Studienarbeit

Tuning Algorithms for
Hard Planar Graph
Problems

Frederic Dorn

Betreuer: Dipl.-Math. Jochen Alber

Dr. rer. nat. Rolf Niedermeier

Lehrstuhl Formale Sprachen/Theoretische Informatik
Wilhelm-Schickard-Institut fiir Informatik
Universitat Tiibingen

Contents

1

2

Introduction
Theory and Algorithms
Design and Use

Implementation Details

4.1 The LEDA library

4.2 Documentation Lo
421 phasel
4.2.2 phase IT

4.3 Difficulties, Workarounds, and Tuning

4.4 Lines of Code, Manyears

Experimental Results

5.1 Generating Random Graphs L.
5.2 Phase I[: Constructing Tree Decompositions
5.3 Phase II: Dynamic Programming on Tree Decompositions
5.4 Alternative Random Graphs

Heuristic Improvements

Conclusion

10
10
10
11
20
26
31

32
32
33
35
36

37

40

1 Introduction

Many problems of high practical significance turn out to be NP-hard, that is, we do not
know any efficient algorithms for them. But many well known NP-hard problems can be
stated with a parameter k, so that they have polynomial-time algorithms when £ is fixed.
(For example, given a graph, decide if it has a VERTEX COVER of size at most k.) Downey
and Fellows initiated a systematic complexity analysis of such problems [13]. They called
those parameterized problems that can be solved by an algorithm with running time
O(f(k)n*) (where « is a constant and n is the number of graph vertices) fized-parameter
tractable (FPT). The problems we study here are hard problems for planar graphs, that is,
graphs which can be drawn without edge crossings in the plane. For planar graphs, some
problems are in FPT which are not for general graphs (like DOMINATING SET) [13]. The
heart of the FPT algorithms presented in this paper is the idea of the treewidth of a graph.
The treewidth expresses, informally speaking, how “tree-like” a graph is. This paper is
focused on the implementation of such an algorithm using treewidth to solve hard planar
graph problems. Therefore, the algorithm is split into two proper phases. In the first phase
of the algorithm the treewidth is determined. With techniques as decomposing the graph
into layers and separating the graph into suitable chunks, an upper bound of O(\/%) for
the treewidth is obtained (where k is the size of the optimal solution for a given problem).
The treewidth occurs as a parameter in the running time. In the second phase the optimal
solution for VERTEX COVER or DOMINATING SET is determined with the help of dynamic
programming, which delivers the running time of the form O(cﬂno(l)) 1, 2, 4] (where ¢
is a constant and k the size of the optimal solution).

The underlying techniques are discussed in Section 2, where a pseudocode of the whole
algorithm is given. The contribution of this work is to report on the implementation of
these algorithms. Our aim is to make the usage of the corresponding software package
as convenient as possible. This software package, which we are developing, is written
in C++ and based on LEDA [15]. The usage and design is described in Section 3,
where an overview on the functionality of the software package is given. In Section 4,
all implemented C++-classes and procedures are documented, so this section is a kind
of manual on the software package. We also introduce several new algorithmic ideas
for the solution of problems not considered in the underlying theoretical papers. In
Section b5, first experimental studies on the practical behavior of these “c‘/E-algorithms”
are presented. The main message from our studies is that they behave much better than
could be expected from the theoretical worst case analysis given in [1, 2, 4]. In Section 6,
we discuss some possible improvements for future work, for example with regard to the
program code, so that our software package might turn into a useful tool for practical
applications.

2 Theory and Algorithms

Tree decompositions. The key notion of this work is that of a tree decomposition of
a graph. The basic idea behind is that many graph problems can be solved “easily” on
trees. Hence, intuitively speaking, it is appealing to try to detect tree-like structures in

tree decomposition of G

graph G {b,c,d}
{a,b,d} {b,d,e}
{d,e,h}

/' \

{e.gh} {hi}

{ef.g}

Figure 1: Tree decomposition X of a graph GG. The biggest bag of X has three vertices of G, so
the width of X is two. Moreover, the treewidth of GG is two, since G has several K3 as subgraphs.

graphs in order to attack hard graph problems. The notions of tree decomposition and
treewidth formalize how tree-like a graph is.

Definition 1 Let G = (V, E) be a graph. A tree decomposition of G is a pair X = ({X; |
i €1}, T), where each X; is a subset of V', called a bag, and T is a tree with the elements
of I as nodes. The following three properties must hold:

1. UiEIXi = V,'
2. for every edge {u,v} € E, there is an i € I such that {u,v} C X;;
3. foralli,3,k € I, if j lies on the path between i and k in T, then X; N X} C Xj.

The width tw(X) of X equals max{|X;| | ¢ € I} — 1. The treewidth tw(G) of G is the
minimum k such that G has a tree decomposition of width k.

See Fig. 1 for an example. For example, the treewidth of a tree is one: Just create one bag
at any tree vertex and put the tree vertex and its parent vertex inside the corresponding
bag. In contrast, the treewidth of a clique K,, of size n is n — 1, which can be proven by
induction.

The intuition for the algorithm is that hard graph problems like VERTEX COVER can
be solved in linear running time on trees. Using dynamic programming on the bags,
the combinatorial explosion of the running time is reduced to the size of the subgraphs,
induced by the bags of the tree decomposition. To solve a graph problem using tree
decompositions, one usually proceeds as follows:

phase I: find a tree decomposition of bounded width of the input graph,

phase II: solve the problem using dynamic programming on the tree decomposition
(see [9]).

VERTEX COVER of size k =6 DOMINATING SET of size k = 3

Figure 2: Examples for VERTEX COVER and DOMINATING SET. The vertices of the vertex
set and dominating set are highlighted grey in this picture. VERTEX COVER: Any edge has at
least one adjacent highlighted vertex. DOMINATING SET: Any vertex has at least one adjacent
highlighted vertex or is highlighted itself.

Fixed parameter algorithms on planar graphs. We study planar graphs, i.e., graphs
that can be drawn in the plane without edge crossings. Then, (G,¢) will denote a
plane graph, i.e., a planar graph G together with an embedding ¢ in the plane. In
recent work [2, 4], a framework was developed that describes the construction of tree
decomposition-based algorithms for a large class of NP-complete problems on planar
graphs. For the ease of presentation we focus on the problems VERTEX COVER and
DOMINATING SET on planar graphs.

VERTEX COVER. Given an undirected graph G = (V| E) and a positive integer k, find
a subset of at most k vertices V' C V such that each edge in F has at least one of its
endpoints in V.

DOMINATING SET. Given an undirected graph G = (V| E) and a positive integer k, find
a subset of at most k vertices V' C V such that every vertex of G either belongs to V'
or has a neighbor in V' (or both) (see Fig. 2 for an example for VERTEX COVER and
DOMINATING SET).

The goal was to obtain “efficient” fixed parameter algorithms that solve these prob-
lems optimally. Obviously, since these problems are NP-complete, we have to accept
exponential running times. It could be shown [2, 4], however, that for parameter k being
(an upper bound on) the size of the vertex cover or dominating set we search for, and
n being the number of graph vertices, the running time achievable by an algorithm that
executes the two phases mentioned above has a sublinear exponent in k.

Theorem 2 VERTEX COVER on planar graphs can be solved in time O(c}/En) and DOM-

O

VERTEX COVER k=6 outerplanarity r = 3 one separator of size 4

Figure 3: An example for the “Layerwise Separation Property”: |separator] = 4 < 3k =

V18 ~ 4.2.

INATING SET on planar graphs can be solved in time O(cﬁn), where ¢ = 223 and
Co = 212\/@. O

7

On the positive side, this means that “one only pays for what one gets,” i.e., the smaller
the set we are searching for, the faster we can find it. On the negative side, clearly,
the given worst case constants c; and cy are far from being practical. One of the main
motivations for this work is to get experimental insight into how far the worst case might
be from the average case.

In this section, the algorithm yielding Theorem 2 is shortly outlined. At the end of

this section, the whole algorithm is given in pseudocode. In the following, the theoretical
background is explained to make an understanding of the algorithm easier.
The algorithm (phase I). We give some theoretical background to explain the pseu-
docode of the algorithm. The pseudocode can be found at the end of this section. In [4],
a general methodology was developed how to, given planar graph problems such as VER-
TEX COVER or DOMINATING SET with parameter k, construct tree decompositions of
width O(v/k). To do this, one has to separate the graph in a particular, “layerwise” way.
The key to this is the so-called “Layerwise Separation Property,” which holds for many
graph problems (see [4] for details). Here, the term “layer” refers to the following graph
decomposition:

Definition 3 Let (G = (V, E), ¢) be a plane graph. The layer decomposition of (G, ¢) is
a disjoint partition of the vertex set V into sets Lq, ..., L, (called the layers), which are
recursively defined as follows:

o [is the set of vertices on the exterior face of G, and

e L, is the set of vertices on the exterior face of G[V — U;:ll Lj| fori=2,...r.

The (uniquely defined) number r of different layers is called the outerplanarity of (G, ¢),
denoted by out(G, ¢) =1 .

See Algorithm 1.1 in the pseudocode at the end of this section for the application of a
layer decomposition. See also the middle diagram of Fig. 3 for a graph of outerplanarity 3.
The term “separator” refers to the following definition:

7

Definition 4 Let (G = (V, E), ¢) be a graph. A subset S of the vertex set V is called a
separator of G, if the subgraph G\ S is disconnected.

We are searching for special separators. Therefore, the idea of “Layerwise Separation
Property” (LSP) for graph problems was introduced in [4]. One says, a parameterized
problem on planar graphs satisfies the LSP, if for each yes-instance (G, k) separators of
size at most O(vk) can be found “layerwisely”, so that the remaining residue graphs have
outerplanarity of at most O(v/k). More precisely, for each LSP-problem £ a constant s
(size-factor) and a constant w (width) have to be found, so that for (G, k) € L a separator

2
3

w layers (see the right diagram of Fig. 3 for an example). LSP is used in the algorithm
at Algorithm I.2.

After having separated the graph G layerwisely by separators Si,...,S, (each of size

bounded by O(v/k)) into its chunks Gy, .. ., G (each of outerplanarity O(v'k)) (Algorithm
L.3), one constructs tree decompositions X; for the graphs G;, 0 < i < £ using an algorithm
described in [2, 10] (Algorithm 1.3). Finally, the decompositions X; are “melted” into a
(global) tree decomposition for G (Algorithm 1.4).
The algorithm (phase II). It is common knowledge that, once given a tree decom-
position for a graph, many otherwise hard graph problems can be solved easily. More
precisely, for treewidth ¢ phase II can be done in time O(c’N), where N is the number
of bags of the tree decomposition and ¢ is some constant. In case of VERTEX COVER
(Algorithm I1.a), it is not hard to see that ¢ = 2. In case of DOMINATING SET (Algorithm
I1.b), however, this is more complicated. Telle and Proskurowski [17, 18] showed that
phase II can be done in time O(9°N), which was recently improved to O(4/N) [2, 6], a
significant improvement that some of the experiments in this paper owe their success.

of size 4/ %s - k occurs in graph G after every s - k layers. This separator takes at most

To complete this section, we give the pseudocode of the whole algorithm, solving the
graph problems VERTEX COVER and DOMINATING SET, respectively.

The algorithm.

phase I: determine the tree decomposition
input: plane graph (G = (V, E), ¢), parameter k, graph problem G
output: tree decomposition X = ({X; | i € I},T) of G

1. determine the layer decomposition £ = {Lq,...,L,} of (G, ¢) dependent on ¢
2. determine separators S = {S1,...,Sy} dependent on k and G

3. divide G by S into the subgraphs Gy, ..., Gy

4. for all subgraphs G; {

e determine layers of edges of G

e make a supergraph Gj by replacing all vertices v with degree more than
three by a path with (degree(v) — 2) many vertices 01,...,0¢

e create a spanning tree ST} in a layerwise fashion of Gj

e make a tree decomposition X; using ST}

e replace all “new” supergraph vertices © in the bags X; by the corresponding
“old” vertex

}

5. distribute S; on X;_1 and X; (for all j € {1,...,¢}); merge all X; to a global
tree decomposition X

phase IT a): solve VERTEX COVER using dynamic programming
input: tree decomposition X = ({X; | i € I'},T) with rooted tree T

output: an optimal VERTEX COVER VC

1. for all bags X; of X {
create a table Ty, with 21Xil rows and | X;i| + 1 columns; each entry, except the
entries of the last column, has the value 0 or 1; the entries of the last column
consist of the sum of the values of the first |X;| entries }

2. “bottom up:”

update T'x ..., with Tx for every child of a node parent in the tree; create

child

pointers Pparent, —>child,, ., any row r of T’y .. points at the corresponding
TOWS 71, ..., Tm of T'x .4
3. “top down:”

determine a row r in T, ,, with the minimum value of the last column and follow
. to determine V C beginning with parent = root

the pOinterS Pparentr—>childr1 ,,,,, r
phase II b): solve DOMINATING SET using dynamic programming
input: tree decomposition X = ({X; | ¢ € I},T) with rooted tree T

output: an optimal DOMINATING SET DS

1. determine a “nice” tree decomposition Xy

2. the remaining algorithm is analogous to phase II a), but with table T'x, with
31Xl rows, where each entry has the value 0y, 0y or 1

9

[3 <4 FPT=algorithms for planar graph problems |E||§||z|
Eille Edit Craph Layout Window Options Help done ‘
|
Current preblem: Planar Vertex Cover
I
Parameter Value: 400
|
NEW | SETTINGS | START ALGORITHM | QuIT | |
VERTEX COVER: 346 %5
Y ——— O e————— ")
AT LTI > i st
% By !} [-HSETTINGS [=EE
’ o ee
‘,.‘f_(G“i‘-:.\ Type of planar graph problem:
\ o " 3 Vertex Cover Indep. Dominating Set
QR oy T e
o ¥ o e GO/ Select one of the Independent Set | Total Dominating Set |
.‘. ol e fellowing algorithms: Face Cover |__ Perfect Dominating Set |
o ohe) 7,
.".‘ = ‘ frs Dominating Set | Perfect Code |
o
o= e te Mo & | Total Perfect Dominating Set |
o ot e
l:,.‘v 3 = e) .o Parameter value:
: TR K (1,2500) ; 400
.. [y o) 0
& o‘? e, o, Q|| Features for tree-decomposition:
"‘__. (Sys! l .g. o '. Show layer—decomposition [~ Show separators .
’.{ i"‘!. ;. S Show partial tree—decompesition _| Show global tree—decompesitien 7
- o
D e \' 5| Features for global algorithm:
Jo q :‘.i-.m... ’. Stors tablas in fils | Show result In araph =
-
"""f - o o i & continue quit
e Fo P
b &0 A S TS S R 0
pewered by LEDA
name: graph202vc_layout nodes: 744 edges: 340 undo: 0/0 -10.89 228.61
e i

Figure 4: Software package for planar graph problems.

3 Design and Use

Using the C++ library LEDA (Library of Efficient Data structures and Algorithms) [15]
we have implemented a software package which is designed to solve some NP-hard prob-
lems on planar graphs optimally. More precisely, this package offers algorithms for param-
eterized graph problems that fit into the framework of [2, 4], i.e., that have the so-called
“Layerwise Separation Property.” These include the graph problems shown on the panel
of the screenshot in Fig. 4. So far, only VERTEX COVER, INDEPENDENT SET, and
DOMINATING SET are implemented. The usage of the package is very easy. We provide
an application with buttons for various functions and a window for the graph drawing.
The planar input graph can be drawn either directly or can be loaded to the program
in GraphWin gw-format. The graph should be simple and without selfloops. Since the
graphs of the considered graph problems have undirected edges, all edges are treated as
if they were undirected (the default representation of an edge in LEDA is directed). The
choice of the plane embedding is free, but different embeddings could result in different
layer decompositions and, hence, different tree decompositions with different widths (see
Fig. 7 in Section 4.3 for an example).

It is also important to choose a crossing-free embedding, because otherwise, the upper
bound on treewidth is not guaranteed any more (see Fig. 9 in Section 4.3 for an example).
The button SETTINGS in the main window opens a panel for the various settings of the
algorithm. The user selects the type of problem that (s)he wants to solve and chooses the
parameter value k (i.e., the size of the desired vertex cover, independent set, dominating
set, etc. the algorithm is checking for). The current type of problem and the current

10

value of k are displayed in the main window. Besides, some extra optional features of the
output can be adjusted. If Show layer decomposition is chosen, during the algorithm, a
window will be opened, which shows the layers of the graph. All vertices of the same layer
will have the same color. By choosing Show separators, a window with the graph will be
opened, too. It shows the separator vertices with a red color. The separated subgraphs
appear black and white alternatingly. For these subgraphs the algorithm will generate
partial tree decompositions. These partial tree decompositions will be put out in various
windows when selecting Show partial tree decompositions. Show global tree decomposition
puts out the global tree decomposition in an extra window. Each window, which contains
a tree decomposition, displays the underlying tree with marked vertices. The correspond-
ing bags are listed in a scrollbar in the window. With Store tables in file the user can
determine a file to store the tables of the dynamic programming in ASCII format. By
choosing Show result in graph, the vertices, which offer an optimal solution for the chosen
type of problem, are highlightened in the graph in the main window. The button START
ALGORITHM in the main window runs the algorithm with the chosen settings. The
algorithm solves the problem, i.e., it puts out that there is no optimal solution of size at
the most k (for minimization problems) or it computes an optimal solution. NEW closes
all other windows, so the user can run another algorithm on the graph.

4 Implementation Details

4.1 The LEDA library

LEDA [15] is a library of efficient data types and algorithms and a platform for com-
binatorial and geometric computing on which application programs can be built. It is
written in C++ and (especially) contains many pre-implemented graph algorithms, like
MAXIMUM FLOW or SPANNING TREE, which were used in our software package. LEDA
provides also a class graph, which owns vertices (there called nodes) and edges. The
class graph has a lot of very useful procedures, like graph iterators. Furthermore, LEDA
contains the class GraphWin, which combines the datatypes graph and window. A window
is an application, where an object of graph can be drawn. An object of type GraphWin
is a window, a graph, and a drawing of the graph, all at once. In the following docu-
mentation of our software package, LEDA datatypes and procedures are written in bold
face. For further details on the data types like graph, node map, map, node partition,
consult [16].

4.2 Documentation

Here, we give a detailed documentation on the implementation and the use of the datatypes
and procedures of our software package. The program is divided into two main parts:

e phase I: determine the tree decomposition

e phase II: solve a given graph problem G with a given tree decomposition

11

With all procedures used for phase I an object T'D of the class tree_decomposition
is generated. This class owns an object T' of the class graph (which represents a tree)
and an object bag of the class node map<list<node> > (which represents the bags of T'D).

In phase II, the dynamic programming part is executed on T'D. We give a documen-
tation for the VERTEX COVER and DOMINATING SET problem.

The two phases are illustrated by process charts, depicted in Fig. 5 and Fig. 6.

4.2.1 phasel

1. void layer_decomposition(GraphWin& gw)

DEFINITION: creates a layer decomposition of the underlying graph G of gw.

INPUT:

- GraphWin gw with a plane graph G.

OQUTPUT:

- the global variables node map<int> level (saving the layers of the nodes) and
- list<list<node> > layer_list.

ALGORITHM:
e copy gw to GraphWin GW;
e create empty layer list list<list<node> > layer_list = (L1,..., L,);
e run “Space Invaders” algorithm on the underlying graph H of GW (starting
with ¢ = 1):

while H is not empty {

}

for all nodes n of H: find node n,,;, with minimum x-coordinate min_xcoord;
generate “Invader” node n; at (min_zcoord —1,0);

generate edge € = (17, Nnin);

sort the adjacency lists L 445, of any node n in counter clockwise order with
SORT_EDGES (H ,xcoords of all nodes,ycoords of all nodes);
“walk” on the outer face using the sorted adjacency lists to determine the
first layer:

start at ny, go to n,,,, search in L Adjn, . for the next node in counter
clockwise order;

go to this node and repeat last step until arriving at n; again;

put all visited nodes into a layer list <list<node> > L;, add L; to layer
and delete them from H,;

1+ +;

2. void separator (GraphWin& gw)

12

PHASE 1

Ooulput, input < INPUT »

optional output A 4
[graph G, GraphWin gw]

:procedure call
A 4
I 4.2.1.1. layer decomposition I'- == -) OUTPUT
class instances
\ 4

4.2.1.2 separator -) OUTPUT

for all subgraphs

4.2.1.3. tree decomposition |): 4.2.1.3.(a) layer edge I
I I 4.2.1.3.(b) degree less four I

4.2.1.3.(f) TD sub::reduce ¢

I 4.2.1.3.(c) span tree I

2

I 4.2.1.3.(d) make direct I

Y

I 4.2.1.3.(e) init tree decomposition I

@ [partial tree decomposition TD sub]

e,
S
“

4

OUTPUT

[global tree decomposition TD]

Figure 5: Process chart for phase I: The rectangular boxes correspond to the various
procedure calls, numbered after the various paragraphs in this section. The boxes
with round corners correspond to the generated class instances. For each subgraph
tree_decomposition calls a loop of subprocedures.

13

PHASE II

O output, input
INPUT
optional output

A

procedure call
tree decomposition TD, graph G

VERTEX COVER
4.2.2.2.1. make nice I
Y

I 4.2.2.1.1. two coloring I 4.2.2.2.2. three coloring I
y A 4
I 4.2.2.1.2. compare tables VC I I 4.2.2.2.3. compare tables DS I

4.2.2.1.3. vertex list I I 4.2.2.1.4. vertex cover I 4.2.2.2.4. dominating list I I 4.2.2.2.5. dominating set

n :

n n
bag tables § vertex cover set bag tables 1 dominating set

" L]

\4) 4 v

OUTPUT OUTPUT OUTPUT @

Figure 6: Process chart for phase II: The rectangular boxes correspond to the various
procedure calls, numbered after the various paragraphs in this section. The boxes with
round corners correspond to the generated class instances.

14

DEFINITION: determines “layerwise separation” of (G, which depends on the pa-
rameter value parameter and the considered graph problem.
INPUT:

- the global variables int parameter ,
- int width ,
- int size_factor (see [4] for details).

OQUTPUT:

- a global variable separator list list<list<node> > separator_list of size /,
which divides G layerwisely into ¢ + 1 subgraphs;

- the guarantee is that ¢ € O(y/parameter) and that all subgraphs have outerpla-
narity O(y/parameter) (see Section 2 for details on the “Layerwise Separation
Property”).

ALGORITHM:

e int size = \/g size_factor - parameter

int maz_layer = \/§ size_factor - parameter,

e create empty separator list 1ist<list<node> > separator_list = (S1,...,5);
e for all subgraphs G_layer induced by the nodes of the layers L;,...,L;;; of
layer_list with | layer_list |= r where j —i = width and i € {1,...,r — j} {

- if max_layer = 0 print: “No solution for k = parameter”;

- generate a source node s and a target node {;

- connect s to all nodes of L;, which have an edge to nodes of L; ; in G;

- connect ¢ to all nodes of L;;, which have an edge to nodes of L;; ;41 in
G;

- use s and ¢ in MAX_FLOW to determine separator list 1ist<node> sep;

- if | sep |< size
then add sep to separator_list and put max_layer to its original value
else mazx_layer— —;

}

3. void tree_decomposition(GraphWin& gw)

DEFINITION: creates a tree decomposition for all subgraphs Gy, ..., Gy generated
by the graph separators and melts them into a global tree decomposition of the
original plane graph.

INPUT:

- a global variable separator list 1ist<list<node> > separator_list.
OUTPUT:

- a global variable tree_decomposition 7'D.

15

ALGORITHM:

e for all subgraphs G_sub of the original graph that are obtained by a separation
according to separator_list {

a) void layer_edge(GraphWin& gw_sub)
y g p
DEFINITION: determines all edge layers of G, (j =1,...,1).
INPUT:

- subgraph G_sub and
- its GraphWin gw_sub.

OUTPUT:

- the global variables edge map<int> level_edge (storing the layer of the
edges),

- the edge layer list 1ist<list<edge> > layer_edge_list and

- the node map<edge, edge> in_ccw_out saving for all nodes two adjacent
edges.

ALGORITHM:

copy gw-sub to GraphWin G'W_sub;

create empty edge layer list List<list<edge> > layer_edge_list= (L1, ..., L,);
create node_map<edge, edge> in_ccw_out

run “Space Invaders” algorithm on the underlying graph H_sub of

G W_sub:
while H_sub is not empty {

- for all nodes n of H_sub: find node n,,;, with minimum x-coordinate
min_xcoord,

- generate “Invader” node n; at (min_zcoord — 1,0);

- generate edge e = (N, Nyin);

- sort the adjacency lists L 445, of any node n in counter clockwise or-
der with SORT_EDGES(H_sub,xcoords of all nodes,ycoords of
all nodes);

- “walk” on the outer face using the sorted adjacency lists to determine
the first edge layer:
start at ny, go to n,,;, search in L Adjn, . for the next node in counter
clockwise order;
go to this node and repeat last step until arriving at n; again; but
always add the incoming and the outcoming edges on which this
node is visited to this nodes in_ccw_out;

- throw all visited edges into the edge layer list L;, add L; to layer_edge_list
and delete these edges and the isolated nodes from H_sub;

}

(b) void degree_less_four (GraphWin& gw_sub)
DEFINITION: replaces all nodes with degree more than three by paths of
nodes with degree less than four while maintaining the node layer. The

16

resulting graph is the “supergraph” éj.
INPUT:

- subgraph G_sub,

- its GraphWin gw_sub and

- the global variable node map<edge, edge> in_ccw_out.
OUTPUT:

- the global variable node map<node> remember_node and
- G_sub, which is now a supergraph with degree(n)< 4 for all n of G_sub.
ALGORITHM:

e sort the adjacency lists L 445, of any node n in counter clockwise order
with SORT_EDGES (G_sub,xcoords of all nodes,ycoords of all nodes);
e create node map<node> remember_node and initialize it for all nodes n
of G_sub with themselves;
e for all nodes n of G_sub {
- if degree(n) > 3 {
- generate degree(n)—2 many nodes nq, ..., n;
- move the first edge (n,u) of in_ccw_out to (n1,u) and the next edge
(n,v) of (n,u) in Lag, to (n1,v);
- the remember_node of nq is n;
- for all nodes n;, wherei € {1,...,k—1} {
- generate edge (n;,n;1);
- move the next edge (n,v;) in Lagj, to (nit1,v;);
- the remember_node of n;.; is n;

}

- move the second edge (n,w) of in_ccw_out to (ng, w);
- delete n;

}

(c) void span_tree(GraphWin& gw_sub)
DEFINITION: produces a spanning tree ST} of G'j, which is generated
layerwisely;
INPUT:
- supergraph G_sub,
- its GraphWin gw_sub,
- the global variables edge map<int> level_edge and
- list<list<edge> > layer_edge_list.
OUTPUT:

- a global variable list<edge> ST, which is a spanning tree of G_sub.
ALGORITHM:

e create edge map<edge> cost with cost = oo for all edges e of G_sub;
e int maz_layer = max{level_edge(e) | e € E(G_sub)};

17

copy G_sub to graph H;

for all edges e of H { if level_edge(e) # maz_layer then delete e };
list<edge> ST = SPANNING TREE(H);

for all edge layers L; of layer_edge_list (from maz_layer to 0) {
- copy G_sub to graph H;
- for all edges e of H {

- if e € ST then cost(e) = 0;

- if level_edge(e) < maz_layer — 1 then delete e from H;
- maz_layer— —;

}

- ST = MIN_SPANNING TREE(H ,cost);

}

(d) void make direct(GraphWin& gw_sub)

DEFINITION: determines a root of ST; and makes ST} directed from the
root to the leaves.
INPUT:
- supergraph G_sub,
- its GraphWin gw_sub, and
- its spanning tree list<edge> ST
OUTPUT:

- the top-down directed spanning tree list<edge> ST of G_sub.
ALGORITHM:

e determine a root node 7., which is in the inner layer of G_sub;
e go through ST and flip the direction of the edges from n,,,; towards
the leaves;

void init _tree decomposition(GraphWin& gw_sub)
DEFINITION: makes a tree decomposition T'D; out of STj. Therefore an
object T'D_sub of the tree_decomposition class is generated. This object
contains a graph 7'D_sub.T and a node map<list<node> > bag.
INPUT:

- supergraph G_sub,

- its GraphWin gw_sub,

- its top-down directed spanning tree list<edge> ST', and

- its node_map<node> remember_node.
OUTPUT:

- the global variables tree_decomposition 7T'D_sub with
- its graph T'D_sub.T and
- its node map<list<node> > bag.

ALGORITHM:

e initialize an object tree_decomposition 7'D_sub with T'D_sub.init (ST")

18

e copy ST to the graph TD_sub. T
e initialize node map<list<node> > bag of any node v of T'D_sub.T;,
e for all nodes n of G_sub {

- add n to the bag(v,) of TD_sub.T;

}
e for all edges (u,w) of ST {

- delete (u,w) from TD_sub.T;
- generate path (u,z,w) with a new node z in T'D_sub. T;
- bag(x) = bag(u)V bag(w);
}
e for all edges (I,m) of G_sub \ST {

- add [to any bag on the path between v; and v,,. This path is
determined by Tarjan’s least common ancestor algorithm (see 77 for
details);

}

e for all nodes v of TD_sub.T {

- replace all nodes n of bag(v) by remember_node(n);

}

(f) TD_sub.reduce()
DEFINITION: is asubroutine of the class tree decomposition. It reduces
the size of T'D; by combining two neighboring bags, whenever one bag
appears to be a subset of the other.
INPUT:

- tree_decomposition T'D_sub,
- its graph TD_sub.T, and
- its node map<list<node> > bag.

OUTPUT:
- the reduced tree_decomposition 7'D_sub.
ALGORITHM:
e for all nodes v of TD_sub.T {
- set list<node> Ly, = adjacent nodes of v;
- while Ly, is not empty {
- delete first node n; from Ly(y);

- if bag(n;) C bag(v) then delete n; from T'D_sub. T, add all neighbors
of n; to Ly, and connect them to v in TD_sub.T;

}

}
} (End of for all G_sub)

19

e add all S; from separator_list = (Sy,...,S;) to all bags of the tree decomposi-
tions of the subgraphs, which S; had divided;

e connect all T'D_subs to one global tree_decomposition 7'D by generating an
edge between the roots of two following T'D_subs (TD_subs are ordered in the
way the G_subs has been separated);

20

4.2.2 phase II

4.2.2.1 VERTEX COVER

For determining an optimal VERTEX COVER, the program runs through the follow-
ing procedures, which are subroutines of the class tree decomposition. We also need
the definition of color: Each bag will have a bag_table, where each node u of bag has a
corresponding column. To minimize memory requirement bag-table is implemented as a
list<two_tuple<int,int> >. Int color is defined by the bit representation of the first
entries i of the two_tuples in bag_table: if u stands at position j in bag then color(u) is
the bit at position j in .

1. TD.two_coloring()

DEFINITION: creates one table (corresponding to the bags bag; in T'D of size
treewidth + 1) with two “colors” for each node n in bag; of size 2/°29! for all possible
0,1-permutations of length |bag;|.

INPUT:

- tree_decomposition 7D,

its graph TD.T,

its node map<list<node> > bag, and
- its treewidth tw of type int.

OUTPUT:

- a global variable 1ist<two_tuple<int,int> > biggest_table, representing the
bag tables of the bags of size tw + 1.

ALGORITHM:

e int 1 = 0;
e create empty list<two_tuple<int,int> > biggest_table;
e while ¢ < 2/ +1{

- add (i,min_i) to biggest_table, where min_iis the sum of 1 bits in the binary
representation of i;
-1+ +
}

2. TD.compare_tables VC()

DEFINITION: the main procedure in this part: it compares the tables in T'D in a
“bottom up” way.
INPUT:

- the global variable 1ist<two_tuple<int,int> > biggest_table,
- tree_decomposition 7TD.

OUTPUT:

21

- the global variables node map<list<two_tuple<int,int> > > bag_table, rep-
resenting the bag tables of all bags, and

- node map<list<three tuple<int,node,list<int> > > > bag_pointer of the
form {(row r of the corresponding bag_table, child node n in T'D.T, rows
r1,...,7¢ in the bag_table of n)}.

ALGORITHM:

e initialize bag_table and bag_pointer on T'D;
e for all nodes v of T'D.T' from the leaves to the root{

- if bag_table[v] not created{

- bag_table[v] = the first 2/°@) rows of biggest_table;
- for all pairs of nodes {u,w} of bag|v] {

- if there is no edge between u and w then delete all rows of bag_table[v],
where the color of u and w are 0;

}
}

- if bag_table[parent(n)] not created then repeat last part for the parent node
parent(n);

- sort bag_table[parent(n)] and bag-tableln] with bucket_sort (see 7?7 for
details);

- for all rows (int) r in bag_table[parent(n)] {

- determine the minimum min of the min_i of the corresponding i rows
in bag_table[n] (where (i,min_i) are the two_tuples of bag_table[n]);
- replace min_r by min_r + min — sum of the colors of equal bag nodes;
- add (r,n,list of all i with value min in bag_table[n]) to bag_pointer{parent(n)];

}
}
3. TD.vertex list(bool file_save, file dir_file)
DEFINITION: saves (if wanted) all tables in a file.
INPUT:

- the global variables node map<list<two_tuple<int,int> > > bag_table,
- node map<list<three tuple<int,node,list<int> > > > bag_pointer, and
- the complete path for the file to save.

OUTPUT:
- ASCII file with all bag_tables and bag_pointers.

4. TD .vertex_cover()

DEFINITION: determines an optimal VERTEX COVER by evaluating the tables
“top down” in T'D.
INPUT:

22

- the global variables node map<list<two_tuple<int,int> > > bag_table and
- node map<list<three tuple<int,node,list<int> > > > bag_pointer.

OUTPUT:

- int wve_min, which is the size of the optimal VERTEX COVER and
- list<node> vc_list, the nodes of an optimal VERTEX COVER.

ALGORITHM:

e create an emtpy list<node> wvc_list;
e determine a row r of bag_table[root] with minimal min_r;

® UC_MIN = MIN_T;

e add all nodes u of bag[root] with color(u) = 1 in r to vc_list;
e from n =root to the leaves in B(readth) F(irst) S(earch) {

- for all rows ry, of bag_pointer[n], where ry.first()== r{
- go to child node m = ry.second();

- choose randomly one row 1, of ry.third() and set r = ry;
- add all nodes u of bag[m| with color(u) =1 in r to ve_list;

}

4.2.2.2 DOMINATING SET

For determining an optimal DOMINATING SET, the program runs through the following
procedures, which are also subroutines of the class tree decomposition. We also need
a redefinition of color: Each bag will have a bag_table, where each node u of bag has a
corresponding column. To minimize memory requirement bag_table is implemented as a
list<two_tuple<int,int> >. Int color is defined by the bit representation of the first
entries ¢ of the two_tuples in bag_table:

if u stands at position j in bag then :

- color(u) = 0 , if the bit at the j—th odd position is 0 and the bit at the j—th even
position is 0;

- color(u) =1, if the bit at the j—th odd position is 0 and the bit at the j—th even
position is 1;

- color(u) = 2 , if the bit at the j—th odd position is 1 and the bit at the j—th even
position is 1.

1. T'D .make nice()

DEFINITION: transforms 7D into a “nice” tree decomposition T'D y.
INPUT:

- tree_decomposition 7D,

23

- its graph TD.T, and
- its node map<list<node> > bag.

OQUTPUT:

- a global variable tree_decomposition 7D, which is now a “nice” tree decom-
position.

ALGORITHM:

e for all nodes n of TD.T{
- if outdegree(n) > 1{
- create 2| children of n| —2 copies (i1, ...,n,) of n (and copy the bags
also);
- make a complete binary tree bt out of {n,n4,...,n,} (with root n);
- connect each child of n in T'D.T to one leaf of bt;
}
}
e for all nodes n of TD.T{
- if outdegree(n) == 1{
- while (|bag[n] |> 0 and bag[n] # bag[n] N bag[child(n)]) {
- node u = first node of bag[n] — (bag[n] N bag[child(n)]);
- delete edge (n,child(n));
- create new node m with baglm| = bagln| \ v;

- create new edges (n,u) and (u,child(n));
- set n = w and child(n) = child(u);

- while (|bag[n] |<|bag[child(n)] |) {
- node u = first node of bag[child(n)] — bag[child(n)] N bag[n];
- delete edge (n,child(n));
- create new node m with baglm] = bagln| U u;
- create new edges (n,u) and (u,child(n));
- set n = u and child(n) = child(u);

}

. TD .three _coloring()

DEFINITION: creates the tables (corresponding to the bags bag; in T'D) with three
“colors” for each node n in bag; of size 329! for all possible 0,1,2-permutations of
length |bag;|, where these tables differ a little bit in being generated dependent on
the kind of nodes (INSERT, FORGET, JOIN (see [2] for details)) .

INPUT:

- “nice” tree_decomposition 7D,

24

- its graph TD.T,
- its node map<list<node> > bag, and
- its treewidth int tw.

OQUTPUT:

- a global variable 1ist<two_tuple<int,int> > bag_table, representing the bag
tables of the bags.

ALGORITHM:

e initialize bag_table on T'D;
e for all nodes n of TD.T{
- if bag-table[n] not created{
- int 1 = 0;
- while 7 < 4lbasnll{

- add (i,min_i) to bag_table, if in the binary representation of i there
is no 1 bit at an odd position followed by a 0 bit.min_i is the sum
of the 1 bits in the binary representation of ¢, which are at the odd
position;

-1+

}

- for all nodes u of bag[n] and wuy,...,u, (:= neighbors of u N bag[n]) {

- delete all rows of bag_table[n], where the color of u is 0 and all colors
of uy,...,u; are not 1

}

- if n is a FORGET node and u is the “to forget node” in bag[n| then
delete all rows of bag_table[n] where color(u) is 2;

}
}

e delete all rows of bag_table[root], which contain the color 2;

3. T'D.compare_tables DS()

DEFINITION: the main procedure in this part: it compares the tables “bottom up”
inTD.
INPUT:

- the global variable 1ist<two_tuple<int,int> > bag_table,
- tree_decomposition 7TD.

OUTPUT:

- the global variables node map<list<two_tuple<int,int> > > bag_table, rep-
resenting the bag tables of all bags, and

25

- node map<list<three_tuple<int,node,list<int> > > > bag_pointer of the
form {(row r of the corresponding bag_table, child node n in T'D.T, rows
1,...,7¢ in the bag_table of n)}.

ALGORITHM:

e initialize bag_pointer on T D;
e for all nodes n of TD.T from the leaves to the root{
- if parent(n) is an INSERT node or a FORGET node{
- sort bag_table[parent(n)] and bag_table[n] with bucket _sort (see 77 for
details);
- for all rows (int) r in bag_table[parent(n)] {
- determine the minimum min of the min_i of the corresponding ¢
rows in bag_table[n] (a little bit different for INSERT nodes, see next
subsection);

- replace min_r by min_r + min — sum of the colors of equal bag nodes
(color 2 counts 0);

- add (r,n,list of all i with value min) to bag_pointer{parent(n)];

}
}

- if parent(n) is a JOIN node{
- for all rows (int) r in bag_table[parent(n)] {

- the minimum min is the sum of the min_i of the corresponding
row ¢ in bag_table[n] and the min_j of the corresponding row j in
bag_table[m] (where m is the other child of parent(n)). If the node u
in bag[parent(n)] has the color 0 at position k then color(u) has to
be 0 and 2 (or 2 and 0) at position & in ¢ and j;

- replace min_r by min — sum of the colors of equal bag nodes (color
2 counts 0);

- add (r,n,list of all i with value min) to bag_pointer{parent(n)];

}
}

4. TD .dominating list(bool file_save, file dir_file)

DEFINITION: saves (if wanted) all tables in a file.
INPUT:

- the global variables node map<list<two_tuple<int,int> > > bag_table,
- node map<list<three tuple<int,node,list<int> > > > bag_pointer, and
- the complete path for the file to save.

OUTPUT:

- ASCII file with all bag_tables and bag_pointers.

26

5. T'D.dominating set ()

DEFINITION: determines an optimal DOMINATING SET by evaluating the tables
“top down” in T'D.
INPUT:

- the global variables node map<list<two_tuple<int,int> > > bag_table and
- node map<list<three tuple<int,node,list<int> > > > bag_pointer.

OQUTPUT:

- int ds_min, which is the size of the optimal DOMINATING SET and
- list<node> ds_list, the nodes of an optimal DOMINATING SET.

ALGORITHM:

create an emtpy list<node> ds_list;

determine a row r of bag_table[root] with minimal min_r;
ds_-min = min_r;

add all nodes u of bag[root] with color(u) = 1 in r to ds_list;
from n =root to the leaves in BFS {

- for all rows ry, of bag_pointer[n], where ry.first()== r{

- go to child node m = ry.second();
- choose randomly one row 7, of r,.third() and set r = ry;
- add all nodes u of bag[m| with color(u) =1 in r to ds_list;

}

4.3 Difficulties, Workarounds, and Tuning

Although the LEDA package has made many things much easier, the implementation
work was fairly challenging, needing several new algorithmic ideas for solving problems
not considered in the underlying theoretical papers.

Space Invaders. The problem of determining the layers of a given embedding was
one of the problems that had to be dealt with: Note that the number of layers depends
heavily on the given embedding (see Fig. 7 for an example). An easy routine to determine
the layers of a plane graph would make use of the faces of this embedding. Since there
is no implemented function in LEDA to determine the faces of a graph corresponding
to a given embedding, we had to develop our own solution for determining the layers.
The algorithm, which determines the layers of a given embedding is the so-called “Space
Invaders” algorithm, used in the procedures layer decomposition and layer edge:
Since this algorithm makes use of the geometric property of the given graph embed-
ding, a cartesian coordinate system is introduced with the graph at the first quadrant.
An “Invader” vertex is created at point (0,0). The “Invader” vertex is connected with
the vertex v of the graph with the minimum z-coordinate. Start a walk at v to the next

27

Figure 7: The same graph with two different plane embeddings. The outerplanarity of
the left embedding is 2, whereas the right one has outerplanarity 1.

Figure 8: Replacing the vertex v by a path of vertices v/, v”,v"” with degree less than four.

28

adjacent vertex in the adjacency list of v in counter clockwise order. Now the outer face
(especially the first layer) is determined by walking on the path (cycle) to the “Invader”
vertex. After having removed the first layer from the graph, in this manner, the same
procedure is repeated on the remaining graph in order to inductively get all layers.*

Replacing high-degree vertices by paths. Since the algorithm guarantees a bounded
treewidth only for graphs with vertices of degree less than four, graph vertices of degree
more than three have to be replaced by paths of vertices of at most degree three (in the
procedure degree less_four, see Fig. 8). This also caused some small difficulties:

First, it is important that a planar graph is given together with a plane embedding.
Otherwise, i.e., running the procedure degree less _four on a non-planar embedding,
it could happen that the resulting supergraph is not planar anymore (see Fig. 9 for an
example). In this case no upper bound for the width of the tree decomposition of the
graph can be guaranteed.

A second problem to solve was that the new vertices had to be in the same layer as
the replaced vertices. So it is important to which direction the new path is “opened”.
Therefore it is not sufficient to only know the layers of the adjacent vertices or/and of
the adjacent edges (see Fig. 10 and Fig. 11: Two examples, which show the possible
consequences of focussing exclusively on the layers of the adjacent vertices or edges).

A way of avoiding this problem is to take two edges adjacent to the vertex in question,
which are at the same time adjacent to the face closest to the outer face. These two edges
can be determined when running the procedure layer_edge. On the walk along the outer
face, as described above, in_ccw_out always stores the incoming and the outgoing edges
of any vertex. If one vertex is turned into a path of vertices each of degree less than four,
then the two edges of in_ccw_out make up the first and the last edges of this path. This
guarantees that the new vertices are in the same layers as the replaced ones (see Fig. 12
and Fig. 13: The vertices in these examples are augmented to paths in a right way).

Minimize memory requirement. In phase II of the algorithm, we worked out a
bit-level representation of the vertex colors to avoid a waste of memory. In this bit repre-
sentation, there are not n table entries per row with values 0 or 1. Instead, these n table
entries are treated as if they were the binary representation of one integer. We use only
one integer per row of the table. Note that 32 bits are sufficient. This means, that the
table could have 232 entries.

This representation fits exactly for VERTEX COVER or INDEPENDENT SET, where only
two colors are needed, but for DOMINATING SET, where we need three colors, a “trinary”
representation is needed. So, we masked out two bits for one color, which means that
the tables got nearly twice as big. The redundant “fourth” color we used to make the
comparisons in compare_tables DS() more time efficient. For example, consider the IN-
SERT NODE comparison (see [2], p.11): The color “0” in a table entry of the parent
bag is compared either to the color “0” or “2” in the corresponding table entries of the

I The animated version of this algorithm explains the name : the “Invader” vertex moving at one side,
“shooting” edges to the graph, which “destroy” vertices, calls to mind the “Space Invaders” arcade game
of the 80’s.

29

planar graph G supergraph is a K3,3

Figure 9: A planar graph turns into a nonplanar graph, after replacing the grey vertex
by a path of vertices with degree less than four.

b”

[1

Figure 10: This is an example to illustrate why it is not sufficient to only know the layers
of the adjacent vertices. All vertices are in the same layer. But vertex a is replaced by a
path of the vertices a’ and a”, where a” is not in the same layer any more.

30

Figure 11: Here is an example for only taking into account the layers of the adjacent
edges. The vertices a” and a” of the new path are not in the same layer any more.

Figure 12: Compare with Fig. 10: The directed edges are the edges stored in in_ccw_out.
Vertex a is replaced by a path of the vertices a’ and a”, which now are in the same layer
as a. Note that the paths are generated between the edges of in_ccw_out.

31

Figure 13: Compare with Fig. 11: The directed edges are the edges stored in in_ccw_out.
Vertex a is replaced by a path of the vertices a’, a”, o/, and ", which now are in the
same layer as a.

child bag — to which color it is compared depends on the other colors in this table entry of
the parent bag. To avoid a loss of time, caused by checking the colors of the same entry,
we act as follows: We temporarily exchange these “0”s, which are compared to “2”, by
the “fourth” color.

Save running time. In compare tables VC() (and compare tables DS()) it is very
important to take care of the running time when comparing the tables. Whenever two
tables are updated, all rows are allowed to be visited only O(1) often. This means that
not every row of the one table can be updated with every row of the other. That is why
the tables are sorted. Determine the intersection of the underlying bags. Then the rows
are sorted as follows: The bits, that belong to the vertices of the intersection, are masked
out. Then the tables are sorted after these bits. Now both tables can be compared by
going only once through them.

4.4 Lines of Code, Manyears

So far, the complete software package has been implemented within nine months, of
80h work each month, producing around 5000 lines of C++ code based on the LEDA
package [15] ((non-commercial) version 4.2). The underlying machine is a conventional
750 MHz LINUX PC with 720 MB main memory. The implementation still has to be
called a prototype—mnumerous future fine-tuning improvements are foreseeable.

32

| sample set | PG100 | PG500 | PG750 [PG1000 | PG1500 | PG2000 | PG3000 | PG4000 |
size of sample 100 100 100 100 100 50 50 20
vertices 100 500 750 1000 1500 2000 3000 4000
edges 201.5 974.6 1483.7 1978.9 2992.0 4016.8 | 5895.5 | 8577.6
layers 3.92 5.12 5.36 5.61 5.84 6.14 6.24 6.89
max. degree 23.2 50.8 61.2 73.3 90.6 103.8 123.1 156.6
avg. degree 4.03 3.90 3.96 3.96 3.99 4.02 3.93 4.29
treewidth (by phase I) 6.99 9.33 10.32 11.11 12.24 13.26 13.67 15.17
avg. bagsize 4.20 4.22 4.33 4.37 4.46 4.67 4.46 4.86
variance of bagsize 2.51 3.59 4.15 4.33 5.02 5.30 5.49 6.41
bags 75.7 389.9 583.2 779.6 1167.2 1538.8 | 2346.0 | 3054.1
depth of tree 19.1 52.8 70.6 82.5 115.2 136.6 173.4 242.1
max. degree in tree 7.0 29.1 37.0 54.3 66.3 79.9 158.8 1514
time (sec): phase I 0.3 3.0 6.9 12.5 30.2 62.2 146.6 331.7
size of subsample (VC) 100 100 100 99 98 47 44 14
time (sec): phase II (VC) 0.06 5.41 12.35 34.46 116.40 192.17 | 402.36 | 1015.91
total time (sec): VC 0.4 8.4 19.3 46.8 145.8 2474 510.1 1294.0
size of VC 47.2 225.2 342.0 453.2 683.0 924.3 1326.5 1827.8
size of subsample (DS) 92 59 35 29 10 2 2 0
time (sec): phase II (DS) 16.0 208.7 340.5 302.2 936.8 1636.0 1810.5 -
total time (sec): DS 17.1 215.9 365.7 326.1 953.8 1644.6 1837.4 -
size of DS 24.9 155.8 246.8 373.8 532.0 825.5 1182.0 -

[sample set | PGD100 | PGD500 | PGD750 | PGD1000 | PGD1500 | - - -
size of sample 100 100 100 50 20 - - -
layers 3.84 6.76 8.41 8.63 10.15 - - -
max. degree 7.76 8.85 9.38 9.08 9.35 - - -
avg. degree 3.96 4.01 4.24 4.04 4.05 - - -
treewidth (by phase I) 9.18 18.45 24.16 24.65 30.30 - - -
avg. bagsize 5.62 7.51 8.64 8.34 8.96 - - -
variance of bagsize 4.11 15.11 23.34 24.97 32.40 - - -

Table 1: Summary of experimental results. The numbers in the various rows are taken as
the average over graphs in PGn (and PGDn, respectively) of the corresponding column. The
abbreviations in the first column are explained in detail in Subsections 5.1, 5.2, 5.3, and 5.4.
Each block of rows refers to one Subsection.

5 Experimental Results

In this section, we report on the experimental results obtained by running our software
package on various random input samples. This should be considered as a first serious
round of tests of our implemented algorithms. Later, we plan to run our tests on a
greater variety of not only random input instances and, in particular, we will try to also
experiment with planar graphs drawn from practical applications. In the following we
partly follow [3].

5.1 Generating Random Graphs
We created a set of sample graphs using the LEDA [15] standard function

random _planar graph (graph& G, int n, int m)

33

for generating (combinatorial) random planar graphs. Here, n and m (with m < 3n — 6)
specify the number of vertices and edges of the graph. The function, in a first step,
generates a random maximal planar graph in an inductive way: For n = 3, as an induction
base, a triangle is created. For n > 3, a random maximal planar graph of order n — 1 is
generated, an additional vertex v is added to a random face f, and all edges from v to the
boundary of f are drawn. In a second step, the function random planar _graph removes
all but m edges at random.

Using this function, we created sample sets PGn (PG is short for “planar graphs”) of
random planar graphs with n vertices (where n = 100, 500, 750, 1000, 1500, 2000, 3000,
4000). Here, for each graph in PGn, we chose m as a random number in the interval
[n—1,3n — 6]. All graphs were given together with a “straight-line embedding” that was
computed using the LEDA standard function STRAIGHT LINE EMBEDDING. Various graph
structural data for the sample sets PGn is given in the first block of rows in Table 1.

e size of sample: number of random planar graphs in sample PGn;

o # vertices: average number of vertices of graphs in PGn;

e # edges: average number of edges of graphs in PGn;

e # layers: average number of layers of graphs in PGn using the standard straight-line

embedding offered by LEDA;
e mazx. degree: average maximum degree of graphs in PGn;
e avg. degree: average “average degree” of graphs in PGn;
As outlined in Section 2, the algorithms proceed in two phases. In phase I, a tree

decomposition of the given graph is constructed. Phase II then solves the given problem
by a dynamic programming approach on the tree decomposition obtained by phase I.

5.2 Phase I: Constructing Tree Decompositions

Phase I of the algorithm, i.e., the construction of a tree decomposition of the given plane
graph, is common to all problems offered by our software package.

Evaluation. In this phase, we measured the following figures for a given random input
graph:

o trecwidth: width of tree decomposition obtained;

e avg. bagsize: average size of the bags of the tree decomposition;

e variance of bagsize: variance of the size of the bags of the tree decomposition;

e # bags: number of bags of tree decomposition;

e depth of tree: depth of the tree in tree decompositions;

e max. degree in tree: maximum degree of the tree in tree decomposition;

e time phase I: time needed to perform phase I of the algorithm (in seconds).

34

A
25 - 25
_ 20 PG100 .20 PG1500
’o; . PG750 i ————— PGD500
= . PG1500 k= PGD1500
o 15 L 15
E] E
= 10 T 10
lop - (on
5 5
7 AN -
L I T 17T I LI I I I T T T T I T T T ./,E x
1 5 10 15 20 1 5 10 15 20
bagsize bagsize

Figure 14: Distribution of sizes of bags in tree decompositions obtained by phase I.

The second block of rows in Table 1 summarizes the corresponding values averaged over
each sample set PGn individually. In addition, for each input graph, we investigated the
distribution of the various sizes of different bags that appeared in the tree decomposition.
More precisely, for each graph G and the tree decomposition X obtained, we explored
the percentage of bags having size s (where s € [1,tw(X) + 1]). This distribution is
fundamental for the running time of phase II of the algorithm. The left-hand diagram in
Fig. 14 shows this distribution averaged over the graphs of selected sample sets PGn.

Discussion. We comment on several aspects of this part of the algorithm. Note that the
treewidth obtained by phase I (see left-hand diagram of Fig. 15) is much below the worst
case upper bound derived in [4]. Namely, the upper bound given there was (in terms of
the size of a minimum vertex cover)

tw(Q)

IN

44/3ve(G),

where ve(G) denotes the size of a minimum vertex cover of the given graph G. As an
example, take the sample PG750. Here, the average size of a minimum vertex cover is
around 342 (see row “size of VC” in Table 1), the average treewidth obtained by phase I,
however, is 10.3 which is by a factor 12.4 (sic!) less than the worst case upper bound
value 4v/3 - 342 ~ 128. This comparison yields an even more drastic gap between worst
case upper bound and practice in terms of DOMINATING SET. Here, the upper bound

given in [2, 4] is
tw(G) < 64/34ds(G),

where ds(G) denotes the size of a minimum dominating set of the given graph G.

Note that in our setting the random input graphs, in general, turned out to have few
layers only. As a consequence, in order to construct a tree decomposition, the algorithm
is not forced to firstly execute the step of “layerwisely” separating the graph (see the
description of the algorithm in Section 2 and [4] for details). Hence, it directly uses the
algorithm for graphs of bounded outerplanarity (see the long version of [2] or [10, Theo-
rem 83]). Still, it is remarkable, that the worst case upper bound tw(G) < 3out(G, ¢)—1,

35

154

total
VC

~-emax. tw

10] sphase II
] vC

=
o
= tw 5 /
ERRE avg. £ y
5 . g /
S 1 _ —emin. tw :3 |
£ - —~
—~ — — -~ E 5
5 g] _ sphase I
T T T T T T n = 1 T T T T n
100 500 1000 1500 2000 3000 4000 100 500 1000 1500 2000 3000 4000
graph sample PGn graph sample PGn

Figure 15: Treewidth and running time. Left diagram illustrates treewidth values obtained by
phase I for the graph samples PGn. Right diagram illustrates the total running time of our
algorithm for VERTEX COVER split into the two phases of the algorithm.

for a plane graph (G, ¢) with outerplanarity out(G, ¢) is too pessimistic. Take again, e.g.,
the sample PG750 where the average treewidth is 10.3, which is by a factor 1.46 lower
than 3-5.36 — 1 =~ 15.

The most remarkable observation is the structure of the tree decompositions obtained
by this phase of the algorithm. By this we mean, on the one hand, the distribution of the
sizes of the bags and, on the other hand, the size of the tree itself. As to the first point,
it is interesting that the average size of the bags in the tree decompositions in all of the
samples PGn is around 4.5 (seemingly independent of the width of the tree decompositions
and the size of the input graphs). Also, the variance of the bagsize distribution is very
low. To illustrate this, consider Fig. 14, which shows this distribution for various sample
sets PGn. Note that the size of a very high percentage of the bags is in the range of 1-6,
and only few bags are of big size (determining the width of the tree decomposition).

Also, the number of nodes in the tree decomposition is quite low. Recall that the
algorithm (see the long version of [2] or [10, Theorem 83]) for constructing the tree de-
composition X of a given graph G is based on finding “in a layerwise fashion” a suitable
spanning tree Ts for G (more precisely for a supergraph G of degree less than four). Then,
the tree T of X basically is given by a subdivision? of Ty. Hence, for an n-vertex graph G
we would expect at least 2n — 1 bags in X. However, the tree decompositions in average
turn out to have only around 0.75n many bags. This improvement by a factor of 2.7 over
the expected number of bags is due to the TD.reduce() function (see Section 4). Both,
the distribution of the bagsizes and the number of bags have a direct influence on the
running time of phase II of the algorithm.

5.3 Phase II: Dynamic Programming on Tree Decompositions

The second phase of the algorithm is a problem-dependent dynamic programming ap-
proach. Since our current software package does not (yet) implement the ideas of [7, 8]

2 Additional nodes are put on every edge of T’.

36

and ourselves to reduce memory requirements,® we performed this second phase only on
a subset of our original graph samples. In the case of VERTEX COVER (where the space
requirement to store all tables is O(2™ N), if tw is the treewidth of the underlying tree
decomposition and N is the number of its bags), we restricted ourselves to those graphs
for which phase I yields a tree decomposition of width at most 17; in the case of DOMI-
NATING SET (where the space requirement is O(3"™N)), we only considered graphs with
decompositions of width at most 9.

Evaluation. For this part of the algorithm, the following figures were measured:

o size of subsample (VC/DS): number of graphs in PGn that were considered in
phase 11, i.e., that had treewidth at most 17 in the case of VERTEX COVER (VC)
and at most 9 in the case of DOMINATING SET (DS).

e time phase II (VC/DS): time (in seconds) needed to perform phase II of the algo-
rithm in the case of VERTEX COVER/DOMINATING SET on the sample subset;

e lotal time (VC/DS): time (in seconds) needed to perform phase I and phase II
of the algorithm in the case of VERTEX COVER/DOMINATING SET on the sample
subset;

e size of VC/ DS: size of minimum VERTEX COVER/ DOMINATING SET of the sample
subset.

Discussion. The time needed to perform the dynamic programming can be determined
by considering the distribution of the bagsizes of the tree decomposition obtained by
phase I (see Subsection 5.2). More precisely, if, for a given tree decomposition X with
N nodes, bag(s) (where s € [1,tw(X) + 1]) denotes the number of bags having size s,
then the running time for phase II basically is Z?i(lx)ﬂ bag(s) - ¢*. Here, ¢ is a constant
depending on the problem (for VERTEX COVER, ¢ = 2; and for DOMINATING SET, ¢ = 4
[6]). Now, clearly, both, the distribution “bag” and the value N = Z?i(lx)ﬂ bag(s) do
have direct influence on this running time. Together with the observations to be made in
Fig. 14, this gives a plausible explanation for the good running times we obtained.

Note that we found vertex covers of average size 1325 in PG3000 in less than 9 minutes
average time. Compare this running time with the running time of more than 10% years,
which is given by the worst case upper bound from Theorem 2, when plugging in £ = 1325,
n = 3000 and when assuming a type of machine we used. To put it the other way round,
assuming the same type of machine, the worst case upper bound from Theorem 2 suggests
that in 9 minutes we can compute a vertex cover of size 16 only.

5.4 Alternative Random Graphs

Besides the sample sets PGn that were created in a purely combinatorial way using
the LEDA function void random planar graph(graph& G,int n,int m), we also dealt
with a modified random graph generation. The key motivation here was to generate sam-
ple sets of graphs with more layers than those in PGn. We achieved this by generating

3In our current version, all tables for the dynamic programming are kept in main memory at the same
time.

37

sample sets PGDn (short for “planar graphs Delaunay”). In contrast to PGn, a different,
purely geometric procedure was used in order to yield a maximal planar graph of order n.
A vertex set of size n was randomly placed in the plane, and then some Delaunay trian-
gulation was computed, from which edges were removed at random. The corresponding
embedding (inherited by the Delaunay triangulation) indeed proved to have more layers
and, due to the higher “degree of cyclicity” of graphs obtained in such a way, both the
absolute treewidth and the average size of the bags of the decomposition obtained by
phase I were higher. To give a comparison the last block of rows in Table 1 illustrates the
main differences between PGn and PGDn:

e size of sample: number of random planar graphs in sample PGDn constructed by
the Delaunay triangulation;

e # layers: average number of layers of graphs in PGDn using the embedding inherited
by the Delaunay triangulation;

e maz. degree: average maximum degree of graphs in PGDn;

e avg. degree: average “average degree” of graphs in PGDmn;

o trecwidth: width of tree decomposition obtained;

e avg. bagsize: average size of the bags of the tree decomposition;

e variance of bagsize: variance of the size of the bags of the tree decomposition.

Note that the number of layers in PGD1500 is 10.15, which is compared to the number
of layers in PG1500 almost twice as high. Hence, the treewidth is almost three times
bigger. But we discovered first pieces of circumstantial evidence that the application of
the “Layerwise Separation Property” could be improved (see Section 6 for details), so
the width of the tree decomposition of graphs with many layers, like in PGDn, might
decrease. Also, the distribution of the bags tended to have higher percentage of large
bags (see the right-hand diagram in Fig. 14 for a comparison to the sample sets PGn).

Finally, we remark that test sets created by other geometric generating schemes (for
example, using maximal planar graphs that were triangulated by a sweeping algorithm
instead of a Delaunay triangulation) resulted in similar findings than those of the sample
sets PGn.

6 Heuristic Improvements

So far this implementation has been tested for a huge number of graphs. Still, there are
quite many improvements foreseeable. In this section, we want to sketch some of them.
The improvements intend, on the one hand, to decrease the width of the tree decomposi-
tion in phase I, on the other hand to reduce the memory requirement in phase II.

Distribution of separator vertices. The tests in Section 5 were executed with separa-
tors of size zero, because otherwise the treewidth would become too big: As implemented
in tree_decomp, merging two partial tree decompositions, the separator vertices are put
in every bag. So far, for the partial tree decompositions X;, i € {1,...,n}, the treewidth

38

of the global tree decomposition X will be exactly:

max (tw(X;)+ | Sica U S; |)
1€{1,....,n}

(see Section 2 and [4] for details).

As the tests showed, using separators is still inefficient. The resulting treewidth is bigger
than the treewidth that was obtained without separating the graph at all and simply
applying Bodlaender’s algorithm (which produces a tree decomposition of width at most
3r for an r-outerplanar graph). One improvement might consist in a more efficient distri-
bution of the separator vertices: Only add a separator vertex n to the bags, which include
at least one neighbour of n in the original graph. Then make the tree decomposition
consistent, so that the tree decomposition properties hold (see Fig. 16 for an example for
this improvement and Fig. 17 for an example for a determined tree decomposition without
using this improvement.)

Using the notation above, this might imply the following lower bound on the treewidth
of the global tree decomposition:

tw(X;)).
e D)

Note that the separator vertices may not influence the size of the treewidth (see Fig. 16
lower diagrams).

Different embeddings. Another way to decrease the width of the tree decomposion
might be to run the program on different plane embeddings in order to reduce the number
of layers. However, this seems to be not very efficient: we tested two different embeddings
for some graphs. The outerplanarity of these embeddings differed by at most two, in many
cases, it was equal.

Decreasing memory requirement. In phase II, the goal should be to cope with bigger
treewidths. Hence, we should decrease the memory requirement. As can be seen from
the tests, the running time is no obstruction in contrast to space. The current state is
that, for each bag, the bag table is generated and then all rows are deleted which lead to
invalid solutions. It is important not to create the whole bag tables, but to create bag
tables without illegal rows right from the beginning (although the running time might
suffer from this).

Memory allocation. All bag tables are created and kept in the memory during the
whole algorithm. This is due to the fact that one need to keep in mind all possible
solutions for the underlying graph problem until reaching the root vertex of the tree de-
composition tree T'. To avoid this waste of memory one might only keep the bag tables in
the memory that are actually needed. This means: define an ordering (here: postorder)
of the vertices of T'. Go through T in this order, create bag tables if not yet existing, and
delete a bag table of a vertex of T" after the comparison with the bag table of the parent
vertex has been carried out. In order to minimize the number of “open” bag tables, we

39

'l\)
(5]
‘N

{0,8,9}

{0,10} ¢

Figure 16: The graph on the upper left side has the separator vertices 8 and 9. The bold
edges on the upper right side illustrate a spanning forest after taking out vertices 8 and
9. Lower left: The algorithm creates two partial tree decompositions using the spanning
forest of the upper right diagram. Lower right: Using the improvement the global tree
decomposition has treewidth two. Otherwise it would have had treewidth four, see Fig. 17.

{0,8,9}
Wm

(12,4891 157,89}

(4,5,6,8,9} (34.89)

{0,8,9,10} T (5,6,7.8,9)
{4,5,6,8,9}
(24.89) e (34.89)
{2,3,4,8,9}
ﬁ 8,9,10}

Figure 17: Without the improvement, the separator vertices are put in every bag. This
implies the treewidth four.

40

could in addition use the algorithm suggested in [7]. The important thing will be, to have
an efficient data structure for the bag pointers.

Using the decision problem. Another improvement will be to use the decision prob-
lem for the different graph problems (i.e., only output is the size of the optimal VERTEX
COVER or DOMINATING SET). Hence, one does not have to keep the pointers and the
memory requirement will decrease immediately. For example, as can be seen from the
tests, the average bagsize of a tree decomposition with 3000 bags is 5. Then each row in
the bag table of the root vertex may have the memory requirement of about 2 kilobyte.
By way of contrast, the decision problem will only need about 80 bytes per row in any
bag table. We may use the decision problem in order to solve the problem constructively
with less memory requirement. The idea is to first run the decision problem algorithm, in
order to determine the optimal solution size ve(G) or ds(G), and then run the constructive
algorithm while deleting all rows in the bag tables, the minimum of which already does
exceed the value ve(G) or ds(G).

Another improvement, using the decision problem, would be the following. First, run the
decision problem algorithm. Determine a row 7,,; in the bag table of the root vertex,
with which the optimal solution size vc(G) or ds(G) is obtained. Then, run the decision
problem algorithm again, but only until the child vertices of the root vertex are reached.
Then save the rows 7, ..., in the bag tables t1,...,t; of the child vertices which yield
the minimum for r,,,; in the updating process. Repeat this for the vertices one depth
below until the leaves are reached. The memory requirement will have the size of the
memory required for the decision problem algorithm. Since these steps are repeated at
most tree depth times, the worst case running time will only be O(d - T'), where d is the
depth of the tree decomposition tree and 7' is the running time for the decision problem
algorithm.

7 Conclusion

This work dealt with all phases of an algorithm design for tree decomposition techniques,
starting with the theoretical background, over the implementation, the experimental eval-
uation up to some improvement possibilities. The main part of this work is the docu-
mentation. Its aim is to help to get acquainted with the program and to help to find
some more improvements. Concerning improvements, one question is, how far can we go?
When is the memory requirement definitively too big, when will the running time exceed
any reasonable limits?

As one may conclude from Section 5, the program suffers from the memory requirement
and not from the running time.

If there were only one bag table of type list<two_tuple<int, int> >, where one el-
ement of that list requires about 80 bits (including the links of such a list), and if the
main memory was about 720 MB, then this bag table could have about 22° elements. This
means, that solving the decision problem for VERTEX COVER treewidth 24 would already
exceed the memory. However not all elements of such bag tables are needed. Hence, the

41

bag table turns out to be much smaller. We indicated that solving the decision problem
on random graphs for treewidth more than 29 is possible, using the same machine.

In future work we will try to upgrade the code, by, e.g., testing different data types and
structures, or exchanging several subprocedures.

Moreover we might use other algorithmic ideas. Using problem kernel reduction (like
Nemhauser-Trotter), the program copes now with bigger graphs. Last, but not least we
will further ease the use of the software, e.g., by also providing meta-information such as
expected remaining running time during the execution.

References

1]

2]

J. Alber. Exact Algorithms for NP-hard Problems on Planar and Related Graphs: Design,
Analysis, and Implementation. Dissertation, Universitdt Tiibingen, January 2003.

J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed parame-
ter algorithms for dominating set and related problems on planar graphs. Algorithmica,
33(4):461-493, 2002.

J. Alber, F. Dorn, and R. Niedermeier. Empirical Evaluation of a Tree Decomposition
Based Algorithm for Vertex Cover on Planar Graphs. To appear in Discrete Applied
Mathematics (Elsevier Science).

J. Alber, H. Fernau, and R. Niedermeier. Parameterized complexity: exponential speed-
up for planar graph problems. In Proceedings 28th ICALP, Springer-Verlag LNCS 2076,
pp- 261-272, 2001.

Long version available as Technical Report TR01-023, Electronic Colloquium on Compu-
tational Complexity (ECCC), Trier, March 2001.

J. Alber, J. Gramm, and R. Niedermeier. Faster exact solutions for hard problems: a
parameterized point of view. Discrete Mathematics, 229: 3-27, 2001.

J. Alber and R. Niedermeier. Improved tree decomposition based algorithms for
domination-like problems. In Proceedings 5th LATIN 2002, Springer-Verlag LNCS 2286,
pp. 613-627, 2002.

B. Aspvall, A. Proskurowski, and J. A.Telle. Memory requirements for table computations
in partial k-tree algorithms. Algorithmica, 27:382-394, 2000.

M. W. Bern, E. L. Lawler, and A. L. Wong. Linear-time computation of optimal subgraphs
of decomposbale graphs. Journal of Algorithms, 8:216-235, 1987.

H. L. Bodlaender. Treewidth: Algorithmic techniques and results. In Proceedings 22nd
MFCS’97, Springer-Verlag LNCS 1295, pp. 19-36, 1997.

H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209:1-45, 1998.

V. Bouchitté, D. Kratsch, H. Miiller, and I. Todinca. On treewidth approximations.
Cologne-Twente Workshop on Graphs and Combinatorial Optimization (CTW’01).

42

[12] T. Cormen, C.E. Leiserson, R.L. Rivest. Introduction to Algorithms. MIT Press, 1990.

[13] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer
Science. Springer-Verlag, 1999.

[14] M. R. Fellows. Parameterized complexity: the main ideas and some research frontiers. In
Proceedings 12th ISAAC 2001, Springer-Verlag LNCS 2223, pp.291-307, 2001.

[15] K. Mehlhorn and S. Néher. LEDA: A Platform of Combinatorial and Geometric Comput-
ing. Cambridge University Press, Cambridge, England, 1999.

[16] K. Mehlhorn, S. Naher, M. Seel, and C. Uhrig. The LEDA User Manual, Version 4.2.

[17] J. A. Telle and A. Proskurowski. Practical algorithms on partial k-trees with an applica-
tion to domination-like problems. In Proceedings 3rd WADS, Springer-Verlag LNCS 709,
pp. 610-621, 1993.

[18] J. A. Telle and A. Proskurowski. Algorithms for vertex partitioning problems on partial
k-trees. SIAM Journal on Discrete Mathematics, 10(4):529-550, 1997.

43

