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Abstract We study the communication primitives of broadcasting (one-to-all com-
munication) and gossiping (all-to-all communication) in known topology radio net-
works, i.e., where for each primitive the schedule of transmissions is precomputed
based on full knowledge about the size and the topology of the network. We show
that gossiping can be completed in O(D + Δ logn

logΔ−log logn
) time units in any radio

network of size n, diameter D, and maximum degree Δ = Ω(logn). This is an al-
most optimal schedule in the sense that there exists a radio network topology, specif-
ically a Δ-regular tree, in which the radio gossiping cannot be completed in less than

Ω(D + Δ logn
logΔ

) units of time. Moreover, we show a D + O(
log3 n

log logn
) schedule for the

broadcast task. Both our transmission schemes significantly improve upon the cur-
rently best known schedules by Gąsieniec, Peleg, and Xin (Proceedings of the 24th
Annual ACM SIGACT-SIGOPS PODC, pp. 129–137, 2005), i.e., a O(D + Δ logn)

time schedule for gossiping and a D + O(log3 n) time schedule for broadcast. Our
broadcasting schedule also improves, for large D, a very recent O(D + log2 n) time
broadcasting schedule by Kowalski and Pelc.
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1 Introduction

We consider the following model of a radio network: an undirected connected graph
G = (V ,E), where V represents the set of nodes of the network and E contains
unordered pairs of distinct nodes, such that (v,w) ∈ E iff the transmissions of node v

can directly reach node w and vice versa (the reachability of transmissions is assumed
to be a symmetric relation). In this case, we say that the nodes v and w are neighbours
in G. Note that in a radio network, a message transmitted by a node is always sent to
all of its neighbours.

The degree of a node is the number of its neighbours. We use Δ to denote the max-
imum degree of the network, i.e., the maximum degree of any node in the network.
The size of the network is the number of nodes n = |V |.

Communication in the network is synchronous and consists of a sequence of com-
munication steps. In each step, a node v either transmits or listens. If v transmits,
then the transmitted message reaches each of its neighbours by the end of this step.
However, a node w adjacent to v successfully receives this message iff in this step
w is listening and v is the only transmitting node among w’s neighbours. If node w

is adjacent to a transmitting node but it is not listening, or it is adjacent to more than
one transmitting node, then a collision occurs and w does not retrieve any message
in this step.

The two classical problems of information dissemination in computer networks
are the broadcasting problem and the gossiping problem. The broadcasting problem
requires distributing a particular message from a distinguished source node to all
other nodes in the network. In the gossiping problem, each node v in the network
initially holds a message mv , and the aim is to distribute all messages to all nodes. For
both problems, one generally considers as the efficiency criterion the minimization
of the time needed to complete the task.

In the model considered here, the running time of a communication schedule is
determined by the number of time steps required to complete the communication task.
This means that we do not account for any internal computation within individual
nodes. Moreover, no limit is placed on the length of a message that one node can
transmit in one step. In particular, this assumption plays an important role in the case
of the gossiping problem, where it is then assumed that in each step when a node
transmits, it transmits all the messages it has collected by that time. (i.e., the ones
received so far and its own one.)

Our schemes rely on the assumption that the communication algorithm can use
complete information about the network topology. Such topology-based communica-
tion algorithms are useful whenever the underlying radio network has a fairly stable
topology/infrastructure. As long as no changes occur in the network topology dur-
ing the execution of the algorithm, the tasks of broadcasting and gossiping will be
completed successfully. Here, we shall not touch upon reliability issues. However,
we remark that it is possible to increase the level of fault-tolerance in our algorithms,
at the expense of some small extra time consumption.
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Our results We provide a new (efficiently computable) deterministic schedule that
uses O(D + Δ logn

logΔ−log logn
) time units to complete the gossiping task in any radio

network of size n, diameter D and maximum degree Δ = Ω(logn). This significantly
improves on the previously known best schedule, i.e., the O(D+Δ logn) schedule of
[7]. Remarkably, our new gossiping scheme constitutes an almost optimal schedule
in the sense that there exists a radio network topology, specifically a Δ-regular tree,
in which the radio gossiping cannot be completed in less than Ω(D + Δ logn

logΔ
) units

of time.
For the broadcast task, we show a new (efficiently computable) radio schedule

that works in time D + O(
log3 n

log logn
), improving the currently best published result for

arbitrary topology radio networks, i.e., the D +O(log3 n) time schedule proposed by
Gąsieniec et al. in [7]. It is noticeable that for large D, our scheme also outperforms
the very recent (asymptotically optimal) O(D + log2 n) time broadcasting schedule
by Kowalski and Pelc in [10]. This is because of the significantly larger coefficient of
the D term hidden in the asymptotic notation. In fact, in our case the D term comes
with coefficient 1.

Related work The work on communication in known topology radio networks was
initiated in the context of the broadcasting problem. In [3], Chlamtac and Wein-
stein prove that the broadcasting task can be completed in time O(D log2 n) for
every n-vertex radio network of diameter D. An Ω(log2 n) time lower bound was
proved for the family of graphs of radius 2 by Alon et al [1]. In [5], Elkin and
Kortsarz give an efficient deterministic construction of a broadcasting schedule of
length D +O(log4 n) together with a D +O(log3 n) schedule for planar graphs. Re-
cently, Gąsieniec, Peleg and Xin [7] showed that a D +O(log3 n) schedule exists for
the broadcast task, that works in any radio network. In the same paper, the authors
also provide an optimal randomized broadcasting schedule of length D + O(log2 n)

and a new broadcasting schedule using fewer than 3D time slots on planar graphs.
A D + O(logn)-time broadcasting schedule for planar graphs has been showed in
[11] by Manne, Wang, and Xin. Very recently, a O(D + log2 n) time determin-
istic broadcasting schedule for any radio network was proposed by Kowalski and
Pelc in [10]. This is asymptotically optimal unless NP ⊆ BPTIME(nO(log logn)) [10].

Nonetheless, for large D, our D +O(
log3 n

log logn
) time broadcasting scheme outperforms

the one in [10], because of the larger coefficient of the D term hidden in the asymp-
totic notation describing the time evaluation of this latter scheme.

Efficient radio broadcasting algorithms for several special types of network topolo-
gies can be found in [4]. For general networks, however, it is known that the com-
putation of an optimal (radio) broadcast schedule is NP-hard, even if the underlying
graph is embedded in the plane [2, 13].

Radio gossiping in networks with known topology was first studied in the context
of radio communication with messages of limited size, by Gąsieniec and Potapov
in [8]. They proposed several optimal or close to optimal O(n)-time gossiping pro-
cedures for various standard network topologies, including lines, rings, stars and free
trees. In the same paper, an O(n log2 n) gossiping scheme for general topology ra-
dio network is provided and it is proved that there exists a radio network topology
in which the gossiping (with unit size messages) requires Ω(n logn) time. In [12],
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Manne and Xin show the optimality of this bound by providing an O(n logn)-time
gossiping schedule with unit size messages in any radio network. The first work on
radio gossiping in known topology networks with arbitrarily large messages is [9],
where several optimal gossiping schedules are shown for a wide range of radio net-
work topologies. For arbitrary topology radio networks, an O(D +Δ logn) schedule
was given by Gąsieniec, Peleg, and Xin in [7]. To the best of our knowledge no better
result is known to date for arbitrary topology.

2 Gossiping in General Graphs with Known Topology

The gossiping task can be performed in two consecutive phases. During the first phase
we gather all individual messages in one (central) point of the graph. Then, during
the second phase, the collection of individual messages is broadcast to all nodes in
the network.

We start this section with the presentation of a simple gathering procedure that
works in time O((D + Δ)

logn
logΔ−log logn

) in free trees. Later we show how to choose
a spanning breadth-first (BFS) tree in an arbitrary graph G in order to gather (along
its branches) all messages in G also in time O((D + Δ)

logn
logΔ−log logn

), despite the
additional edges in G which might potentially cause collisions. Finally, we show how
the gathering process can be pipelined and sped up to run in O(D + Δ logn

logΔ−log logn
)

time.

2.1 A Super-ranking Procedure

Given an arbitrary tree, we choose its central node c as the root. Then, the nodes in
the tree (rooted at c) are partitioned into consecutive layers Li = {v | dist(c, v) = i},
for i = 0, . . . , r where r is a radius of the tree. We denote the size of each layer Li

by |Li |.
We use a non-standard approach for ranking the nodes in a rooted tree, which we

call super-ranking. The super-ranking depends on an integer parameter 2 ≤ x ≤ Δ,

that for our purposes will be optimized later. Specifically, for every leaf v we de-
fine rank(v, x) = 1. Then, for a non-leaf node, v with children v1, . . . , vk, we define
rank(v, x) as follows. Let r̂ = maxi=1,...,k{rank(vi, x)}. If at least x of the children of
v have rank r̂ , then rank(v, x) = r̂ + 1 otherwise rank(v, x) = r̂ .

For an example, see Fig. 1, where the same tree is ranked with threshold x = 3
and x = 2 respectively.

For each x ≥ 2, we define r
[x]
max = maxv∈T rank(v, x). As an immediate conse-

quence of the definition of rank(·, ·) we have the following.

Lemma 1 Let T be a tree with n nodes of maximum degree Δ. Then, r
[x]
max ≤

�logx n�, for each 2 ≤ x ≤ Δ.

Note that when x = 2 we obtain the standard ranking procedure, that has been
employed in the context of radio communication in known topology networks in [6,
7, 9]. Previously this same ranking had been used to define the Strahler number of
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Fig. 1 A tree of size n = 37
ranked with x = 3 (left) and
x = 2 (right)

binary trees, introduced in hydrogeology [14] and extensively studied in computer
science (cf. [15] and the references therein).

The schedule for gathering messages at the root is now defined in stages using the
super-ranked tree under the assumption that the value of the parameter x has been
fixed. For the sake of the analysis, we will optimize its value later. We partition the
nodes of the tree into different rank sets that are meant to separate the stages in which
nodes are transmitting, i.e., nodes from different rank sets transmit in different stages.

For x ≥ 2, let r
[x]
max be the maximum rank for a node of T according to the

super-ranking with parameter x. Recall that r
[x]
max ≤ �logx n�. Then, let Ri(x) = {v |

rank(v, x) = i}, where 1 ≤ i ≤ r
[x]
max.

We use the above rank sets to partition the node set. In the following, we shall use
two rankings of the nodes: one with the parameter x set to some (fixed) value greater
than 2 and one with x = 2.

Definition 1 The fast transmission set is given by Fk
j = {v | v ∈ Lk ∩ Rj (2) and

parent (v) ∈ Rj (2)}. Also define Fj = ⋃D
k=1 Fk

j and F = ⋃r
[2]
max

j=1 Fj .

Definition 2 The slow transmission set is given by Sk
j = {v | v ∈ Lk ∩ Rj (2) and

parent(v) ∈ Rp(2), for some p > j ; and rank(v, x) = rank(parent(v), x), x > 2}.
Also define Sj = ⋃D

k=1 Sk
j and S = ⋃r

[2]
max

j=1 Sj .

Definition 3 The super-slow transmission set is given by SSk
j = {v | v ∈ Lk ∩

Rj (x) and parent(v) ∈ Ri(x), i > j}. Accordingly, define SSj = ⋃D
k=1 SSk

j and

SS = ⋃r
[x]
max

j=1 SSj .

Note that the above transmission sets define a partition of the node set. Each node
v only belongs to one of the transmission sets and V = F ∪ S ∪ SS.

Lemma 2 Fix positive integers i ≤ r
[x]
max, j ≤ r

[2]
max and k ≤ D. Then, during the ith

stage, all nodes in Fk
j can transmit to their parents simultaneously without any colli-

sions.
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Proof Consider any two distinct nodes u and v in Fk
j , and suppose they interfere

with each other. This is true if they have a common neighbour in Lk−1. Obviously,
u and v are on the same level and must therefore have the same parent y in the tree.
Moreover, according to the definition of the fast transmission set Fk

j , u,v, y ∈ Rj (2).
However, according to the definition of the super-ranking procedure, if rank(u,2) =
rank(v,2) = j then rank(y,2) must be at least j + 1. Hence the nodes u and v cannot
both belong to Fk

j , which leads to a contradiction. �

Lemma 3 Fix positive integers i ≤ r
[x]
max, j ≤ r

[2]
max and k ≤ D. Then, all messages

from nodes in Sk
j ∩Ri(x) can be gathered in their parents in at most x − 1 time units.

Proof By Definition 1 we have that for each node v in Sk
j ∩ Ri(x), parent(v) has

at most x − 1 children in Sk
j ∩ Ri(x), for each i = 1,2, . . . , r

[x]
max ≤ �logx n�, j =

1,2, . . . , r
[2]
max ≤ �logn� and k = 1, . . . ,D. Therefore, the desired result is achieved

by simply letting each parent of nodes in Sk
j ∩ Ri(x) collect the messages from its

children one at a time. �

We shall use the following result from [7].

Proposition 1 [7] There exists a gathering procedure Γ such that in any graph G

of maximum degree ΔG and diameter DG the gossiping task, and in particular the
gathering stage, can be completed in time O(DG + ΔG logn).

The following procedure moves messages from all nodes v with rank(v, x) = i

into their lowest ancestor u with rank(u, x) ≥ i + 1, where x > 2, using the gathering
procedure Γ from the previous proposition.

Procedure SUPER-GATHERING(i)

1. Move messages from nodes in (F ∪ S) ∩ Ri(x) to SSi ;
using the gathering procedure Γ in Proposition 1.

2. Move messages from nodes in SSi to their parents;
all parents collect their messages from their children in SSi one by one.

Note that the subtrees induced by the nodes in Ri(x) have maximum degree ≤ x.
Thus, by Proposition 1 and Lemma 3, we have that the time complexity of step 1 is
O(D + x logn). The time complexity of step 2 is bounded by O(Δ), where Δ is the
maximum degree of the tree. By Lemma 1, r

[x]
max ≤ �logx n�. Thus, we have that the

procedure SUPER-GATHERING completes the gathering stage in time O((D + Δ +
x logn) logx n). Since we can have this followed by the trivial broadcasting stage
performed in time O(D), we have proved the following.

Theorem 1 In any tree of size n, diameter D and maximum degree Δ, the gossip-
ing task can be completed in time O((D + Δ + x logn) logx n), where 2 < x ≤ Δ.
In particular when Δ = Ω(logn), by choosing x = Δ

logn
, we obtain the bound

O((D + Δ)
logn

logΔ−log logn
).
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Fig. 2 Creating a gathering spanning tree

2.2 Gathering Messages in Arbitrary Graphs

We start this section with the introduction of the novel concept of a super-gathering
spanning tree (SGST). Such tree plays a crucial role in our gossiping-scheme for
arbitrary graphs. We shall show an O(n2 logn)-time algorithm that constructs a SGST
in an arbitrary graph G of size n and diameter D. In the concluding part of this
section, we propose a new more efficient schedule that completes message gathering
in time O(D + Δ logn

logΔ−log logn
).

A super-gathering spanning tree (SGST) for a graph G = (V ,E) is any BFS span-
ning tree TG of G, ranked according to the super-ranking above1 and satisfying:

(1) TG is rooted at the central node c of G;
(2) TG is ranked;
(3) all nodes in Fk

j of TG are able to transmit their messages to their parents simul-

taneously without any collision, for all 1 ≤ k ≤ D and 1 ≤ j ≤ r
[2]
max ≤ �logn�;

(4) every node v in Sk
j ∩ Ri(x) of TG has following property: parent(v) has at

most x − 1 neighbours in Sk
j ∩ Ri(x), for all i = 1,2, . . . , r

[x]
max ≤ �logx n�,

j = 1,2, . . . , r
[2]
max ≤ �logn� and k = 1, . . . ,D.

Any BFS spanning tree TG of G satisfying only conditions (1), 2), and (3) above
is called a gathering spanning tree, or simply GST. Figure 2 shows an example of a
GST.

We recall the following result from [7].

Theorem 2 There exists an efficient (O(n2 logn) time) construction of a GST on an
arbitrary graph G (see Theorem 2.5 in [7]).

1We use Definitions 1–3 of the ranking partitions given above.



Algorithmica (2009) 54: 226–242 233

Procedure SUPER-GATHERING-SPANNING-TREE(GST)
(1) Fix rank(w,2) for every node w ∈ V ;
(2) For k := D down to 1 do
(3) For i := r

[x]
max down to 1 do

(4) For j := r
[2]
max down to 1 do

(5) While ∃v ∈ Sk
j ∩ Ri(x) in GST such that

|Sk
j ∩ Ri(x) ∩ NB(parent(v))|≥ x

do
(6) rank(parent(v), x) = i + 1; //rank(v, x) = i

(7) UPDATE = {u|u ∈ Sk
j ∩ Ri(x) ∩ NB(parent(v))};

(8) SSk
rank(v,x) = SSk

rank(v,x) ∪ UPDATE;
(9) EGST = EGST − {(u,parent(u))|u ∈ UPDATE};

(10) EGST = EGST ∪ {(u,parent(v))|u ∈ UPDATE};
(11) Sk

j = Sk
j − {u|u ∈ UPDATE};

(12) re-set rank(w,x) for each w ∈ V ;
(13) recompute the sets S and SS in GST

Fig. 3 Procedure Super-Gathering-Spanning-Tree

The procedure SUPER-GATHERING-SPANNING-TREE, presented next, in Fig. 3,
constructs a super-gathering-spanning-tree SGST ⊆ G on the basis of a GST ⊆ G

using a pruning process. The pruning process is performed layer by layer starting
from the bottom (layer D) of the GST. For each layer we gradually fix the parents
of all nodes which violate condition (4) above, i.e., each v in Sk

j ∩ Ri(x) of GST,

such that parent(v) has at least x neighbours in Sk
j ∩Ri(x). In fact, for our gathering-

scheme, v is a node which is potentially involved in collisions. In each layer, the
pruning process starts with the nodes of highest rank in the current layer. We use
NB(v) to denote the set of neighbours of the node v in the original graph G. In Fig. 4,
we show the output of the SUPER-GATHERING-SPANNING-TREE procedure when it
is run on the GST presented in Fig. 2.

We prove that Procedure SUPER-GATHERING-SPANNING-TREE constructs the
SGST of an arbitrary graph G = (V ,E) in time O(n2 logn). The following technical
lemma is easily proved by induction.

Lemma 4 After completing the pruning process at layer k in GST , the structure of
edges in GST between layers k − 1, . . . ,D is fixed, i.e., each node v within layers
k, . . . ,D in all sets Sk

j ∩ Ri(x), satisfy the following property: parent(v) has at most

x −1 neighbours in Sk
j ∩Ri(x), for i = 1, . . . , r

[x]
max ≤ �logx n� and j = 1, . . . , r

[2]
max ≤

�logn�.

Proof We rely on the assumption that before the kth execution of the outer loop, all
edges in GST between layers from k through D are already fixed and will never
change again. Note that during the pruning process at layer k, the updates involve
only some edges between layers k and k − 1. Note also that the updates at layer k are
always executed first at the nodes with higher ranks. Thus, when a node v with the
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Fig. 4 From gathering-spanning-tree to super-gathering-spanning-tree

property that parent(v) has at least x neighbours in Sk
j ∩Ri(x) is found, v gets pruned.

The nodes in Sk
j ∩ Ri(x) that are neighbours of parent(v) are assigned parent(v) as

their parent and are moved to the super-slow transmission set. From now on, neither
the edges (u,parent(u)), u ∈ Sk

j ∩ Ri(x) nor the edges leading to their new parent

parent(v) will be considered again. This is because these nodes u ∈ Sk
j ∩ Ri(x) no

longer belong to the set S and further updates at this layer cannot change this property.
The lemma follows. �

Lemma 5 Procedure SUPER-GATHERING-SPANNING-TREE preserves the property
of the GST , in which the transmissions within all sets Fk

j are free of collisions, for
j = 1, . . . , rmax ≤ �logn� and 1 ≤ k ≤ D.

Proof In the procedure SUPER-GATHERING-SPANNING-TREE, the rank(v,2) is
fixed for each v ∈ GST and we only update the rank(v, x) during the pruning process
(by moving some nodes in S to SS). Consequently, we did not change the properties of
the subtree of the original GST induced by the vertices in F . The lemma follows. �

The above results implies the following theorem.

Theorem 3 For an arbitrary graph there exists an O(n2 logn) time construction of
a SGST .

Proof The claim follows directly from Theorem 2, Lemma 4 and the fact that pro-
cedure SUPER-GATHERING-SPANNING-TREE preserves the property of the GST it
starts with. In fact, at the beginning of the SUPER-GATHERING-SPANNING-TREE

procedure rank(v,2) for each v ∈ GST is fixed. Then, only rank(v, x) is updated dur-
ing the pruning. This does not affect the properties of the subtree of the original GST

induced by the vertices in F . During the pruning process, each original edge (v,u)
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is only considered once, and also the re-ranking of the GST costs at most O(n) time.
Consequently, the time to construct a SGST is bounded by O(n2 logn). �

2.3 An O((D + Δ)
logn

logΔ−log logn
)-Time Gossiping Schedule

Using the ranks computed on the SGST , the nodes of the graph are partitioned into
distinct rank sets Ri = {v | rank(v, x) = i}, where 1 ≤ i ≤ r

[x]
max ≤ �logx n�. This al-

lows the gathering of all messages into the central node c, stage by stage, using the
structure of the SGST as follows. During the ith stage, all messages from nodes in
(F ∪S)∩Ri(x) are first moved to the nodes in SSi . Later, we move all messages from
nodes in SSi to their parents in SGST . In order to avoid collisions between transmis-
sions originating at neighbouring BFS layers we divide the sequence of transmission
time slots into three separate (interleaved) subsequences of time slots. Specifically,
the nodes in layer Lj transmit in time slot t iff t ≡ j (mod 3).

Lemma 6 In stage i, the nodes in the set SSi of the SGST transmit their messages to
their parents in time O(Δ).

Proof By [9, Lemma 4], one can move all messages between two partitions of a
bipartite graph with maximum degree Δ (in this case two consecutive BFS layers)
in time Δ. The solution is based on the use of the minimal covering set. Note that
during this process a (possibly) combined message m sent by a node v ∈ SSi may be
delivered to the parent of another transmitting node w ∈ SSi rather than to parent(v).

But this is fine, since now the time of delivery of the message m to the root of the tree
is controlled by the delivery mechanism of the node w. Obviously this flipping effect
can be observed a number of times in various parts of the tree, though each change
of the route does not change the delivering mechanism at all.

In order to avoid extra collisions caused by nodes at neighbouring BFS layers, we
use the solution with three separate interleaved subsequences of time slots incurring
a slowdown with a multiplicative factor of 3. �

When the gathering stage is completed, the gossiping problem is reduced to the
broadcasting problem. We distribute all messages to every node in the network by
reversing the direction and the time of transmission of the gathering stage. In Sect. 3
we prove that the broadcasting stage can be performed faster in graphs with large Δ,

i.e., in time D + O(
log3 n

log logn
).

Theorem 4 In any graph G with Δ = Ω(logn), the gossiping task can be completed
in time O((D + Δ)

logn
logΔ−log logn

).

Proof During the ith stage, all messages from (F ∪ S) ∩ Ri(x) are moved to SSi .
Because of property (4) of the SGST, Proposition 1 assures that this can be achieved
in time O(D + x logn). By Lemma 6, all nodes in the set SSi can transmit their
messages to their parents in SGST in time O(Δ). By Lemma 1, this process is re-
peated at most logx n times. Thus, the gossiping time can be bounded by O((D +
Δ + x logn) logx n). The desired result follows directly by setting x = Δ

logn
. �
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2.4 The O(D + Δ logn
logΔ−log logn

) -Time Gossiping Schedule

The result of Theorem 4 is obtained by a transmission process consisting of �logx n�
separate stages, each costing O(D + Δ + x logn) units of time. We shall now show
that the transmissions of different stages can be pipelined and a new gossiping sched-
ule obtained of length O(D + Δ logn

logΔ−log logn
).

The communication process will be split into consecutive blocks of 9 time units
each. The first 3 units of each block are used for fast transmissions from the set F , the
middle 3 units are reserved for slow transmissions from the set S and the remaining 3
are used for super-slow transmissions of nodes from the set SS. We use 3 units of time
for each type of transmission in order to prevent collisions between neighbouring BFS
layers, like we did in the last section. Recall that we can move all messages between
two consecutive BFS layers in time Δ [9, Lemma 4]. Moreover, the same result in
[9] together with property (4) of the GSTS, allows us to move all messages stored in
Sk

j ∩ Ri(x) to their parents in SGST within time x − 1.
We compute for each node v ∈ Sj ∩ Ri(x) at layer k the number of a step 1 ≤

s(v) ≤ x − 1 in which node v can transmit without interruption from other nodes
in Sj ∩ Ri(x) also in layer k. We also compute for each node u ∈ SSi at layer k the
number of a step 1 ≤ ss(u) ≤ Δ in which the node u can transmit without interruption
from other nodes in SSi also in layer k.

Let v be a node at layer k and with rank(v,2) = j and rank(v, x) = i, in SGST.
Depending on if v belongs to the set F , to the set S or to the set SS, it will transmit
in the time block t (v) given by:

t (v) =
{

(D − k + 1) + (j − 1)(x − 1) + (i − 1) (Δ + (x − 1) logn) if v ∈ F ,
(D − k + 1) + (j − 1)(x − 1) + s(v) + (i − 1) (Δ + (x − 1) logn) if v ∈ S,
(D − k + 1) + logn(x − 1) + (i − 1) (Δ + (x − 1) logn) + ss(v) if v ∈ SS.

We observe that any node v in the SGST requires at most D fast transmissions,
logn slow transmissions and logx n super-slow transmissions to deliver its message
to the root of the SGST if there is no collision during each transmission. Moreover,
the above definition of t (v) results in the following lemma.

Lemma 7 A node v transmits its message as well as all messages collected from its
descendants towards its parent in SGST successfully during the time block allocated
to it by the transmission pattern.

Proof Let v be a node at layer k such that rank(v,2) = j and rank(v, x) = i. For each
node w at layer k′ > k, which is a descendant of v we have that rank(w,2) = j ′ ≤
j = rank(v,2) and rank(w,x) = i′ ≤ i = rank(v, x). Therefore if v,w ∈ F , the first
term of the expression (D −k′ +1)+ (j ′ −1) · (x −1)+ (i′ −1) · (Δ+ (x −1) · logn)

is smaller for w. Hence, according to the pattern of transmissions above, it is not hard
to see that node w transmits earlier than node v also holds for other cases (e.g. v ∈ SS
and w ∈ F ).

We now prove that any node v following the pattern of transmissions will transmit
to its parent without being interrupted by anyone else.
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In fact, no collision can happen between neighbouring BFS layers because of the
separation into three subsequences, ensuring that three time units are available within
each block. Nor can there be collisions between transmissions coming from different
transmission-sets (fast, slow and super-slow), because of the three parts of each time
block. It remains to rule out collisions between nodes within the same transmission-
set and at the same BFS layer in the SGST.

Assume that v,w ∈ F and that they are at the same BFS layer i in the SGST.
If v and w also have the same rank rank(v,2) = rank(w,2) and rank(v, x) =

rank(w,x), then they do not interrupt each other due to the properties of SGST.
If they have different ranks rank(v,2) = j 
= j ′ = rank(w,2) but rank(v, x)

= rank(w,x) or rank(v, x) = i 
= i′ = rank(w,x) but rank(v,2) = rank(w,2) respec-
tively, then they transmit in different time blocks according to the pattern of trans-
missions for the nodes in F .

If rank(v,2) = j 
= j ′ = rank(w,2) and rank(v, x) = i 
= i′ = rank(w,x), the
transmission pattern separates v,w by at least |(j − j ′) · (x − 1) + (i − i′) · (Δ +
(x − 1) · logn)| > Δ + (x − 1)) time blocks. The inequality follows since |j − j ′| ≤
logn − 1 and |i − i′| ≤ 1. Consequently, v and w cannot interfere with each other,
either.

Assume now that v,w ∈ S and that they are at the same BFS layer k in GST.
If rank(v, x) = rank(w,x), then either rank(v,2) = j 
= j ′ = rank(w,2) and both

s(v), s(w) ≤ (x − 1), or if they have the same rank j , then they have different values
of s(v) and s(w). Hence, they do not interrupt each other.

If rank(v,2) = j 
= j ′ = rank(w,2) and rank(v, x) = i 
= i′ = rank(w,x), the
pattern of transmissions separates v,w by at least |(j − j ′) · (x − 1) + (s(v) −
s(w)) + (i − i′) · (Δ + (x − 1) · logn)| > Δ time blocks. The inequality follows
since |j − j ′| ≤ logn − 1 and |i − i′| ≤ 1 and |s(v) − s(w)| ≤ x − 2. Thus, there
cannot be a collision between v and w.

Using similar arguments, we can also prove that when v,w ∈ SS no collision can
happen either. This completes the proof. �

Since the number of time blocks used is ≤ D + (x · logn+Δ) · (logx n+ 1), we have

Theorem 5 In any graph G, the gossiping task can be completed in time O(D + (x ·
logn + Δ) logx n), where 2 ≤ x ≤ Δ. In particular when Δ = Ω(logn), by setting
x = Δ

logn
the bound becomes O(D + Δ logn

logΔ−log logn
).

By employing the better approximate solution of the equation Δ = x logx, e.g.,
taking x = Δ

logn−log log� n
, we get:

Corollary 1 In any graph G of Δ = Ω(logn), the gossiping task can be completed
in time O(D + Δ logn

logΔ−log logn+log log log� n
).

Remark 1 Fix integers y1, y2, such that 2 ≤ y1 < y2 ≤ Δ
logn

. When we use our
scheme with x = y2 by Theorem 5 we get the bound O(D + y2 logn + Δ logy2

n).

Suppose now that we tried to resolve all the slow transmissions in y1 < y2 time
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slots. This is possible if there are always at most y1 neighbours in the slow trans-
missions. Nonetheless, we could force our algorithm to use y1 slots whenever pos-
sible and use the y2 (sufficient) slots only when there are more than y1 neighbours
to take care of. Obviously, such modified scheme can resort to the y2 time slots for
slow transmissions at most logy1

n times. Therefore, we have the new time bound
O(D + y1 logn + y2 logy1

n + Δ logy2
n).

Of course the same reasoning can be repeated to try and reduce the number of time
slots for the slow transmissions that can be accommodated with y1 time slots. Iter-
ating, we have that for 2 ≤ x1 < x2 < · · · < xt ≤ Δ

logn
, there is a gossiping schedule

with time complexity

O

(

D + x1 logn + Δ logxt
n +

t−1∑

i=1

xi+1 logxi
n

)

.

Now, choosing t = logΔ − log logn + log loga log� n − 2 times, for some 1 ≤
a ≤ log logn

log log log� n
, and setting xi+1 = 2xi with x1 = 4, we obtain a schedule of time

complexity

O

(

D + 4 logn + 8 log4 n + · · · + Δ loga log� n

logn(logΔ − log logn + log loga log� n − 2)

+ Δ logn

logΔ − log logn + log loga log� n

)

,

which is O(D + Δ logn

logΔ−log logn+log logc log� n
) for some constant c ≥ 1.

We have proved the following corollary.

Corollary 2 In any graph G of Δ = Ω(logn), the gossiping task can be completed
in time O(D + Δ logn

logΔ−log logn+log logc log� n
), for some constant c ≥ 1.

3 Broadcasting in Graphs with Known Topology

In this section we exploit the structure of the SGST for obtaining an algorithm that
generates a schedule for completing the broadcasting task in a general known topol-

ogy radio network in time D + O(
log3 n

log logn
).

In this case, a super-gathering spanning tree rooted at the source node s is used.
The algorithm also uses the partition of the node set into the same transmission-sets
F , S and SS. The broadcast message is now disseminated from the root towards the
leaves of the tree. However, reversing the direction of the transmissions preserves the
anti-collision capabilities of the structure. In particular, if in the gathering-stage of
the gossiping scheme a node v ∈ F could safely transmit to its parent, the same must
hold true in the broadcast, for the transmission from parent(v) to v. Otherwise there
would have to be a crossing edge causing collisions. Obviously such an edge cannot
exist since it would have caused a collision in the gossiping scheme as well.
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Fig. 5 An example of the path partition

For the sake of the analysis let us focus on a particular copy of the message that
reaches a leaf a. Let p(a) be the unique shortest path from the root s to the leaf a.
Note that the message does not necessarily follow the path p(a) and could actually
even been delivered along non-shortest paths. Nonetheless the path p(a) can be used
to estimate the evolution of the message delivery from s to a. We can, e.g., measure
the delay from the time the message is already available at some node v on the path
p(a) to the time the message has already reached the following node w on the path
(though not necessarily via a transmission from v).

The path p(a) can be though of as consisting of several segments

p(a) = 〈
pF

1 (a),pS
1 (a),pSS

1 (a),pF
2 (a),pS

2 (a),pSS
2 (a), . . . , pF

q (a),pS
q (a),pSS

q (a)
〉
,

where each pF
i (a) is a segment consisting of fast transmission edges (i.e., edges

leading from parent(v) to v of rank(parent(v),2) = rank(v,2)), each pS
i (a) is an

edge (u,w) where u is a node on layer Lk for some k, w is a node on layer Lk+1 and
rank(u,2) > rank(w,2) and rank(u, x) = rank(w,x). We refer to such edges (u,w)

as slow transmission edges. Further, each pSS
i (a) is an edge (y, z) where y is a node

on layer Lk for some k and z is a node on layer Lk+1 and rank(y,2) > rank(z,2)

and rank(y, x) > rank(z, x). We refer to such edges (y, z) as super-slow transmission
edges (see Fig. 5 for an example). (Note that some of the segments pF

i (a), pS
i (a) and

pSS
i (a) may be empty.)

The progress of the message can be viewed as traversing the path p(a) by alter-
nating (flipping) among chains pF

i (a) of fast transmission edges, slow transmission
steps over edges pS

i (a) and super-slow transmission edges pSS
i (a).
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Next we describe the schedule governing these transmissions. During the broad-
casting process the nodes in the tree use the following pattern of transmissions.

Consider a node v with 1 ≤ rank(v,2) ≤ r
[2]
max on BFS layer Li with a child w

of the same rank at the next BFS layer. Then v can perform a fast transmission to
w in a time step t satisfying t ≡ i + 9j mod 9r

[2]
max, where j = rank(v,2). The slow

transmissions at the BFS layer Li are performed in the time steps t satisfying t ≡
i + 3 mod 9. The super-slow transmissions at the BFS layer Li are performed in the
time steps t satisfying t ≡ i + 6 mod 9. This way, the fast, the slow and the super-
slow transmissions at any BFS layer are separated by three units of time. Thus, there
are no collisions between the fast, the slow and super-slow transmissions at the same
BFS layer. Moreover, there cannot be conflicts between transmissions coming from
different BFS layers either. In fact, at any time step, transmissions are performed on
BFS layers at distances that are multiples of 3 apart.

When the message arrives at the first node v of a fast segment pF
i (a) of the route

(with a particular rank), it might wait for as many as 9r
[2]
max = O(logn) time steps

before being transmitted to the next BFS layer. However, it will then be forwarded
through the fast segment pF

i (a) without further delays.
Once reaching the end node u of the fast segment pF

i (a), the message has to be
transmitted from some node on u’s BFS layer to the next node w on p(a), which
has rank(u,2) > rank(w,2) and rank(u, x) = rank(w,x), using a slow transmis-
sions mechanism. For slow transmissions, the algorithm uses the x transmissions
to progress distance one on p(a) due to the property of the SGST .

Once reaching the end node y of the slow segment pS
i (a), the message has to be

transmitted from some node on y’s BFS layer to the next node z on p(a), which has
rank(y,2) > rank(z,2) and rank(y, x) > rank(z, x), using a super-slow transmissions
mechanism. For super-slow transmissions, the algorithm uses the O(log2 n) trans-
mission Procedure CW proposed by Chlamtac and Weinstein in [3]. Procedure CW
allows to move uniform information from one partition of a bipartite graph of size n

(here, an entire BFS layer Lj of the tree) to the other (here, the next layer Lj+1) in
time O(log2 n). The super-slow transmission mechanism based on Procedure CW is
run repeatedly in a periodic manner at every BFS layer of the tree. In particular, at
any BFS layer, the steps of the super-slow transmission procedure CW are performed
in every 9th step of the broadcasting schedule.

Hence, suppose the broadcast message traversing towards any destination a in the
tree has reached a node y of BFS layer Lj on its path p(a), such that the next edge
(y, z) on the path is a super-slow transmission edge. It is possible that neither y nor
any other neighbour of z on BFS layer Lj participates in the current activation of
procedure CW on Lj (possibly because neither of those nodes had the message at
the last time the procedure was activated). Nevertheless, y will participate in the next
activation of procedure CW on BFS layer Lj , which will be started within at most
O(log2 n) time (namely, the time required for the current activation to terminate).
Moreover, it is guaranteed that by the time that the procedure CW terminates, z will
have the message (although it may get it from any of its neighbours in Lj , and not
necessarily directly from y). Hence this entire stage can be thought of as a super-
slow transmission operation on the edge (y, z), taking a total of at most O(log2 n)

time steps.



Algorithmica (2009) 54: 226–242 241

By virtue of the above observations we can bound the total time required for the
broadcast message to reach a leaf a as follows. Let Di , for 1 ≤ i ≤ r

[2]
max, denote

the length of pF (a), the ith fast segment of the route p(a) used by the broadcast
message that has reached a. Thus the time required to communicate a is bounded by
O(logn) + D1 + · · · + O(logn) + D

r
[2]
max

≤ D + O(log2 n) for the fast transmissions

plus r
[2]
max · O(x) = O(x logn) for the slow transmissions and logx n · O(log2 n) =

O(
log3 n
logx

) for the super-slow transmissions, yielding a total of D + O(x · logn +
log3 n
logx

). The following theorem summarizes our findings.

Theorem 6 There exists a deterministic polynomial time algorithm that constructs,
for any n node radio network of diameter D, a broadcasting schedule of length D +
O(x · logn + log3 n

logx
), where 2 ≤ x ≤ log2 n. In particular, by setting x = logn, we

obtain the bound D + O(
log3 n

log logn
).

4 Conclusion

We have proposed a new efficient (polynomial time) construction of a determin-
istic schedule that performs the gossiping task in radio networks in time O(D +

Δ logn
logΔ−log logn

). The solution is based on the new concept of a super-gathering span-
ning tree. The new gossiping schedule is almost optimal since there exists a radio
network topology, specifically a Δ-regular tree, in which the radio gossiping cannot
be completed in less than Ω(D + Δ logn

logΔ
) units of time.

We also showed how the structure of the SGST can be used to obtain a schedule for
completing the broadcasting task in a general known topology radio network in time

D + O(
log3 n

log logn
). The interest in this result rely on the coefficient one of the D terms.

Because of this, our suboptimal scheme compares favorably with the asymptotically
optimal O(D + log2 n) of [10], for instances with large D. The evident open problem
regarding broadcast is then whether there exists a deterministic broadcast schedule of
time D + O(log2 n) for every n-node graph G of diameter D.
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