
1322 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 1 1 , NOVEMBER 1995

vol. 33, pp. 493-506, June 1984.
N.K. Jha, “A totally self-checking checker for Borden’s code,’’ IEEE
Trans. Computer-Aided Design, vol. 8, pp. 731-736, July 1989.
D. Nikolos, A. Paschalis, T. Haniotakis, and G. Laskaris “Totally self-
checking checkers for optimal t-unidirectional error detecting codes,”
Proc. 13th Int’l Conf Fault-Tolerant Systems and Diagnostics,

C.V. Friedman, “Optimal error detecting codes for completely asynunehic
binary channel,” Informution und Control, vol. 5 , pp. 64-71, Mar. 1962.
A.M. Paschalis, D. Nikolos, and C. Halatsis, “Efficient modular design
of TSC checkers for m-out-of-2m codes,” IEEE Trans. Computers,

[lo] M.A. Marouf and A.D. Friedman, “Design of self-checking checkers for
Berger codes,” Dig. of Papers, Eighth Int’l Symp. Fault-Tolerant Com-
puting, pp. 179-184, 1978.

[l l] T. Haniotakis, A. Paschalis, and D. Nikolos, “Efficient totally self-
checking checkers for a class of Borden codes,” DEMO Report 93/25,
NCSR Demokritos.

[12] G. Laskaris, T. Haniotakis, A. Paschalis, and D. Nikolos, “New design
method for low-cost TSC checkers for 1-out-of-n and (n - 1)-out-of-n
codes in MOS implementation,” Int‘l J . Electronics, vol. 69, no. 6,

[13] N. Gaitanis and C. Halatsis, “A new design method for m-out-of-n code

[14] N.H.E. Weste and K. Eshraghian, Principles of CMOS V U 1 Design.

[6]

[7]

pp. 326-331, 1990.
[8]

[9]

V O ~ . 37, pp. 301-309, Mar. 1988.

pp. 805-817, 1990.

checkers.,” IEEE Trans. Computers, vol. 32, pp. 273-283, Mar. 1983.

Reading, Mass.: Addison-Wesley Publishing Company, 1985.

Efficient Partitioning of Sequences
Bjarn Olstad and Fredrik Manne

Abstrucf-We consider the problem of partitioning a sequence of n
real numbers into p intervals such that the cost of the most expensive
interval, measured with a cost functionfis minimized. This problem is of
importance for the scheduling of jobs both in parallel and pipelined
environments. We develop a straightforward and practical dynamic
programming algorithm that solves this problem in time O@(n - p)) ,
which is an improvement of a factor of log p compared to the previous
best algorithm. A number of variants of the problem are also considered.

Z d a Terms-Partitioning, dynamic programming, the MinMax
problem, parallel processing, multiple regression.

I. INTRODUCTION
The scheduling of jobs to processors so as to minimize some cost

function is an important problem in many areas of computer science. In
many cases, these problems are known to be NP-hard [6]. Thus if schedul-
ing problems are to be solved optimally in polynomial time, they must
contain enough restrictions to make them tractable. In this paper we will
consider one such problem. To motivate why this particular problem is of
interest consider the following example from Bokhari 131.

In communication systems it is often the case that a continuous stream
of data packages have to be received and processed in real time. The proc-
essing can among other things include demodulation, error correction and
possibly decryption of each incoming data package before the contents of
the package can be accessed [7]. Assume that n computational operations
are to be performed in a pipelined fashion on a continuous sequence of
incoming data packages. If we have n processors we can assign one op-
eration to each processor and connect the processors in parallel. The time
to process the data will now be dominated by the processor that has to
perform the most time consuming operation. With this mapping of the
operations to the processors, a processor will be idle once it is done with
its operation and have to wait until the processor that has the most time
consuming o p t i o n is done, before it can get a new data package. This is
inefficient if the time to perform each task varies greatly. Thus to be able
to utilize the processors more efficiently we get the following problem:
Given n consecutively ordered tasks, each taking Ai] time, and p proces-
sors. Partition the tasks into p consecutive intervals such that the maxi-
mum time needed to execute the tasks in each interval is minimized. In [3]
it is also described how a solution to this problem can be used in parallel
processing as compared to pipelined.

The outline of this paper is as follows: In Section 11, we describe
the main partitioning problem and give an overview of recent work.
In Section 111, we develop a new efficient algorithm for solving this
problem. A generalization of the partitioning problem is described
and solved in Section IV. In the final section we summarize and point
to areas of future work.

11. A PARTITIONING PROBLEM
We will in this section give a formal definition of the main parti-

tioning problem and also recapitulate previous work. The problem as
stated in [111 is as follows.

Manuscript received Nov. 30, 1993; revised Sept. 28, 1994.
B. Olstad is with the Department of Computer Systems and Telematics, The

Norwegian Institute of Technology, N-7034 Trondheim-NTH, Norway; e-mail:
Bjoem.Olstad@idt.unit.no.

F. Manne is with Norsk Hydro ax., N-5020 Bergen, Norway; e-mail:
fmanne @bg.nho.hydro.com.

To order reprints of this article, e-mail: transactions@computer.org, and
reference IEEECS Log Number C95122.

0018-9340/95$04.00 0 1995 IEEE

mailto:bg.nho.hydro.com
mailto:transactions@computer.org

~

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 11, NOVEMBER 1995 1323

Let the two integers p I n be given and let (00, q, ..., q - 1) be a
finite ordered set of bounded real numbers. Let R = (ro, r l r ..., r,,) be
a set of integers such that ro = 0 I rl I ... I rP l I r,, = n. Then R de-
fines a partition of (00, al, ..., an-l) into p intervals:
(a,,,, ai, ..., arl-l),~arl, ..., ar2-l), ..., (u,~-~, ..., o , ~ - ~] . If ri = ri+l
then the interval {a,,.,.., o ~ + ~ - ~] is empty. We will use the shorthand

notation [i , j] = (q, q+1, ..., q) for intervals in the partition R.
Let f be a function, defined on intervals taken from the sequence

(a,, a,, ..., an-l], that satisfies the following two conditions of non-
negativity and monotonicity:

f(oi, oi+~, ..., q) = f ([i , j l) = f (i , j) 2 0 (1)
for 0 I i , j I n - 1 , with equality if and only if j < i.

f (i + l , j) < f (i , j) < f (i , j + 1) (2)
for 0 I i I j < n - 1. In addition we will only assume the following mild
conditions on the computability of the set-functionfto be satisfied:

1) The functionflq) can be computed in O(1) time and
2) Given Ai, j) we can calculate f in O(1) time, when either i or j

has been increased or decreased by one.

The problem is then

MinMax Find a partition R such that the associated cost

is minimum over all partitions of (a,, ..., on-l).
Bokhari [3] presents the MinMax problem and gives an O(n3p) al-

gorithm using a bottleneck-path algorithm. Anily and Federgruen [2]
and Hansen and Lih [8] independently presented the same dynamic
programming algorithm with time complexity O(n2p). Manne and
Sorevik [1 1 1 then presented an O@(n - p) log p) algorithm based on
iteratively improving a given partition. They also described a bisec-
tion method based on a simple O(n) feasibility test for finding an
approximate solution which runs in time O(n log MO, n - l) k)) ,
where E is the desired precision.

Frederickson [4] , [5] has studied partitioning of trees with
parametric search techniques and gives a good account on related
work. Frederickson gives an O(n) solution to the MiuMax problem in
the special case whereAi, j) is computable in 0(1) time for all i a n d j
after an O(n) preprocessing algorithm.

In the next section we show how the dynamic programming algo-
rithm first presented by Anily and Federgruen can be improved to run
in O@(n - p)) time.

“

111. A NEW ALGORITHM
In this section we describe a new efficient dynamic programming

algorithm for solving the MinMax problem. We start by describing
the algorithm by Anily and Federgruen.

Let g(i, k) be the cost of the most expensive interval in an optimal
partition of [i , n - 11 into k intervals where 1 I k I p and 0 I i I n.
The cost of the optimal solution is then given by g(0, p) . Once g(0, p)
is known, the positions of the delimiters can be obtained by a
straightforward O(n) calculation that grows intervals from left to
right. A delimiter is inserted each time A i , j) has exceeded g(0, p).
The following boundary conditions apply to g:

g(i, 1) = A i , n - 1) (3)

g(i, n - i) = max f(j , j)
i<j<n

Note that for n - i < k I p we have g(i, k) = g(i, n - i) .

(4)

The following recursion, first presented by Anily and Federgruen

(5)

[2] , shows how g(i, k) can be computed for 2 I k < n - i:

g(i, k) = , min max{f(i, j) , g (j + 1, k - I) }
iSjSn-k

This formula suggests that if one has access to each value of g(j + 1,
k - I), i I j I n - k, then g(i, k) can be computed by looking up n - k
- i + 1 values of g and by calculating n - k - i + 1 values off. This
gives a total time complexity of O(n2p) and a space complexity of
O(n) to compute g(0, p).

In the rest of this section we show how g(0, p) can be computed in
O@(n - p)) time. This result is due to the fact that g(i, k) is decreas-
ing in i . As a consequence the optimal value of J in (5) increases as i
increases. We use this monotonicity to obtain the given speed im-
provements. The approach is similar to the one found in [12] . The
reader is referred to [1 1 , [131 and the references therein for a recent
account on algorithmic improvements on dynamic programming
algorithms including array searching techniques.

If R = (ro = i , r l , ..., rk = n) defines a partitioning of [i , n - I] of
cost g(i, k) we will say that R is implied by g(i, k) .

It can easily be shown that g(i, k) increases monotonically as i de-
creases.

LEMMA 1. Let i, i’ be integers such that 0 I i I i’ I n. Then g(i, k) 2
g(i’, k)for 1 I k I p .

From Lemma 1 it follows that for fixed k the function g increases
monotonically in the size of the interval to be partitioned. The follow-
ing lemma shows how in certain cases we can compute g(i, k) using
the first interval [i + 1, j] in a partitioning implied by g(i + 1 , k) and
the value of g(j + 1 , k - 1) .

LEMMA 2. Let [i + 1 , j] be the first interval in a partitioning implied by
g(i + 1 , k), k > 1 . IfJri,]) 5 g(j + 1 , k - 1) then g(i, k) = g(j + 1 , k - 1) .

PROOF.Ifffi,j)IgG+ 1 , k - I) thenAi+ I , j) < g (j + 1 , k - 1). Since
g(i + 1, k) = maxmi + 1 , j) , g(j + 1 , k - 1)) we have g(i + 1 , k)
= go’ + 1 , k - 1) . Together with g(i , k) I maxmi, j) , g(j + 1 ,
k - 1)) = g(j + 1, k - 1) this shows that g(i , k) I g(i + 1 , k) . From
Lemma 1 we know that g(i, k) 2 g(i + 1 , k) and it follows that

0
Note that Lemma 2 could also have been stated: Ifxi, j) I g(i + I , k)

then g(i, k) = g(i + 1, k) . The present formulation was chosen in order
to emphasize the relationship to (5).

We now discuss how g(i, k) can be computed efficiently if Lemma 2
does not apply. For this purpose we need the following definition:

DEFINKION 3. Let i and k be integers such that 0 I i < n and 2 I k
I p . Further let Sj,k be an integer, i I Sj,k < n, such thatfii, Si& - 1)
< g(si.kr k - 1) andAi, Sj,k) 2 g(Si,k + 1 , k - 1) . Then sj,k is a balance
point.

It follows from Definition 3 that maxmi, si,k), g ($ k + 1, k - I)]
= A i , S i . 3 and that maxmi, si.k - l) , g(sj.k, k - 1)) = g(sLk, k - 1). We
now show that sj,k is well defined.

LEMMA 4. The balance point

PROOF. The result follows directly from the following two facts:

g (i , k) = g(i + 1, k) and thus g(i, k) = g(j + 1 , k - 1) .

exists and is unique.

1) Ai, j) is a strictly monotonically increasing function of j on

2) g(j, k - 1) is a monotonically decreasing function of j on

We now state our main theorem. It tells us how the balance point

i - 1 I j I n for whichfli, i - 1) = 0, and

i - 1 I j I n f o r w h i c h g (n , k - 1)=0. 0

Sj,k can be used to compute g(i, k).

1324 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 1 1 , NOVEMBER 1995

THEOREM 5. Fork 2 2, g (i , k) = minMi, si.k), g(sj,k, k - 1)).

PROOF. We consider two cases: Suppose first thatfli, si,k) I g(sik, k - 1).
Sincefli, si,J 2 g (q k + 1, k - l) , a partitioning of [i, n - 11 into
k intervals that costs less than Ai, si,J must have a first interval
[i, j] where j < Si,k. The cost of such a partitioning is y= maxMi,]),
g(j + 1, k - 1)). From Lemma 1 it follows that g(sik, k - 1) I g(j + 1,
k - 1) and since g(j + 1, k - 1) I ywe have g(si,k, k - 1) I y By the
assumptionfli, si,J I g(.qk, k - 1) we have thatfli, si,k) I yin contra-
diction to the definition ofj. Thus it follows that g(i , k) =Ai, siJ.

Assume now that Ai, si,J > g(si.k, k - 1). Since Ai, si,k - 1) e
g(sj,k, k - 1) a partitioning of [i, n - 11 into k intervals that costs
less than g(siTk, k - 1) must have the first interval [i, j] such that j 2
q k . The cost of such a partitioning is y= maxwi, j) , g(j + 1, k -
1)). Sincefii, si.3 Ifli.13 andfli, j) I yit follows thatAi, si,J I y
Together with the assumption that Ai, s,,k) > g(si,k, k - 1) this
shows that g(si,k, k - 1) < yin contradiction to the definition of j

0
We can now show how g(i, k) and the first interval implied by g(i , k)

can be computed efficiently from the following information: The first
interval [i+ 1, j] implied by& + 1, k) and g(l , k - 1) for i< l < j + 1.

Iffli, j) I g(j + 1, k - 1) then as noted in Lemma 2 we have g(i , k)
=go’ + 1, k - 1) and the size of the first interval implied by g(i , k) is [i, j] .

Iffli, j) > g(j + 1, k - 1) then we locate si,k and apply Theorem 5.
From the definition of sj,k and Lemma 4 we see thatfii, j) > g(j + 1,
k - 1) implies that i I si,k I j . We first test iffli, i) 2 g(i + 1, k - 1). If
this is true then si,k = i (since Ai, i - 1) = 0) and from Theorem 5 it
follows that g (i , k) =Ai, i) and the first interval contains only q. If
Ai, i) < g (i + 1, k - 1) then we know that i < si^.

Assume now thatf(i, j) > go’ + 1, k - 1) andfli, i) < g(i + 1, k - 1).
To locate Si&, we computef(i, j - 1) and compare with go’, k - 1). If
Ai, j - 1) <go’, k - l), then j = si.k. I f go’, k - 1) <Ai, j - 1) we reduce
j by one and repeat the process. This way we will eventually get j
such thatf(i, j - 1) < go, k - 1) andfli, j) 2 go’ + 1, k - 1). From
Definition 3, it follows that j = si,t. We can now compute g(i , k) by
applying Theorem 5. The size of the first interval is [i, j] if Ai, j)
< go, k - 1) and [i, j - 11 ifAi,j> 2 go, k - 1).

From the above it is clear that to compute g(i , k) we only make use
of g (l , k - 1) where i < 1 I j + 1. This implies that for a fixed value of
k we only need to compute g (i , k) for p - k I i I n - k to be able to
compute g(0, p) .

Before giving the complete algorithm we note that (4) can be
transformed into the following recursive formula:

and therefore g(i , k) = g(si.k, k - 1).

g (n - i , i) = maxCf(n - i, n - i), g(n - i + 1, i- 1)).

We use (3) to compute g(i , 1) for p - 1 I i < n. The complete algo-
rithm is shown in Fig. 1.

NOW we show that the time complexity of this algorithm is
O@(n - p)). First we argue that under the assumptions on f made in
Section 11, we can calculate each needed value off in 0(1) time. It is
clear that this is true when evaluating g (i , 1) in (6). In (7) and (9), we
evaluatefon only one element which can be done in O(1) time. If we
ignore (9) then each calculation (except one) offli,jJ in (8), (lo), and
(11) is directly preceded by one of the following calculations:
Ai + 1, j) ,A i , j + 1)&, j - 1). The only exception occurs when calcu-
latingfli, j) in (8) for i < n - k - 1 and (12) was true for i + 1. Then
Ai + 1, j + 1) was calculated in (1 1) prior to (8). Since the argument
off is shifted by only two elements from (1 1) to (8) we can still cal-
culate Ai, j) in (8) using only 0(1) time. (Note also that in this case
Ai + 1, j) was calculated in (10)). From this we see that we can calcu-
late each needed value offin O(1) time.

fori := n- 1 down t o p - 1 do
g(i, 1) := f (i , n - 1);

for k := 2 t o p do

j : = n - h ;
g(n - k, k) := max{f(n - k,n - k),g(n - k t 1, k - 1)); (7)

fori := n - k- 1 down t o p - k do

g (i , k) := g(j+ 1 ,k - 1);

i f f (i , i) > g (i t 1,k-1)then

i f f (i , j) s g (j + l , k - l) then

else

g (i , k) := f (i , i) ;
j := i;

while f (i , j - 1) 2 g(j, k - 1) do
else

j := j - 1;
g (i , k) : = min{f(Wg(j,k- 1));
if g(i, k) = g(j, k - 1) then

j : = j - l ;
end-else

end-else
end-do

end-do

Fig. 1. The new algorithm for solving the MinMax problem.

Now we tum our attention to the overall time complexity of the al-
gorithm. The initialization in (6) can be done in O(n - p) time. In the
innermost for-loop the only statement that cannot be executed in 0(1)
time is the while-loop (10). We argue that for a fixed value of k, (10) is
not true more than n - p - 1 times. The value of j is initially set to n - k.
Whenever (10) is reached the value of j is reduced in steps of one until
j = si&. Since sib > i it follows that j will never be reduced below i + 1 in
(1 0). For fixed k the lowest value i can have is p - k. Thus for each
value of k, (10) can at most be true n - p - 1 times.

If we ignore (10) then the time complexity of the innermost for-
loop is O(n - p). Thus by amortizing the time spent on (10) over the
time spent on the innermost for-loop we see that (1 0) can be regarded
as taking constant time. The for-loop involving k is executed p - 1
times giving a total time complexity of O@(n - p)) for the algorithm.
We observe that the algorithm degenerates to an O(n) algorithm for
p = 1 a n d p = n .

As stated earlier, this is an improvement by a factor of log p com-
pared to the Manne and S@revik algorithm [I 11. It should be noted
that the algorithm presented in this paper has time complexity
Q@(n - p)) on every input. The highest known lower bound for the
Manne and S@revik algorithm is also Q@(n - p)), but for an actual
set of values it might take less time.

In order to compute g(i , k) for fixed values of i and k, we need
only go, k - l), i < j 5 n - k + 1, and the length of the first interval
implied by g(i + 1, k) . Thus our algorithm like that of Anily and Fed-
ergruen can be implemented using only O(n) space.

Iv. THE GENERALIZED MINMAX PROBLEM

When scheduling jobs to processors each processor might have
limited storage for its job queue. This constraint can be included in
the following Bounded MinMax problem: Given p positive real
numbers Uo, UI, ..., Up,, find an optimal partition for the MinMax
problem with the constraint that s(r,, rj+, - 1) I U, for 0 S: j < p .

s(i) denotes the size of element ai where s is a function defined on
consecutive intervals of (q, a,, ..., a,,-1) such that s satisfies (1) and
(2). We also assume that the time complexity of computing s is simi-
lar to that o f t

We will first demonstrate how the bounded MinMax problem can
be viewed as a special case of the generalized MinMax problem.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 1 1 , NOVEMBER 1995 1325

Generalized MinMax. Find a partition R such that

is minimum over all partitions of [0 0 , ..., ~ ~ - 1) .

Note that the generalized MinMax problem is defined with differ-
ent cost functions for each of the intervals in the partition. This could
be convenient if we were to distribute data on a sequence of proces-
sors where the processors operate at different speeds. We will require
that each of theA functions satisfy the properties required by f in the
original MinMax problem. We can now think of the bounded Min-
Max problem as a generalized MinMax problem where the cost func-
tions are defined as follows:

Tk is a threshold operator that encodes the constraints in the bounded
MinMax problem by TAX) = - if x > Uk and otherwise TAX) = 0.

‘Ihe algorithm for solving the generalized MinMax problem is given
in Fig. 2. Two modifications have been made to the algorithm in Fig. 1.
First of all, every occurrence off(*, *) have been replaced by the appro-
priatefA*, *) function. Secondly, we have to handle the fact that differ-
ent cost functions can give solutions with empty intervals. ‘Ihe i-loop
must therefore be repeated n times in order to investigate all possible
start positions for the kth interval. Similarly, j is initialized to n - 1 in
order investigate all possible stop positions for the kth interval. These
modifications increase the time complexity, but not the validity of the
main algorithm. Finally, we have removed the if-test in (9) in order to
include the possibility of an empty interval. In terms of correctness, the
if-test assured that the while-loop (10) would terminate with j > i. ‘Ihe
corresponding while-loop in Fig. 2 terminates with j 2 i because
f&i, i - 1) = 0. The interval is left empty if the while-loop terminates
withj = i and g(i, k - 1) I f A i , 9.

for i := n down to D do
g(i,l):= fpl(i,n- 1);

forb:= 2 t o p do
g(n, k) := 0;
j : = n - 1 ;
fori:= n - 1 down to 0 do

if f , - k (i , j) 2 g(j + 1,k - 1) then

e k
g(i ,k):=g(j+l ,b- 1);

while f p f (i , j - 1) 1 g(j, k - 1) do
j : = j - l ;

g(i, I) := min{fp-r(i,j),gO’,b - 111;
ifg(r,k)=g(j,k- 1) then

j := j - 1;
end-else

end-do
end-do

Fig. 2. The algorithm for solving the generalized MinMax problem. We as-
sume thatf&j) = 0 if j < i.

The asymptotic time complexity of the algorithm is O(np). This is
still an improvement of a factor of log p compared to the algorithm
presented by Manne and Sorevik for the bounded MinMax problem.
The parametric search procedure by Fredrickson [4], [5] will also
give an O(np) solution when it is applied to the generalized MinMax
problem, but our simple and straightforward algorithm must be ex-
pected to have a much smaller constant term. The number of candi-
date values have increased to n‘p and the parametric search must
explore p unrelated n x n sorted matrices.

V. CONCLUSION
We have in this paper shown how the complexity of the dynamic

programming method used by Anily and Federgruen to solve the Min-
Max problem can be reduced from O(n*p) to O@(n -p)) . We obtain the
improvement by taking advantage of the monotone properties of the
cost functions. Where applicable, this technique seems to be a useful
way of reducing the complexity of dynamic programming algorithms.

Our algorithm has the advantage of being straightforward and
practical compared to the parametric search approach developed by
Frederickson [4], [5] . In addition, our mild conditions on the com-
putability off include nonassociative operators that for example oc-
cur in signal regression problems [9]. The asymptotic running time
for our algorithm and that of Frederickson both equal O(np) for the
generalized MinMax problem given in Section IV. Both algorithms
also have O(np) running time for the problem of solving the MinMax
problem for p’ segments with p‘ = 1, ..., p . The last problem is rele-
vant in signal analysis where p is not known a priori but rather a cru-
cial parameter for optimization.

In [l l] a number of problems related to the MinMax problem
were described. Each of these problems can also be solved by slight
modifications of our main algorithm. We note that the circular ver-
sion of the MinMax problem is solved in O(n(n - p)) time and that
the bounded MinMax problem can be solved by the algorithm for the
generalized MinMax problem even if we had used an independent
size function si as long as each si satisfies (1) and (2).

The MinMax problem can be generalized to higher dimensions
than one. In [lo] it is described how a solution of the two dimen-
sional partitioning problem can be used to speed up sparse matrix-
vector multiplication on a systolic array of processors.

ACKNOWLEDGMENTS
The authors thank Bengt Aspvall and Tor Serevik for constructive

comments, We would also like to thank the referees for their many
helpful comments and for bringing some interesting references to our
attention. Finally, we would like to thank the Norwegian Technical
Research Council for supporting this study.

REFERENCES
A. Agganval and J.K. Park, “Improved algorithms for economic lot size
problems,” Operations Research, vol. 41, pp. 549-571, 1993.
S. Anily and A. Federgruen, “Structured partitioning problems,” opera-
tions Research, vol. 13, pp. 130-149, 1991 .
S.H. Bokhari, “Partitioning problems in parallel, pipelined, and distrib-
uted computing,” IEEE Trans. Computers, vol. 37, pp. 48-57, 1988.
G.N. Frederickson, “Optimal algorithms for partitioning trees and locating
pcenters in trees,” Technical Report CSD-TR-1029, Purdue Univ., 1990.
G.N. Frederickson, “Optimal algorithms for partitioning trees and locat-
ing p-centers in trees,” Proc. Second ACM-SIAM Symp. Discrete AI-
gorithmr, pp. 168-177, San Francisco, 1991.
M.R. Garey and D.S. Johnson, Computers and Infractability. Freeman,
1979.
F. Halsall, Data Communications, Computer Networks and OSI. Read-
ing, Mass.: Addison Wesley, 1988.
P. Hansen and K.-W. Lih, “Improved algorithms for partitioning prob-
lems in parallel, pipelined, and distributed computing,” IEEE Trans.
Computers, vol. 41, pp. 769-771, 1992.
W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical
Recipes in Pascal. Cambridge Univ. Press, 1989.
F. Manne, “Load balancing in parallel sparse matrix computations,”
PhD thesis, Univ. of Bergen, Norway, 1993.

[l l] F. Manne and T. Serevik, “Optimal partitioning of sequences,” Tech.
Report CS-92-62, Univ. of Bergen, Norway, 1992.

1326 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 11, NOVEMBER 1995

[12] B. Olstad and H.E. Tysdahl, “Improving the computational complexity Division Using a Logarithmic-Exponential
Transform to Form a Short Reciprocal of active contour algorithms,” Proc. Eighth Scandinavian Cunj: Image

Analysis, Troms0, Norway, 1993.
[13] F.F. Yao, “Speed-up in dynamic programming,” SIAM J. Alg. Discrete

Meth., vol. 3, pp. 532-540, 1982. David M. Mandelbaum

Abstract-Two trees are used sequentially to calculate an approxi-
mation to lIA, where 1 I A < 2. These trees calculate the logarithm and
exponential, and the division (reciprocation) process can be described by
1/A = eAd. For bit skip accuracy of six to 10, this logarithmic-
exponential method uses significantly less hardware with respect to the
scheme in [3], and the delays may be greater or less than those of [3],
depending on the method used and the minimum bit skip.

Index Terms-Array, division, exponential, logarithm, reciprocation,
tree.

I. INTRODUCTION
Much investigation has been done in developing methods to obtain

an initial quotient or short reciprocal, to be used in a startup manner
with iterative algorithms to obtain a quotient of two numbers. Original
work in this area has been done by Svoboda [23], Krishnamurthy [191,
[20], Matula [21], Shanna and Matula [22], Ercegovac and Lang [18],
Wong and Flynn [7], and Schwarz and Flynn, [4], [6]. Recently, work
has been done on division or reciprocation by means of carry save ad-
der trees based on the equations AQ = C, or AQ = 1, where A is the
divisor, [2], [3], [4], [6]. Initially, Stefanelli [l] utilized these equations
to define an open-ended tree for division. The aim of this paper is the
same as that of [3], to develop an approximation to 1/A (short recipro-
cal) to a given accuracy. However, the proposed method is more eco-
nomical than [3] in certain cases, as determined by complete simula-
tion. In this paper, reciprocation of A is accomplished by a new multi-
stage method. The natural logarithm of A, (In A), is calculated by a tree.
Then e-lnA = exp(-ln A) is calculated by another tree (or two trees si-
multaneously) to give 1/A. Thus it can be said that 1/A can be obtained
by the logarithmic-exponential transform (LET): exp(-In A).

Comparision between the LET scheme and dedicated division (short
reciprocal) trees of [3], was made for certain minimum bit skip accuracy
using a complete range of binary input numbers. This was also the cri-
terion used in [7]. The bit skip, which is a criterion of accuracy, is de-
fined by the number of left bit shifts needed to normalize the remainder
R = 1 - A Q where Q is the approximation (short reciprocal) of 1/A
obtained from the LET. The parameters considered were the amount of
hardware required to implement the LET and the delay through the
circuits being considered. This was compared with the equivalent pa-
rameters of [3]. Comparisions are made with other methods in [3], in-
cluding table look-up, (see also Section IV). Thus comparing the results
presented here with [3], also compares them directly with other meth-
ods. For minimum bit skips of six through 10, complete simulation
shows significantly less hardware is needed for the LET than [3], while
the delay time varies from less to more than the trees of [3], depending
on the amount and type of tree hardware and minimum bit skip.
(Closed analysis may be very difficult if not impossible in determining
these parameters.) For the case of a minimum bit skip of seven, one of
the proposed schemes also gives less delay than the corresponding
dedicated division (reciprocal) tree of [3]. However, if one wishes to
consider average bit skip instead of minimum bit skip, then the trees of
[3] are superior. The LET trees would be used where a guaranteed
minimum bit skip for every division operation is required, as well as a
minimum tree size. Certain concepts introduced by Schwarz and Flynn,

Manuscript received Sept. 15, 1993; revised Apr. 28, 1994.
The author is at 168 Hollingston PI., East Windsor, NJ 08520..
To order reprints of this article, e-mail: transactions@computer.org, and

reference IEEECS Log Number C95109.

0018-9340/95$04.00 0 1995 IEEE

mailto:transactions@computer.org

