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Abstract. We study the communication primitives of broadcasting (one-to-all
communication) and gossiping (all-to-all communication) in known topology ra-
dio networks, i.e., where for each primitive the schedule of transmissions is pre-
computed based on full knowledge about the size and the topology of the network.
We show that gossiping can be completed in O(D+ Δ log n

log Δ−log log n
) time units in

any radio network of size n, diameter D and maximum degree Δ = Ω(log n).
This is an almost optimal schedule in the sense that there exists a radio net-
work topology, such as: a Δ-regular tree in which the radio gossiping cannot
be completed in less than Ω(D + Δ log n

log Δ
) units of time. Moreover, we show a

D +O( log3 n
log log n

) schedule for the broadcast task. Both our transmission schemes
significantly improve upon the currently best known schedules in Gąsieniec, Pe-
leg and Xin [PODC’05], i.e., a O(D + Δ log n) time schedule for gossiping and
a D + O(log3 n) time schedule for broadcast. Our broadcasting schedule also
improves, for large D, a very recent O(D + log2 n) time broadcasting schedule
by Kowalski and Pelc.
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1 Introduction

We consider the following model of a radio network: an undirected connected graph
G = (V, E), where V represents the set of nodes of the network and E contains un-
ordered pairs of distinct nodes, such that (v, w) ∈ E iff the transmissions of node v can
directly reach node w and vice versa (the reachability of transmissions is assumed to be
a symmetric relation). In this case, we say that the nodes v and w are neighbours in G.
Note that in a radio network, a message transmitted by a node is always sent to all of its
neighbors.

The degree of a node w is the number of its neighbours. We use Δ to denote the
maximum degree of the network, i.e., the maximum degree of any node in the network.
The size of the network is the number of nodes n = |V |.

Communication in the network is synchronous and consists of a sequence of com-
munication steps. In each step, a node v either transmits or listens. If v transmits, then
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the transmitted message reaches each of its neighbours by the end of this step. However,
a node w adjacent to v successfully receives this message iff in this step w is listening
and v is the only transmitting node among w’s neighbors. If node w is adjacent to a
transmitting node but it is not listening, or it is adjacent to more than one transmitting
node, then a collision occurs and w does not retrieve any message in this step.

The two classical problems of information dissemination in computer networks are
the broadcasting problem and the gossiping problem. The broadcasting problem re-
quires distributing a particular message from a distinguished source node to all other
nodes in the network. In the gossiping problem, each node v in the network initially
holds a message mv, and the aim is to distribute all messages to all nodes. For both
problems, one generally considers as the efficiency criterion the minimization of the
time needed to complete the task.

In the model considered here, the running time of a communication schedule is deter-
mined by the number of time steps required to complete the communication task. This
means that we do not account for any internal computation within individual nodes.
Moreover, no limit is placed on the length of a message which one node can transmit
in one step. In particular, this assumption plays an important role in the case of the
gossiping problem, where it is then assumed that in each step when a node transmits, it
transmits all the messages it has collected by that time. (i.e., the ones received and its
own one.)

Our schemes rely on the assumption that the communication algorithm can use
complete information about the network topology. Such topology-based communica-
tion algorithms are useful whenever the underlying radio network has a fairly stable
topology/infrastructure. As long as no changes occur in the network topology during
the execution of the algorithm, the tasks of broadcasting and gossiping will be com-
pleted successfully. In this extended abstract we do not touch upon reliability issues.
However, we remark that it is possible to increase the level of fault-tolerance in our
algorithms, at the expense of some small extra time consumption. We defer this issue
to the extended version of this paper.

Our results. We provide a new (efficiently computable) deterministic schedule that uses
O(D + Δ log n

log Δ−log log n ) time units to complete the gossiping task in any radio network
of size n, diameter D and maximum degree Δ = Ω(log n). This significantly improves
on the previously known best schedule, i.e., the O(D + Δ log n) schedule of [10].
Remarkably, our new gossiping scheme constitutes an almost optimal schedule in the
sense that there exists a radio network topology, specifically a Δ-regular tree, in which
the radio gossiping cannot be completed in less than Ω(D + Δ log n

log Δ ) units of time.
For the broadcast task, we show a new (efficiently computable) radio schedule that

works in time D + O( log3 n
log log n ), improving the currently best published result for ar-

bitrary topology radio networks, i.e., the D + O(log3 n) time schedule proposed by
Gąsieniec et al. in [10]. It is noticeable that for large D, our scheme also outperforms
the very recent (asymptotically optimal) O(D + log2 n) time broadcasting schedule by
Kowalski and Pelc in [12]. This is because of the significantly larger coefficient of the
D term hidden in the asymptotic notation. In fact, in our case the D term comes with
coefficient 1.
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Related work. The work on communication in known topology radio networks was
initiated in the context of the broadcasting problem. In [3], Chlamtac and Weinstein
prove that the broadcasting task can be completed in time O(D log2 n) for every n-
vertex radio network of diameter D. An Ω(log2 n) time lower bound was proved for the
family of graphs of radius 2 by Alon et al [1]. In [5], Elkin and Kortsarz give an efficient
deterministic construction of a broadcasting schedule of length D +O(log4 n) together
with a D + O(log3 n) schedule for planar graphs. Recently, Gąsieniec, Peleg and Xin
[10] showed that a D + O(log3 n) schedule exists for the broadcast task, that works in
any radio network. In the same paper, the authors also provide an optimal randomized
broadcasting schedule of length D + O(log2 n) and a new broadcasting schedule using
fewer than 3D time slots on planar graphs. A D+O(log n)-time broadcasting schedule
for planar graphs has been showed in [13] by Manne, Wang and Xin. Very recently,
a O(D + log2 n) time deterministic broadcasting schedule for any radio network was
proposed by Kowalski and Pelc in [12]. This is asymptotically optimal unless NP ⊆
BPTIME(nO(log log n)) [12]. Nonetheless, for large D, our D + O( log3 n

log log n ) time
broadcasting scheme outperforms the one in [12], because of the larger coefficient of
the D term hidden in the asymptotic notation describing the time evaluation of this
latter scheme.

Efficient radio broadcasting algorithms for several special types of network topolo-
gies can be found in Diks et al. [4]. For general networks, however, it is known that the
computation of an optimal (radio) broadcast schedule is NP-hard, even if the underlying
graph is embedded in the plane [2, 15].

Radio gossiping in networks with known topology was first studied in the context of
radio communication with messages of limited size, by Gąsieniec and Potapov in [8].
They also proposed several optimal or close to optimal O(n)-time gossiping procedures
for various standard network topologies, including lines, rings, stars and free trees. For
general topology radio network a O(n log2 n) gossiping scheme is provided and it is
proved that there exists a radio network topology in which the gossiping (with unit size
messages) requires Ω(n log n) time. In [14], Manne and Xin show the optimality of this
bound by providing an O(n log n)-time gossiping schedule with unit size messages in
any radio network. The first work on radio gossiping in known topology networks with
arbitrarily large messages is [9], where several optimal gossiping schedules are shown
for a wide range of radio network topologies. For arbitrary topology radio networks, an
O(D + Δ log n) schedule was given by Gąsieniec, Peleg and Xin in [10]. To the best
of our knowledge no better result is known to date for arbitrary topology.

2 Gossiping in General Graphs with Known Topology

The gossiping task can be performed in two consecutive phases. During the first phase
we gather all individual messages in one (central) point of the graph. Then, during the
second phase, the collection of individual messages is broadcast to all nodes in the net-
work. We start this section with the presentation of a simple gathering procedure that
works in time O((D + Δ) log n

log Δ−log log n ) in free trees. Later we show how to choose
a spanning breadth-first (BFS) tree in an arbitrary graph G in order to gather (along its
branches) all messages in G also in time O((D+Δ) log n

log Δ−log log n ), despite the additional
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edges in G which might potentially cause additional collisions. Finally, we show how
the gathering process can be pipelined and sped up to run in O(D+ Δ log n

log Δ−log log n ) time.

A super-ranking procedure. Given an arbitrary tree, we choose its central node c as
the root. Then, the nodes in the tree (rooted at c) are partitioned into consecutive layers
Li = {v | dist(c, v) = i}, for i = 0, .., r where r is a radius of the tree. We denote the
size of each layer Li by |Li|.

We use a non-standard approach for ranking the nodes in a rooted tree, which we
call super-ranking. The super-ranking depends on an integer parameter 2 ≤ x ≤ Δ,
that for our purposes will be optimized later. Specifically, for every leaf v we define
rank(v, x) = 1. Then, for a non-leaf node, v with children v1, . . . , vk, we define
rank(v, x) as follows. Let r̂ = maxi=1,...,k{rank(vi, x)}. If at least x of the children
of v have rank r̂, then rank(v, x) = r̂ + 1 otherwise rank(v, x) = r̂.

For each x ≥ 2, we define r
[x]
max = maxv∈T rank(v, x). As an immediate conse-

quence of the definition of rank(·, ·) we have the following.

Lemma 1. Let T be a tree with n nodes of maximum degree Δ. Then, r[x]
max ≤ �logx n�,

for each 2 ≤ x ≤ Δ.

Note that when x = 2 we obtain the standard ranking procedure, that has been em-
ployed in the context of radio communication in known topology networks in [6, 9, 10].
Previously this same ranking had been used to define the Strahler number of binary
trees, introduced in hydrogeology [16] and extensively studied in computer science (cf.
[17] and the references therein).

The schedule for gathering messages at the root is now defined in stages using the
super-ranked tree under the assumption that the value of the parameter x has been fixed.
For the sake of the analysis, we will optimize its value later. We partition the nodes of
the tree into different rank sets that are meant to separate the stages in which nodes are
transmitting, i.e., nodes from different rank sets transmit in different stages. For y ≥ 2,

let r
[y]
max be the maximum rank for a node of T according to the super-ranking with

parameter y. Recall that r
[y]
max ≤ �logy n�. Then, let Ri(y) = {v | rank(v, y) = i},

where 1 ≤ i ≤ r
[y]
max.

We use the above rank sets to partition the node set as follows. In particular, we shall
use the ranking of the nodes both for the parameter y set to a fixed parameter x > 2 and
to 2.

Definition 1. We partition the set of nodes as follows:
The fast transmission set is given by F k

j = {v | v ∈ Lk ∩ Rj(2) and parent(v) ∈
Rj(2)}. Also define Fj =

⋃D
k=1 F k

j and F =
⋃r[2]

max

j=1 Fj .

The slow transmission set is given by Sk
j = {v | v ∈ Lk ∩ Rj(2) and parent(v) ∈

Rp(2), for some p > j; and rank(v, x) = rank(parent(v), x), x > 2}. Also define

Sj =
⋃D

k=1 Sk
j and S =

⋃r[2]
max

j=1 Sj .

The super-slow transmission set is given by SSk
j = {v | v∈Lk∩Rj(x) and parent(v)∈

Ri(x), i > j}. Accordingly, define SSj =
⋃D

k=1 SSk
j and SS =

⋃r[x]
max

j=1 SSj .
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Lemma 2. Fix positive integers i ≤ r
[x]
max, j ≤ r

[2]
max and k ≤ D. Then, during the

ith stage, all nodes in F k
j can transmit to their parents simultaneously without any

collisions.

Proof. Consider any two distinct nodes u and v in F k
j , and suppose they interfere with

each other. This is true if they have a neighbor in Lk−1 in common. Obviously, u
and v are on the same level and must therefore have the same parent y in the tree.
Moreover, according to the definition of the fast transmission set F k

j , u, v, y ∈ Rj(2).
However, according to the definition of the super-ranking procedure, if rank(u, 2) =
rank(v, 2) = j then rank(y, 2) must be at least j+1. Hence the nodes u and v cannot
both belong to F k

j , which leads to a contradiction.

Lemma 3. Fix positive integers i ≤ r
[x]
max, j ≤ r

[2]
max and k ≤ D. Then, all messages

from nodes in Sk
j ∩ Ri(x) can be gathered in their parents in at most x − 1 time units.

Proof. By Definition 1 we have: For each node v in Sk
j ∩Ri(x) we have that parent(v)

has at most x − 1 children in Sk
j ∩ Ri(x), for i = 1, 2, ..., r

[x]
max ≤ �logx n�, j =

1, 2, ..., r
[2]
max ≤ �log n� and k = 1, .., D. Now, using the above claim, the desired result

is achieved by simply letting each parent of nodes in Sk
j ∩Ri(x) collect messages from

one child at a time.

We shall use the following result from [10].

Proposition 1. [10] There exists a gathering procedure Γ such that in any graph G
of maximum degree ΔG and diameter DG the gossiping task, and in particular the
gathering stage, can be completed in time O(DG + ΔG log n).

The following procedure moves messages from all nodes v with rank(v, x) = i into
their lowest ancestor u with rank(u, x) ≥ i + 1, where x > 2, using the gathering
procedure Γ from the previous proposition.

Procedure SUPER-GATHERING(i);

1. Move messages from nodes in (F ∪ S) ∩ Ri(x) to SSi;
using the gathering procedure Γ in Proposition 1.

2. Move messages from nodes in SSi to their parents;
all parents collect their messages from their children in SSi one by one.

Note that the subtrees induced by the nodes in Ri(x) have maximum degree ≤ x. Thus,
by Proposition 1 and Lemma 3, we have that the time complexity of step 1 is O(D +
x log n). The time complexity of step 2 is bounded by O(Δ), where Δ is the maximum

degree of the tree. By Lemma 1, r
[x]
max ≤ �logx n�. Thus, we have that the procedure

SUPER-GATHERING completes the gathering stage in time O((D+Δ+x log n) logx n).
Since we can follow this with the trivial broadcasting stage following in time O(D), we
have proved the following.

Theorem 1. In any tree of size n, diameter D and maximum degree Δ, the gossiping
task can be completed in time O((D + Δ + x log n) logx n), where 2 < x ≤ Δ. In
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particular when Δ = Ω(log n), by choosing x = Δ
log n , we obtain the bound O((D +

Δ) log n
log Δ−log log n ).

Gathering messages in arbitrary graphs. We start this section with the introduction
of the novel concept of a super-gathering spanning tree (SGST). These trees play a
crucial role in our gossiping-scheme for arbitrary graphs. We shall show an O(n3)-time
algorithm that constructs a SGST in an arbitrary graph G of size n and diameter D.
In the concluding part of this section, we propose a new more efficient schedule that
completes message gathering in time O(D + Δ log n

log Δ−log log n ).

A super-gathering spanning tree (SGST) for a graph G = (V, E) is any BFS spanning
tree TG of G, ranked according to the super-ranking above and satisfying1

(1) TG is rooted at the central node c of G,
(2) TG is ranked,
(3) all nodes in F k

j of TG are able to transmit their messages to their parents simulta-

neously without any collision, for all 1 ≤ k ≤ D and 1 ≤ j ≤ r
[2]
max ≤ �log n�

(4) every node v in Sk
j ∩ Ri(x) of TG has following property: parent(v) has at

most x − 1 neighbours in Sk
j ∩ Ri(x), for all i = 1, 2, ..., r

[x]
max ≤ �logx n�,

j = 1, 2, ..., r
[2]
max ≤ �log n� and k = 1, .., D.

Any BFS spanning tree TG of G satisfying only conditions (1),(2), and (3) above is
called a gathering spanning tree, or simply GST. Figure 1 shows an example of a GST.
We recall the following result from [10].

4

1 3 3 1

3 1 1 1 3 1

2 2 1 1 3 1

2 1 1 1 3 1

1 2 1 1 2 1

1 1 1 1 1 1

1 1

Original Graph Gathering−spanning−tree with ranks

Fig. 1. Creating a gathering spanning tree

Theorem 2. There exists an efficient (O(n2 log n) time) construction of a GST on an
arbitrary graph G. (see Theorem 2.5 in [10])

The procedure SUPER-GATHERING-SPANNING-TREE constructs a super-gathering-
spanning-tree SGST ⊆ G on the basis of a GST⊆ G using a pruning process. The
pruning process is performed layer by layer starting from the bottom (layer D) of the

1 We use the definition 1 of the ranking partitions given above.
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GST. For each layer we gradually fix the parents of all nodes which violate condition
(4) above, i.e., each v in Sk

j ∩ Ri(x) of GST, such that parent(v) has at least x neigh-
bours in Sk

j ∩Ri(x). In fact, for our gathering-scheme, v is a node which is potentially
involved in collisions. In each layer, the pruning process starts with the nodes of highest
rank in the current layer. We use NB(v) to denote the set of neighbours of the node v
in the original graph G. In Figure 2, we show the output of the SUPER-GATHERING-
SPANNING-TREE procedure when it is run on the GST presented in Figure 1.

Procedure SUPER-GATHERING-SPANNING-TREE(GST);
(1) Fix rank(w, 2) for every node w ∈ V ;
(2) For k := D down to 1 do
(3) For i := r

[x]
max down to 1 do

(4) For j := r
[2]
max down to 1 do

(5) While ∃v ∈ Sk
j ∩ Ri(x) in GST such that |Sk

j ∩ Ri(x) ∩ NB(parent(v))| ≥ x do
(6) rank(parent(v), x) = i + 1; //rank(v, x) = i
(7) UPDATE = {u|u ∈ Sk

j ∩ Ri(x) ∩ NB(parent(v))};
(8) SSk

rank(v,x)
= SSk

rank(v,x)
∪ UPDATE;

(9) EGST = EGST − {(u, parent(u))|u ∈ UPDATE};
(10) EGST = EGST ∪ {(u, parent(v))|u ∈ UPDATE};
(11) Sk

j = Sk
j − {u|u ∈ UPDATE};

(12) re-set rank(w, x) for each w ∈ V ;
(13) recompute the sets S and SS in GST

We now prove that Procedure SUPER-GATHERING-SPANNING-TREE constructs the
SGST of an arbitrary graph G = (V, E) in time O(n3). The following technical lemma
is easily proved by induction.

Lemma 4. After completing the pruning process at layer k in GST , the structure of
edges in GST between layers k−1, .., D is fixed, i.e., each node v within layers k, .., D
in all sets Sk

j ∩ Ri(x), satisfy the following property: parent(v) has at most x − 1

neighbours in Sk
j ∩Ri(x), for i = 1, .., r

[x]
max ≤ �logx n� and j = 1, .., r

[2]
max ≤ �log n�.

By the above lemma, Theorem 2 and the fact that procedure SUPER-GATHERING-
SPANNING-TREE preserves the property of the GST it starts with, we get

Theorem 3. For an arbitrary graph there exists an O(n3) time construction of a
SGST .

O((D + Δ) log n
log Δ−log log n )-time gossiping. Using the ranks computed on the SGST ,

the nodes of the graph are partitioned into distinct rank sets Ri = {v|rank(v, x) = i},
where 1 ≤ i ≤ r

[x]
max ≤ �logx n�. This allows the gathering of all messages into the

central node c, stage by stage, using the structure of the SGST as follows. During the
ith stage, all messages from nodes in (F ∪ S) ∩ Ri(x) are first moved to the nodes
in SSi. Later, we move all messages from nodes in SSi to their parents in SGST .
In order to avoid collisions between transmissions originating at neighbouring BFS
layers we divide the sequence of transmission time slots into three separate (interleaved)
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Fig. 2. From gathering-spanning-tree to super-gathering-spanning-tree

subsequences of time slots. Specifically, the nodes in layer Lj transmit in time slot t iff
t ≡ j (mod 3).

Lemma 5. In stage i, the nodes in the set SSi of the SGST transmit their messages to
their parents in time O(Δ).

Proof. By [9, Lemma 4], one can move all messages between two partitions of a bipar-
tite graph with maximum degree Δ (in this case two consecutive BFS layers) in time
Δ. The solution is based on the use of the minimal covering set. Note that during this
process a (possibly) combined message m sent by a node v ∈ SSi may be delivered
to the parent of another transmitting node w ∈ SSi rather than to parent(v). But this
is fine, since now the time of delivery of the message m to the root of the tree is con-
trolled by the delivery mechanism of the node w. Obviously this flipping effect can be
observed a number of times in various parts of the tree, though each change of the route
does not change the delivering mechanism at all.

In order to avoid extra collisions caused by nodes at neighbouring BFS layers, we
use the solution with three separate interleaved subsequences of time slots incurring a
slowdown with a multiplicative factor of 3.

When the gathering stage is completed, the gossiping problem is reduced to the broad-
casting problem. We distribute all messages to every node in the network by reversing
the direction and the time of transmission of the gathering stage. In section 3 we prove
that the broadcasting stage can be performed faster in graphs with large Δ, i.e., in time
D + O( log3 n

log log n ).

Theorem 4. In any graph G with Δ = Ω(log n), the gossiping task can be completed
in time O((D + Δ) log n

log Δ−log log n ).

Proof. During the ith stage, all messages from (F ∪ S) ∩ Ri(x) are moved to SSi.
Because of property (4) of the SGST, Proposition 1 assures that this can be achieved in
time O(D+x log n). By Lemma 5, all nodes in the set SSi can transmit their messages
to their parents in SGST in time O(Δ). By Lemma 1, this process is repeated at most
logx n times. Thus, the gossiping time can be bounded by O((D+Δ+x log n) logx n).
The desired result follows directly by setting x = Δ

log n .
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O(D + Δ log n
log Δ−log log n ) -time gossiping. The result of Theorem 4 is obtained by a trans-

mission process consisting of �logx n� separate stages, each costing O(D+Δ+x log n)
units of time. We shall now show that the transmissions of different stages can be
pipelined and a new gossiping schedule obtained of length O(D + Δ log n

log Δ−log log n ).
The communication process will be split into consecutive blocks of 9 time units

each. The first 3 units of each block are used for fast transmissions from the set F , the
middle 3 units are reserved for slow transmissions from the set S and the remaining 3
are used for super-slow transmissions of nodes from the set SS. We use 3 units of time
for each type of transmission in order to prevent collisions between neighbouring BFS
layers, like we did in the last section. Recall that we can move all messages between
two consecutive BFS layers in time Δ [9, Lemma 4]. Moreover, the same result in
[9] together with property (4) of the GSTS, allows us to move all messages stored in
Sk

j ∩ Ri(x) to their parents in SGST within time x − 1.
We compute for each node v ∈ Sj ∩ Ri(x) at layer k the number of a step 1 ≤

s(v) ≤ x − 1 in which node v can transmit without interruption from other nodes in
Sj ∩ Ri(x) also in layer k. We also compute for each node u ∈ SSi at layer k the
number of a step 1 ≤ ss(u) ≤ Δ in which the node u can transmit without interruption
from other nodes in SSi also in layer k.

Let v be a node at layer k and with rank(v, 2) = j and rank(v, x) = i, in SGST.
Depending on if v belongs to the set F , to the set S or to the set SS, it will transmit in
the time block t(v) given by:

t(v) =

⎧
⎨

⎩

(D − k + 1) + (j − 1)(x − 1) + (i − 1) (Δ + (x − 1) log n) if v ∈ F
(D − k + 1) + (j − 1)(x − 1) + s(v) + (i − 1) (Δ + (x − 1) log n) if v ∈ S
(D − k + 1) + log n(x − 1) + (i − 1) (Δ + (x − 1) log n) + ss(v) if v ∈ SS

We observe that any node v in the SGST requires at most D fast transmissions,
log n slow transmissions and logx n super-slow transmissions to deliver its message to
the root of the SGST if there is no collision during each transmission. Moreover, the
above definition of t(v) results in the the following lemma, whose proof is deferred to
the full version of the paper.

Lemma 6. A node v transmits its message as well as all messages collected from its
descendants towards its parent in SGST successfully during the time block allocated to
it by the transmission pattern.

Since the number of time blocks used is ≤ D + (x · log n + Δ) · (logx n + 1), we have

Theorem 5. In any graph G, the gossiping task can be completed in time O(D + (x ·
log n + Δ) logx n), where 2 ≤ x ≤ Δ. In particular when Δ = Ω(log n), by setting
x = Δ

log n the bound becomes O(D + Δ log n
log Δ−log log n ).

By employing the solution of the equation Δ = x log x one can obtained an improved
O(D+ Δ log n

log Δ−log log n+log log log� n )-time gossiping schedule. Moreover, a recursive pro-

cedure can be employed to attain the bound O(D+ Δ log n
log Δ−log log n+logc log log� n ), where

c is some constant.
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3 Final Remarks: Broadcasting in Graphs with Known Topology

By exploiting the structure of the SGST it is possible to obtain a very efficient schedul-
ing algorithm for completing the broadcasting task in a general known topology radio
network. The following theorem summarizes our findings. Due to the space constaints
we defer the details to the full version of the paper.

Theorem 6. For any n node radio network of diameter D, a broadcasting schedule of
length D + O( log3 n

log log n ) can be deterministically constructed in polynomial time.
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