
CONCURRENCY: PRACTICE AND EXPERIENCE
Concurrency: Pract. Exper. 2000; 12:1131–1146

Scalable parallel graph coloring
algorithms
Assefaw Hadish Gebremedhin∗,† and Fredrik Manne

Department of Informatics, University of Bergen, N-5020 Bergen, Norway

SUMMARY

Finding a good graph coloring quickly is often a crucial phase in the development of efficient, parallel
algorithms for many scientific and engineering applications. In this paper we consider the problem of
solving the graph coloring problem itself in parallel. We present a simple and fast parallel graph coloring
heuristic that is well suited for shared memory programming and yields an almost linear speedup on
the PRAM model. We also present a second heuristic that improves on the number of colors used. The
heuristics have been implemented using OpenMP. Experiments conducted on an SGI Cray Origin 2000
supercomputer using very large graphs from finite element methods and eigenvalue computations validate
the theoretical run-time analysis. Copyright 2000 John Wiley & Sons, Ltd.

KEY WORDS: graph coloring; parallel algorithms; shared memory programming; OpenMP

1. INTRODUCTION

The graph coloring problem (GCP) deals with assigning labels (called colors) to the vertices of a graph
such that adjacent vertices do not get the same color. The primary objective is to minimize the number
of colors used. The GCP arises in a number of scientific computing and engineering applications.
Examples include, among others, timetabling and scheduling [1], frequency assignment [2], register
allocation [3], printed circuit testing [4], parallel numerical computation [5], and optimization [6].
Coloring a general graph with the minimum number of colors is known to be an NP-hard problem [7],
and thus one often relies on heuristics to obtain a usable solution.
In a parallel application, graph coloring is usually performed in order to partition the work associated

with the vertices into independent subtasks such that the subtasks can be performed concurrently.
Depending on the amount of work associated with each vertex, there are basically two coloring
strategies one can pursue. In the first strategy the emphasis is on minimizing the number of colors,

∗Correspondence to: A. H. Gebremedhin, Department of Informatics, University of Bergen, N-5020 Bergen, Norway.
†E-mail: assefaw@ii.uib.no

Received November 1999
Copyright 2000 John Wiley & Sons, Ltd. Revised May 2000

1132 A. H. GEBREMEDHIN AND F. MANNE

whereas in the second the focus is on speed. Ascertaining which is more appropriate depends on the
underlying problem one is trying to solve.
If the task associated with each vertex is computationally expensive then it is crucial to use as few

colors as possible. There exist several time-consuming (iterative) local improvement heuristics for
addressing this need. Some of these heuristics have been shown to be parallelizable [1].
If, on the other hand, the task associated with each vertex is fairly small and one repeatedly has to

find new graph colorings, then the overall time to perform the colorings might take up a significant
portion of the entire computation. See [8] for an example of this case. In such a setting it is more
important to compute a usable coloring fast than spending time on reducing the number of colors.
For this purpose there exist several linear time-, or close to linear time-, sequential greedy coloring
heuristics. These heuristics have been found to be effective in coloring graphs that arise from a number
of applications [6,9]. Because of their inherent sequential nature, however, these heuristics are difficult
to parallelize.
This paper focuses mainly on the latter strategy, where the goal is to develop scalable parallel

coloring heuristics based on greedy methods. Previous work on developing such algorithms has been
performed on distributed memory computers using explicit message passing. The speedup obtained
from these efforts has been discouraging [5]. The main justification for using these algorithms has
been access to more memory and thus the ability to solve problems with very large graphs. It is to
be noted that the current availability of shared memory computers where the entire memory can be
accessed by any processor makes this argument less significant now.
The development of shared memory computers has been accompanied by the emergence of new

shared memory programming paradigms of which OpenMP has become one of the most successful
and widely used [10]. OpenMP is a directive-based, fork-join model for shared memory parallelism.
In this paper we present a fast and scalable parallel graph coloring algorithm suitable for the shared

memory programming model. In our context, scalability of a parallel algorithm is a measure of its
capacity to increase speedup as the number of processors is increased for a given problem size. Our
algorithm is based on first performing a parallel pseudo-coloring of the graph. The prefix ‘pseudo’ is
used to reflect that the coloring might contain adjacent vertices that are colored with the same color. To
remedy this we perform a second parallel step where any inconsistencies in the coloring are detected.
These are then resolved in a final sequential step. An analysis on the PRAM model using p processors
for a graph with n vertices and m edges shows that the expected number of conflicts from the first
stage is low, and for p ≤ n/

√
2m the algorithm is expected to provide a nearly linear speedup. We also

extend this idea and present a second parallel algorithm that potentially uses fewer colors.
The presented algorithms have been implemented in Fortran90 using OpenMPon a Cray Origin 2000

supercomputer. Experimental results on a number of very large graphs show that the algorithms yield
good speedup and produce colorings of comparable quality to that of their sequential counterparts. The
fact that we are using OpenMP makes our implementation significantly simpler and easier to verify
than if we had used a distributed memory programming environment such as MPI.
The rest of this paper is organized as follows. In Section 2 we give some background on the

graph coloring problem and previous efforts made to solve it in parallel. In Section 3 we describe
our new parallel graph coloring algorithms and analyze their performance on the PRAM model.
Synchronization overhead andOpenMP issues related to our implementation are discussed in Section 4.
In Section 5 we present and discuss results from experiments performed on the Cray Origin 2000.
Finally, in Section 6 we give concluding remarks.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 12:1131–1146

SCALABLE PARALLEL GRAPH COLORING ALGORITHMS 1133

2. BACKGROUND

In this section we give a brief overview of previous work done on the development of fast coloring
heuristics, both sequential and parallel. We begin by introducing some graph notation used in this
paper.
For a graph G = (V ,E), we denote |V | by n, |E| by m, and the degree of a vertex vi by deg(vi).

Moreover, the maximum, minimum, and average degree in a graph are denoted by !, δ, and δ,
respectively.
As mentioned in Section 1, there exist several fast sequential coloring heuristics that are very

effective in practice. These algorithms are all based on the same general greedy framework: a vertex
is selected according to some predefined criterion and then colored with the smallest valid color. The
selection and coloring continues until all the vertices in the graph are colored.
Some of the suggested coloring heuristics under this general framework include Largest-Degree-

First-Ordering (LFO) [11], Incidence-Degree-Ordering (IDO) [6], and Saturation-Degree-Ordering
(SDO) [12]. These heuristics choose at each step a vertex v from the set of uncolored vertices with
the maximum ‘degree’. In LFO, the standard definition of degree of a vertex is used. In IDO, incidence
degree is defined as the number of already colored adjacent vertices, whereas in SDO one only
considers the number of differently colored adjacent vertices. First Fit (FF) is yet another, simple
variant of the general greedy framework. In FF, the next vertex from some arbitrary ordering is chosen
and colored. In terms of quality of coloring, these heuristics can in most cases be ranked in increasing
order as FF, LFO, IDO, and SDO. Note that for a graphG the number of colors used by any sequential
greedy algorithm is bounded from above by ! + 1. On average, however, it has been shown that for
random graphs FF is expected to use no more than 2χ(G) colors, where χ(G) is the chromatic number‡
ofG [13]. In terms of run time, FF is clearlyO(m), LFO and IDO can be implemented to run inO(m),
and SDO in O(n2) [9,12].
When it comes to parallel graph coloring, a number of the existing fast heuristics are based on the

observation that an independent set of vertices can be colored in parallel. A general parallel coloring
scheme based on this observation is outlined in Scheme 1 (Figure 1).
Depending on how the independent set is chosen and colored, Scheme 1 specializes into a number of

variants. The Parallel Maximal Independent set (PMIS) coloring is one variant. This is a heuristic based
on Luby’smaximal independent set finding algorithm [14]. Other variants are the asynchronousparallel
heuristic by Jones and Plassmann (JP) [9], and the Largest-Degree-First (LDF) heuristic developed
independently by Gjertsen Jr. et al. [15] and Allwright et al. [5].
Allwright et al. made an experimental, comparative study by implementing the PMIS, JP, and LDF

coloring algorithms on both SIMD and MIMD parallel architectures [5]. They report that they did not
get speedup for any of these algorithms.
Jones and Plassmann [9] do not report on obtaining speedup for their algorithms either. They state

that ‘the running time of the heuristic is only a slowly increasing function of the number of processors
used’.

‡The chromatic number of a graph is the optimal number of colors required to color it.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 12:1131–1146

1134 A. H. GEBREMEDHIN AND F. MANNE

Scheme 1

ParallelColoring(G = (V ,E))
begin

U ← V
G′ ← G

while (G′ is not empty) do in parallel
Find an independent set I in G′

Color the vertices in I

U ← U \ I

G′ ← graph induced by U
end-while

end

Figure 1. A parallel coloring heuristic.

3. BLOCK PARTITION BASED COLORING HEURISTICS

In this section we present two new parallel graph coloring heuristics and give their performance
analysis on the PRAM model. Our heuristics are based on dividing the vertex set of the graph into
p successive blocks of equal size. We call this a block partitioning. We assume that the vertices are
listed in a random order and thus no effort is made to minimize the number of crossing edges. A
crossing edge is an edge whose end points end up in two different blocks. Obviously, because of the
existence of crossing edges, the coloring subproblems defined by each block are not independent.

3.1. The first algorithm

The strategy we employ consists of three phases. In the first phase, the input vertex set V of the graph
G = (V ,E) is partitioned into p blocks as {V1, V2, . . . , Vp} such that |Vi | = n/p, 1 ≤ i ≤ p. The
vertices in each block are then colored in parallel using p processors. The parallel coloring comprises
n/p parallel steps with synchronization barriers at the end of each step. When coloring a vertex, all
its previously colored neighbors, both the local ones and those found on other blocks, are taken into
account. In doing so, two processors may simultaneously attempt to color vertices that are adjacent to
each other. If these vertices are given the same color, the resulting coloring becomes invalid and hence
we call the coloring obtained a pseudo coloring. In the second phase, each processor pi checks whether
vertices in Vi are assigned valid colors by comparing the color of a vertex against all its neighbors that
were colored at the same parallel step in the first phase. This checking step is also done in parallel. If
a conflict is discovered, one of the end points of the edge in conflict is stored in a table. Finally, in the
third phase, the vertices stored in this table are colored sequentially. Algorithm 1 provides the details
of this strategy and is given in Figure 2.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 12:1131–1146

SCALABLE PARALLEL GRAPH COLORING ALGORITHMS 1135

Algorithm 1

BlockPartitionBasedColoring(G, p)
begin
1. Partition V into p equal blocks V1 . . . Vp, where

⌊

n
p

⌋

≤ |Vi | ≤
⌈

n
p

⌉

for i = 1 to p do in parallel
for each vj ∈ Vi do
assign the smallest legal color to vertex vj

barrier synchronize
end-for

end-for
2. for i = 1 to p do in parallel

for each vj ∈ Vi do
for each neighbor u of vj that is colored at the same parallel step do
if color(vj) = color(u) then
store min {u, vj } in table A

end-if
end-for

end-for
end-for

3. Color the vertices in A sequentially
end

Figure 2. Block partition based coloring.

3.1.1. Analysis

Our analysis is based on the PRAMmodel. Without loss of generality we assume that n/p, the number
of vertices per processor, is an integer. Let the vertices on each processor be numbered from 1 to n/p
and the parallel time used for coloring be divided into n/p time slots. The processors are synchronized
at the end of each time unit tj . This means, at each time unit tj , that processor pi colors vertex vj ∈ Vi ,
1 ≤ j ≤ n/p and 1 ≤ i ≤ p.
Our first result gives an upper bound on the expected number of conflicts (denoted by K) created at

the end of Phase 1 of Algorithm 1 for a graph in which the vertices are listed in a randomly permuted
order.

Lemma 1. The expected number of conflicts created at the end of Phase 1 of Algorithm 1 is at most

δ(p − 1)
2

(

n

n − 1

)

≈ δ(p − 1)
2

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 12:1131–1146

1136 A. H. GEBREMEDHIN AND F. MANNE

Proof. Consider a vertex x ∈ V that is colored at time unit tj , 1 ≤ j ≤ n/p. Since the neighbors of x
are randomly distributed, the expected number of neighbors of x that are concurrently colored at time
unit tj is given by

p − 1
n − 1

deg(x) (1)

If we sum (1) over all vertices in G we count each pair of adjacent vertices that are colored
simultaneosly twice. Moreover, each term in the sum represents only a potential conflict since two
adjacent vertices could be colored simultaneously and yet be assigned different colors. The sum thus
gives an upper bound on the expected number of conflicts. Therefore, we have

E[K] ≤ (1/2)
∑

x∈V

p − 1
n − 1

deg(x) (2)

= (1/2)
p − 1
n − 1

(2m) (3)

= (1/2)δ(p − 1)(n/n − 1) (4)

In going from (3) to (4), the identity δ = ∑

v∈V deg(v)/n = 2m/n is used. Note that for large values
of n, (n/n − 1) ≈ 1 and the result follows.

We now look at the expected run time§ of Algorithm 1. To do so, we introduce a graph attribute
called relative sparsity r , defined as r = n2/m. Note that 1/r , the ratio of the actual number of edges
to the total possible number of edges, shows the density of the graph. The following lemma states
that, for bounded degree graphs and for p ≤ √

(r/2), Algorithm 1 provides an almost linear speedup
compared to the sequential First Fit algorithm.

Lemma 2. On a CREW PRAM, Algorithm 1 colors the input graph consistently in EO(!n/p) time
when p ≤ √

(r/2) and in EO(!δp) time when p >
√

(r/2).

Proof. Note first that since Phase 3 resolves all the conflicts that are discovered in Phase 2, the coloring
at the end of Phase 3 is a valid one. Both Phase 1 and 2 require concurrent read capability and thus
the required PRAM is CREW. The overall time required by Algorithm 1 is T = T1 + T2 + T3, where
Ti is the time required by Phase i. Both Phase 1 and 2 consist of n/p parallel steps. The number of
operations in each parallel step is proportional to the degree of the vertex under investigation, which
is bounded from above by !. Thus, T1 = T2 = O(!n/p). The time required by the sequential step
(Phase 3) is T3 = O(!K), whereK is the number of conflicts discovered in Phase 2. From Lemma 1,
E[K] = O(δp). Substituting yields

T = T1 + T2 + T3 = EO(!(n/p + δp)) (5)

The overall time T is thus determined by how n/p compares with δp. Using the identity δ = 2m/n,
we see that for p ≤

√

(n2/2m) = √
(r/2), the term n/p dominates, giving an overall running time of

EO(!n/p). For p >
√

(r/2), the term δp dominates and the overall time becomes EO(!δp).

§We use the prefix E to identify expected time complexity expressions.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 12:1131–1146

SCALABLE PARALLEL GRAPH COLORING ALGORITHMS 1137

For most practical applications and currently available parallel computers we expect that both δ) n

and p) n, implying that n > p2δ and thus giving an overall time complexity of O(!n/p) for
Algorithm 1.
The number of colors used by Algorithm 1 is bounded from above by ! + 1. This follows since

the conflicts that arise in Phase 1 are resolved sequentially. However, we note that there exist instances
where the coloring produced by Algorithm 1 can be arbitrarily worse than that of the sequential FF
algorithm. To see this, consider a complete bipartite graph G = (V1, V2, E) with |V1| = |V2| = n/2,
where the vertices in V1 are ordered before the vertices in V2 and with p = 2. For this setting Algorithm
1 will use (n/2) + 1 colors, while sequential FF will color the graph optimally using two colors.

3.2. The second algorithm

In this section we show how Algorithm 1 can be modified to use fewer colors. Our method is motivated
by the idea behind Culberson’s Iterated Greedy coloring heuristic (IG) [16]. IG is based on the
following result, stated here without proof.

Lemma 3. (Culberson) Let C be a k-coloring of a graphG, and π a permutation of the vertices such
that if C(vπ(i)) = C(vπ(l)) = c, then C(vπ(j)) = c for i < j < l. Then, applying the First Fit
algorithm to G where the vertices have been ordered by π will produce a coloring using k or fewer
colors.

From Lemma 3, we see that if FF is reapplied on a graph where the vertex set is ordered such that
vertices belonging to the same color class¶ in the previous coloring are listed consecutively, the new
coloring is better or at least as good as the previous coloring. There are many ways in which the vertices
of a graph can be arranged satisfying the condition of Lemma 3. One such ordering is the reverse color
class ordering [16]. In this ordering, the color classes are listed in reverse order of their introduction.
This has the potential to reduce the number of colors used since one now proceeds by first coloring
vertices that could not be colored with low values in the previous coloring.
Our improved coloring heuristic uses Lemma 3 and consists of four phases, one more phase than

Algorithm 1. The first phase is the same as Phase 1 of Algorithm 1. Let the coloring number used by
this phase be ColNum. During the second phase, the pseudo coloring of the first phase is used to get a
reverse color class ordering of the vertices. The second phase consists of ColNum steps. In each step
i, the vertices of color class ColNum − i − 1 are colored afresh in parallel in a similar manner as in
Phase 1. The remaining two phases are the same as Phases 2 and 3 of Algorithm 1. The method just
described (Algorithm 2) is outlined in Figure 3.
Each color class at the end of Phase 1 is a pseudo independent set. In particular, any edge within a

color class results from a ‘conflict’ edge from Phase 1. Hence a new block partitioning of the vertices of
each color class results in only a few crossing edges. In other words, the number of conflicts expected at
the end of Phase 2 (K2) should be much smaller than the number of conflicts at the end of Phase 1 (K1).
Thus, in addition to improving the quality of the coloring, Phase 2 should also provide a significant

¶Vertices of the same color constitute a color class.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 12:1131–1146

1138 A. H. GEBREMEDHIN AND F. MANNE

Algorithm 2

ImprovedBlockPartitionBasedColoring(G, p)
begin
1. As Phase 1 of Algorithm 1

{At this point we have the pseudo independent
sets ColorClass(1) . . . ColorClass(ColNum) }

2. for k = ColNum down to 1 do
Partition ColorClass(k) into p equal blocks V ′

1 . . . V ′
p

for i = 1 to p do in parallel
for each vj ∈ V ′

i do
assign the smallest legal color to vertex vj

end-for
end-for

end-for
3. As Phase 2 of Algorithm 1
4. As Phase 3 of Algorithm 1
end

Figure 3. Modified block partition based coloring.

reduction in the number of conflicts. Note that conflict checking and removal steps are included in
Phases 3 and 4 to ensure that any remaining conflicts are resolved.
The following result gives an upper bound on the expected number of conflicts at the end of Phase 2

of Algorithm 2.

Lemma 4. The expected number of conflicts created at the end of Phase 2 of Algorithm 2 is at most
2p2!(!+ 1)/n ≈ 2p2!2/n.

Proof. From Lemma 1, the expected number of conflicts at the end of Phase 1 is approximately
bounded by δp/2. Noting that there are m edges in the input graph G to Algorithm 2, at the end
of Phase 1, the probability that an arbitrary edge in G is in ‘conflict’ is expected to be no more
than δp/2m = p/n. Now consider a color class w from the coloring obtained at the end of Phase
1 of Algorithm 2. Let G′ = (V ′, E′) be the graph induced by the vertices of this color class and
let n′ = |V ′|,m′ = |E′|. Further, let x be a vertex in G′ and deg′(x) its degree. From the above
discussion, we expect that deg′(x) ≤ (p/n)deg(x). Using the same argument as in Lemma 1, the
expected number of neighbors of x that are concurrently colored at time unit tj , for 1 ≤ j ≤ n′/p,
is p − 1/(n′ − 1)deg′(x). Thus the number of conflicts created due to the vertices of color class w

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 12:1131–1146

SCALABLE PARALLEL GRAPH COLORING ALGORITHMS 1139

(denoted byK ′) is bounded as follows:

E[K ′] ≤
∑

x∈V ′

p(p − 1)
n(n′ − 1)

deg(x) (6)

= p

n
(p − 1)

∑

x∈V ′ deg(x)

n′ − 1
(7)

≤ 2p2!
n

(8)

Recall that there are at most ! + 1 colors at the end of Phase 1. Therefore, K2, the total number of
expected conflicts at the end of Phase 2, is

E[K2] ≤ 2p2!(!+ 1)
n

(9)

Noting that !(!+ 1) ≈ !2, (9) can be rewritten as

E[K2] ≤
(√

2p√
n/!

)2

This indicates that if
√
2p <

√
n/!, the expected number of conflicts at the end of Phase 2 is less

than 1.

4. IMPLEMENTATION ISSUES

In this section we address the problem of synchronization overhead and illustrate how OpenMP is used
in our Fortran90 implementations.

4.1. Synchronization overhead

The barrier synchronization in Phase 1 of Algorithm 1 is introduced to identify the parallel step tj
(1 ≤ j ≤ n/p) during which a vertex is colored. This information is used for two purposes: (i) in
Phase 1 to identify already colored neighbors of a vertex, and (ii) in Phase 2 to identify the neighbors
of a vertex that are colored at the same parallel step as itself. Although the barrier enables us to realize
these purposes, its implementation typically incurs an undesirable large overhead. To overcome this
we have developed an asynchronous version of Algorithm 1 (and consequently of Algorithm 2). In
the asynchronous version we consider all the neighbors of a vertex under investigation, irrespective
of the parallel step during which they are colored. This is done first when determining the color of
a vertex and then when checking for consistency of coloring. We have implemented and tested both
the asynchronous and synchronous versions of Algorithm 1. In the synchronous version, an OpenMP
library routine was utilized to realize barrier synchronization. The obtained results show that the
asynchronous version runs faster by a factor of 3 to 5. The relative slow-down factor of the synchronous
version depends on how often the OpenMP barrier routine is called. Particularly for a given graph, the
relative time spent on synchronization increases with the number of processors.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 12:1131–1146

1140 A. H. GEBREMEDHIN AND F. MANNE

!$omp parallel do schedule(static, Bsize) !$omp parallel do schedule(static, Bsize)
private(i) shared(vertex) private(i) shared(vertex)
do i = 1, number of vertices do i = 1, number of vertices
call assign color synch(vertex(i)) call assign color asynch(vertex(i))
call mp barrier enddo
enddo

Figure 4. OpenMP-sketch of Phase 1 of Algorithm 1, synchronous (left) and asynchronous (right).

4.2. OpenMP

Figure 4 provides a sketch of Phase 1 of both the synchronous and asynchronous versions of
Algorithm 1. Here the vertices are stored in the integer array vertex and the number of vertices per
processor is stored in the variableBsize. The routines assign color synch(i) and assign color asynch(i),
synchronous and asynchronous versions, respectively, assign the smallest valid color to vertex i.
It should be noted that, even though the synchronous algorithm visits fewer vertices both when
determining the color of a vertex and when checking for consistency, it incurs an extra initial overhead
since one must determine for each of value of p which vertices to check. The routinemp barrier is an
OpenMP library routine that enables barrier synchronization.
In addition to the standard OpenMP directives we have used data distribution directives provided by

SGI to ensure that most cache misses are satisfied from local memory.
We disallow access to a memory location while it is being written by using the ATOMIC directive

in OpenMP. This makes accessing the color of any vertex without reading garbage values possible in
Phase 1.

5. EXPERIMENTAL RESULTS

In this section, we demonstrate experimentally the performance of the asynchronous versions of
Algorithms 1 and 2. In Section 5.1 we introduce the test graphs used in the experiments and in
Section 5.2 we present and discuss the experimental results. The experiments have been performed on a
Cray Origin 2000, a CC-NUMA machine consisting of 128 MIPS R10000 processors. The algorithms
have been implemented in Fortran90 and parallelized using OpenMP[10]. We have also implemented
the sequential versions of FF and IDO to use as benchmarks.
In these experiments, the block partitioning is based on the ordering of the vertices as provided in

the input graph. In other words, no random permutation is done on the ordering of the vertices prior to
partitioning.

5.1. Test graphs

The test graphs used in our experiments are divided into three categories as Problem Set I, II, and III
(see Table I). Problem Sets I and II consist of graphs (matrices) that arise from finite element methods.‖

‖G. Karypis. Private communication.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 12:1131–1146

SCALABLE PARALLEL GRAPH COLORING ALGORITHMS 1141

Table I. Test graphs.

Set Problem n m ! δ δ
√

r/2 χFF χIDO

Set I mrng2 1 017 253 2 015 714 4 2 3 506 5 5
Set I mrng3 4 039 160 8 016 848 4 2 3 1008 5 5
Set II 598a 110 971 741 934 26 5 13 91 11 9
Set II m14b 214 765 1 679 018 40 4 15 117 13 10
Set III dense1 19 703 3 048 477 504 116 309 8 122 122
Set III dense2 218 849 121 118 458 1640 332 1106 14 377 376

Problem Set III consists of matrices that arise in eigenvalue computations [8]. In addition to providing
some statistics about the structure of the test graphs, Table I also lists the number of colors required
when coloring the graphs using our sequential FF and IDO implementations (shown under columns
χFF and χIDO, respectively).

5.2. Discussion

Algorithm 1. Table II lists results obtained using the asynchronous version of Algorithm 1. The
number of blocks (processors) is given in column p. Columns χ1 and χ3 give the number of colors
used at the end of Phases 1 and 3, respectively. The number of conflicts that arise in Phase 1 are
listed in the column labeledK . The column labeled δ(p − 1)/2 gives the theoretically expected upper
bound on the number of conflicts as predicted by Lemma 1. The times in milliseconds required by the
different phases are listed in columns T1, T2, T3, and the last column Ttot gives the total time used.
The column labeled Spar lists the speedup obtained compared to the time used by running Algorithm 1
on one processor (Spar(p) = Ttot(1)/Ttot(p)). The last column, SseqFF, gives the speedup obtained by
comparing against a straightforward sequential FF algorithm (SseqFF(p) = T1(1)/Ttot(p)).
The results in columnK of Table II show that, in general, the number of conflicts that arise in Phase

1 is small and grows as a function of the number of blocks (or processors) p. This agrees well with
the result from Lemma 1. We see that for the relatively dense graphs the actual number of conflicts is
much less than the bound given by Lemma 1.
The run times obtained show that Algorithm 1 performs as predicted by Lemma 2. Particularly, the

time required for recoloring incorrectly colored vertices is observed to be practically zero (in the order
of a few microseconds) for all our test graphs. This is not surprising as the obtained value of K is
negligibly small compared to the number of vertices in a given graph.
As results in columns T1 and T2 indicate, the time used to detect conflicts is approximately the same

as the time used to do the initial coloring. This makes the running time of the algorithm using one
processor approximately double that of the sequential FF. This in turn reduces the speedup obtained
compared to the sequential FF by a factor of 2. The speedup obtained compared to running the parallel
algorithm on one processor gets its best values for the two largest graphs mrng3 and dense2.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 12:1131–1146

1142 A. H. GEBREMEDHIN AND F. MANNE

Table II. Experimental results for Algorithm 1.

Problem p χ1 χ3 K
⌈

δ(p−1)
2

⌉

T1 T2 T3 Ttot Spar SseqFF

mrng2 1 5 5 0 0 1190 1010 0 2200 1 0.6
mrng2 2 5 5 0 2 1130 970 0 2100 1.1 0.6
mrng2 4 5 5 0 5 430 280 0 710 3.1 1.7
mrng2 8 5 5 8 11 260 200 0 460 4.8 2.6
mrng2 12 5 5 18 17 200 130 0 330 6.7 3.6
mrng3 1 5 5 0 0 4400 3400 0 7800 1 0.6
mrng3 2 5 5 2 2 2250 1600 0 3850 2 1.1
mrng3 4 5 5 4 5 1300 1000 0 2300 3.4 1.9
mrng3 8 5 5 0 11 630 800 0 1430 5.5 3.1
mrng3 12 5 5 12 17 430 480 0 910 8.6 4.8
598a 1 11 11 0 0 100 80 0 180 1 0.6
598a 2 12 12 4 7 55 40 0 95 2 1.1
598a 4 12 12 12 20 40 20 0 60 3 1.7
598a 8 12 12 36 46 28 15 0 43 4.2 2.3
598a 12 12 12 42 72 20 15 0 35 5.2 2.9
m14b 1 13 13 0 0 200 180 0 380 1 0.5
m14b 2 13 13 2 8 130 120 0 250 1.5 0.8
m14b 4 14 14 14 23 80 50 0 130 3 1.5
m14b 8 13 13 16 53 48 26 0 74 5 2.7
m14b 12 13 13 36 83 40 20 0 60 6.4 3.3
dense1 1 122 122 0 0 200 290 0 490 1 0.4
dense1 2 142 142 30 155 110 140 0 250 2 0.8
dense1 4 137 137 94 464 69 72 0 141 3.5 1.4
dense1 8 129 129 94 1082 53 44 1 97 5.6 2.1
dense1 12 121 124 78 1700 55 90 1 145 3.4 1.4
dense2 1 377 377 0 0 9200 13 200 0 22 400 1 0.4
dense2 2 382 382 68 553 5160 8040 3 13 203 1.7 0.7
dense2 4 400 400 98 1659 2600 4080 4 6684 3.4 1.4
dense2 8 407 407 254 3871 1590 2280 11 3881 5.8 2.4
dense2 12 399 399 210 6083 1090 1420 8 2518 9 3.7

We see that the number of colors used by Algorithm 1 varies with the number of processors used.
Comparing column χ3 of Table II and column χFF of Table I, we see that the deviation of χ3 from χFF
is at most 1 for graphs from Problem Sets I and II and at most 16% for the two graphs from Problem
Set III.

Algorithm 2. Table III lists results of the asynchronous version of Algorithm 2. The number of colors
used at the end of Phases 1 and 2 are listed in columns χ1 and χ2, respectively. The coloring at the
end of Phase 2 is not guaranteed to be conflict-free. Phases 3 and 4 detect and resolve any remaining
conflicts. Column χ4 lists the number of colors used at the end of Phase 4. The number of conflicts

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 12:1131–1146

SCALABLE PARALLEL GRAPH COLORING ALGORITHMS 1143

Table III. Experimental results for Algorithm 2.

Problem p χ1 χ2 χ4 K1 K2 T1 T2 T3 T4 Ttot Spar S2seqFF

mrng2 1 5 5 5 0 0 1050 1700 820 0 3570 1 0.8
mrng2 2 5 5 5 0 0 950 1350 650 0 2650 1.4 1.0
mrng2 4 5 5 5 2 0 470 840 310 0 1620 2.2 1.7
mrng2 8 5 5 5 16 0 300 500 200 0 1000 3.6 2.8
mrng2 12 5 5 5 12 0 250 400 170 0 820 4.4 3.4
mrng3 1 5 5 5 0 0 3700 9500 2600 0 15800 1 0.8
mrng3 2 5 5 5 0 0 1890 4100 1200 0 7190 2.2 1.8
mrng3 4 5 5 5 0 0 1100 2700 750 0 4550 3.5 2.9
mrng3 8 5 5 5 4 0 540 1800 450 0 2790 5.6 4.7
mrng3 12 5 5 5 24 0 450 1900 300 0 2650 6 5.0
598a 1 11 10 10 0 0 100 200 75 0 375 1 0.8
598a 2 12 10 10 14 0 65 105 37 0 207 1.8 1.5
598a 4 11 10 10 22 0 35 90 20 0 145 2.6 2.1
598a 8 12 11 11 40 0 30 99 25 0 154 2.4 2.0
598a 12 12 11 11 50 0 30 110 15 0 155 2.4 2.0
m14b 1 13 11 11 0 0 200 520 190 0 910 1 0.8
m14b 2 13 12 12 2 0 105 240 80 0 425 2.1 1.7
m14b 4 14 12 12 6 0 70 160 40 0 270 3.4 2.7
m14b 8 13 12 12 12 0 45 120 25 0 190 4.8 3.8
m14b 12 13 11 11 22 0 53 150 20 0 223 4 3.2
dense1 1 122 122 122 0 0 180 250 180 0 610 1 0.7
dense1 2 135 122 122 26 0 100 180 140 0 420 1.5 1.0
dense1 4 132 122 122 40 0 80 100 70 0 250 2.5 1.7
dense1 8 126 122 122 104 0 70 80 30 0 180 3.4 2.4
dense1 12 123 121 122 150 2 40 760 30 0 830 0.7 0.5
dense2 1 377 376 376 0 0 9920 13 700 7500 0 31120 1 0.8
dense2 2 376 376 376 66 0 5200 6220 4200 0 15620 2 1.5
dense2 4 394 376 376 112 0 2700 3600 2100 0 8400 3.7 2.8
dense2 8 398 376 376 164 0 2000 2000 1800 0 5800 5.4 4.0
dense2 12 399 376 376 232 2 1100 1700 900 0 3700 8.4 6.4

at the end of Phases 1 and 2 are listed in columns K1 and K2, respectively. The time elapsed (in
milliseconds) in the various stages is given in columns T1, T2, T3, T4, and Ttot. In order not to obscure
speedup results, the time required to build the color classes prior to Phase 2 is not included in T2. In
general the time used for this purpose is in the order of 20% of T1. Speedup values in column Spar are
calculated as in the corresponding column of Table II. The column S2seqFF gives speedups as compared
to Culberson’s IG restricted only to two iterations (S2seqFF = T1(1) + T2(1)/Ttot(p)).
Results in column χ2 confirm that Phase 2 of Algorithm 2 reduces the number of colors used by

Phase 1. This is especially true for test graphs from Problem Sets II and III, which contain denser
graphs than Problem Set I. Comparing the results in column χ2 with the results in columns χFF and

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 12:1131–1146

1144 A. H. GEBREMEDHIN AND F. MANNE

0 2 4 6 8 10 12
0

2

4

6

8

10

12

number of processors (p)

sp
ee

du
p

(s
)

s=p
s=p/2
s=2p/3
spar(Alg1)
sseqFF(Alg1)
spar(Alg2)
s2seqFF(Alg2)

Figure 5. Comparison of speedup curves for dense2.

χIDO of Table I, we see that in general the quality of the coloring obtained using Algorithm 2 is never
worse than that of sequential FF and in most cases is comparable with that of the IDO algorithm. IDO
is known to be one of the most effective coloring heuristics [6]. We also observe that, unlike Algorithm
1, the number of colors used by Algorithm 2 remains reasonably stable as the number of processors is
increased.
From column K2 we see that the number of conflicts that remains after Phase 2 of Algorithm 2 is

zero for almost all test graphs and values of p. The only occasion where we obtained a value other
than zero for K2 was using p = 12 for the graphs dense1 and dense2. These results agree well with
the claim in Lemma 4.
Figure 5 shows the speedup obtained for the problem dense2 using Algorithm 1 and 2 and how the

obtained results compare with the ideal speedups.

6. CONCLUSION

We have presented two new parallel graph coloring heuristics suitable for shared memory programming
and analyzed their performance using the PRAM model.
The heuristics have been implemented using OpenMP, and experiments conducted on an SGI Cray

Origin 2000 supercomputer using very large graphs validate the theoretical analysis.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 12:1131–1146

SCALABLE PARALLEL GRAPH COLORING ALGORITHMS 1145

The first heuristic is fast, simple and yields reasonably good speedup for graphs of practical interest
run on a realistic number of processors. Generally, the number of colors used by this heuristic never
exceeds!+1. For relatively dense graphs, the number of colors used by the heuristic increases slightly
as more processors are applied.
The second heuristic is relatively slow, yields reasonable speedup and improves on the quality of

coloring obtained from the first one in that it uses fewer colors. The number of colors used is also more
stable as the number of processors is increased. For the test graphs used in this experiment, the number
of colors used by this heuristic is in most cases comparable with that of sequential IDO.
One of the main arguments against using OpenMP has been that it does not give as good speedup

as a more dedicated message passing implementation using MPI. The results in this paper show an
example where the opposite is true: the OpenMP algorithms have better speedup than existing message
passing based algorithms. Moreover, implementing the presented algorithms in a message passing
environment would have required a considerable effort and it is not clear if this would have led to
efficient algorithms. Implementing these algorithms using OpenMP is a relatively straightforward task
as all the communication is hidden from the programmer.
We point out that in a recent development the algorithms presented in this paper have been adapted

to the CGM model [17].
We believe that the general idea in these coloring heuristics of allowing inconsistency for the sake

of concurrency can be applied to develop parallel algorithms for other graph problems, and we are
currently investigating this in problems related to sparse matrix computations.

ACKNOWLEDGEMENTS

We thank the referees for their helpful comments and George Karypis for making the test matrices in Problem Sets
I and II available.

REFERENCES

1. Lewandowski G. Practical implementations and applications of graph coloring. PhD Thesis, University of Wisconsin-
Madison, August 1994.

2. Gamst A. Some lower bounds for a class of frequency assignment problems. IEEE Transactions of Vehicular Technology
1986; 35(1):8–14.

3. Chaitin GJ, Auslander M, Chandra AK, Cocke J, Hopkins ME, Markstein P. Register allocation via coloring. Computer
Languages 1981; 6:47–57.

4. Garey MR, Johnson DS, So HC. An application of graph coloring to printed circuit testing. IEEE Transactions on Circuits
and Systems 1976; 23:591–599.

5. Allwright JR, Bordawekar R, Coddington PD, Dincer K, Martin CL. A comparison of parallel graph coloring algorithms.
Technical Report SCCS-666, Northeast Parallel Architecture Center, Syracuse University, 1995.

6. Coleman TF, More JJ. Estimation of sparse jacobian matrices and graph coloring problems. SIAM Journal on Numerical
Analysis 1983; 20(1):187–209.

7. Garey MR, Johnson DS. Computers and Intractability. W. H. Freeman: New York, 1979.
8. Manne F. A parallel algorithm for computing the extremal eigenvalues of very large sparse matrices (extended abstract).
(Lecture Notes in Computer Science, vol. 1541). Springer, 1998; 332–336.

9. Jones MT, Plassmann PE. A parallel graph coloring heuristic. SIAM Journal of Scientific Computing 1993; 14(3):654–669.
10. OpenMP. A proposed industry standard api for shared memory programming. http://www.openmp.org/.
11. Welsh DJA, Powell MB. An upper bound for the chromatic number of a graph and its application to timetabling problems.

Computer Journal 1967; 10:85–86.
12. Brelaz D. New methods to color the vertices of a graph. Communications of the ACM 1979; 22(4):251–256.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 12:1131–1146

1146 A. H. GEBREMEDHIN AND F. MANNE

13. Grimmet GR, McDiarmid CJH. On coloring random graphs. Mathematical Proceedings of the Cambridge Philosophical
Society 1975; 77:313–324.

14. Luby M. A simple parallel algorithm for the maximal independent set problem. SIAM Journal on Computing 1986;
15(4):1036–1053.

15. Gjertsen Jr. RK, Jones MT, Plassman P. Parallel heuristics for improved, balanced graph colorings. Journal of Parallel and
Distributed Computing 1996; 37:171–186.

16. Culberson JC. Iterated greedy graph coloring and the difficulty landscape. Technical Report TR 92-07, Department of
Computing Science, The University of Alberta, Edmonton, Alberta, Canada, June 1992.

17. Gebremedhin AH, Lassous IG, Gustedt J, Telle JA. Graph coloring on a coarse grained multiprocessor. Presented atWG
2000, 26th International Workshop on Graph-Theoretic Concepts in Computer Science, 15–17 June 2000, Konstantz,
Germany.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 12:1131–1146

	1 INTRODUCTION
	2 BACKGROUND
	3 BLOCK PARTITION BASED COLORING HEURISTICS
	3.1 The first algorithm
	3.1.1 Analysis
	3.2 The second algorithm
	4 IMPLEMENTATION ISSUES
	4.1 Synchronization overhead
	4.2 OpenMP

	5 EXPERIMENTAL RESULTS
	5.1 Test graphs
	5.2 Discussion

	Algorithm 1.
	Algorithm 2.
	6 CONCLUSION

