
How to use planarity efficiently:
new tree-decomposition based algorithms

Frederic Dorn?

Department of Informatics, University of Bergen, PO Box 7800, 5020 Bergen, Norway

No Institute Given

Abstract. We prove new structural properties for tree-decompositions
of planar graphs that we use to improve upon the runtime of tree-
decomposition based dynamic programming approaches for several NP-
hard planar graph problems. We give for example the fastest algorithm
for Planar Dominating Set of runtime 3tw · nO(1), when we take the
treewidth tw as the measure for the exponential worst case behavior.
We also introduce a tree-decomposition based approach to solve non-
local problems efficiently, such as Planar Hamiltonian Cycle in run-
time 6tw ·nO(1). From any input tree-decomposition, we compute in time
O(nm) a tree-decomposition with geometric properties, which decom-
poses the plane into disks, and where the graph separators form Jordan
curves in the plane.

1 Introduction

Many separator results for topological graphs, especially for planar embedded
graphs base on the fact that separators have a structure that cuts the surface into
two or more pieces onto which the separated subgraphs are embedded on. The
celebrated and widely applied (e.g., in many divide-and-conquer approaches) re-
sult of Lipton and Tarjan [22] finds in planar graphs a small sized separator.
However, their result says nothing about the structure of the separator, it can
be any set of discrete points. Applying the idea of Miller for finding small sim-
ple cyclic separators [23] in planar triangulations, one can find small separators
whose vertices can be connected by a closed curve in the plane intersecting the
graph only in vertices, so-called Jordan curves (e.g. see [4]). Tree-decompositions
have been historically the choice when solving NP-hard optimization and FPT
problems with a dynamic programming approach (see for example [6] for an
overview). Although much is known about the combinatorial structure of tree-
decompositions (a.o, [7, 30]), only few results are known to the author relating
to the topology of tree-decompositions of planar graphs (e.g., [9]). A branch-
decomposition is another tool, that was introduced by Robertson and Seymour
in their proof of the Graph Minors Theorem and the parameters of these similar
structures, the treewidth tw(G) and branchwidth bw(G) of the graph G have the

? Email:frederic.dorn@ii.uib.no. Supported by the Research Council of Norway.

relation bw(G) ≤ tw(G) + 1 ≤ 1.5 bw(G) [26]. Recently, branch-decompositions
started to become a more popular tool than tree-decompositions, in particular
for problems whose input is a topologically embedded graph [10, 18, 11, 15, 14],
mainly for two reason: the branchwidth of planar graphs can be computed in
polynomial time (yet there is no algorithm known for treewidth) with better
constants for the upper bound than treewidth. Secondly, planar branch decom-
positions have geometrical properties, i.e. they are assigned with separators that
form Jordan curves. Thus, one can exploit planarity in the dynamic program-
ming approach in order to get an exponential speedup, as done by [15, 13]. We
give the first result which employs planarity obtained by the structure of tree-
decompositions for getting faster algorithms. This enables us to give the first
tree-decomposition based algorithms for planar Hamiltonian-like problems with
slight runtime improvements compared to [15]. We emphasize our result in terms
of the width parameters tw and bw with the example of Dominating Set. The
graph problem Dominating Set asks for a minimum vertex set S in a graph
G = (V, E) such that every vertex in V is either in S or has a neighbor in S. Telle
and Proskurowski [29] gave a dynamic programming approach based on tree-
decompositions with runtime 9tw · nO(1), and that was improved to 4tw · nO(1)

by Alber et al [1]. Note that in the extended abstract [2], the same authors
first stated the runtime wrongly to be 3tw · nO(1). Fomin and Thilikos [18] gave
a branch-decomposition based approach of runtime 31.5 bw · nO(1). In [13], the
author combined dynamic programming with fast matrix multiplication to get
4bw ·nO(1) and for Planar Dominating Set even 3

ω
2 bw ·nO(1), where ω is the

constant in the exponent of fast matrix multiplication (currently, ω ≤ 2.376).
Exploiting planarity, we improve further upon the existing bounds and give a
3tw ·nO(1) algorithm for Planar Dominating Set, representative for a number
of improvements on results of [3, 15, 16] as shown in Table 1.

Given any tree-decomposition as an input, we show how to compute a geo-
metric tree-decomposition that has the same properties as planar branch decom-
positions. Employing structural results on minimal graph separators for planar
graphs, we create in polynomial time a parallel tree-decomposition that is as-
signed by a set of pairwise parallel separators that form pairwise non-crossing
Jordan curves in the plane. In a second step, we show how to obtain a geometric
tree-decomposition, that has a ternary tree and is assigned Jordan curves that
exhaustively decompose the plane into disks (one disk being the infinite disk).
In fact, geometric tree-decompositions have all the properties in common with
planar branch decompositions, that are algorithmically exploited in [18] and [15].

Organization of the paper: after giving some preliminary results in Sec-
tion 2, we introduce in Section 3 our algorithm to compute a parallel tree-
decomposition. In Section 4, we describe how Jordan curves and separators in
plane graphs influence each other and we get some tools for relating Jordan
curves and tree-decompositions in Section 5. Finally, we show how to compute
geometric tree-decompositions and state in Section 6 their influence on dynamic
programming approaches. In Section 7, we argue how our results may lead to
faster algorithms when using fast matrix multiplication as in [13].

Table 1. Worst-case runtime expressed by treewidth tw and branchwidth bw of the
input graph. The Planar Hamiltonian Cycle stands representatively for all planar
graph problems posted in [15] such as Metric TSP, whose algorithms we can im-
prove analogously. In [13], only those graph problems are improved upon, which are
unweighted or of small integer weights. Therefor, we state the improvements indepen-
dently for weighted and unweighted graph problems. In some calculations, the fast
matrix multiplication constant ω < 2.376 is hidden.

Previous results New results

weighted Planar Dom Set O(n2min{2 tw,2.38 bw}) O(n21.58 tw)

unweighted Planar Dom Set O(n21.89 bw) O(n2min{1.58 tw,1.89 bw})
w Plan Independent Dom Set O(n2min{2 tw,2.28 bw}) O(n21.58 tw)

uw Plan Independent Dom Set O(n21.89 bw) O(n2min{1.58 tw,1.89 bw})
w Plan Total Dom Set O(n2min{2.58 tw,3 bw}) O(n22 tw)

uw Plan Total Dom Set O(n22.38 bw) O(n2min{2 tw,2.38 bw})
w Plan Perf Total Dom Set O(n2min{2.58 tw,3.16 bw}) O(n2min{2.32 tw,3.16 bw})
uw Plan Perf Total Dom Set O(n22.53 bw) O(n2min{2.32 tw,2.53 bw})

w Planar Ham Cycle O(n23.31 bw) O(n2min{2.58 tw,3.31 bw})
uw Planar Ham Cycle O(n22.66 bw) O(n2min{2.58 tw,2.66 bw})

2 Preliminaries

A line is a subset of a surface Σ that is homeomorphic to [0, 1]. A closed curve
on Σ that is homeomorphic to a cycle is called Jordan curve. A planar graph
embedded crossing-free onto the sphere S0 is defined as a plane graph, where
every vertex is a point of S0 and each edge a line. In this paper, we consider
Jordan curves that intersect with a plane graph only in vertices. For a Jordan
curve J , we denote by V (J) the vertices J intersects with.

Given a connected graph G = (V, E), a set of vertices S ⊂ V is called
a separator if the subgraph induced by V \ S is non-empty and has several
components. S is called an u, v-separator for two vertices u and v that are in
different components of G[V \ S]. S is a minimal u, v-separator if no proper
subset of S is a u, v-separator. Finally, S is a minimal separator of G if there
are two vertices u, v such that S is a minimal u, v-separator. For a vertex subset
A ⊆ V , we saturate A by adding edges between every two non-adjacent vertices,
and thus, turning A into a clique.

A chord in a cycle C of a graph G is an edge joining two non-consecutive
vertices of C. A graph H is called chordal if every cycle of length > 3 has a
chord. A triangulation of a graph G = (V, E) is a chordal graph H = (V,E′)
with E ⊆ E′. The edges of E′ \ E are called fill edges. We say, H is a minimal
triangulation of G if every graph G′ = (V,E′′) with E ⊆ E′′ ⊂ E′ is not chordal.
Note that a triangulation of a planar graph may not be planar—not to confuse
with the notion of “planar triangulation” that asks for filling the facial cycles
with chords. Consider the following algorithm on a graph G that triangulates
G, known as the elimination game [25]. Repeatedly choose a vertex, saturate
its neighborhood, and delete it. Terminate when V = ∅. The order in which
the vertices are deleted is called the elimination ordering α, and G+

α is the

chordal graph obtained by adding all saturating (fill) edges to G. Another way
of triangulating a graph G can be obtained by using a tree-decomposition of G.

2.1 Tree-decompositions

Let G be a graph, T a tree, and let Z = (Zt)t∈T be a family of vertex sets
Zt ⊆ V (G), called bags, indexed by the nodes of T . The pair T = (T,Z) is
called a tree-decomposition of G if it satisfies the following three conditions:
• V (G) = ∪t∈T Zt,
• for every edge e ∈ E(G) there exists a t ∈ T such that both ends of e are

in Zt,
• Zt1 ∩Zt3 ⊆ Zt2 whenever t2 is a vertex of the path connecting t1 and t3 in

T .
The width tw(T) of the tree-decomposition T = (T,Z) is the maximum size
over all bags minus one. The treewidth of G is the minimum width over all
tree-decompositions.

Lemma 1. [8] Let T = (T,Z),Z = (Zt)t∈T be a tree-decomposition of G =
(V, E), and let K ⊆ V be a clique in G. Then there exists a node t ∈ T with
K ⊆ Zt.

As a consequence, we can turn a graph G into another graph H ′ by saturating
the bags of a tree-decomposition, i.e., add an edge in G between any two non-
adjacent vertices that appear in a common bag. Automatically, we get that for
every clique K in H ′, there exists a bag Zt such that K = Zt. Note that the
width of the tree-decomposition is not changed by this operation. It is known
(e.g. in [30]) that H ′ is a triangulation of G, actually a so-called k-tree. Although
there exist triangulations that cannot be computed from G with the elimination
game, van Leeuwen [30] describes how to change a tree-decomposition in order
to obtain the elimination ordering α and thus G+

α = H ′. For finding a minimal
triangulation H that is a super-graph of G and a subgraph of G+

α , known as
the sandwich problem, there are efficient O(nm) runtime algorithms (For a nice
survey, we refer to [20]).

2.2 Minimal separators and triangulations

We want to use triangulations for computing tree-decompositions with “nice”
separating properties. By Rose et al [27], we have also the following lemma:

Lemma 2. Let H be a minimal triangulation of G. Any minimal separator of
H is a minimal separator of G.

Before we give our new tree-decomposition algorithm, we are interested in
an additional property of minimal separators. Let SG be the set of all minimal
separators in G. Let S1, S2 ∈ SG. We say that S1 crosses S2, denoted by S1#S2,
if there are two connected components C, D ∈ G \ S2, such that S1 intersects
both C and D. Note that S1#S2 implies S2#S1. If S1 does not cross S2, we
say that S1 is parallel to S2, denoted by S1||S2. Note that “||” is an equivalence
relation on a set of pairwise parallel separators.

Theorem 1. [24] Let H be a minimal triangulation of G. Then, SH is a max-
imal set of pairwise parallel minimal separators in G.

3 Algorithm for a new tree-decomposition

Before we give the whole algorithm, we need some more definitions. For a graph
G, let K be the set of maximal cliques, that is, the cliques that have no superset
in V (G) that forms a clique in G. Let Kv be the set of all maximal cliques of
G that contain the vertex v ∈ V (G).For a chordal graph H we define a clique
tree as a tree T = (K, E) whose vertex set is the set of maximal cliques in H,
and T [Kv] forms a connected subtree for each vertex v ∈ V (H). Vice versa, if
a graph H has a clique tree, then H is chordal (see [19]). Even though finding
all maximal cliques of a graph is NP-hard in general, there exists a linear time
modified algorithm of [28], that exploits the property of chordal graphs having
at most |V (H)| maximal cliques. By definition, a clique tree of H is also a tree-
decomposition of H (where the opposite is not necessarily true).

Due to [5], a clique tree of a chordal graph H is the maximum weight spanning
tree of the intersection graph of maximal cliques of H, and we obtain a linear
time algorithm computing the clique tree of a graph H. It follows immediately
from Lemma 1 that the treewidth of any chordal graph H equals the size of the
largest clique. Let us define an edge (Ci, Cj) in a clique tree T to be equivalent
to the set of vertices Ci ∩Cj of the two cliques Ci, Cj in H which correspond to
the endpoints of the edge in T . For us, the most interesting property of clique
trees is given by [21]:

Theorem 2. Given a chordal graph H and some clique tree T of H, a set of
vertices S is a minimal separator of H if and only if S = Ci ∩ Cj for an edge
(Ci, Cj) in T .

We get our lemma following from Theorem 1 and Theorem 2:

Lemma 3. Given a clique tree T = (K, E) of a minimal triangulation H of a
graph G. Then, T is a tree-decomposition T of G, where tw(T) = tw(H), and the
set of all edges (Ci, Cj) in T forms a maximal set of pairwise parallel minimal
separators in G.

We call such a tree-decomposition of G parallel . We give the algorithm in
Figure 1.

The worst case analysis for the runtime of TransfTD comes from the Minimal
triangulation step, that needs time O(nm) for an input graph G, (|V (G)| = n,
|E(G)| = m).

4 Plane graphs and minimal separators

In the remainder of the paper, we consider 2-connected plane graphs G. Let
V (J) ⊆ V (G) be the set of vertices which are intersected by Jordan curve J .

Algorithm TransfTD
Input: Graph G with tree-decomposition T = (T,Z),Z = (Zt)t∈T .
Output: Parallel tree-decomposition T ′ of G with tw(T ′) ≤ tw(T).

Triangulation step:
Saturate every bag Zt, t ∈ T to
obtain the chordal graph H ′, E(H ′) = E(G) ∪ F with fill edges F .

Minimal triangulation step:
Compute a minimal triangulation H of G, E(H) = E(G) ∪ F ′, F ′ ⊆ F .

Clique tree step:
Compute clique tree of H, being simultaneously a tree-decomposition T ′ of G.

Fig. 1. Algorithm TransfTD.

We say that a Jordan curve J is minimal, if no proper subset VA of V (J) with
|VA| > 2 forms a Jordan curve. The Jordan curve theorem (e.g. see [12]) states
that a Jordan curve J on a sphere S0 divides the rest of S0 into two connected
parts, namely into two open discs ∆J and ∆J , i.e., ∆J∪∆J∪J = S0. Hence, every
Jordan curve J is a separator of a plane graph G if both ∆J ∩G and ∆J ∩G are
nonempty. Two Jordan curves J, J ′ then divide S0 into several regions. We define
V +

J,J′ as the (possibly empty) subset of vertices of V (J ∩ J ′) that are incident to
more than two regions. For two Jordan curves J, J ′, we define J∆J ′ to be the
symmetric difference of J and J ′, and V (J∆J ′) = V (J ∪ J ′) \ V (J ∩ J ′)∪ V +

J,J ′ .
Bouchitté et al [9] use results of [17] to show the following:

Lemma 4. [9] Every minimal separator S of a 2-connected plane graph G forms
the vertices of a Jordan curve.

That is, in any crossing-free embedding of G in S0, one can find a Jordan curve
only intersecting with G in the vertices of S. Note that a minimal separator S
is not necessarily forming a unique Jordan curve. If an induced subgraph G′ of
G (possibly a single edge) has only two vertices u, v in common with S, and u, v
are successive vertices of the Jordan curve J , then G′ can be drawn on either
side of J . This is the only freedom we have to form a Jordan curve in G, since
on both sides of J , there is a connected subgraph of G that is adjacent to all
vertices of J . We call two Jordan curves J, J ′ equivalent if they share the same
vertex set and intersect the vertices in the same order. Two Jordan curves J, J ′

cross if J and J ′ are not equivalent and there are vertices v, w ∈ V (J ′) such
that v ∈ V (G) ∩∆J and w ∈ V (G) ∩∆J .

Lemma 5. Let S1, S2 be two minimal separators of a 2-connected plane graph
G and each Si forms a Jordan curve Ji, i = 1, 2. If S1||S2, then J1, J2 are non-
crossing. Vice versa, if two minimal Jordan curves J1, J2 in G are non-crossing
and ∆Ji ∩ V (G) and ∆Ji

∩ V (G), (i = 1, 2) all are non-empty, then the vertex
sets Si = V (Ji), (i = 1, 2) are parallel minimal separators.

Proof. ’→’ Proof by contradiction:

Assume J1 and J2 cross. Then, wlog, ∆J1 ∩ V (G) contains some vertices
VA ⊆ V (J2) (and hence vertices of S2) and ∆J1

∩ V (G) contains a non-empty
vertex set VB ⊆ V (J2). Hence, there exist two components C, D of G \ J1 with
V (C) ∩ VA 6= ∅ and V (D) ∩ VB 6= ∅. Thus, we have that S1 and S2 cross.

’←’
Since J1, J2 separate G, we have that S1, S2 are separators. Assume for con-

tradiction that Si is not minimal for i = 1 or i = 2. Thus, there exists a subset
Ss

i of Si that is a minimal separator and by Lemma 2.3.8, Ss
i forms a Jordan

curve which is a contradiction to the minimality of Ji.
Again assume for contradiction that S1 and S2 cross. Then wlog, there exist

components C and D in G\S1 such that S2∩V (C) 6= ∅ and S2∩V (D) 6= ∅. For
|V (C)∩J1| > 2 and |V (D)∩J1| > 2, in the plane embedding, C and D must lie
on different sides of J1, due to minimality of separator S1. Hence, C ⊆ G ∩∆J1

and D ⊆ G ∩∆J1
and J2 has vertices in ∆J1 and ∆J1

and thus, J1 and J2 are
crossing. (If |V (C) ∩ J1| = 2 and |V (D) ∩ J1| = 2 we may assume the C and D
are embedded on different sides of J1.)

We say that two non-crossing Jordan curves J1, J2 touch if they intersect in
a non-empty vertex set. Note that there may exist two edges e, f ∈ E(G) ∩∆J1

such that e ∈ E(G) ∩∆J2 and f ∈ E(G) ∩∆J2
.

Lemma 6. Let two non-crossing Jordan curves J1, J2 be formed by two minimal
parallel separators S1, S2 of a 2-connected plane graph G. If J1 and J2 touch,
and there exists a Jordan curve J3 ⊆ J1∆J2 such that there are vertices of G on
both sides of J3, then the vertices of J3 form another minimal separator S3 that
is parallel to S1 and S2.

Proof. Let Gi, Gi be the subgraphs of G separated by Ji(i = 1, 2). Since the
vertex set V (J3) is a subset of V (J1) ∪ V (J2) we have that V (J3) ∩ (V (Gi) ∪
V (Gi) = ∅(i = 1, 2). Hence S3 = V (J3) is parallel to both, Si = V (Ji)(i = 1, 2).

If J1∆J2 forms exactly one Jordan curve J3 then we say that J1 touches J2

nicely . Note that if J1 and J2 only touch in one vertex, the vertices of J1∆J2

may not form any Jordan curve. The following lemma gives a property of “nicely
touching”that we need later on.

Lemma 7. If in a 2-connected plane graph G, two non-crossing Jordan curves
J1 and J2 touch nicely, then |V +

J1,J2
| = |V (J1) ∩ V (J2) ∩ V (J1∆J2)| ≤ 2.

Proof. Since J1, J2 touch nicely, that is, J1∆J2 forms exactly one Jordan curve
J3, there are three lines Pa, Pb, Pc such that Pa ∪ Pb = J1, Pa ∪ Pc = J2 and
Pb ∪ Pc = J3. With [12] (Lemma 4.1.2), S0 \ (Pa ∪ Pb ∪ Pc) forms three disjoint
open disks and Pa ∩ Pb ∩ Pc are two points p1, p2. Hence, p1, p2 are the only
points of Pa ∪Pb ∪Pc adjacent to all three open disks and thus, may be vertices
of V +

J1,J2
.

5 Jordan curves and geometric tree-decompositions

We now want to turn a parallel tree-decomposition T into a geometric tree-
decomposition T ′ = (T,Z),Z = (Zt)t∈T where T is a ternary tree and for
every two adjacent edges (Zr, Zs) and (Zr, Zt) in T , the minimal separators
S1 = Zr ∩ Zs and S2 = Zr ∩ Zt form two Jordan curves J1, J2 that touch each
other nicely. Unfortunately, we cannot arbitrarily connect two Jordan curves
J, J ′ that we obtain from the parallel tree-decomposition T—even if they touch
nicely, since the symmetric difference of J, J ′ may have more vertices than tw(T).
With carefully chosen arguments, one can deduce from [9] that for 3-connected
planar graphs parallel tree-decompositions are geometric. However, we give a
direct proof that enables us to find geometric tree-decompositions for all planar
graphs.

For a vertex set Z ⊆ V (G), we define the subset ∂Z ⊆ Z to be the vertices
adjacent in G to some vertices in V (G) \ Z. Let G be planar embedded, Z
connected, and ∂Z form a Jordan curve. We define ∆Z to be the closed disk,
onto which Z is embedded and ∆Z the open disk with the embedding of Z
without the vertices of ∂Z. For a non-leaf tree node X with degree d in a parallel
tree-decomposition T , let Y1, . . . Yd be its neighbors. Let TYi be the subtree
including Yi when removing the edge (Yi, X) from T . We define GYi ⊆ G to be
the subgraph induced by the vertices of all bags in TYi . For Yi, choose the Jordan
curve Ji formed by the vertex set ∂GYi = Yi∩X to be the Jordan curve that has
all vertices of GYi on one side and V (G) \ V (GYi) on the other. For each edge e
with both endpoints being consecutive vertices of Ji we choose if e ∈ E(GYi) or
if e ∈ E(G) \ E(GYi).

We say that a set J of non-crossing Jordan curves is connected if for every
partition of J into two subsets J1,J2, there is at least one Jordan curve of J1

that touches a Jordan curve of J2. A set J of Jordan curves is k-connected if
for every partition of J into two connected sets J1,J2, the Jordan curves of J1

touch the Jordan curves of J2 in at least k vertices. Note that if two Jordan
curves touch nicely then they intersect in at least two vertices.

Lemma 8. For every inner node X of a parallel tree-decomposition T of a 2-
connected plane graph, the collection JX of pairwise non-crossing Jordan curves
formed by ∂X is 2-connected.

Proof. We first show that JX is connected. Assume that JX is not connected,
that is, there is a partition of JX into J1,J2 such that J1 is connected but no
Jordan curve of J1 touches any Jordan curve of J2. We have two cases: first
assume that no vertex of the Jordan curves of J1 is adjacent to any vertex in a
Jordan curve of J2. Each vertex of the Jordan curves of J1 is adjacent to some
vertices in X0 := X \⋃d

k=1 Yk, for the neighbors Y1, . . . , Yd of X. Hence, there
is a Jordan curve J0 formed exclusively by vertices in X0 such that J1 is on one
side of J0 and J2 on the other. Choose J0 minimal, i.e., no subset of V (J0) forms
a Jordan curve. Suppose, there is a pair of vertices u, v where u is a vertex of
some GYi bounded by the Jordan curve Ji ∈ J1 and v is a vertex of some GYj

bounded by the Jordan curve Jj ∈ J2. By Lemma 5, J0 is non-crossing Ji and

Jj . Thus, V (J0) ⊆ X0 is a minimal u, v-separator that is parallel to the maximal
SG set of pairwise parallel minimal separators in G. That is contradicting the
maximality of SG. For the second case assume there are some edges EJ ⊆ E(X)
between Jordan curves in J1 and Jordan curves in J2. Then there is a closed
curve CJ separating J1 from J2 touching some (or none) vertices of X0 and
crossing the edges of EJ . Turn CJ into a Jordan curve J1,2: for each crossed
edge e, move the curve to one endpoint of e, alternately to a vertex of J1 and a
vertex of J2. Then, J1,2 is neither an element of J1 nor of J2, and with Lemma 5
and the same arguments as above, V (J1,2) is a minimal separator parallel to SG

what again is a contradiction to the maximality of SG.
Now we prove that JX is 2-connected. First note that G itself is 2-connected.

Thus, if JX is only 1-connected, there must be a path (or edge) in X0 from some
partition J1 to J2, if J1 and J2 intersect only in one vertex. The proof is very
similar to the first case, so we only sketch it. The only difference is that we now
assume that there is one vertex w in the intersection of the Jordan curves of
J1 with those of J2. As in both previous cases, we find a minimal separator S.
In the first case, S ⊆ X0 ∪ {w} and in the second S ⊆ X0 ∪ {w} ∪ V (EJ) for
the edges EJ with one endpoint in J1 and the other in J2. Again, we obtain a
contradiction since S is parallel to SG.

Lemma 9. Every bag X in a parallel tree-decomposition T can be decomposed
into X1, . . . , X` such that each vertex set ∂Xi forms a Jordan curve in G and⋃`

i=1 ∂Xi = ∂X.

Proof. Let Y1, . . . , Yd be the neighbors of X. By Lemma 8, ∂X forms a 2-
connected set of Jordan curves, each bounding a disk inside which one of the
subgraphs GYj is embedded onto. If we remove the disks ∆Yj for all 1 ≤ j ≤ d
and the set of Jordan curves JX from the sphere, we obtain a collection DX

of ` disjoint open disks each bounded by a Jordan curve of JX . Note that
` ≤ max{d, |X|}. Let Zi be the subgraph in X ∩ ∆i for such an open disk
∆i ∈ DX for 1 ≤ i ≤ `. Then each Zi is either empty or consisting only of
edges or subgraphs of G and the closed disk ∆i is bounded by a Jordan curve Ji

formed by a subset of ∂X. We set Xi = Zi ∪ V (Ji) with ∂Xi the vertices of Ji.

Lemma 10. In a decomposition of the sphere S0 by a 2-connected collection
J of non-crossing Jordan curves, one can repeatedly find two Jordan curves
J1, J2 ∈ J that touch nicely, and substitute J1 and J2 by J1∆J2 in J .

Proof. Removing J from S0 decomposes S0 into a collection D of open discs each
bounded by a Jordan curve in J . For each ∆1 ∈ D bounded by J1 ∈ J there
is a “neighboring” disk ∆2 ∈ D bounded by J2 ∈ J such that the intersection
J1 ∩ J2 forms a line of S0. Then, J1∆J2 bounds ∆1 ∪ ∆2. Replace, J1, J2 by
J3 in J and continue until |J | = 1, that is, we are left with one Jordan curve
separating S0 into two open disks.

We get that X1, . . . X` and GY1 , . . . , GYd
are embedded inside of closed disks

each bounded by a Jordan curve. Thus, the union D over all these disks together

with the Jordan curves JX fill the entire sphere S0 onto which G is embedded.
Each subgraph embedded onto ∆ ∪ J for a disk ∆ ∈ D and a Jordan curve J
bounding ∆, forms either a bag Xi or a subgraph GYj

. Define the collection of
bags ZX = {X1, . . . X`, Y1, . . . , Yd}. In Figure 2, we give the algorithm Trans-
fTD II for creating a geometric tree-decomposition using the idea of Lemma 6.

Algorithm TransfTD II
Input: Graph G with parallel tree-decomposition T = (T,Z),Z = (Zt)t∈T .
Output: Geometric tree-decomposition T ′ of G with tw(T ′) ≤ tw(T).

For each inner bag X with neighbors Y1, . . . , Yd {
Disconnection step: Replace X by X1, . . . X` (Lemma 9).

Set ZX = {X1, . . . X`, Y1, . . . , Yd}.
Reconnection step: Until |ZX | = 1 {

Find two bags Zi and Zj in ZX such that Jordan curve Ji∆Jj

bounds a disk with Zi ∪ Zj (Lemma 10);
Set Zij = (Zi∆Zj) ∪ (Zi ∩ Zj) and connect Zi and Zj to Zij ;
In ZX : substitute Zi and Zj by Zij . }}

Fig. 2. Algorithm TransfTD II.

Since by Lemma 7, |V (∂Zi∩∂Zj ∩∂Zij)| ≤ 2, we have that at most two ver-
tices in all three bags are contained in any other bag of ZX . Note that geometric
tree-decompositions have a lot in common with sphere-cut decompositions (in-
troduced in [15]), namely that both decompositions are assigned with vertex sets
that form “sphere-cutting” Jordan curves. For our new dynamic programming
algorithm, we use much of the structure results obtained in Subsection [15].

6 Jordan curves and dynamic programming

The following techniques improve the existing algorithm of Alber et al [1] for
weighted Planar Dominating Set. Their algorithm is based on dynamic pro-
gramming on nice tree-decompositions T and has the running time 4tw(T) ·nO(1).
We prove the following theorem by giving an algorithm of similar structure to
those in [15] and [18]. Thus, we give here only a sketch of the idea. Namely, to
exploit the planar structure of the nicely touching separators to improve upon
the runtime.

Theorem 3. Given a geometric tree-decomposition T = (T,Z),Z = (Zt)t∈T of
a planar graph G. Weighted Planar Dominating Set on G can be solved in
time 3tw(T) · nO(1).

Proof. We root T by arbitrarily choosing a node r as a root. Each internal node t
of T now has one adjacent node on the path from t to r, called the parent node,
and two adjacent nodes toward the leaves, called the children nodes. To simplify
matters, we call them the left child and the right child.

Let Tt be a subtree of T rooted at node t. Gt is the subgraph of G induced
by all bags of Tt. For a subset U of V (G) let w(U) denote the total weight of
vertices in U . That is, w(U) =

∑
u∈U wu. Define a set of subproblems for each

subtree Tt.
Alber et al. [1] introduced the “monotonicity”-property of domination-like

problems for their dynamic programming approach that we will use, too. For
every node t ∈ T , we use three colors for the vertices of bag Zt:
black: represented by 1, meaning the vertex is in the dominating set.
white: represented by 0, meaning the vertex has a neighbor in Gt that is in the
dominating set.
gray: represented by 2, meaning the vertex has a neighbor in G that is in the
dominating set.

For a bag Zt of cardinality `, we define a coloring c(Zt) to be a mapping of
the vertices Zt to an `-vector over the color-set {0, 1, 2} such that each vertex
u ∈ Zt is assigned a color, i.e., c(u) ∈ {0, 1, 2}. We further define the weight
w(c(Zt)) to be the minimum weight of the vertices of Gt in the minimum weight
dominating set with respect to the coloring c(Zt). If no such dominating set
exists, we set w(c(Zt)) = +∞. We store all colorings of Zt, and for two child
nodes, we update each two colorings to one of the parent node.

Before we describe the updating process of the bags, let us make the following
comments:

We defined the color “gray” according to the monotonicity property: for a
vertex u colored gray, we do not have (or store) the information if u is already
dominated by a vertex in Gt or if u still has to be dominated in G \ Gt. Thus,
a solution with a vertex v colored white has at least the same the weight as the
same solution with v colored gray.

By the definition of bags, for three adjacent nodes r, s, t, the vertices of ∂Zr

have to be in at least on of ∂Zs and ∂Zt. The reader may simply recall that the
parent bag is formed by the union of the vertices of two nicely touching Jordan
curves.

For the sake of a refined analysis, we partition the bags of parent node r and
left child s and right child t into four sets L,R, F, I as follows:
• Intersection I := ∂Zr ∩ ∂Zs ∩ ∂Zt,
• Forget F := (Zs ∪ Zt) \ ∂Zr,
• Symmetric difference L := ∂Zr ∩ ∂Zs \ I and R := ∂Zr ∩ ∂Zt \ I.

We define F ′ to be actually those vertices of F that are only in (∂Zs ∪
∂Zt) \∂Zr. The vertices of F \F ′ do not exist in Zr and hence are irrelevant for
the continuous update process. We say that a coloring c(Zr) is formed by the
colorings c1(Zs) and c2(Zt) subject to the following rules:
(R1) For every vertex u ∈ L ∪R : c(u) = c1(u) and c(u) = c2(u), respectively.
(R2) For every vertex u ∈ F ′ either c(u) = c1(u) = c2(u) = 1 or c(u) =
0 ∧ c1(u), c2(u) ∈ {0, 2} ∧ c1(u) 6= c2(u).
(R3) For every vertex u ∈ I c(u) ∈ {1, 2} ⇒ c(u) = c1(u) = c2(u) and c(u) =
0⇒ c1(u), c2(u) ∈ {0, 2} ∧ c1(u) 6= c2(u).

We define Uc to be the vertices u ∈ Zs ∩ Zt for which c(u) = 1 and update
the weights by:

w(c(Zr)) = min{w(c1(Zs)) + w(c2(Zt))− w(Uc)|c1, c2 forms c}
.

The number of steps by which w(c(Zr)) is computed for every possible col-
oring of Zr is given by the number of ways a color c can be formed by the three
rules (R1), (R2), (R3), i.e.,

3|L|+|R| · 3|F ′| · 4|I|

steps.
By Lemma 7, |I| ≤ 2 and since |L| + |R| + |F | ≤ tw(T), we need at most

3tw(T) ·n steps to compute all weights w(c(Zr)) that are usually stored in a table
assigned to bag Zr.

In [1], the worst case in the runtime for Planar Dominating Set is deter-
mined by the number of vertices that are in the intersection of three adjacent
bags r, s, t. Using the notion of [15] for a geometric tree-decomposition, we par-
tition the vertex sets of three bags Zr, Zs, Zt into sets L,R, F, I, where Zr is
adjacent to Zs, Zt. The sets L,R, F represent the vertices that are in exactly
two of the bags. Let us consider the Intersection set I := ∂Zr ∩ ∂Zs ∩ ∂Zt. By
Lemma 7, |I| ≤ 2. Thus, I is not any more part of the runtime.

7 Conclusion

A natural question to pose, is it possible to solve Planar Dominating Set in
time 2.99tw(T) ·nO(1) and equivalently, Planar Independent Set in 1.99tw(T) ·
nO(1)? Though, we cannot give a positive answer yet, we have a formula that
needs “well-balanced” separators in a geometric tree-decomposition T : we as-
sume that the three sets L,R, F are of equal cardinality for every three adjacent
bags. Since |L|+ |R|+ |F | ≤ tw, we thus have that |L|, |R|, |F | ≤ tw

3 . Applying
the fast matrix multiplication method from [13] for example to Planar In-
dependent Set, this leads to a 2

ω
3 tw(T) · nO(1) algorithm, where ω < 2.376.

Does every planar graph have a geometric tree-decomposition with well-balanced
separators?

Acknowledgments. The author thanks Frédéric Mazoit for some enlightening
discussion on Theorem 1.

References

1. J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier,
Fixed parameter algorithms for dominating set and related problems on planar
graphs, Algorithmica, 33 (2002), pp. 461–493.

2. J. Alber, H. L. Bodlaender, H. Fernau, and R. Niedermeier, Fixed para-
meter algorithms for planar dominating set and related problems., in Algorithm
Theory - SWAT 2000, 7th Scandinavian Workshop on Algorithm Theory, vol. 1851
of LNCS, Springer, 2000, pp. 97–110.

3. J. Alber and R. Niedermeier, Improved tree decomposition based algorithms
for domination-like problems, in LATIN’02: Theoretical informatics (Cancun),
vol. 2286 of LNCS, Berlin, 2002, Springer, pp. 613–627.

4. S. Arora, M. Grigni, D. Karger, P. Klein, and A. Woloszyn, A polynomial-
time approximation scheme for weighted planar graph TSP, in Proceedings of the
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA,
1998), New York, 1998, ACM, pp. 33–41.

5. P. A. Bernstein and N. Goodman, Power of natural semijoins., SIAM Journal
on Computing, 10 (1981), pp. 751–771.

6. H. Bodlaender, Treewidth: Algorithmic techniques and results., in MFCS’97:
Mathematical Foundations of Computer Science 1997, 22nd International Sym-
posium (MFCS), vol. 1295 of LNCS, Springer, 1997, pp. 19–36.

7. H. L. Bodlaender, A tourist guide through treewidth, Acta Cybernet., 11 (1993),
pp. 1–21.

8. H. L. Bodlaender and R. H. Möhring, The pathwidth and treewidth of
cographs., SIAM Journal on Discrete Mathematics, 6 (1993), pp. 181–188.

9. V. Bouchitté, F. Mazoit, and I. Todinca, Chordal embeddings of planar
graphs., Discrete Mathematics, 273 (2003), pp. 85–102.

10. W. Cook and P. Seymour, Tour merging via branch-decomposition, INFORMS
Journal on Computing, 15 (2003), pp. 233–248.

11. E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos, Subex-
ponential parameterized algorithms on graphs of bounded genus and H-minor-free
graphs, Journal of the ACM, 52 (2005), pp. 866–893.

12. R. Diestel, Graph theory, Third edition, Springer-Verlag, Heidelberg, 2005.
13. F. Dorn, Dynamic programming and fast matrix multiplication, in Proceedings of

the 14th Annual European Symposium on Algorithms (ESA), vol. 4168 of LNCS,
Springer, 2006, pp. 280–291.

14. F. Dorn, F. V. Fomin, and D. M. Thilikos, Fast subexponential algorithm
for non-local problems on graphs of bounded genus, in Proceedings of the 10th
Scandinavian Workshop on Algorithm Theory (SWAT 2006), vol. 4059 of LNCS,
Springer, Berlin, 2006, pp. 172–183.

15. F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V. Fomin, Efficient ex-
act algorithms on planar graphs: Exploiting sphere cut branch decompositions, in
Proceedings of the 13th Annual European Symposium on Algorithms (ESA 2005),
vol. 3669 of LNCS, Springer, Berlin, 2005, pp. 95–106.

16. F. Dorn and J. A. Telle, Two birds with one stone: the best of branchwidth and
treewidth with one algorithm, in Proceedings of the seventh Latin American The-
oretical Informatics Symposium (LATIN’06), vol. 3887 of LNCS, Springer, 2006,
pp. 386–397.

17. D. Eppstein, Subgraph isomorphism in planar graphs and related problems, J.
Graph Algorithms Appl., 3 (1999), pp. 1–27.

18. F. V. Fomin and D. M. Thilikos, Dominating sets in planar graphs: branch-
width and exponential speed-up, in SODA’03: Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD, 2003), New York,
2003, ACM, pp. 168–177.

19. F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal
graphs, Journal of Combinatorial Theory Series B, 16 (1974), pp. 47–56.

20. P. Heggernes, Minimal triangulations of graphs: A survey, Discrete Mathematics,
306 (2006), pp. 297–317.

21. C. W. Ho and R. C. T. Lee, Counting clique trees and computing perfect elimi-
nation schemes in parallel, Inf. Process. Lett., 31 (1989), pp. 61–68.

22. R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM
J. Appl. Math., 36 (1979), pp. 177–189.

23. G. L. Miller, Finding small simple cycle separators for 2-connected planar
graphs., Journal of Computer and System Science, 32 (1986), pp. 265–279.

24. A. Parra and P. Scheffler, Characterizations and algorithmic applications of
chordal graph embeddings., Discrete Applied Mathematics, 79 (1997), pp. 171–188.

25. S. Parter, The use of linear graphs in Gauss elimination, SIAM Review, 3 (1961),
pp. 119–130.

26. N. Robertson and P. D. Seymour, Graph minors. X. Obstructions to tree-
decomposition, J. Combin. Theory Ser. B, 52 (1991), pp. 153–190.

27. D. Rose, R. E. Tarjan, and G. Lueker, Algorithmic aspects of vertex elimina-
tion on graphs, SIAM Journal on Computing, 5 (1976), pp. 146–160.

28. R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordal-
ity of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hyper-
graphs., SIAM Journal on Computing, 13 (1984), pp. 566–579.

29. J. A. Telle and A. Proskurowski, Algorithms for vertex partitioning problems
on partial k-trees, SIAM J. Discrete Math, 10 (1997), pp. 529–550.

30. J. van Leeuwen, Graph algorithms, MIT Press, Cambridge, MA, USA, 1990.

