Scalable parallel graph coloring algorithms

Assefaw Hadish Gebremedhin*, \dagger and Fredrik Manne
Department of Informatics, University of Bergen, N-5020 Bergen, Norway

SUMMARY

Finding a good graph coloring quickly is often a crucial phase in the development of efficient, parallel algorithms for many scientific and engineering applications. In this paper we consider the problem of solving the graph coloring problem itself in parallel. We present a simple and fast parallel graph coloring heuristic that is well suited for shared memory programming and yields an almost linear speedup on the PRAM model. We also present a second heuristic that improves on the number of colors used. The heuristics have been implemented using OpenMP. Experiments conducted on an SGI Cray Origin 2000 supercomputer using very large graphs from finite element methods and eigenvalue computations validate the theoretical run-time analysis. Copyright © 2000 John Wiley \& Sons, Ltd.

KEY WORDS: graph coloring; parallel algorithms; shared memory programming; OpenMP

1. INTRODUCTION

The graph coloring problem (GCP) deals with assigning labels (called colors) to the vertices of a graph such that adjacent vertices do not get the same color. The primary objective is to minimize the number of colors used. The GCP arises in a number of scientific computing and engineering applications. Examples include, among others, timetabling and scheduling [1], frequency assignment [2], register allocation [3], printed circuit testing [4], parallel numerical computation [5], and optimization [6]. Coloring a general graph with the minimum number of colors is known to be an NP-hard problem [7], and thus one often relies on heuristics to obtain a usable solution.

In a parallel application, graph coloring is usually performed in order to partition the work associated with the vertices into independent subtasks such that the subtasks can be performed concurrently. Depending on the amount of work associated with each vertex, there are basically two coloring strategies one can pursue. In the first strategy the emphasis is on minimizing the number of colors,

[^0]whereas in the second the focus is on speed. Ascertaining which is more appropriate depends on the underlying problem one is trying to solve.

If the task associated with each vertex is computationally expensive then it is crucial to use as few colors as possible. There exist several time-consuming (iterative) local improvement heuristics for addressing this need. Some of these heuristics have been shown to be parallelizable [1].

If, on the other hand, the task associated with each vertex is fairly small and one repeatedly has to find new graph colorings, then the overall time to perform the colorings might take up a significant portion of the entire computation. See [8] for an example of this case. In such a setting it is more important to compute a usable coloring fast than spending time on reducing the number of colors. For this purpose there exist several linear time-, or close to linear time-, sequential greedy coloring heuristics. These heuristics have been found to be effective in coloring graphs that arise from a number of applications [6,9]. Because of their inherent sequential nature, however, these heuristics are difficult to parallelize.

This paper focuses mainly on the latter strategy, where the goal is to develop scalable parallel coloring heuristics based on greedy methods. Previous work on developing such algorithms has been performed on distributed memory computers using explicit message passing. The speedup obtained from these efforts has been discouraging [5]. The main justification for using these algorithms has been access to more memory and thus the ability to solve problems with very large graphs. It is to be noted that the current availability of shared memory computers where the entire memory can be accessed by any processor makes this argument less significant now.

The development of shared memory computers has been accompanied by the emergence of new shared memory programming paradigms of which OpenMP has become one of the most successful and widely used [10]. OpenMP is a directive-based, fork-join model for shared memory parallelism.

In this paper we present a fast and scalable parallel graph coloring algorithm suitable for the shared memory programming model. In our context, scalability of a parallel algorithm is a measure of its capacity to increase speedup as the number of processors is increased for a given problem size. Our algorithm is based on first performing a parallel pseudo-coloring of the graph. The prefix 'pseudo' is used to reflect that the coloring might contain adjacent vertices that are colored with the same color. To remedy this we perform a second parallel step where any inconsistencies in the coloring are detected. These are then resolved in a final sequential step. An analysis on the PRAM model using p processors for a graph with n vertices and m edges shows that the expected number of conflicts from the first stage is low, and for $p \leq n / \sqrt{2 m}$ the algorithm is expected to provide a nearly linear speedup. We also extend this idea and present a second parallel algorithm that potentially uses fewer colors.

The presented algorithms have been implemented in Fortran 90 using OpenMP on a Cray Origin 2000 supercomputer. Experimental results on a number of very large graphs show that the algorithms yield good speedup and produce colorings of comparable quality to that of their sequential counterparts. The fact that we are using OpenMP makes our implementation significantly simpler and easier to verify than if we had used a distributed memory programming environment such as MPI.

The rest of this paper is organized as follows. In Section 2 we give some background on the graph coloring problem and previous efforts made to solve it in parallel. In Section 3 we describe our new parallel graph coloring algorithms and analyze their performance on the PRAM model. Synchronization overhead and OpenMP issues related to our implementation are discussed in Section 4. In Section 5 we present and discuss results from experiments performed on the Cray Origin 2000. Finally, in Section 6 we give concluding remarks.

2. BACKGROUND

In this section we give a brief overview of previous work done on the development of fast coloring heuristics, both sequential and parallel. We begin by introducing some graph notation used in this paper.

For a graph $G=(V, E)$, we denote $|V|$ by $n,|E|$ by m, and the degree of a vertex v_{i} by $\operatorname{deg}\left(v_{i}\right)$. Moreover, the maximum, minimum, and average degree in a graph are denoted by Δ, δ, and $\bar{\delta}$, respectively.

As mentioned in Section 1, there exist several fast sequential coloring heuristics that are very effective in practice. These algorithms are all based on the same general greedy framework: a vertex is selected according to some predefined criterion and then colored with the smallest valid color. The selection and coloring continues until all the vertices in the graph are colored.

Some of the suggested coloring heuristics under this general framework include Largest-Degree-First-Ordering (LFO) [11], Incidence-Degree-Ordering (IDO) [6], and Saturation-Degree-Ordering (SDO) [12]. These heuristics choose at each step a vertex v from the set of uncolored vertices with the maximum 'degree'. In LFO, the standard definition of degree of a vertex is used. In IDO, incidence degree is defined as the number of already colored adjacent vertices, whereas in SDO one only considers the number of differently colored adjacent vertices. First Fit (FF) is yet another, simple variant of the general greedy framework. In FF, the next vertex from some arbitrary ordering is chosen and colored. In terms of quality of coloring, these heuristics can in most cases be ranked in increasing order as FF, LFO, IDO, and SDO. Note that for a graph G the number of colors used by any sequential greedy algorithm is bounded from above by $\Delta+1$. On average, however, it has been shown that for random graphs FF is expected to use no more than $2 \chi(G)$ colors, where $\chi(G)$ is the chromatic number ${ }^{\ddagger}$ of G [13]. In terms of run time, FF is clearly $O(m)$, LFO and IDO can be implemented to run in $O(m)$, and SDO in $O\left(n^{2}\right)[9,12]$.

When it comes to parallel graph coloring, a number of the existing fast heuristics are based on the observation that an independent set of vertices can be colored in parallel. A general parallel coloring scheme based on this observation is outlined in Scheme 1 (Figure 1).

Depending on how the independent set is chosen and colored, Scheme 1 specializes into a number of variants. The Parallel Maximal Independent set (PMIS) coloring is one variant. This is a heuristic based on Luby's maximal independent set finding algorithm [14]. Other variants are the asynchronous parallel heuristic by Jones and Plassmann (JP) [9], and the Largest-Degree-First (LDF) heuristic developed independently by Gjertsen Jr. et al. [15] and Allwright et al. [5].

Allwright et al. made an experimental, comparative study by implementing the PMIS, JP, and LDF coloring algorithms on both SIMD and MIMD parallel architectures [5]. They report that they did not get speedup for any of these algorithms.

Jones and Plassmann [9] do not report on obtaining speedup for their algorithms either. They state that 'the running time of the heuristic is only a slowly increasing function of the number of processors used'.

[^1]```
Scheme 1
ParallelColoring(G = (V,E))
begin
 U}\leftarrow
 G}\leftarrow\leftarrow
 while (G}\mp@subsup{}{}{\prime}\mathrm{ is not empty) do in parallel
 Find an independent set I in G
 Color the vertices in I
 U}\leftarrowU\
 G
 end-while
end
```

Figure 1. A parallel coloring heuristic.

## 3. BLOCK PARTITION BASED COLORING HEURISTICS

In this section we present two new parallel graph coloring heuristics and give their performance analysis on the PRAM model. Our heuristics are based on dividing the vertex set of the graph into $p$ successive blocks of equal size. We call this a block partitioning. We assume that the vertices are listed in a random order and thus no effort is made to minimize the number of crossing edges. A crossing edge is an edge whose end points end up in two different blocks. Obviously, because of the existence of crossing edges, the coloring subproblems defined by each block are not independent.

### 3.1. The first algorithm

The strategy we employ consists of three phases. In the first phase, the input vertex set $V$ of the graph $G=(V, E)$ is partitioned into $p$ blocks as $\left\{V_{1}, V_{2}, \ldots, V_{p}\right\}$ such that $\left|V_{i}\right|=n / p, 1 \leq i \leq p$. The vertices in each block are then colored in parallel using $p$ processors. The parallel coloring comprises $n / p$ parallel steps with synchronization barriers at the end of each step. When coloring a vertex, all its previously colored neighbors, both the local ones and those found on other blocks, are taken into account. In doing so, two processors may simultaneously attempt to color vertices that are adjacent to each other. If these vertices are given the same color, the resulting coloring becomes invalid and hence we call the coloring obtained a pseudo coloring. In the second phase, each processor $p_{i}$ checks whether vertices in $V_{i}$ are assigned valid colors by comparing the color of a vertex against all its neighbors that were colored at the same parallel step in the first phase. This checking step is also done in parallel. If a conflict is discovered, one of the end points of the edge in conflict is stored in a table. Finally, in the third phase, the vertices stored in this table are colored sequentially. Algorithm 1 provides the details of this strategy and is given in Figure 2.

```
Algorithm 1
BlockPartitionBasedColoring(G, p)
begin
```



```
 for i=1 to p do in parallel
 for each }\mp@subsup{v}{j}{}\in\mp@subsup{V}{i}{}\mathrm{ do
 assign the smallest legal color to vertex vj
 barrier synchronize
 end-for
 end-for
 2. for i=1 to p do in parallel
 for each }\mp@subsup{v}{j}{}\in\mp@subsup{V}{i}{}\mathrm{ do
 for each neighbor }u\mathrm{ of }\mp@subsup{v}{j}{}\mathrm{ that is colored at the same parallel step do
 if color (}\mp@subsup{v}{j}{})=\operatorname{color}(u)\mathrm{ then
 store min {u,v}\mp@subsup{v}{j}{}}\mathrm{ in table A
 end-if
 end-for
 end-for
 end-for
 3. Color the vertices in A sequentially
end
```

Figure 2. Block partition based coloring.

### 3.1.1. Analysis

Our analysis is based on the PRAM model. Without loss of generality we assume that $n / p$, the number of vertices per processor, is an integer. Let the vertices on each processor be numbered from 1 to $n / p$ and the parallel time used for coloring be divided into $n / p$ time slots. The processors are synchronized at the end of each time unit $t_{j}$. This means, at each time unit $t_{j}$, that processor $p_{i}$ colors vertex $v_{j} \in V_{i}$, $1 \leq j \leq n / p$ and $1 \leq i \leq p$.

Our first result gives an upper bound on the expected number of conflicts (denoted by $K$ ) created at the end of Phase 1 of Algorithm 1 for a graph in which the vertices are listed in a randomly permuted order.

Lemma 1. The expected number of conflicts created at the end of Phase 1 of Algorithm 1 is at most

$$
\frac{\bar{\delta}(p-1)}{2}\left(\frac{n}{n-1}\right) \approx \frac{\bar{\delta}(p-1)}{2}
$$

Proof. Consider a vertex $x \in V$ that is colored at time unit $t_{j}, 1 \leq j \leq n / p$. Since the neighbors of $x$ are randomly distributed, the expected number of neighbors of $x$ that are concurrently colored at time unit $t_{j}$ is given by

$$
\begin{equation*}
\frac{p-1}{n-1} \operatorname{deg}(x) \tag{1}
\end{equation*}
$$

If we sum (1) over all vertices in $G$ we count each pair of adjacent vertices that are colored simultaneosly twice. Moreover, each term in the sum represents only a potential conflict since two adjacent vertices could be colored simultaneously and yet be assigned different colors. The sum thus gives an upper bound on the expected number of conflicts. Therefore, we have

$$
\begin{align*}
E[K] & \leq(1 / 2) \sum_{x \in V} \frac{p-1}{n-1} \operatorname{deg}(x)  \tag{2}\\
& =(1 / 2) \frac{p-1}{n-1}(2 m)  \tag{3}\\
& =(1 / 2) \bar{\delta}(p-1)(n / n-1) \tag{4}
\end{align*}
$$

In going from (3) to (4), the identity $\bar{\delta}=\sum_{v \in V} \operatorname{deg}(v) / n=2 m / n$ is used. Note that for large values of $n,(n / n-1) \approx 1$ and the result follows.

We now look at the expected run time ${ }^{\S}$ of Algorithm 1. To do so, we introduce a graph attribute called relative sparsity $r$, defined as $r=n^{2} / m$. Note that $1 / r$, the ratio of the actual number of edges to the total possible number of edges, shows the density of the graph. The following lemma states that, for bounded degree graphs and for $p \leq \sqrt{(r / 2)}$, Algorithm 1 provides an almost linear speedup compared to the sequential First Fit algorithm.
Lemma 2. On a CREW PRAM, Algorithm 1 colors the input graph consistently in $E O(\Delta n / p)$ time when $p \leq \sqrt{(r / 2)}$ and in $E O(\Delta \bar{\delta} p)$ time when $p>\sqrt{(r / 2)}$.

Proof. Note first that since Phase 3 resolves all the conflicts that are discovered in Phase 2, the coloring at the end of Phase 3 is a valid one. Both Phase 1 and 2 require concurrent read capability and thus the required PRAM is CREW. The overall time required by Algorithm 1 is $T=T_{1}+T_{2}+T_{3}$, where $T_{i}$ is the time required by Phase $i$. Both Phase 1 and 2 consist of $n / p$ parallel steps. The number of operations in each parallel step is proportional to the degree of the vertex under investigation, which is bounded from above by $\Delta$. Thus, $T_{1}=T_{2}=O(\Delta n / p)$. The time required by the sequential step (Phase 3) is $T_{3}=O(\Delta K)$, where $K$ is the number of conflicts discovered in Phase 2. From Lemma 1, $E[K]=O(\bar{\delta} p)$. Substituting yields

$$
\begin{equation*}
T=T_{1}+T_{2}+T_{3}=E O(\Delta(n / p+\bar{\delta} p)) \tag{5}
\end{equation*}
$$

The overall time $T$ is thus determined by how $n / p$ compares with $\bar{\delta} p$. Using the identity $\bar{\delta}=2 m / n$, we see that for $p \leq \sqrt{\left(n^{2} / 2 m\right)}=\sqrt{(r / 2)}$, the term $n / p$ dominates, giving an overall running time of $E O(\Delta n / p)$. For $p>\sqrt{(r / 2)}$, the term $\bar{\delta} p$ dominates and the overall time becomes $E O(\Delta \bar{\delta} p)$.

[^2]For most practical applications and currently available parallel computers we expect that both $\bar{\delta} \ll n$ and $p \ll n$, implying that $n>p^{2} \bar{\delta}$ and thus giving an overall time complexity of $O(\Delta n / p)$ for Algorithm 1.

The number of colors used by Algorithm 1 is bounded from above by $\Delta+1$. This follows since the conflicts that arise in Phase 1 are resolved sequentially. However, we note that there exist instances where the coloring produced by Algorithm 1 can be arbitrarily worse than that of the sequential FF algorithm. To see this, consider a complete bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ with $\left|V_{1}\right|=\left|V_{2}\right|=n / 2$, where the vertices in $V_{1}$ are ordered before the vertices in $V_{2}$ and with $p=2$. For this setting Algorithm 1 will use $(n / 2)+1$ colors, while sequential FF will color the graph optimally using two colors.

### 3.2. The second algorithm

In this section we show how Algorithm 1 can be modified to use fewer colors. Our method is motivated by the idea behind Culberson's Iterated Greedy coloring heuristic (IG) [16]. IG is based on the following result, stated here without proof.

Lemma 3. (Culberson) Let $C$ be a $k$-coloring of a graph $G$, and $\pi$ a permutation of the vertices such that if $C\left(v_{\pi(i)}\right)=C\left(v_{\pi(l)}\right)=c$, then $C\left(v_{\pi(j)}\right)=c$ for $i<j<l$. Then, applying the First Fit algorithm to $G$ where the vertices have been ordered by $\pi$ will produce a coloring using $k$ or fewer colors.

From Lemma 3, we see that if FF is reapplied on a graph where the vertex set is ordered such that vertices belonging to the same color class ${ }^{J}$ in the previous coloring are listed consecutively, the new coloring is better or at least as good as the previous coloring. There are many ways in which the vertices of a graph can be arranged satisfying the condition of Lemma 3. One such ordering is the reverse color class ordering [16]. In this ordering, the color classes are listed in reverse order of their introduction. This has the potential to reduce the number of colors used since one now proceeds by first coloring vertices that could not be colored with low values in the previous coloring.

Our improved coloring heuristic uses Lemma 3 and consists of four phases, one more phase than Algorithm 1. The first phase is the same as Phase 1 of Algorithm 1. Let the coloring number used by this phase be ColNum. During the second phase, the pseudo coloring of the first phase is used to get a reverse color class ordering of the vertices. The second phase consists of ColNum steps. In each step $i$, the vertices of color class ColNum $-i-1$ are colored afresh in parallel in a similar manner as in Phase 1. The remaining two phases are the same as Phases 2 and 3 of Algorithm 1. The method just described (Algorithm 2) is outlined in Figure 3.

Each color class at the end of Phase 1 is a pseudo independent set. In particular, any edge within a color class results from a 'conflict' edge from Phase 1 . Hence a new block partitioning of the vertices of each color class results in only a few crossing edges. In other words, the number of conflicts expected at the end of Phase $2\left(K_{2}\right)$ should be much smaller than the number of conflicts at the end of Phase $1\left(K_{1}\right)$. Thus, in addition to improving the quality of the coloring, Phase 2 should also provide a significant

[^3]```
Algorithm 2
ImprovedBlockPartitionBasedColoring(G,p)
begin
    1. As Phase 1 of Algorithm 1
        {At this point we have the pseudo independent
        sets ColorClass(1) . . . ColorClass(ColNum) }
    2. for }k=\mathrm{ ColNum down to 1 do
        Partition ColorClass(k) into p equal blocks V V . . V V
        for }i=1\mathrm{ to }p\mathrm{ do in parallel
            for each }\mp@subsup{v}{j}{}\in\mp@subsup{V}{i}{\prime}\mathrm{ do
                            assign the smallest legal color to vertex v}\mp@subsup{v}{j}{
                    end-for
            end-for
        end-for
    3. As Phase 2 of Algorithm 1
    4. As Phase 3 of Algorithm 1
end
```

Figure 3. Modified block partition based coloring.
reduction in the number of conflicts. Note that conflict checking and removal steps are included in Phases 3 and 4 to ensure that any remaining conflicts are resolved.

The following result gives an upper bound on the expected number of conflicts at the end of Phase 2 of Algorithm 2.

Lemma 4. The expected number of conflicts created at the end of Phase 2 of Algorithm 2 is at most $2 p^{2} \Delta(\Delta+1) / n \approx 2 p^{2} \Delta^{2} / n$.

Proof. From Lemma 1, the expected number of conflicts at the end of Phase 1 is approximately bounded by $\bar{\delta} p / 2$. Noting that there are m edges in the input graph G to Algorithm 2, at the end of Phase 1 , the probability that an arbitrary edge in G is in 'conflict' is expected to be no more than $\bar{\delta} p / 2 m=p / n$. Now consider a color class w from the coloring obtained at the end of Phase 1 of Algorithm 2. Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be the graph induced by the vertices of this color class and let $n^{\prime}=\left|V^{\prime}\right|, m^{\prime}=\left|E^{\prime}\right|$. Further, let x be a vertex in G^{\prime} and $\operatorname{deg}^{\prime}(x)$ its degree. From the above discussion, we expect that $\operatorname{deg}^{\prime}(x) \leq(p / n) \operatorname{deg}(x)$. Using the same argument as in Lemma 1 , the expected number of neighbors of x that are concurrently colored at time unit t_{j}, for $1 \leq j \leq n^{\prime} / p$, is $p-1 /\left(n^{\prime}-1\right) \operatorname{deg}^{\prime}(x)$. Thus the number of conflicts created due to the vertices of color class w
(denoted by K^{\prime}) is bounded as follows:

$$
\begin{align*}
E\left[K^{\prime}\right] & \leq \sum_{x \in V^{\prime}} \frac{p(p-1)}{n\left(n^{\prime}-1\right)} \operatorname{deg}(x) \tag{6}\\
& =\frac{p}{n}(p-1) \frac{\sum_{x \in V^{\prime}} \operatorname{deg}(x)}{n^{\prime}-1} \tag{7}\\
& \leq \frac{2 p^{2} \Delta}{n} \tag{8}
\end{align*}
$$

Recall that there are at most $\Delta+1$ colors at the end of Phase 1. Therefore, K_{2}, the total number of expected conflicts at the end of Phase 2, is

$$
\begin{equation*}
E\left[K_{2}\right] \leq \frac{2 p^{2} \Delta(\Delta+1)}{n} \tag{9}
\end{equation*}
$$

Noting that $\Delta(\Delta+1) \approx \Delta^{2}$, (9) can be rewritten as

$$
E\left[K_{2}\right] \leq\left(\frac{\sqrt{2} p}{\sqrt{n} / \Delta}\right)^{2}
$$

This indicates that if $\sqrt{2} p<\sqrt{n} / \Delta$, the expected number of conflicts at the end of Phase 2 is less than 1.

4. IMPLEMENTATION ISSUES

In this section we address the problem of synchronization overhead and illustrate how OpenMP is used in our Fortran90 implementations.

4.1. Synchronization overhead

The barrier synchronization in Phase 1 of Algorithm 1 is introduced to identify the parallel step t_{j} ($1 \leq j \leq n / p$) during which a vertex is colored. This information is used for two purposes: (i) in Phase 1 to identify already colored neighbors of a vertex, and (ii) in Phase 2 to identify the neighbors of a vertex that are colored at the same parallel step as itself. Although the barrier enables us to realize these purposes, its implementation typically incurs an undesirable large overhead. To overcome this we have developed an asynchronous version of Algorithm 1 (and consequently of Algorithm 2). In the asynchronous version we consider all the neighbors of a vertex under investigation, irrespective of the parallel step during which they are colored. This is done first when determining the color of a vertex and then when checking for consistency of coloring. We have implemented and tested both the asynchronous and synchronous versions of Algorithm 1. In the synchronous version, an OpenMP library routine was utilized to realize barrier synchronization. The obtained results show that the asynchronous version runs faster by a factor of 3 to 5 . The relative slow-down factor of the synchronous version depends on how often the OpenMP barrier routine is called. Particularly for a given graph, the relative time spent on synchronization increases with the number of processors.

```
!$omp parallel do schedule(static, Bsize)
private(i) shared(vertex)
do i=1, number_of_vertices
    call assign_color_synch(vertex(i))
    call mp_barrier
enddo
```

!\$omp parallel do schedule(static, Bsize) private(i) shared(vertex) do $i=1$, number_of_vertices call assign_color_asynch(vertex(i)) enddo

Figure 4. OpenMP-sketch of Phase 1 of Algorithm 1, synchronous (left) and asynchronous (right).

4.2. OpenMP

Figure 4 provides a sketch of Phase 1 of both the synchronous and asynchronous versions of Algorithm 1. Here the vertices are stored in the integer array vertex and the number of vertices per processor is stored in the variable Bsize. The routines assign_color_synch(i) and assign_color_asynch(i), synchronous and asynchronous versions, respectively, assign the smallest valid color to vertex i. It should be noted that, even though the synchronous algorithm visits fewer vertices both when determining the color of a vertex and when checking for consistency, it incurs an extra initial overhead since one must determine for each of value of p which vertices to check. The routine mp_barrier is an OpenMP library routine that enables barrier synchronization.

In addition to the standard OpenMP directives we have used data distribution directives provided by SGI to ensure that most cache misses are satisfied from local memory.

We disallow access to a memory location while it is being written by using the ATOMIC directive in OpenMP. This makes accessing the color of any vertex without reading garbage values possible in Phase 1.

5. EXPERIMENTAL RESULTS

In this section, we demonstrate experimentally the performance of the asynchronous versions of Algorithms 1 and 2. In Section 5.1 we introduce the test graphs used in the experiments and in Section 5.2 we present and discuss the experimental results. The experiments have been performed on a Cray Origin 2000, a CC-NUMA machine consisting of 128 MIPS R10000 processors. The algorithms have been implemented in Fortran90 and parallelized using OpenMP[10]. We have also implemented the sequential versions of FF and IDO to use as benchmarks.

In these experiments, the block partitioning is based on the ordering of the vertices as provided in the input graph. In other words, no random permutation is done on the ordering of the vertices prior to partitioning.

5.1. Test graphs

The test graphs used in our experiments are divided into three categories as Problem Set I, II, and III (see Table I). Problem Sets I and II consist of graphs (matrices) that arise from finite element methods."
${ }^{\|}$G. Karypis. Private communication.

Table I. Test graphs.

Set	Problem	n	m	Δ	δ	$\bar{\delta}$	$\sqrt{r / 2}$	$\chi_{\text {FF }}$	$\chi_{\text {IDO }}$
Set I	mrng2	1017253	2015714	4	2	3	506	5	5
Set I	mrng3	4039160	8016848	4	2	3	1008	5	5
Set II	598a	110971	741934	26	5	13	91	11	9
Set II	m14b	214765	1679018	40	4	15	117	13	10
Set III	dense1	19703	3048477	504	116	309	8	122	122
Set III	dense2	218849	121118458	1640	332	1106	14	377	376

Problem Set III consists of matrices that arise in eigenvalue computations [8]. In addition to providing some statistics about the structure of the test graphs, Table I also lists the number of colors required when coloring the graphs using our sequential FF and IDO implementations (shown under columns $\chi_{\text {FF }}$ and $\chi_{\text {IDO }}$, respectively).

5.2. Discussion

Algorithm 1. Table II lists results obtained using the asynchronous version of Algorithm 1. The number of blocks (processors) is given in column p. Columns χ_{1} and χ_{3} give the number of colors used at the end of Phases 1 and 3, respectively. The number of conflicts that arise in Phase 1 are listed in the column labeled K. The column labeled $\bar{\delta}(p-1) / 2$ gives the theoretically expected upper bound on the number of conflicts as predicted by Lemma 1. The times in milliseconds required by the different phases are listed in columns T_{1}, T_{2}, T_{3}, and the last column $T_{\text {tot }}$ gives the total time used. The column labeled $S_{\text {par }}$ lists the speedup obtained compared to the time used by running Algorithm 1 on one processor $\left(S_{\mathrm{par}}(p)=T_{\mathrm{tot}}(1) / T_{\mathrm{tot}}(p)\right)$. The last column, S_{seqFF}, gives the speedup obtained by comparing against a straightforward sequential FF algorithm $\left(S_{\text {seqFF }}(p)=T_{1}(1) / T_{\text {tot }}(p)\right)$.

The results in column K of Table II show that, in general, the number of conflicts that arise in Phase 1 is small and grows as a function of the number of blocks (or processors) p. This agrees well with the result from Lemma 1. We see that for the relatively dense graphs the actual number of conflicts is much less than the bound given by Lemma 1.

The run times obtained show that Algorithm 1 performs as predicted by Lemma 2. Particularly, the time required for recoloring incorrectly colored vertices is observed to be practically zero (in the order of a few microseconds) for all our test graphs. This is not surprising as the obtained value of K is negligibly small compared to the number of vertices in a given graph.

As results in columns T_{1} and T_{2} indicate, the time used to detect conflicts is approximately the same as the time used to do the initial coloring. This makes the running time of the algorithm using one processor approximately double that of the sequential FF. This in turn reduces the speedup obtained compared to the sequential FF by a factor of 2 . The speedup obtained compared to running the parallel algorithm on one processor gets its best values for the two largest graphs mrng3 and dense2.

Table II. Experimental results for Algorithm 1.

Problem	p	χ_{1}	χ_{3}	K	$\left[\frac{\bar{\delta}(p-1)}{2}\right\rceil$	T_{1}	T_{2}	T_{3}	$T_{\text {tot }}$	$S_{\text {par }}$	$S_{\text {seqFF }}$
mrng2	1	5	5	0	0	1190	1010	0	2200	1	0.6
mrng2	2	5	5	0	2	1130	970	0	2100	1.1	0.6
mrng2	4	5	5	0	5	430	280	0	710	3.1	1.7
mrng2	8	5	5	8	11	260	200	0	460	4.8	2.6
mrng2	12	5	5	18	17	200	130	0	330	6.7	3.6
mrng3	1	5	5	0	0	4400	3400	0	7800	1	0.6
mrng3	2	5	5	2	2	2250	1600	0	3850	2	1.1
mrng3	4	5	5	4	5	1300	1000	0	2300	3.4	1.9
mrng3	8	5	5	0	11	630	800	0	1430	5.5	3.1
mrng3	12	5	5	12	17	430	480	0	910	8.6	4.8
598a	1	11	11	0	0	100	80	0	180	1	0.6
598a	2	12	12	4	7	55	40	0	95	2	1.1
598a	4	12	12	12	20	40	20	0	60	3	1.7
598a	8	12	12	36	46	28	15	0	43	4.2	2.3
598a	12	12	12	42	72	20	15	0	35	5.2	2.9
m14b	1	13	13	0	0	200	180	0	380	1	0.5
m14b	2	13	13	2	8	130	120	0	250	1.5	0.8
m14b	4	14	14	14	23	80	50	0	130	3	1.5
m14b	8	13	13	16	53	48	26	0	74	5	2.7
m14b	12	13	13	36	83	40	20	0	60	6.4	3.3
dense1	1	122	122	0	0	200	290	0	490	1	0.4
dense1	2	142	142	30	155	110	140	0	250	2	0.8
dense1	4	137	137	94	464	69	72	0	141	3.5	1.4
dense1	8	129	129	94	1082	53	44	1	97	5.6	2.1
dense1	12	121	124	78	1700	55	90	1	145	3.4	1.4
dense2	1	377	377	0	0	9200	13200	0	22400	1	0.4
dense2	2	382	382	68	553	5160	8040	3	13203	1.7	0.7
dense2	4	400	400	98	1659	2600	4080	4	6684	3.4	1.4
dense2	8	407	407	254	3871	1590	2280	11	3881	5.8	2.4
dense2	12	399	399	210	6083	1090	1420	8	2518	9	3.7

We see that the number of colors used by Algorithm 1 varies with the number of processors used. Comparing column χ_{3} of Table II and column χ_{FF} of Table I, we see that the deviation of χ_{3} from χ_{FF} is at most 1 for graphs from Problem Sets I and II and at most 16% for the two graphs from Problem Set III.

Algorithm 2. Table III lists results of the asynchronous version of Algorithm 2. The number of colors used at the end of Phases 1 and 2 are listed in columns χ_{1} and χ_{2}, respectively. The coloring at the end of Phase 2 is not guaranteed to be conflict-free. Phases 3 and 4 detect and resolve any remaining conflicts. Column χ_{4} lists the number of colors used at the end of Phase 4. The number of conflicts

Table III. Experimental results for Algorithm 2.

Problem	p	χ_{1}	χ_{2}	χ_{4}	K_{1}	K_{2}	T_{1}	T_{2}	T_{3}	T_{4}	$T_{\text {tot }}$	$S_{\text {par }}$	$S_{2 \text { seqFF }}$
mrng2	1	5	5	5	0	0	1050	1700	820	0	3570	1	0.8
mrng2	2	5	5	5	0	0	950	1350	650	0	2650	1.4	1.0
mrng2	4	5	5	5	2	0	470	840	310	0	1620	2.2	1.7
mrng2	8	5	5	5	16	0	300	500	200	0	1000	3.6	2.8
mrng2	12	5	5	5	12	0	250	400	170	0	820	4.4	3.4
mrng3	1	5	5	5	0	0	3700	9500	2600	0	15800	1	0.8
mrng3	2	5	5	5	0	0	1890	4100	1200	0	7190	2.2	1.8
mrng3	4	5	5	5	0	0	1100	2700	750	0	4550	3.5	2.9
mrng3	8	5	5	5	4	0	540	1800	450	0	2790	5.6	4.7
mrng3	12	5	5	5	24	0	450	1900	300	0	2650	6	5.0
598a	1	11	10	10	0	0	100	200	75	0	375	1	0.8
598a	2	12	10	10	14	0	65	105	37	0	207	1.8	1.5
598a	4	11	10	10	22	0	35	90	20	0	145	2.6	2.1
598a	8	12	11	11	40	0	30	99	25	0	154	2.4	2.0
598a	12	12	11	11	50	0	30	110	15	0	155	2.4	2.0
m14b	1	13	11	11	0	0	200	520	190	0	910	1	0.8
m14b	2	13	12	12	2	0	105	240	80	0	425	2.1	1.7
m14b	4	14	12	12	6	0	70	160	40	0	270	3.4	2.7
m14b	8	13	12	12	12	0	45	120	25	0	190	4.8	3.8
m14b	12	13	11	11	22	0	53	150	20	0	223	4	3.2
dense1	1	122	122	122	0	0	180	250	180	0	610	1	0.7
dense1	2	135	122	122	26	0	100	180	140	0	420	1.5	1.0
dense1	4	132	122	122	40	0	80	100	70	0	250	2.5	1.7
dense1	8	126	122	122	104	0	70	80	30	0	180	3.4	2.4
dense1	12	123	121	122	150	2	40	760	30	0	830	0.7	0.5
dense2	1	377	376	376	0	0	9920	13700	7500	0	31120	1	0.8
dense2	2	376	376	376	66	0	5200	6220	4200	0	15620	2	1.5
dense2	4	394	376	376	112	0	2700	3600	2100	0	8400	3.7	2.8
dense2	8	398	376	376	164	0	2000	2000	1800	0	5800	5.4	4.0
dense2	12	399	376	376	232	2	1100	1700	900	0	3700	8.4	6.4

at the end of Phases 1 and 2 are listed in columns K_{1} and K_{2}, respectively. The time elapsed (in milliseconds) in the various stages is given in columns $T_{1}, T_{2}, T_{3}, T_{4}$, and $T_{\text {tot }}$. In order not to obscure speedup results, the time required to build the color classes prior to Phase 2 is not included in T_{2}. In general the time used for this purpose is in the order of 20% of T_{1}. Speedup values in column S_{par} are calculated as in the corresponding column of Table II. The column $S_{2 \text { seqFF }}$ gives speedups as compared to Culberson's IG restricted only to two iterations ($S_{2 \text { seqFF }}=T_{1}(1)+T_{2}(1) / T_{\text {tot }}(p)$).

Results in column χ_{2} confirm that Phase 2 of Algorithm 2 reduces the number of colors used by Phase 1. This is especially true for test graphs from Problem Sets II and III, which contain denser graphs than Problem Set I. Comparing the results in column χ_{2} with the results in columns $\chi_{\text {FF }}$ and

Figure 5. Comparison of speedup curves for dense2.
$\chi_{\text {IDO }}$ of Table I, we see that in general the quality of the coloring obtained using Algorithm 2 is never worse than that of sequential FF and in most cases is comparable with that of the IDO algorithm. IDO is known to be one of the most effective coloring heuristics [6]. We also observe that, unlike Algorithm 1 , the number of colors used by Algorithm 2 remains reasonably stable as the number of processors is increased.

From column K_{2} we see that the number of conflicts that remains after Phase 2 of Algorithm 2 is zero for almost all test graphs and values of p. The only occasion where we obtained a value other than zero for K_{2} was using $p=12$ for the graphs dense 1 and dense 2 . These results agree well with the claim in Lemma 4.

Figure 5 shows the speedup obtained for the problem dense 2 using Algorithm 1 and 2 and how the obtained results compare with the ideal speedups.

6. CONCLUSION

We have presented two new parallel graph coloring heuristics suitable for shared memory programming and analyzed their performance using the PRAM model.

The heuristics have been implemented using OpenMP, and experiments conducted on an SGI Cray Origin 2000 supercomputer using very large graphs validate the theoretical analysis.

The first heuristic is fast, simple and yields reasonably good speedup for graphs of practical interest run on a realistic number of processors. Generally, the number of colors used by this heuristic never exceeds $\Delta+1$. For relatively dense graphs, the number of colors used by the heuristic increases slightly as more processors are applied.

The second heuristic is relatively slow, yields reasonable speedup and improves on the quality of coloring obtained from the first one in that it uses fewer colors. The number of colors used is also more stable as the number of processors is increased. For the test graphs used in this experiment, the number of colors used by this heuristic is in most cases comparable with that of sequential IDO.

One of the main arguments against using OpenMP has been that it does not give as good speedup as a more dedicated message passing implementation using MPI. The results in this paper show an example where the opposite is true: the OpenMP algorithms have better speedup than existing message passing based algorithms. Moreover, implementing the presented algorithms in a message passing environment would have required a considerable effort and it is not clear if this would have led to efficient algorithms. Implementing these algorithms using OpenMP is a relatively straightforward task as all the communication is hidden from the programmer.

We point out that in a recent development the algorithms presented in this paper have been adapted to the CGM model [17].

We believe that the general idea in these coloring heuristics of allowing inconsistency for the sake of concurrency can be applied to develop parallel algorithms for other graph problems, and we are currently investigating this in problems related to sparse matrix computations.

ACKNOWLEDGEMENTS

We thank the referees for their helpful comments and George Karypis for making the test matrices in Problem Sets I and II available.

REFERENCES

1. Lewandowski G. Practical implementations and applications of graph coloring. PhD Thesis, University of WisconsinMadison, August 1994.
2. Gamst A. Some lower bounds for a class of frequency assignment problems. IEEE Transactions of Vehicular Technology 1986; 35(1):8-14.
3. Chaitin GJ, Auslander M, Chandra AK, Cocke J, Hopkins ME, Markstein P. Register allocation via coloring. Computer Languages 1981; 6:47-57.
4. Garey MR, Johnson DS, So HC. An application of graph coloring to printed circuit testing. IEEE Transactions on Circuits and Systems 1976; 23:591-599.
5. Allwright JR, Bordawekar R, Coddington PD, Dincer K, Martin CL. A comparison of parallel graph coloring algorithms. Technical Report SCCS-666, Northeast Parallel Architecture Center, Syracuse University, 1995.
6. Coleman TF, More JJ. Estimation of sparse jacobian matrices and graph coloring problems. SIAM Journal on Numerical Analysis 1983; 20(1):187-209.
7. Garey MR, Johnson DS. Computers and Intractability. W. H. Freeman: New York, 1979.
8. Manne F. A parallel algorithm for computing the extremal eigenvalues of very large sparse matrices (extended abstract). (Lecture Notes in Computer Science, vol. 1541). Springer, 1998; 332-336.
9. Jones MT, Plassmann PE. A parallel graph coloring heuristic. SIAM Journal of Scientific Computing 1993; 14(3):654-669.
10. OpenMP. A proposed industry standard api for shared memory programming. http://www.openmp.org/.
11. Welsh DJA, Powell MB. An upper bound for the chromatic number of a graph and its application to timetabling problems. Computer Journal 1967; 10:85-86.
12. Brelaz D. New methods to color the vertices of a graph. Communications of the ACM 1979; 22(4):251-256.
13. Grimmet GR, McDiarmid CJH. On coloring random graphs. Mathematical Proceedings of the Cambridge Philosophical Society 1975; 77:313-324.
14. Luby M. A simple parallel algorithm for the maximal independent set problem. SIAM Journal on Computing 1986; 15(4):1036-1053.
15. Gjertsen Jr. RK, Jones MT, Plassman P. Parallel heuristics for improved, balanced graph colorings. Journal of Parallel and Distributed Computing 1996; 37:171-186.
16. Culberson JC. Iterated greedy graph coloring and the difficulty landscape. Technical Report TR 92-07, Department of Computing Science, The University of Alberta, Edmonton, Alberta, Canada, June 1992.
17. Gebremedhin AH, Lassous IG, Gustedt J, Telle JA. Graph coloring on a coarse grained multiprocessor. Presented at $W G$ 2000, 26th International Workshop on Graph-Theoretic Concepts in Computer Science, 15-17 June 2000, Konstantz, Germany.

[^0]: *Correspondence to: A. H. Gebremedhin, Department of Informatics, University of Bergen, N-5020 Bergen, Norway.
 ${ }^{\dagger}$ E-mail: assefaw@ii.uib.no

[^1]: ${ }^{\ddagger}$ The chromatic number of a graph is the optimal number of colors required to color it.

[^2]: ${ }^{\S}$ We use the prefix E to identify expected time complexity expressions.

[^3]: ${ }^{5}$ Vertices of the same color constitute a color class.

