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Abstract. Gossiping is a communication primitive where each node of
a network possesses a unique message that is to be communicated to all
other nodes in the network. We study the gossiping problem in known
topology radio networks where the schedule of transmissions is precom-
puted in advance based on full knowledge about the size and the topology
of the network. In addition we consider the case where it is only possible
to transmit a unit size message in each time step. This gives a more
realistic model than if arbitrary length messages can be sent during each
time step, as has been the case in most previous studies of the gossiping
problem. In this paper, we propose an optimal randomized schedule that
uses O(n logn) time units to complete the gossiping task with high prob-
ability in any radio network of size n. This matches the lower bound of
2(nlogn) by Gasieniec and Potapov in [I7] [TCS’02]. Our new gossiping
schedule is based on the notion of a gathering spanning tree proposed by
Gasieniec, Peleg and Xin in [19] [PODC’05].
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1 Introduction

The two classical problems of information dissemination in computer networks
are the broadcasting problem and the gossiping problem. The broadcasting prob-
lem requires distributing a particular message from a distinguished source node
to all other nodes in the network. In the gossiping problem, each node v in the
network initially holds a message m,,, and the aim is to distribute all messages to
all nodes. For both problems, one generally considers as the efficiency criterion
the minimization of the time needed to complete the task.

This paper concerns the following model of a radio network. A network is an
undirected connected graph G = (V, E), where V represents the set of nodes
of the network and E contains unordered pairs of distinct nodes, such that
(v,w) € E iff the transmissions of node v can directly reach node w and vice
versa (the reachability of transmissions is assumed to be a symmetric relation).
In this case, we say that the nodes v and w are neighbours in G. One of the
particular properties of radio network is that a message transmitted by a node
is always sent to all of its neighbours.
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The number of neighbours of a node w is called its degree, and the maximum
degree of any node in the network is called the maximum degree of the network
and is denoted by A. The size of the network is the number of nodes n = |V|.

Communication in the network is synchronous and consists of a sequence of
communication steps. During each step, each node v either transmits or listens.
If v transmits, then the transmitted message reaches each of its neighbours by
the end of this step. However, a node w adjacent to v successfully receives this
message iff w is listening during this step and v is the only transmitting node
among w’s neighbours. If node w is adjacent to a transmitting node but it is not
listening, or it is adjacent to more than one transmitting node, then a collision
occurs and w does not retrieve any message in this step.

The running time of any communication schedule is determined by the number
of time steps required to complete the communication task. That is, we do not
account for any internal computation within individual nodes.

Most of the work in this field has been done under the assumption that the
processors can transmit messages of arbitrary size in a single time step. In par-
ticular any node can send all of the information it has received so far in a single
(atomic) step of the communication process. Note that this strong assumption
is rather unrealistic if the size of the network is very large. In this paper we
study the gossiping problem in radio networks where there is a restriction on the
size of each message. In particular we investigate the case where each message is
of unit size, meaning that it contains information originating from exactly one
node of the network.

We focus on algorithms that rely on using complete information about the
network topology. This type of topology-wise communication algorithms are use-
ful in radio networks that have a reasonably stable topology/infrastructure. As
long as no changes occur in the network topology during the execution of the al-
gorithm, the tasks of broadcasting and gossiping will be completed successfully.
Note also that our main goal is the design of time efficient communication pro-
cedures. However, it would not be difficult to increase the level of fault-tolerance
in our algorithm at the expense of some small extra time consumption.

Communication in radio networks with known topology. The work on
communication in known topology radio networks was initiated in the context
of the broadcasting problem. In [I3], Gaber and Mansour prove that the broad-
casting task can be completed in time O(D log? n) where D is the diameter of
the network. An £2(log? n) time lower bound was proved for the family of graphs
of radius 2, see [2] by Alon et al. While it was known for quite a while that
for every n-node radio network that there exists a deterministic broadcasting
schedule of length O(D logn + log? n), Bar-Yehuda et al. [3], an appropriate ef-
ficient construction for such a schedule was only recently proposed in [2I] by
Kowalski and Pelc. Subsequently, an efficient deterministic construction of a
broadcasting schedule of length D + O(log* n) was proposed by Elkin and Kort-
sarz [12]. In this paper, they also present an efficient deterministic construction
for a broadcasting schedule of length D + O(log® n) for planar graphs. In [19],
Gasieniec, Peleg and Xin proposed a more efficient deterministic schedule that
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uses D + O(log®n) time units to complete the broadcasting task in any radio
network. This paper also contains an optimal randomized broadcasting sched-
ule of length D + O(log® n) and a new broadcasting schedule using fewer than
3D time slots on planar graphs. More recently in [7], Cicalese, Manne and Xin
improved the broadcasting time to D + O(kgglzgn) in any radio network.

Efficient radio broadcasting algorithms for several types of known network
topologies can be found in Diks et al. [I0]. For general networks, however, it is
known that the computation of an optimal (radio) broadcast schedule is NP-
hard, even if the underlying graph is embedded in the plane [523].

Radio gossiping in networks with known topology was first studied in the con-
text of radio communication with messages of limited size, see [I7] by Gasieniec
and Potapov. In this model the authors proposed several optimal or close to op-
timal O(n)-time gossiping procedures for various standard network topologies,
including lines, rings, stars and free trees. They also proved that there exists a
radio network topology in which the gossiping (with unit size messages) requires
2(nlogn) time. The first work on radio gossiping in known topology networks
with arbitrarily large messages is [I8], where Gasieniec, Potapov and Xin propose
several optimal gossiping schedules for a wide range of radio network topologies.
Very recently, Gasieniec, Peleg and Xin proposed an efficiently computable deter-
ministic schedule that uses O(D + Alogn) time units to complete the gossiping
task in any radio network [I9]. This improves on the previous best known gos-
siping schedule [I8] with running time O(D + “/DAlog"™ n), for any network
with diameter D = Q(logi+4 n),where i is an arbitrary integer constant ¢ > 0.
Subsequently in [7], Cicalese, Manne and Xin improved the gossiping time even

further to O(D + fjffg?ogn) in radio networks where A = 2(logn).

Our results. In this paper, we study the gossiping problem in known topol-
ogy radio networks, where during each time step only one unit size message
originating from some node of the network can be transmitted successfully. The
schedule of transmissions is precomputed in advance based on full knowledge
about the size and the topology of the network. We propose an optimal random-
ized schedule that uses O(nlogn) time units to complete the gossiping task with
high probability in any radio network of size n. This matches the lower bound
of 2(nlogn) by Gasieniec and Potapov in [I7]. Our new gossiping schedule is
based on the notion of a gathering spanning tree proposed by Gasieniec, Peleg
and Xin in [19].

2 Centralized Gossiping with Unit Size Messages in
Arbitrary Graphs

In this section, we study the time complexity of gossiping in general undirected
graphs. We show that radio gossiping with unit size messages in undirected
graphs can be performed in time O(nlogn) with high probability. Our gossiping
algorithm runs in two stages. In the first stage, we collect all the messages in a
distinguished central node ¢ by transporting messages along branches of any BFS
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spanning tree rooted in c¢. The second stage is performed through broadcasting
of n unit messages from c. These broadcasts are performed in a pipelined fashion

along a gathering spanning tree, a structure first proposed by Gasieniec, Peleg
and Xin in [19].

2.1 Gathering Messages in Arbitrary Graphs

Given an arbitrary graph G = (V, E) and a BFS spanning tree T rooted at
its central node ¢, we partition the nodes into consecutive layers L; = {v |
dist(c,v) =i}, for i = 0,..,r where r is a radius of T

In the following, we will use the standard notions of parent, children, and
descendant in trees. For simplicity we assume that a node is a descendant of
itself.

We say that a node v is unsecured iff v has not delivered all messages stored
originally in its descendant to parent(v) in T. The different messages are trans-
mitted toward c in a pipelined fashion, such that only one unsecured node v in
L; of T is allowed to transmit a message to parent(v) in T at any time step ¢,
for 1 <4 < r. To avoid collisions between different BFS layers, the nodes in L;
are allowed to transmit in time steps t satisfying ¢ = i mod 3.

The following result follows directly.

Lemma 1. All different messages can be gathered at the central nodes ¢ of G in
time 3(n — 1).

2.2 Broadcasting in Arbitrary Graphs

Now that all messages have been gathered in ¢, we will show how we with high
probability can broadcast them to all nodes in G in O(nlogn) time.

We first recall the following recursive ranking procedure of nodes in a tree (see
[19]). Leaves have rank 1. Next consider a node v and the set @ of its children
and let 7,4, be the maximum rank of the nodes in Q. If there is a unique node
in @ of rank 7,,,, then set the rank of v to rp,4., otherwise set the rank of v to
Tmaz + 1.

Lemma 2. The largest rank in a tree of size n is bounded by [logn]. (see [19]).

Given any graph G with central node ¢, a gathering spanning tree of G is a BFS
spanning tree T' of G rooted at ¢, such that T is ranked as above and that also
satisfies the following condition: every node in L;; of rank ¢ is at most adjacent
to one node in L; also of rank 7, and if all the nodes of rank 4 in L; transmit at
the same time then the messages will be received by the nodes in L;;; of rank
1 successfully without any collision.

The following lemma was shown in [19].

Lemma 3. There exists a polynomial time construction of a gathering spanning
tree in any graph G.
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Fig. 1. Creating a gathering spanning tree

Figure 1 shows how a gathering spanning tree can be constructed from a
graph G.

For a gathering spanning tree T we say that an edge in T is fast if both of its
end points have the same rank, and it is slow otherwise. Since the largest rank
is at most [logn]|, there are at most [logn]| slow edges in each path from the
root ¢ to any leaf of T.

For a graph G with gathering spanning tree T', we now partition the edges of
every path of T' from c to a leaf into consecutive edge segments in the following
way.

(1) Every maximal connected path of fast edges in T is a fast segment.
(2) Every slow edge is a slow segment.

Note that a node can belong to both a fast and a slow segment. In the follow-
ing, the time steps ¢ are divided into fast blocks (t = 0 mod 2) and slow blocks
(t = 1 mod 2), such that the communication within the fast segments of T" only
occur in the fast blocks and similarly, communication within the slow segments
of T only occur in the slow blocks. We will not be explicit about this schedule
in the future presentation but assume that the time units used for both the fast
and slow segments are consecutive.

We now define a graph G = (V, E) as follows. Its nodes are the same as in G
and F C E. In addition for every node v in a fast segment of T we add an edge
(v,w) where w is the topmost node of the fast segment that v belongs to. See
Figure 2 for an example.

Lemma 4. The graph G has radius at most 2logn.
Proof. The lemma follows directly from the definition of G and Lemma

To simplify our presentation, we also define a modified gathering spanning tree
T of G as follows. The central node c is the root of T" as well. Every edge of T
between two nodes of different rank will be also an edge in T'. In addition, if w
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@ node: v; y: ID of v; z: rank of v;

Fig. 2. From the original graph G to &

is the topmost node of a fast segment F' in 7', then w has an adjacent edge in
T to each node v € F. We denote each node that belongs to a fast segment in
T as fast in T. Thus the main change from T to T is that the nodes of every
fast segment in 7" has been collapsed and are now hanging of the topmost node
in the segment. For all other nodes their parent relationship in T is the same as
in T. The main purpose for defining T is to be able to reason about the time
complexity of performing the slow transmissions.

y:ID of v; z: rank of v;

Fig.3. Froma T of Gtoa T of G

Observation 1. T of G spans G as well.

We are now ready to describe the gossiping schedule, which consists of fast steps
and slow steps as described below.



Optimal Gossiping with Unit Size Messages 131

(1) Fast steps: These are used for transmissions between two fast nodes that
are adjacent in T'. Let 74, < [logn] be the largest rank in 7. Consider a node
vof rank 7, 1 < j < rpe. on BES layer L; in T and which is also the uppermost
node of a fast segment F' in T. If v receives a new message, then v is set to
perform a transmission to its immediate fast child w in F in time step ¢/, where
t' =i+ 35 mod 3r,4z-

Note that since w is in L;1; and has the same rank as v it follows that w will

transmit this message to its fast child (if it is not the lowest node in F) in time
step t/ =t + 1 mod 3ry,4,. Thus it follows that after at most 37,4, + |F| — 1
time steps the message will have reached every node in F'.
(2) Slow steps: These are used to transmit messages across slow edges. Con-
sider a node v on BFS layer L; in T that belongs to a slow segment of T'. If v
receives a new message, then v will perform a transmission only in time step ¢’
satisfying t' = ¢ mod 3. We employ the procedure RCW from [19] to perform the
transmissions in the slow steps.

Procedure RCW allows the movement of one unit messages from one partition
of a bipartite graph of size n’ (here, an entire BFS layer L; of T) to the other
(here, the next layer L;11) with high probability in time O(logn’). Note that as
soon as the message has reached a (slow) node w in layer L; ;1 then w will start
to transmit this to its (slow) descendants (within 3 time units).

The probability that the procedure RC'W is successful in transmitting a mes-
sage between two nodes is given by the the following lemma from [I9].

Lemma 5. The probability that a node v in layer L; will be successful in trans-
mitting a message to its adjacent nodes in L;y1 is given by p > 1/(4e).

Note that the described pattern of transmissions separates the transmissions
between the fast and slow steps by at least one unit of time. The pattern also
ensures that at any time step, transmissions are performed on BFS layers at
distances that are multiples of 3 apart. Thus there will be no conflicts between
transmissions coming from different BFS layers. There is also no collisions in
transmissions between the fast nodes of 7' with the same rank and within the
same BFS layer of T' due to the properties of a gathering spanning tree (see [19]).

Corollary 1. The total time spent on fast transmissions in sending a unit mes-
sage from c to a leaf v is O(log2 n +r) where r is the radius of G.

Proof. Asstated, the time to traverse a fast segment F takes time 37,4, +|F|—1
= O(logn + |F|). There are at most logn fast segments on the path from ¢ to v
in T and the sum of the lengths of these segments is at most r, thus the result
follows.

Since the construction of a gathering spanning tree T' (and consequently of G
and T) is polynomial in view of Lemma 2.2] we have the following result.

Theorem 2. For any n-node graph G, there exists a randomized gossiping al-
gorithm with unit size messages that runs in time polynomial in n.

It remains to bound the probability of success of our gossiping schedule and to
estimate the length of the scheme constructed by it.



132 F. Manne and Q. Xin

Theorem 3. There ezists a randomized algorithm that for any known topol-
ogy radio network of size n, following a polynomial time preprocessing stage,
solves the gossiping problem with unit size messages with high probability in time

O(nlogn).

Proof. Consider an arbitrary node v in the graph G, and consider the path along
which it is supposed to get the message from the root. This path is divided into
“fast segments” and “slow segments” as discussed above. Consider first the fast
segments on the path from c to a leaf v and let F' be the topmost segment on
this path and w the topmost node of F'. Then it follows that the messages will be
transmitted from w in time steps at most O(logn) apart. Thus the last message
will be transmitted after O(nlogn) time. >From Corollary [ it follows that this
message will spend O(n + log”n) time on fast transmissions before it reaches
every descendant including v. Thus the total time spent on fast transmissions is
bounded by O(nlogn + log®n).

We now claim that the total number of time steps spent by the messages for
the slow steps on its way to v is at most O(nlogn) as well. For each slow
transmission we will be activating the RCW procedure O(1) times to ensure
that it reaches every node with high probability. Thus the number of times the
RCW procedure is activated for a particular message is bounded by the height
of T which is O(log n). It follows that the total time spent on slow transmissions
for one particular message is bounded by O(log2 n). Since the slow transmissions
are performed at intervals that are O(1) apart the last message will start to be
transmitted after O(nlogn) time and reach every node after spending 0(10g2)
time on slow transmissions. Thus the combined time spent on both fast and slow
transmissions is bounded by O(nlogn).

It remains to show that each message will reach every node with high proba-
bility. Note first that each participation of a particular message in an activation
of the RCW procedure succeeds (i.e., the message crosses from its current node
to the next node on the path to v) independently with constant probability
p > 1/(4€). Then let R be the height of T and X a random variable denoting
the number of successes of a particular message on its way from c to v. L.e. X
denotes the number of levels of T' that the message has crossed successfully. For
each level that the message has to cross we will activate RCW a total of 24e
times. Thus the maximum total number of times the message will participate in
the RCW procedure is 24eR, the expected value of X is W= 6R. Due to the
way T was constructed, we know that R is bounded by 2 logn.

Using the Chernoff bound, the probability Preq(v) that the message will not
reach v after 24eR participations in RCW can be bounded from above by

Praa(v) < P(X <R) = P(X < (1-5/6)u) < exp <; <2> ,u) < nt.

Subsequently, the probability that the message will require more than 24eR
participations in the RCW procedure before it reaches v, is smaller than 1/n.
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The presented algorithm requires the possibility to store n messages in the
center node c. This happens just after finishing the gathering stage before the
start of the broadcast stage. We note that it is possible to get around this
requirement by interleaving the gathering and broadcasting stage. In this way no
node would need more than O(1) extra space. In fact, if y denotes the maximal
number of simultaneous messages allowed in a receive or send buffer on any
node then it is possible to modify the presented algorithm so that it solves the
gossiping problem with high probability in time O((} + r)logn) where r is the
radius of the network. Due to space limitation we defer more details to the full
version of the paper.

3 Conclusion

We have proposed a new efficient (polynomial time) randomized schedule that
performs the gossiping task with unit size messages in radio networks with
high probability in optimal time O(nlogn). The evident open problem regard-
ing gossiping is whether there exists a deterministic gossiping schedule of time
O(nlogn) for every n-node graph G.
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