedy-Enhanced Component-Based heuristic showed approxi-
mately the same performance as Karp-Sipser. For the Hopcroft-Karp algorithm,
Karp-Sipser performed significantly worse than the unmodified Component-
Based heuristic and the Greedy-Enhanced Component-Based heuristic. Note
that the composition of the total running time varies widely. The Karp-
Sipser heuristic takes less time than the exact algorithms it initializes, while
the Component-Based and the Greedy-Enhanced Component-Based heuristics
take significantly more time than their exact algorithms. However, in the case
of BF'S, the resulting total running times are almost the same.

5. DISCUSSION

From what we have seen in the experiments, we can safely conclude that in
most cases.

—Using more elaborate initializations than Simple Greedy usually improves
performance.

—The one-sided Karp-Sipser heuristic is superior to the two-sided one.
—The two-sided Dynamic Mindegree heuristic is superior to the one-sided one.

—The Karp-Sipser heuristic yields faster combined algorithms than full Min-
degree.

—The Component-Based heuristic offers better quality than the Karp-Sipser
heuristic, at the cost of performance. Both are suitable as initializations.
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—The Component-Based heuristic can be improved by running Simple Greedy
and then determine whether a refinement is worthwhile. This Greedy-
Enhanced Component-Based heuristic provides the best initialization.

—Several other variants of the Component-Based heuristic do not seem to work
as well.

Performance improvements in the combined experiments appear because
the more sophisticated heuristics give better solutions than simpler heuristics
on “difficult” instances, but the improvement is marginal in the easy cases.
However, even without the generated instances there were enough “difficult”
instances in our test set to make the sophisticated heuristics superior, on av-
erage. Thus, unless further knowledge of the instances is available, it is to be
expected that our findings will also apply to other real world instances as well.
Therefore, we suggest to use the Karp-Sipser heuristic to initialize matching
algorithms in “easy” sparse graphs. If the instances are known to be “difficult,”
the Component-Based heuristic is even better, and if we know that a perfect
matching exists, the Greedy-Enhanced Component-Based heuristic can be ex-
pected to offer the best results.

Considering the exact algorithms, it seems that Hopcroft-Karp and ABMP
work better than Push-relabel in conjunction with sophisticated initialization
heuristics, but BF'S worked even better and gave the best final results. This is
consistent with findings from Setubal [1996], since the remaining number of
vertices to be matched after a good initialization is small. Preliminary testing
also showed poor performance for the depth-first-search-based algorithm. This
was also observed in Cherkassky et al. [1998] and Setubal [1996]. Whether
BFS with a good initialization outperforms all other exact algorithms on sparse
graphs remains a topic of further study.

It is important to remember that the implementations are not directly com-
parable. BF'S and Hopcroft-Karp by Dobrian are more recent and significantly
more elaborate than the implementations by Setubal. Thus, this study should
not be used to compare ABMP or Push-relabel to Hopcroft-Karp. However, even
with an optimal implementation, we do not expect ABMP to be clearly superior
to Hopcroft-Karp as its reported advantages in the literature rely on a large
number of unmatched vertices. A good heuristic might actually obviate the need
for more sophisticated exact algorithms.

It remains to note that for linear solvers, the value of the matrix entries must
be taken into account. This requires finding a perfect matching of maximum
weight or approximatively maximum weight. While most of the heuristics de-
scribed here do not allow easy adaptation to the weighted problem, they could
again be used as an initialization step followed by weight-augmenting path
search to obtain a perfect matching of approximate maximum weight. Alterna-
tively, after using an initialization and an exact algorithm to obtain a perfect
matching, as described in this article, one could use weight-augmenting cycles
to obtain maximum weight. Preliminary tests suggest that weight-augmenting
4-cycles could be sufficient to provide solutions of high weight. Of course, these
techniques can be used in any application of maximum weight matching. They
are not restricted to linear solvers.
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APPENDIX
A. COMPUTATIONAL RESULTS

All results presented here are pure computation times and disregard I/O, as
this would completely dominate the linear running times. The results given in
the first three tables are simple averages over the corresponding test sets. For
the initialized exact algorithms, the combined running time for a given matrix
and a particular combination of initialization and exact algorithm is obtained
as follows: First, we take the time for running the heuristic and obtaining a
(partial) solution. Although we then save the solution to a file, we do not in-
clude the time to do this. The solution is then read back in and used to initialize
the exact algorithm. From this point, we time the exact algorithm until it has
produced a solution. We then add the two times together to produce the com-
bined running time. This allows us to deal efficiently with multiple foreign
codes. Furthermore, timings from this method should be an upper bound for
our initializations when comparing them to implementations that have built-in
greedy initialization.

Table IA. Values for Figure 1

Greedy Static Mindeg 1s Mindeg 2s Greedy Comp Comp KS1s KS2s
Time  0.00486 0.01282 0.04063 0.04010 0.03357 0.04189 0.01835 0.02
Quality 0.04936 0.03066 0.00285 0.00189 0.00098 0.00122 0.00133 0.00369

Table ITA. Values for Figure 2

Greedy Static Mindeg 1s Mindeg 2s Greedy Comp Comp KS 1s KS 2s
ABMP 10.76 10.69 0.64 0.56 0.49 056 0.62 0.5
Push-relabel 541 15.73 2.25 2.1 2.04 2.08 2.18 1.67

Table IITA. Values for Figure 3

KS Comp  Greedy ksmatchls Comp Greedy

1s BFS BFS Comp BFS HK HK Comp HK
Heuristic 0.1630 0.3038  0.3100 0.1630  0.3038 0.3100
Exact 0.2017 0.1069  0.0516 1.5830 0.2216 0.1703
Sum 0.3647 0.4106 0.3616 1.75 0.53 0.4803
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