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Abstract

We give an algorithm that, for a fixed graph H and integer k, decides whether an n-vertex H-
minor-free graph G contains a path of length k in 2O(

√
k) · nO(1) steps. Our approach builds on a

combination of Demaine-Hajiaghayi’s bounds on the size of an excluded grid in such graphs with a
novel combinatorial result on certain branch decompositions of H-minor-free graphs. This result is
used to bound the number of ways vertex disjoint paths can be routed through the separators of such
decompositions. The proof is based on several structural theorems from the Graph Minors series of
Robertson and Seymour. With a slight modification, similar combinatorial and algorithmic results
can be derived for many other problems. Our approach can be viewed as a general framework for
obtaining time 2O(

√
k) · nO(1) algorithms on H-minor-free graph classes.

∗Additional support by the Research Council of Norway.
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(project code: 70/4/8757).

1



1 Introduction

Our research has been motivated by the seminal result of Alon, Yuster, and Zwick in [4] that proved
that a path of length log n can be found in polynomial time, answering to a question by Papadimitriou
and Yannakakis in [30]. One of the open questions left in [4] was: “Is there a polynomial time
(deterministic or randomized) algorithm for deciding if a given graph G contains a path of length,
say, log2 n? ”. Of course, a 2O(

√
k) · nO(1) step algorithm for checking if a graph contains a path of

length k would resolve this question. However, an algorithm of running time 2o(k) · nO(1) for this
problem, even for sparse graphs, would contradict the widely believed exponential time hypothesis,
i.e. would imply that 3-SAT can be solved in subexponential time [25]. In this paper, we devise a
2O(

√
k) · nO(1) step algorithm for this problem on H-minor-free graphs, implying a polynomial-time

algorithm for a log2 n-length path. This result is tight, because, according to Deı̆neko, Klinz, and
Woeginger [9], the existence of a 2o(

√
k) · nO(1) step algorithm, even for planar graphs, would again

violate the exponential time hypothesis.

Our work is also motivated by the paradigm of parameterized algorithms [20, 21, 29]. A common
technique in parameterized algorithms for problems asking for the existence of vertex/edge subsets
of size k with certain properties, is based on branchwidth (treewidth) and involves the following two
ingredients: The first is a combinatorial proof that, if the branchwidth of the input graph is at least
f(k) (where f is some function of k), then the answer to the problem is directly implied. The second
is a g(bw(G)) · nO(1) step dynamic programming algorithm for the problem (here bw(G) is the
branchwidth of the input graph G). For obtaining a 2O(

√
k) ·nO(1) step algorithm out of this, we further

require that (a) f(k) = O(
√

k) and (b) g(k) = 2O(bw(G)). For planar graphs (and also for H-minor-
free graphs or apex-minor-free graphs – see [13] and [10]) (a) can be proved systematically using the
idea of Bidimensionality [12]. However, not an equally general theory exists for (b). On the positive
side, (b) holds for several combinatorial problems. Typical problems in NP that fall in this category
are VERTEX COVER, DOMINATING SET or EDGE DOMINATING SET, where no global conditions
are imposed to the distribution of their certificates in the graph ([1, 2, 11, 22]). This implies that the
existence of such a set of size log2 n can be decided in polynomial time and this answers positively
the analogue of the question in [4] for these problems on H-minor-free graphs. The bad news is
that, for many combinatorial problems, a general algorithm for proving (b) is missing. LONGEST
PATH is a typical example of such a problem. Here the certificate of a solution should satisfy a global
connectivity requirement. For this reason, the dynamic programming algorithm must keep track of
all the ways the required path may traverse the corresponding separator of the decomposition, that
is Ω(``) on the size ` of the separator and therefore of treewidth/branchwidth. The same problem in
designing dynamic programming algorithms appears for many other combinatorial problems in NP
whose solution certificates are restricted by global properties such as connectivity. Other examples of
such problems are LONGEST CYCLE, CONNECTED DOMINATING SET, FEEDBACK VERTEX SET,
HAMILTONIAN CYCLE and GRAPH METRIC TSP.

Recently, [19] overcommed the above deadlock for the class of planar graphs. Later, a similar result
was given in [18] for graphs of bounded genus. The proofs in [19,18] are heavily based on arguments
about non-crossing paths in graphs embedded in topological surfaces. This makes it possible to con-
struct special types of graph decompositions of the input graph where the number of ways a path (or
a cycle) traverses a separator of the decomposition is linearly bounded by the Catalan number of the
separator size (which yields the desired single exponential dependance on treewidth or branchwidth).
It is not clear, a priory, if these type of arguments can be extended to graphs excluding a minor. We
stress that the lack of such arguments was explicitly named by Grigni [23] as the main obstacle of
obtaining truly polynomial time approximation scheme for TSP on H-minor-free graphs, while this
was possible for planar [5] or bounded genus graphs [23]. (For another example of a technique where
the extension from bounded genus to H-minor-free graphs is not clear, see [15].)

In this paper, we provide a general framework for the design of dynamic programming algorithms on
H-minor-free graphs. For this, it is necessary to go through the entire characterization of H-minor-
free graphs given by Robertson and Seymour in their Graph Minors project (in particular, in [33]) to
prove counting lemmata that can suitably bound the amount of information required in each step of
the dynamic programming algorithm. Among the problems that are amenable to our approach, we
drive our presentation using the LONGEST PATH problem.

The main combinatorial result of this paper is Theorem 2, concerning the existence of suitably struc-
tured branch decompositions of H-minor-free graphs. While the grid excluding part follows directly
from [13], the construction of the branch decomposition of Theorem 2 is quite involved. Indeed it
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uses the fact, proven by Robertson and Seymour in [33], that any H-minor-free graph can roughly
be obtained by identifying in a tree-like way small cliques of a collection of components that are
almost embeddable on bounded genus surfaces. The main proof idea is based on a procedure of
“almost”-planarizing the components of this collection. However, we require a planarizing set with
certain topological properties, able to reduce the high genus embeddings to planar ones where the
planarizing vertices are cyclically arranged in the plane. This makes it possible to use a special type
of planar branch decomposition, invented in [34], that permits to view collections of paths that may
pass through a separator as non-crossing pairings of the vertices of a cycle. This provides the so-called
Catalan structure of the decomposition and permits us to suitably bound the ways a path may cross
its separators. Let us remark that similar ideas were also used for parameterized and approximation
algorithms in [9,14,26]. This decomposition is used to build a decomposition on the initial almost em-
beddible graph. Then using the tree-like way these components are linked together, we build a branch
decomposition of the entire graph. The most technical part of the proof is to show that each step of
this construction, from the almost planar case to the entire graph, maintains the Catalan structure,
yielding the claimed upper bound.

Almost immediately, Theorem 2 implies the main algorithmic result of this paper. If a graph G on
n vertices contains a (

√
k ×
√

k)-grid, then G has a path of length k. Otherwise, by Theorem 2,
it has a branch decomposition of width O(

√
k) with the Catalan structure. By standard dynamic

programming on this branch decomposition (e.g., see [7]) we find the longest path in G. We stress
that the dynamic programming algorithm is not different than the standard one. It is the special branch
decomposition of Theorem 2 that accelerates its running time because the number of states at each
step of the dynamic programming is bounded by 2O(

√
k). Thus the total running time of the algorithm

is 2O(
√

k) · nO(1).

Finally, let us remark that analogues of Theorem 2 can be proved for other problems without any
substantial change of our methodology. This implies the existence of 2O(

√
k) · nO(1)-step algorithms

for several parameterized problems on H-minor-free graphs. Such problems are the natural parame-
terizations for LONGEST CYCLE, FEEDBACK VERTEX SET and different parameterizations of PATH
COVER and CYCLE COVER (for the concept of parameterization and other concepts of parameterized
complexity, see [20]). Also, we can prove 2O(

√
k) · nO(1)-step algorithms for apex-minor-free graphs

for CONNECTED DOMINATING SET and MAX LEAF TREE. Finally, our results imply 2O(
√

n) step
exact algorithms for all aforementioned problems as well as GRAPH METRIC TSP, STEINER TREE
and MAXIMUM FULL DEGREE SPANNING TREE.

2 Preliminaries

Surface embeddable graphs We use the notation V (G) and E(G), for the set of the vertices and
edges of G. A surface Σ is a compact 2-manifold without boundary (we always consider connected
surfaces). A line in Σ is subset homeomorphic to [0, 1]. An O-arc is a subset of Σ homeomorphic to
a circle. Whenever we refer to a Σ-embedded graph G we consider a 2-cell embedding of G in Σ. To
simplify notations we do not distinguish between a vertex of G and the point of Σ used in the drawing
to represent the vertex or between an edge and the line representing it. We also consider G as the
union of the points corresponding to its vertices and edges. That way, a subgraph H of G can be seen
as a graph H where H ⊆ G. We call a region of G any connected component of (Σ \E(G)) \ V (G).
(Every region is an open disk.) A subset of Σ meeting the drawing only in vertices of G is called
G-normal. If an O-arc is G-normal, then we call it noose. The length of a noose N is the number
of its vertices and we denote it by |N |. If the intersection of a noose with any region results into a
connected subset, then we call such a noose tight. Let ∆ be a closed disk and the open disk int(∆)
its interior and bor(∆) its boundary. Then ∆ = int(∆) ∪ bor(∆). If int(∆) is subset of a region
of G, then bor(∆) is a noose.

Surface cutting. We need to define the graph obtained by cutting along a noncontractible tight
noose N . We suppose that for any v ∈ N ∩ V (G), there exists an open disk ∆ containing v and
such that for every edge e adjacent to v, e ∩ ∆ is connected. We also assume that ∆ \ N has two
connected components ∆1 and ∆2. Thus we can define a partition of N(v) = N1(v)∪N2(v), where
N1(v) = {u ∈ N(v) : {u, v} ∩ ∆1 6= ∅} and N2(v) = {u ∈ N(v) : {u, v} ∩ ∆2 6= ∅}. For each
v ∈ N ∩ V (G) we duplicate v: (a) remove v and its incident edges (b) introduce two new vertices
v1, v2 and (c) connect vi with the vertices in Ni, i = 1, 2. v1 and v2 are vertices of the new G-normal
O-arcs N1 and N2 that meet the border ∆1 and ∆2, respectively. We say that the vertices v, v1, v2 are
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relatives while, after any further cutting, the relation of being “relative” is inherited to new vertices
that may occur by splitting v1 or v2. We call N1 and N2 cut-nooses. We can see the operation of
“cutting G along a non-contractible noose N” as “sawing” the surface where G is embedded. This
helps us to embed the resulting graph to the surface(s) that result after adding to the sawed surface
two disks, one for each side of the splitting. We call these disks holes and we will treat them as closed
disks. Clearly, in the new embedding(s) the duplicated vertices will all lay on the borders of these
holes.

Branch and trunk decompositions Let G be a graph and let E ⊆ E(G). We define ∂E as the set
of vertices in G that are endpoints of edges in E and of edges in E(G) − E. We call the pair (T, τ)
branch decomposition of G if T is a ternary tree and τ is a bijection mapping the edges of G to the
leaves of T . For each edge of T we define ω(e) as the vertex set ∂Ee where Ee are all the preimages
of the leaves of one of the connected components of T − e. The width of a branch decomposition is
the maximum |ω(e)| over all edges of T . The branchwidth of a graph is the minimum width over all
branch decompositions of G. If in the definition of a branch decomposition we further demand the
ternary tree T to be a caterpillar, then we define the notion of a trunk decomposition and the parameter
of the trunkwidth of a graph. For a longest path with edges e1, . . . , eq of such a caterpillar, the sets
Xi = ω(ei) form a linear ordering X = (X1, . . . , Xq). For convenience, we will use ordered sets
to denote a trunk decompositions and, in order to include all vertices of G in the sets of X , we will
often consider trunk decompositions of Ĝ that is G with loops added to all its vertices (this operation
cannot increase the width by more than one).

Sphere cut decompositions. For a graph G embedded in the sphere, we define a sphere cut de-
composition or sc-decomposition (T, τ, π) as a branch decomposition such that for every edge e of T
and E1

e and E2
e , the two sets of preimages, there exists a tight noose N bounding two open disks ∆1

and ∆2 such that Ei
e ⊆ ∆i ∪ N , 1 ≤ i ≤ 2. Thus N meets G only in ∂Ee and its length is |∂Ee|.

Clockwise traversing of N in the drawing G defines the cyclic order π of ∂Ee. We always assume that
in an sc-decomposition the vertices of ∂Ee = E1

e ∩ E2
e are enumerated according to π. According

to the celebrated ratcatcher algorithm, due to Seymour and Thomas [34] (improved by [24]), there is
a O(n3) algorithm finding an optimal branch decomposition of a planar graph.

A cornerstone theorem of Graph Minors. We say that H is a minor of G if H is obtained from a
subgraph of G by contracting edges. Given two graphs G1 and G2 and two h-cliques Si ⊆ V (Gi),
(i = 1, 2). We obtain graph G by identifying S1 and S2 and deleting none, some or all clique-edges.
Then, G is called the h-clique-sum of the clique-sum components G1 and G2. Note that the clique-
sum gives many graphs as output depending on the edges of the clique that are deleted. According
to Lemma 19 (proved in the Appendix), given a graph G with branch-decomposition (T, τ), for any
clique with vertex set S there exists a node t ∈ T such that S = ω({t, a}) ∪ ω({t, b}) ∪ ω({t, c})
where a, b, c are the neighbors of t in T . We call such a vertex of T a clique node of S.

Let Σ be a surface. We denote as Σ−r the subspace of Σ obtained if we remove from Σ the interiors
of r disjoint closed disks (we will call them vortex disks). Clearly, the boundary bor(Σ−r) of Σ−r

is the union of r disjoint cycles. We say that G is h-almost embeddable in Σ if there exists a set
A ⊆ V (G) of vertices, called apices of G, where |A| ≤ h and such that G − A is isomorphic to
Gu ∪G1 ∪ · · · ∪Gr, r ≤ h in a way that the following conditions are satisfied (the definition below
is not the original one from [33] but equivalent, slightly adapted for the purposes of our paper):

• There exists an embedding σ : Gu → Σ−r, r ≤ h such that only vertices of Gu are mapped to
points of the boundary of Σ−r, i.e. σ(Gu) ∩ bor(Σ−r) ⊆ V (G) (we call Gu the underlying graph
of G).
• The graphs G1, . . . , Gr are pairwise disjoint (called vortices of G). Moreover, for i = 1, . . . , r,
if Ei = E(Gi) ∩ E(Gu) and Bi = V (Gi) ∩ V (Gu) (we call Bi base set of the vortex Gi and its
vertices are the base vertices of Gi), then Ei = ∅ and σ(Bi) ⊆ Ci where C1, . . . , Cr are the cycles
of bor(Σ−r).
• for every i = 1, . . . r, there is a trunk decomposition Xi = (Xi

1, . . . , X
i
qi

) of the vortex Gi with
width at most h and a subset Ji = {ji

1, . . . , j
i
|Bi|} ⊆ {1, . . . , qi} such that ∀k=1,...,|Bi| ui

k ∈ Xi
ji
k

for

some respectful ordering (ui
1, . . . , u

i
|Bi|) of Bi. (An ordering (ui

1, . . . , u
i
|Bi|) is called respectful if the

ordering (σ(ui
1), . . . , σ(ui

|Bi|)) follows the cyclic ordering of the corresponding cycle of bor(Σ−r).)
For every vertex ui

k ∈ Bi, we call Xi
ji
k

overlying set of ui
j and we denote it by X(ui

j).

If in the above definition A = ∅, then we say that G is smoothly h-almost embeddable in Σ. Moreover,
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if r = 0, then we just say that G is embeddable in Σ.

For reasons of uniformity, we will extend the notion of the overlying set of a vertex in Bi to any other
vertex v of the underlying graph Gu by defining its overlying set as the set consisting only of v. For
any U ⊆ V (Gu), the overlying set of U is defined by the union of the overlying sets of all vertices in
U and it is denoted as X(U).

We will strongly use the following structural theorem of Robertson and Seymour (see [33],) charac-
terizing H-minor-free graphs.

Proposition 1 ( [33]). Let G be the graph class not containing a graph H as a minor. Then there
exists a constant h, depending only on H , such that any graph G ∈ G is the (repeated) h-clique-sum
of h-almost embeddable graphs (we call them clique-sum components) in a surface Σ of genus at
most h.

That is, beginning with an h-almost embeddable graph G, we repeatedly construct the h-clique-sum
of G with another h-almost embeddable graph.

Path collections. Let G be a graph and let E ⊆ E(G) and S ⊆ V (G). We will consider col-
lections of internally vertex disjoint paths using edges from E and having their (different) endpoints
in S. We use the notation P to denote such a path collection and we define pathsG(E,S) as the
collection of all such path collections. Define the equivalence relation ∼ on pathsG(E,S): for
P1,P2 ∈ pathsG(E,S), P1 ∼ P2 if there is a bijection between P1 and P2 such that correspond-
ing paths have the same endpoints. We denote by q-pathsG(E,S) = |pathsG(E,S)/ ∼ |, i.e. the
cardinality of the quotient set of pathsG(E,S) by ∼.

3 Main result and the algorithm

Before we state our main result, we need some notation especially for the context of our algorithm.
Given a graph H and a function f we use the notation OH(f) to denote O(f) while emphasizing
that the hidden constants in the big-O notation depend exclusively on the size of H . We also define
analogously the notation ΩH(f).

Given a graph G and a branch decomposition (T, τ) of G, we say that (T, τ) has the Catalan structure
if

for any edge e ∈ E(T ), q-paths(Ee, ∂Ee) ≤ 2OH(|∂Ee|).

Our main result is the following.

Theorem 2. For any H-minor-free graph class G, the following holds:
For every graph G ∈ G and any positive integer w, it is possible to construct a time OH(1) · nO(1)

algorithm that outputs one of the following:

1. A correct report that G contains a (w × w)-grid as a minor.
2. A branch decomposition (T, τ) with the Catalan structure and of width OH(w).

In what follows, we will give the description of the algorithm of Theorem 2 and we will sketch the
main arguments supporting its correctness. While the first statement of the theorem follows almost
directly from [16], our main contribution lies in the proof of statement 2. The full proof is lengthy and
complicated and all lemmata supporting its correctness have moved to the Appendix.

1. Use the time OH(1) · nO(1) algorithm of [16] (see also [8]) to decompose the input graph into
a collection C of clique-sum components as in Proposition 1. Every graph in C is a γH -almost
embeddable graph to some surface of genus ≤ γH where γH = OH(1).

2. For every Ga ∈ C, do
a. Let Gs be the graph Ga without the apex vertices A (i.e. Gs is smoothly γH -almost embeddable

in a surface of genus γH ). Denote by Gs
u the underlying graph of Gs.

b. Set G
(1)
u ← Gs

u, G(1) ← Gs, and i← 1.
c. Apply the following steps as long as G

(i)
u is non-planar.

i. Find a non-contractible noose N in G
(i)
u of minimum length, using the polynomial time algorithm

in [35].
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ii. If |N | ≥ 2i−1f(H) · w then output “The input graph contains a (w × w)-grid as a minor” and
stop. The estimation of f(H) comes from the results in [13], presented in Lemma 5. Along with
Lemma 6 follows the correctness of this step.
Notice that, by minimality, N cannot intersect the interior of a hole or a vortex disk ∆ more than
once and, for the same reason, it can intersect bor(∆) in at most two vertices. If int(∆)∩N = ∅
and bor(∆) ∩ N = {v, w}, again from minimality, v and w should be successive in bor(∆).
In this case, we re-route this portion of N so that it crosses the interior of ∆ (see Figure 2 in the
Appendix).

iii. As long as N intersects some hole (initially the graph G(1) does not contain holes but they will
appear later in G(i)’s for i ≥ 2) or some vortex disk of G

(i)
u in only one vertex v, update G(i)

by removing v and the overlying set of all its relatives (including X(v)) from G(1), . . . , G(i). To
maintain the OH(1)-almost embeddibility of Ga, compensate this loss of vertices in the initial
graph Gs = G(1), by moving in A the overlying set of the relative of v in G(1) (as the number
of vortex disks and holes depends only on H , the updated apex set has again size depending on
H). Notice that after this update, all cut-nooses found so far, either remain intact or they become
smaller. The disks and vortices in G(1), . . . , G(i) may also be updated as before and can only
become smaller. We observe that after this step, if a noose N intersects a hole or vortex disk ∆ it
also intersects its interior and therefore it will split ∆ into two parts ∆1 and ∆2.

iv. Cut G
(i)
u along N and call the two disks created by the corresponding cut of the surface holes

of the new embedding. We go through the same cut in order to “saw” G(i) along N as follows:
If the base set of a vortex is crossed by N then we also split the vortex according to the two
sides of the noose; this creates two vortices in G(i+1). For this, consider a vortex Gv and a trunk
decomposition X = (X1, . . . , Xq) of Gv . Let also a, b be the vertices of the base set B of Gv

that are intersected by N and let a ∈ Xja , b ∈ Xjb
, where w.l.o.g. we assume that a < b. When

we split, the one vortex is the subgraph of Gv induced by X1 ∪ · · · ∪Xja ∪Xjb
∪ · · · ∪Xq the

other is the subgraph of Gv induced by Xja∪· · ·∪Xjb
(notice that the vertices that are duplicated

are those in Xja and Xjb
). Let G(i+1) be the graph embedding that is created that way and let

G
(i+1)
u be its underlying graph. Recall that, from the previous steps, a vortex disk or a hole ∆ (if

divided) is divided into two parts ∆1 and ∆2 by N . That way, the splitting of a vortex in G(i)

creates two vortices in G(i+1). As the number of vortices in G(i) is OH(1), the same holds also
for the number of vortices in G(i+1). If N splits a hole of G(i+1), then the two new holes ∆′

1,∆
′
2,

that the splitting creates in G(i+1), are augmented by the two parts ∆1 and ∆2 of the old hole ∆
(i.e. ∆′

j ← ∆j ∪∆′
j , j = 1, 2).

v. i← i + 1.
The loop of step 2.c. ends up with a planar graph G

(i)
u after OH(1) splittings because the genus

of G
(1)
u is OH(1) (each step creates a graph of lower Euler genus – see [28, Propositions 4.2.1

and 4.2.4]). This implies that the number of holes or vortex disks in each G
(i)
u remains OH(1).

Therefore, G(i) is a smoothly OH(1)-almost embeddable graph to the sphere. Also notice that the
total length of the holes of G

(i)
u is upper bounded by the sum of the lengths of the nooses we cut

along, which is OH(w).
d. Set Gp ← G(i) and Gp

u ← G
(i)
u and compute an optimal sphere-cut branch decomposition (T p

u , τp
u)

of Gp
u, using the polynomial algorithm from [34].

e. If bw(Gp
u) ≥ 2γH · f(H) ·w = ΩH(w), then output “The input graph contains a (w×w)-grid as

a minor” and stop. This step is justified by Lemma 7.
f. Enhance (T p

u , τp
u), so that the edges of the vortices of Gp are included to it, as follows: Let Gv be a

vortex of Gp with base set B = {u1, . . . , um} ordered in a respectful way such that ∀k=1,...,muk ∈
ω(fjk

) where the ordering fj1 , . . . , fjm contains the edges of a longest path of the tree T ∗ of some
trunk decomposition (T ∗, τ∗) of Gv . Update (T p

u , τp
u) to a branch decomposition (T̂ p

u , τ̂p
u) of

Ĝp (if the branchwidth of a graph is more than 1, it does not change when we add loops). Let
l1, . . . , lm be the leaves of (T̂ p

u , τ̂p
u) corresponding to the loops of the base vertices of Gv . We

subdivide each fjk
in T ∗ and we identify the subdivision vertex with lk for any k = 1, . . . ,m.

We make the resulting graph a ternary tree, by removing a minimum number of edges in T ∗ and
desolving their endpoints in the resulting forest. That way, we construct a branch decomposition
of Ĝp

u ∪ Gv which, after discarding the leaves mapped to loops, gives a branch decomposition
of Gp

u ∪ Gv (see Figure 1 in the Appendix). Applying this transformation for each vortex Gv of
Gp, we construct a branch decomposition of Gp. In Lemma 8, we prove that this enhancement
of the branch decomposition of Gp

u can add OH(1) vertices for each vertex in ω(e), e ∈ E(T p
u ),

therefore, bw(Gp) = OH(bw(Gp
u)).

g. Notice that, while successively splitting Gs during the loop of step 2.c., all edges remain topo-
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logically intact (only vertices may be duplicated). This establishes a bijection between E(Gs) and
E(Gp), which allows us to transform (T p, τp) to a branch decomposition (T s, τ s) where T s = T p.
At this point, we have to prove that if the bounds of Theorem 2 holds for the graph Gp = G(i) (a
graph that is smoothly OH(1)-almost embeddible in the sphere), then they also hold for the graph
Gs = G(1) that is a smoothly OH(1)-almost embeddible in a surface of higher genus. We prove
that bw(Gs) = OH(bw(Gp)) with the help of Lemma 9.a (using induction). However, what is
far more complicated is to prove that (T s, τ s) has the Catalan structure. For this, we first prove
(using inductively Lemma 9.b) that for any edge e of T s = T p, holds that

q-pathsGs(Ee, ∂Ee) ≤ q-pathsGp(Ee, ∂Ee ∪De), (1)

where De is the set of all vertices of the holes of Gp that are endpoints of edges in Ee. Intuitively,
while splitting the graph Gs along non-contracible nooses, the split vertices in the nooses (i.e., the
vertices in De) may separate paths counted in the left side of Equation (1). Therefore, in order to
count them, we have to count equivalence classes of collections of internally vertex disjoint paths in
the planar case allowing their endpoints to be not only in ∂Ee but also in De. That way, we reduce
the problem of proving that (T s, τ s) has the Catalan structure, to the following problem: find a
bound for the number of equivalent classes of collections of vertex disjoint paths whose endpoints
may be a) vertices of the disk ∆e bounding the edges Ee in the sphere-cut decomposition (T p, τp)
of Gp

u, along with their overlying sets (all-together, these ends are at most bw(Gp) = OH(w),
because of Lemma 8) and b) vertices (and their overlying sets) of 2 · γH = OH(1) disjoint holes
(created by cutting through nooses) of total size ≤ γH · (2γH − 1) · f(H) · w = OH(w) (see the
proof of Lemma 6). Notice that these paths can be routed also via ≤ γH · 2i ≤ γH · 2γH = OH(1)
vortices (because, initially, Gs

u had γH vortices and, in the worst case, each noose can split every
vortex into two parts), each of unbounded size. Recall that the holes and the vortex disks of Gp

u

do not touch (i.e. they intersect but their interiors do not) because of the simplification in Step
2.c.iii, however, they may have common interiors. Finally, the boundary of ∆e can touch any
number of times a vortex disk or a hole but can traverse it only once (recall that by the definition
of sc-decompositions bor(∆e) should be a tight noose). (For an example of the situation of the
holes and vortices around the disk bounding the edges Ee, see Figure 3.) Our target is to relate
q-pathsGp(Ee, ∂Ee∪De) to the classical Catalan structure of non-crossing partitions on a cycle.
As this proof is quite technical, we moved it to the Appendix (Lemma 10) and, here, we will give
just a sketch. Our first two steps are to “force” holes and vortex disks not to touch the boundary
of ∆e and to “force” vortex disks not to intersect with holes or with bor(∆e). For each of these
two steps, we bound q-pathsGp(Ee, ∂Ee ∪De) by its counterpart in a “normalized” instance of
the same counting problem (related to the original one by a “rooted minor” relation). That way,
the problem is reduced to counting equivalent classes of collections of vertex disjoint paths with
endpoints (recall that there are OH(w) such endpoints) on the boundary of OH(1) disjoint holes
(the disk taken if we remove from ∆e all holes that intersect it, is also considered as one of these
holes). However, we still do not have to count equivalent classes of non-crossing collections of
paths because of the presence of the vortices that may permit crossing paths. At that point, we
prove that no more than OH(β) paths can mutually cross, where β = OH(1) is the number of
vortices. Using this observation, we prove that each equivalent class is the superposition of OH(1)
equivalent classes of non-crossing collections of disjoint paths. Because of this, the number of
equivalent classes of collections of disjoint paths are in total 2OH(w) and, that way, we bound
q-pathsGp(Ee, ∂Ee ∪De) as required.

h. Construct a branch decomposition (T a, τa) of Ga by adding in (T s, τ s) the edges incident to the
apices of Ga. To do this, for every apex vertex a and for every neighbor v, choose an arbitrary edge
e of T s, such that v ∈ ∂Ee. Subdivide e and add a new edge to the new node and set τ({a, v})
to be the new leaf. The proof that bw(Ga) = OH(bw(Gs)) is easy, as Gs contains only OH(1)
vertices more (Lemma 10). With more effort (and for the same reason) we prove that the Catalan
structure for Gs implies the Catalan structure for Ga (Lemma 18).

3. For any Ga ∈ C, merge the branch decompositions constructed above according to the way they
are joined by clique sums and output the resulting branch decomposition of the input graph G. In
particular, if (T a

1 , τa
1 ) and (T a

2 , τa
2 ) are two branch decompositions of two graphs Ga

1 and Ga
2 with

cliques S1 and S2 respectively and |S1| = |S2|, we construct a branch-decomposition (T ′, τ ′) of
the graph G′, taken after a clique sum of Ga

1 and Ga
2 , as follows: Let ti be a clique-node of Si in

(Ti, τi), i = 1, 2. Then, the branch decomposition (T ′, τ ′) of G′ is obtained by first subdividing an
incident edge eti , i = 1, 2 and then connecting the new nodes together. Secondly, remove each leaf
l of T ′ that corresponds to an edge that has a parallel edge or is deleted in the clique-sum operation
and finally contract an incident edge in T ′ of each degree-two node. We prove (Lemma 22) that this

6



merging does not harm neither the bounds for branchwidth nor the Catalan structure of the obtained
branch decomposition and this finally holds for the input graph G, justifying Theorem 2.

4 Algorithmic consequences

A first application of Theorem 2 is the following.

Corollary 3. The problem of checking whether there is a path of length k on H-minor-free graphs
can be solved in 2OH(

√
k) · nO(1) steps.

Proof. We apply the algorithm of Theorem 2 for w =
√

k. If it reports that G contains a (
√

k×
√

k)-
grid, then G also contains a path of length k. If not, then the algorithm outputs a branch decomposition
(T, τ) of width OH(

√
k), as in Theorem 2. By applying dynamic programming on (T, τ) we have,

for each e ∈ E(T ), to keep track of all the ways the required path (or cycle) can cross ω(e) = ∂Ee.
This is proportional to q-pathsG(Ee, ∂Ee) (counting all ways these paths can be rooted through
∂Ee). As q-pathsG(Ee, ∂Ee) = 2OH(

√
k) we have the claimed bounds.

Note, that for k = log2 n, Corollary 3 gives a polynomial time algorithm for checking if a n-vertex
graph has a path of length log2 n.

Other problems that can be solved in 2OH(
√

k) · nO(1) steps in H-minor-free graph classes, apply-
ing simple modifications to our technique, are the standard parameterizations of LONGEST CYCLE,
FEEDBACK VERTEX SET, and CYCLE/PATH COVER (parameterized either by the total length of the
cycles/paths or the number of the cycles/paths).

Moreover, combining Theorem 2, with the results in [17] we can derive time 2OH(
√

k) · nO(1) algo-
rithms for problems emerging from contraction closed parameters for apex-minor-free graph classes (a
graph is an apex graph the removal of one of its vertices creates a planar graph). The most prominent
examples of such problems are CONNECTED DOMINATING SET and MAX LEAF TREE. (The best
previous algorithm for these problems for apex-minor-free graph classes was a 2OH(

√
k·log k) · nO(1)

step algorithm given in [14].)

Our technique can also be used to design fast subexponential exact algorithms. Notice that the branch-
width of any H-minor-free graph is at most OH(

√
n) [3]. The algorithm of Theorem 2 will output a

branch decomposition of width OH(
√

n) that, using an adequate definition of Catalan structure, can
be used to derive 2OH(

√
n) step algorithms for several problems. Consider for example WEIGHTED

GRAPH METRIC TSP (TSP with the shortest path metric of G as distance metric). It is shown in [19]
how to solve GRAPH METRIC TSP on planar graphs and in [18] on bounded genus graphs. The basic
idea is that any solution to GRAPH METRIC TSP can be reduced to finding a minimum weight span-
ning Eulerian subgraph. In this case, instead of having collections of paths pathsG(Ee, ∂Ee) we deal
with connected components, say compG(Ee, ∂Ee). Nevertheless, we can use the Catalan structures
argument and extend our counting results about q-pathsG(Ee, ∂Ee). Apart from the problems
that we have already mentioned above, 2OH(

√
n) step exact algorithms can be designed for STEINER

TREE, MAXIMUM FULL DEGREE SPANNING TREE, and other types of spanning tree problems.

5 Conclusion

When applying our technique on different problems we define, for each one of them, an appropriate
analogue of q-pathsG(Ee, ∂Ee) and prove that it also satisfies the Catalan structure property (i.e.
is bounded by 2OH(|∂Ee|)). It would be challenging to find a classification criterion (logical or com-
binatorial) for the problems that are amenable to this approach.
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Appendix
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Figure 1: The procedure of enhancing the branch decomposition (T p
u , τp

u) of Gp
u to a branch decom-

position of Gp.

Proof of Step 2.c.ii. and 2.e.: Exit conditions for the algorithm

In this subsection, we give a lower bound on the branchwidth of the input graph G, that is, we give
two exit conditions on which the algorithm terminates and fulfills the first part of Theorem 2, namely
to give a certificate that G has large branchwidth. Representativity [31] is a measure how densely a
non-planar graph is embedded on a surface. The representativity (or face-width) rep(G) of a graph
G embedded in surface Σ 6= S0 is the smallest length of a noncontractible noose in Σ. The following
lemma follows from Theorem 4.1 of [32].

Lemma 4. For any graph embeddable in a non planar surface, it holds that rep(G) ≤ bw(G).

The function f(H) in Step 2.c.ii of the algorithm is defined by the following lemma that follows
from [13, Lemmata 5,6, and 7].

Lemma 5. Let G be an H-minor-free graph and let Gs
u as in Step 2.a. Then, there exists a function

f(H) such that if bw(Gs
u) ≥ f(H) · w, then G contains a (w × w)-grid as a minor.

The following lemma justifies the first terminating condition for the algorithm, depending on the value
of f(H) estimated in Lemma 5.

Lemma 6. If in the x-th application of Step 2.c.ii, |N | ≥ 2x−1f(H) · w, then Gs
u = G

(1)
u has

branchwidth at least f(H) · w.

Proof. Let N1, . . . , Nx−1 be the nooses along which we cut the graphs G
(1)
u , . . . , G

(x−1)
u in Step

2.c.iv towards creating G
(x)
u . We have that∑

j=1,...,x−1

|Nj | ≤
∑

j=1,...,x−1

2j−1f(H) · w = (2x−1 − 1)f(H) · w.

We also observe that Gj−1
u contains as a subgraph the graph taken from Gj

u if we remove one copy
by each of its |Nj−1| duplicated vertices. This implies that

bw(Gj−1
u ) ≥ bw(Gj

u)− |Nj−1|, j = 2, . . . , x.

Inductively, we have

bw(G1
u) ≥ bw(Gx

u)−
∑

j=1,...,x−1

|Nj | ≥ bw(Gx
u)− (2x−1 − 1)f(H) · w.

We set N = Nx. By Lemma 4, bw(Gx
u) ≥ rep(Gx

u) and rep(Gx
u) ≥ |Nx| ≥ 2x−1f(H) · w. Thus,

we conclude that bw(G1
u) ≥ f(H) · w.

The following lemma justifies the first terminating condition for the algorithm, depending on the value
of f(H) and the genus γH .
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Figure 2: Re-routing a noose.

Lemma 7. If in Step 2e, bw(Gp
u) ≥ 2γH−1f(H) · w, then Gs

u = G
(1)
u has branchwidth at least

f(H) · w.

Proof. The proof is the same as the proof of Lemma 6 if we set x = i and with deference that, in the
end, we directly we have that G

(i)
u = Gp

u has branchwidth at least 2i−1f(H) · w. The result follows
as the genus of Gs

u is bounded by γH and therefore i ≤ γH .

Proof of Step 2.f.: Enhancing the branch decomposition of Gp
u

In the following lemma, we state how to enhance the branch decomposition of Gp
u by the trunk de-

compositions of the vortices in order to obtain a branch decomposition of Gp.

Lemma 8. Let (T p
u , τp

u) be a branch decomposition of Gp
u and let (T p, τp) be the branch decomposi-

tion of Gp constructed in Step 2.f. Then the width of (T p, τp) is bounded by the width w of (T p
u , τp

u)
plus some constant that depends only on H .

Proof. By the construction of (T p, τp), for any e ∈ E(T p), ∂Ee(Gp) ⊆ X(∂Ee(Gp
u)). As the

vertices of ∂Ee(Gp
u) are the vertices of some tight noose Ne of S0, and this noose meets at most

r ≤ h vortex disks we have that there are at most 2r ≤ 2h vertices of ∂Ee(Gp
u) that are members of

some base sets B. Therefore, for any e ∈ E(T p), |∂Ee(Gp)| ≤ w + 2h2. We conclude that the width
of (T p, τp) is at most w + 2h2.

Proof of Step 2.g.: Towards Catalan structure

The whole subsection is devoted to proving why the branch decomposition we constructed for a
smoothly almost-embeddable graph has the Catalan structure. With the following lemma, we can
inductively show how we obtain a branch decomposition with the Catalan structure for a smoothly
almost-embeddable graph to a higher surfaces from the branch decomposition of its planarized ver-
sion.

Lemma 9. Let G, G′ be two almost embeddedible graphs created successively during Step 2.c (i ≥
2), let N be the noose along which Gu was cut towards constructing G′

u and G′ and let N1 and N2 be
the boundaries of the two wholes of G′

u created after this splitting during Step 2.c.iv. Let also (T ′, τ ′)
be a branch decomposition of G′ and let (T, τ) be the branch decomposition of G defined if T = T ′

and τ = τ ′ ◦ σ where σ : E(T )→ E(T ′) is the bijection pairing topologically equivalent edges in G
and G′. For any e ∈ E(T ) = E(T ′), the following hold:

a. |ωG(e)| ≤ |ωG′(σ(e))|+ |X(N)|.

b. if S ⊆ V (Ee), the number |pathsG(Ee, ∂Ee ∪ S)| is bounded by

|pathsG′(σ(Ee), ∂σ(Ee) ∪ S ∪X(N1 ∩ V (σ(Ee))) ∪X(N2 ∩ V (σ(Ee))))|

Proof. To see |ωG(e)| ≤ |ωG′(e)|+ |X(N)|, it is enough to observe that the identification of vertices
in a graph may only add identified vertices in the border of an edge set and that any overlying set is a
separator.

The second relation follows from the fact that any path in G[Ee] connecting endpoints in ∂Ee ∪ S is
the concatenation of a set of paths in G′[Ee] connecting endpoints in ∂Ee ∪ S but also the vertices of
cut-noose N1, N2 that are endpoints of Ee (along with their overlying sets).
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Figure 3: Vortices and holes around the disk ∆e.

Fixing paths in smoothly h-almost embeddible graphs on the sphere. The remainder of this sub-
section is devoted to proving the following lemma:

Lemma 10. Let Gp be a smoothly OH(1)-almost embeddible graph in the sphere and let ∆1, . . . ,∆r

(r = OH(1)) be disjoint closed disks (holes) of the sphere whose interior does not intersect the
underlying graph Gp

u. Assume also that, if a vortex disk and a hole intersect, then they have common
interior points. Let ∆e be a closed disk of the sphere whose boundary is a tight noose touching Gp

u in
vertex set ∂Ee. We denote as De the set containing all points on the boundary of the disks ∆1, . . . ,∆r

that are endpoints of edges in Gp
u∩∆e and as Ee the set of edges in Gp∩∆e. In Gp, let X(∂Ee∪De)

be the overlying set of vertex set ∂Ee ∪De. If |X(∂Ee ∪De)| = OH(w), then

q-pathsGp(Ee,X(∂Ee ∪De)) = 2OH(w).

In the following and for an easier estimation on q-pathsGp(Ee,X(∂Ee ∪De)), we stepwise trans-
form the graph in a way such that neither of the holes, the vortices and ∂Ee mutually intersect, by
simultaneously nondecreasing the number of sets of paths.

Inverse edge contractions. From now on we will use the notation Ve for the vertex set X(∂Ee∪De).

The operation of inverse edge contraction is defined by duplicating a vertex v and connecting it to its
duplicate v′ by a new edge. However, we have that v maintains all its incident edges.

We say that two closed disks ∆1 and ∆2 touch if their interiors are disjoint and they have common
points that are vertices. These vertices are called touching vertices of the closed disks ∆1 and ∆2.

In order to simplify the structure of the planar embedding of Gp we will apply a series of inverse edge
contractions to the touching vertices between the boundary of ∆e and the vortex disks and holes.

Also, we assume that if we apply inverse edge contraction on a base vertex v of a vortex, v keeps all its
incident edges and the duplicate of the respective boundary of a hole and of ∆e has degree one. This
creates a new graph Gp∗ that contains Gp as a minor and thus, each set of paths in Gp corresponds to
a set of paths in Gp∗.

We obtain the following:

Lemma 11. Let Ee,Ve be as above. Then,

q-pathsGp(Ee,Ve) ≤ q-pathsGp∗(E∗
e ,V∗

e).

Where E∗
e and Ve

∗ are the enhanced sets in Gp∗.
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The red lines in the diagram in Figure 4 emphasize inverse edge contractions.
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Figure 4: Vortices and holes not intersecting the disk ∆e (first normalization).

Notice that each splitting creates duplicates some vertex of Ve. Therefore,

Lemma 12. |Ve
∗| ≤ 2|Ve|.

On the left of Figure 5, we have the now resulting graph of Figure 4 where the grey part is Gp∗[Ee]. On
the right, we only emphasize Gp∗[Ee] as the part where the sets of pathsGp∗(E∗

e ,Ve
∗)/ ∼ should

be drawn.
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Figure 5: Another way to see Figure 4.

Vortex pattern. In order to have a more uniform image on how paths cross a vortex, we define the
graph Rh,s so that

V (Rh,s) = V1 ∪ · · · ∪ Vs with |Vi| = h and

E(Rh,s) = {{xj , xk} | xj , xk ∈ Vi, 1 ≤ j 6= k ≤ h, 1 ≤ i ≤ s}∪
{{xj , yj} | xj ∈ Vi−1 ∧ yj ∈ Vi, 1 ≤ j ≤ h, 1 ≤ i ≤ s}.

In Rh,s we also distinguish a subset S ⊆ V (Rh,s) containing exactly one vertex from any Vi. We call
the pair (Rh,s, S) a (h, s)-vortex pattern. See Figure 6 for an example of a normalized vortex.
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Figure 6: Normalizing vortices. An example of a (6, 14)-vortex pattern.

We now prove the following:

Lemma 13. Any vortex of a h-almost embeddable graph with base set B is a minor of a (h, s)-vortex
pattern (Rh,s, S) where the minor operations map bijectively the vertices of S to the vertices in B in
a way that the order of the vortex and the cyclic ordering of S induced by the indices of its elements
is respected. Rh,s has trunkwidth h.

Proof. We show how any vortex with base set B and trunk decomposition X = (X1, . . . , X|B|) of
width < h is a minor of some (h, s)-vortex pattern (Rh,s, S) with V (Rh,s) = V1 ∪ · · · ∪ Vs and
|Vi| = h(1 ≤ i ≤ s). Choose s = |B| and set S = B. Start with the vertices in X1: set V1 = X1 plus
some additional vertices to make |V1| = h and make G[V1] complete. Iteratively, set Vi = Xi \Xi−1.
Apply inverse edge contraction for all vertices in Xi ∩Xi−1 and add the new vertices to Vi. Again,
add additional vertices to make |Vi| = h. Make G[Vi] complete and add all missing edges between Vi

and Vi−1 in order to obtain a matching.

Using Lemma 13, we can replace Gp by a new graph Gp′ where any vortex of Gp is replaced by
a suitably chosen Rh,s. The bijection of the lemma indicates where to stick the replacements to
the underlying graph Gp

u. We adopt the same notions as for vortices. I.e, we denote S as base set
consisting of base vertices, etc.. In the remainder of the paper we will refer to h-almost embeddable
graphs as graphs with (h, s)-vortex pattern instead of vortices, unless we clearly state differently and
we will use the term vortex for (h, s)-vortex pattern eventually.

Normalizing vortices.We can now apply one more transformation in order to have all vortex disks
inside ∆e and no vortices intersecting holes. Assume that for any (h, s)-vortex pattern we have that
Vi and Vj are the two vertex sets of Rh,s ∩∂Ee (and Rh,s ∩bor(∆), ∆ one of the holes ∆1, . . . ,∆r,
respectively.) We create 2h − 2 new vertex sets V 1

i , . . . , V h−1
i and V 1

j , . . . , V h−1
j to obtain a new

(h, s + 2h− 2)-vortex pattern. We then apply inverse edge contraction on the base vertices of Vi and
Vj and the new sets. This transformation is show in the next figure.

Rh,s

Rh,s
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Again we can rename the graph before this new transformation Gp and the graph produced Gp′ and
prove the following using the fact the later contains the former as a minor.

Lemma 14. Let Gp and Gp′ be as above. Then

q-pathsGp(Ee,Ve) ≤ q-pathsGp′(E′
e,V

′
e).

Final setting. To have an idea of how ∆e looks like after the previous tranformation, see the left
part of the next figure. Clearly, the outer face can now be seen as a hole and we redraw the whole
embedding in a sphere as indicated by the second part of the same figure. We will denote by ∆∂Ee

the new disc in the graph embedding that is bounded by the union ∂Ee and some intersecting holes of
∆1, . . . ,∆r.

vortex

vortex

vortex

vortex

vortex

vortex

vortex

vortex
vortex

vortex

In the current setting, we have a collection of holes in the sphere with ` vertices on their borders.
We will now count q-pathsGp′(E′

e,V
′
e) for the sets of vertex disjoint paths pathsGp′(E′

e,Ve
′)

between these ` vertices.

Tree structure for fixing paths Before we are ready to prove Lemma 10, namely that

q-pathsGp(Ee,Ve) = 2OH(w),

we need some auxiliary lemmas:

Lemma 15. [27] Let P (n) = {P1, . . . , Pn
2
} be a partition of an ordered set S = {x1, . . . , xn} into

tuples, such that there are no elements xi < xj < xk < x` with {xi, xk} and {xj , x`} in P (n). Let
PS be the collection of all such partitions of S. Then,

|PS | = O(2n).

The partitions of Lemma 15 are called non-crossing matchings. A non-crossing matching can be
visualized by placing n vertices on a cycle , and connecting matching vertices by arcs at one side
of the cycle. In a graph G, each element P of pathsG(E,S)/ ∼ can be seen as set of arcs with
endpoints in S. If every P is a non-crossing matching, we say that the paths in Pi ∈ pathsG(E,S)
with P ∼ Pi are non-crossing and S has a Catalan structure.

Lemma 16. Let r disjoint empty discs ∆1, . . . ,∆r be embedded on the sphere S0 where each disc
is bounded by a cycle of at most n vertices. Let P be a set of arcs connecting the vertices, such that
P can be embedded onto S0 − {∆1, . . . ,∆r} without arcs crossing. Let Pn,r be the collection of all
such P . Then,

|Pn,r| ≤ rr−2 · n2r · 2rn.

Proof. We show how to reduce the counting of |Pn,r| to non-crossing matchings. Here we deal
with several open disks and our intention is to transform them into one single disk in order to apply
Lemma 15.
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First lets assume r = 2. Choose a set P ∈ Pn,2. Assume two vertices x and y on the boundary of two
different disks ∆1 and ∆2 in being two endpoints of an arc {x, y} in P . We observe that no other arc
in P crosses {x, y} in the S0-embedding of P . So we are able to ’cut’ the sphere S0 along {x, y} and,
that way, create a “tunnel” between ∆1 and ∆2 unifying them to a single disk and thus reduced the
problem to counting non-crossing matchings. That is, for obtaining a rough upper bound on |Pn,2|,
one fixes every pair of vertices x ∈ ∆1 and y ∈ ∆2 and we obtain

|Pn,2| = O(n2 · 22n).

The next difficulty is that all disks in ∆1, . . . ,∆r are connected by arcs of P ∈ Pn,r in an arbitrary
way. We use a tree structure in order to cut the sphere along that structure. Given such a tree structure,
we create tunnels in order to connect the open disks and to merge them to one disk.

Consider all ≤ nn−2 possible spanning trees on n vertices [6]. Here, we have a spanning tree over
r vertices, representing the r disks in ∆1, . . . ,∆r. Then the boundary of each disk has length ≤ n.
Hence, there are O(n2) possible fixed arcs between the boundaries of each two disks. Then we obtain
a rough upper bound of n2r on the number of possible fixed arcs between the disks in a given tree-
structure. We obtain rr−2 · n2r possibilities for above concatenation and tunneling of ∆1, . . . ,∆r.
We argue that P has a Catalan structure when tunneling the disks in this way. Thus,

|Pn,r| ≤ rr−2 · n2r · 2rn.

We call an element of Pn,r a (n, r)-non-crossing matching. If for a graph G, each element of
pathsG(E,S)/ ∼ is a (n, r)-non-crossing matching then S has Catalan structure.

Lemma 17. Let r disjoint empty discs ∆1, . . . ,∆r be embedded on the sphere S0 where each disc
is bounded by a cycle of at most n vertices. Let S0 − {∆1, . . . ,∆r} contain ≤ h disjoint discs
R1, . . . , Rh.

Let P be a set of arcs connecting the vertices of bor(∆1), . . . ,bor(∆r), such that P can be embed-
ded onto S0−{∆1, . . . ,∆r} with arcs crossing only inside R1, . . . , Rh such that P ∩Rj (1 ≤ j ≤ h)
is a superposition of h non-crossing matchings. Then P is a superposition of O((h+r)h) many (n, r)-
non-crossing matchings. Let Ph

n,r be the collection of all such P . Thus,

|Ph
n,r| ≤ (rr−2 · n2r · 2rn)(h+r)h

.

Proof. We observe that only h arcs of P ∩Rj may cross mutually inside one of Rj (1 ≤ j ≤ h), but
since the entire arc α of P may enter and leave Rj arbitrarily often, we may have more than h mutually
crossings of P in Rj . However, we observe that α then cuts the S0−{∆1, . . . ,∆r} into several discs.
It follows, together with the Helly property of circular arcs, that there are roughly 3

2h+ r−1 arcs that
mutually cross in Rj . We color the arcs of P such that no two arcs of the same color class cross. For
arcs crossing in one Rj we thus need up to 3

2h + r − 1 colors.

Furthermore, we observe that two arcs of P may be assigned with the same color in Rj but cross
in another Ri, etc. Hence, we have a rough upper bound of (h + r)h colors, that is every arc can
be assigned by 3

2h + r − 1 colors per Rj and is thus assigned by a h-vector of colors for all Rj

(1 ≤ j ≤ h). With Lemma 16, we count for every color class the number of (n, r)-non-crossing
matchings and we get that the overall size of Ph

n,r is bounded by (rr−2 · n2r · 2rn)(h+r)h

.

We can apply Lemma 17 to our terminology:

We say two paths P1, P2 ∈ pathsGp(Ee,Ve) cross inside a (h, s)-vortex pattern (Rh,s, S) if there
is a vertex set Vi ∈ V (Rh,s,) that is used by P1 and P2.

Each element of POH(1)
OH(w),OH(1) is an equivalence class of paths pathsGp(Ee,Ve)/ ∼ with OH(w)

endpoints in Ve crossing inside OH(1) vortex patterns. Thus, we have proven Lemma 10, namely
that

q-pathsGp(Ee,Ve) = |POH(1)
OH(w),OH(1)| = 2OH(w).
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Proof of Step 2.h: Taming the apices

So far, we considered smoothly h-almost Σ- embeddable graphs Gs without apices. To include the
apices, we enhance the branch decomposition (T s, τ s) of Gs of width OH(w) so that each middle
set contains at most all OH(1) apices. We construct an enhanced branch decomposition (T, τ) of a
h-almost Σ- embeddable graph Ga as follows: For every apex vertex α and for every neighbor v,
choose an arbitrary edge e of T s, such that v ∈ ∂Ee. Subdivide e and add a new edge to the new node
and set τ({α, v}) to be the new leaf. In this way, the enhanced branch decomposition (T, τ) of Ga

has width OH(w) + OH(1). We obtain the following:

Lemma 18. Given a h-almost embeddable graph Ga and its smoothly h-almost embeddable graph Gs

after removing the apices with branch decomposition (T s, τ s) of width OH(w). Then the enhanced
branch decomposition (T, τ) of Ga has width OH(w) and

q-pathsGa(Ee, ∂Ee) ≤ wOH(1) · q-pathsGs(Es
e , ∂Es

e).

Proof. For an edge e ∈ T , we observe: Any path in Ga[Ee] through an apex vertex α passes
exactly two neighbors of α. If Ga[Ee] does not contain any neighbor of any α ∈ Ga[Ee] then
q-pathsGa(Ee, ∂Ee) ≤ wOH(1) · q-pathsGs(Es

e , ∂Es
e). If Ga[Ee] contains some neighbor, then

α may be connected by a path to one or two vertices in ∂Es
e . I.e., any apex vertex can only contribute

to one path P in Ga[Ee]. Thus, for one α we count OH(w2) different possible endpoint of P in ∂Es
e ,

and for all OH(1) apices wOH(1).

Proof of Step 3: Taming the clique-sums

Given a graph an H-minor-free graph G. By Proposition 1, G can be decomposed in a tree-like way
into several h-almost embeddable graphs by reversing the clique-sum operation. That is, we obtain a
collection C = {Ga

1 , . . . , Ga
n}with each Ga

i being h-almost embeddable graphs with up to n (possibly
intersecting) h-cliques that contributed to the clique-sum operation.

Lemma 19. Given a graph G with branch decomposition (T, τ). For any k-clique S in G, there are
three adjacent edges e, f, g in T such that S ⊆ ∂Ee ∪ ∂Ef ∪ ∂Eg .

Proof. Say, for node t incident to above e, f, g, ∂Et = ∂Ee ∪ ∂Ef ∪ ∂Eg . We will prove the lemma
inductively. Let a 3-clique consist of the vertices u, v, w. In (T, τ), we consider path Pu ∈ T to be the
path between the leaves τ({u, v}) and τ({u, w}). By definition, u ∈ ∂Ee for all e ∈ Pu. Let node
t ∈ Pu be an endpoint of the path in T \ Pu with other endpoint τ({v, w}). Then, {u, v, w} ⊆ ∂Et.
For an i ≤ k, let Si ⊂ S be an i-clique for which there is a t ∈ T with Si ⊆ ∂Et. Let Ti ⊆ T be
the tree induced by the paths between the leaves corresponding to the edges of Si. Let z ∈ S \ Si and
Tz ⊆ T be the subtree induced by the paths connecting the leaves corresponding to edges between z
and Si. Then, we differ two cases: either t ∈ Ti∩Tz or there is a path in Ti connecting t and the closest
node tz in Tz . In the first case, under the assumption that Si ⊆ ∂Et we obtain that Si ∪ {z} ⊆ ∂Et.
In the second case, since Si ⊆ ∂Et and each vertices of Si is endpoint of some edge in a leaf of Tz ,
we get that Si ⊆ ∂Etz . By definition z ∈ ∂Etz and we are done.

We define the node t incident to above edges e, f, g ∈ T as a k-clique-node.

Since for any edge e ∈ T for a branch decomposition (T, τ), the vertex set ∂Ee separates the graph
into two parts, we obtain the following lemma:

Lemma 20. Given a graph G and a branch decomposition (T, τ). For any edge e ∈ T if q-pathsG(Ee, ∂Ee) ≤
q and q-pathsG(Ee, ∂Ee) ≤ q then q-pathsG(E(G), ∂Ee) ≤ q2. For any three adjacent edges
e1, e2, e3 ∈ T , if q-pathsG(Eei , ∂Eei) ≤ q and q-pathsG(Eei

, ∂Eei
) ≤ q for i = 1, 2, 3 then

q-pathsG(E(G),
⋃

i=1,2,3 ∂Eei) ≤ q3.

We now show how to construct the branch decomposition of a h-clique-sum by connecting the
branch decompositions of the two clique-sum components at some h-clique-nodes that correspond
to the involved h-clique: Let Ga

1 and Ga
2 be the two clique-sum components with the cliques Si ⊆
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V (Ga
i ), (i = 1, 2) together with the branch decompositions (T a

i , τa
i ) and a h-clique-node ti. Then,

the branch decomposition (T ′, τ ′) of the clique-sum G′ is obtained by first subdividing an incident
edge eti and connecting the new nodes together. Secondly, remove each leaf l of T ′ that corresponds
to an edge that has a parallel edge or is deleted in the clique-sum operation, and finally contract an
incident edge in T ′ of each degree-two node.

Lemma 21. Let Ga
1 and Ga

2 have branch decompositions (T a
1 , τa

1 ), (T a
2 , τa

2 ) with the maximum width
w and for all edges e ∈ T ′

1 ∪ T ′
2 let q-pathsG′(Ee, ∂Ee) ≤ q. The previous construction of the

branch decomposition (T ′, τ ′) of the h-clique-sum G′ has width ≤ w + h and for all edges e ∈ T ′

q-pathsG′(Ee, ∂Ee) ≤ q2.

Proof. For all e ∈ T ′, ∂Ee has the same cardinality as in T a
1 ∪ T a

2 . Only for the edges eti , we have
that ∂Eeti ⊆ ∂Eti . Hence, the width increases by at most h.

For any tree edge e ∈ T ′, let L be a set of leaves in the subtree inducing Ee corresponding to the
edges of the cliques Si in Ee. Then, for all τ ′({u, v}) ∈ L, both endpoints u, v are vertices in ∂Ee.

Let ti be in the subtree inducing Ee. Since in T a
i , q-pathsGa

i
(Ee, ∂Ee) ≤ q and q-pathsGa

i
(Ee, ∂Ee) ≤

q, and also q-pathsGa
i
(Ee∩E(Si), ∂Ee∩Si) ≤ |L||L|, we have that in T q-pathsG′(Ee, ∂Ee) ≤

q·|L||L| ≤ q2 for e 6= et. With Lemma 20, and since ∂Eeti ⊆ ∂Eti , we get q-pathsG′(Eeti , ∂Eeti ) ≤
q2 and q-pathsG′(Eeti , ∂Eeti ) ≤ q2.Deleting leaves from (T ′, τ ′) does neither increase the width
nor increase the number of path collections.

In this way, we construct the branch decomposition (T, τ) of an H-minor-free graph G out of the
branch decompositions (T a

1 , τa
1 ), . . . , (T a

n , τa
n) of ≤ 1.5 times the maximum width OH(w) of the h-

almost embeddable graphs Ga
1 , . . . , Ga

n. Extending the same arguments of the previous proof, we get
the following lemma.

Lemma 22. Given above h-almost embeddable graphs Ga
1 , . . . , Ga

n and branch decompositions (T a
1 , τa

1 ), . . . , (T a
n , τa

n)
of maximum width OH(w) and a collection S of h-cliques, each in one of G1, . . . , Gn. Then, the new
branch decomposition (T, τ) of G has width OH(w) and for all edges e ∈ T , q-pathsG(Ee, ∂Ee) ≤
2OH(w).

Proof. (Sketch) Let L be the set of leaves for one branch decompositions (T a
j , τa

j ) defined as above
for all h-cliques of the h-clique-sum operation for Ga

j . Since the edges corresponding to L con-
tribute already to the sets of q-pathsG(Ee, ∂Ee) for all e ∈ T with e 6= etj+1 , we get that
q-pathsG(Ee, ∂Ee) ≤ q2. With Lemma 20, and with ∂Eetj+1 ⊆ ∂Etj+1 , q-pathsG(Eetj+1 , ∂Eetj+1 ) ≤
q3.
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