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Subexponential parameterized algorithms

Frederic Dorn∗, Fedor V. Fomin?, and Dimitrios M. Thilikos??

No Institute Given

Abstract We present a series of techniques for the design of subexponential
parameterized algorithms for graph problems. The design of such algorithms
usually consists of two main steps: first find a branch- (or tree-) decompo-
sition of the input graph whose width is bounded by a sublinear function
of the parameter and, second, use this decomposition to solve the problem
in time that is single exponential to this bound. The main tool for the first
step is Bidimensionality Theory. Here we present the potential, but also the
boundaries, of this theory. For the second step, we describe recent tech-
niques, associating the analysis of sub-exponential algorithms to combinato-

rial bounds related to Catalan numbers. As a result, we have 2O(
√

k) · nO(1)

time algorithms for a wide variety of parameterized problems on graphs,
where n is the size of the graph and k is the parameter.

1 Introduction

The theory of fixed-parameter algorithms and parameterized complexity has been
thoroughly developed during the last two decades; see e.g. the books [23,27,35].
Usually, parameterizing a problem on graphs is to consider its input as a pair con-
sisting of the graph G itself and a parameter k. Typical examples of such parameters
are the size of a vertex cover, the length of a path or the size of a dominating set.
Roughly speaking, a parameterized problem in graphs with parameter k is fixed
parameter tractable if there is an algorithm solving the problem in f(k) ·nO(1) steps
for some function f that depends only on the parameter.

While there is strong evidence that most of fixed-parameter algorithms cannot
have running times 2o(k) · nO(1) (see [33,7,27]), for planar graphs it is possible to
design subexponential parameterized algorithms with running times of the type
2O(

√
k) · nO(1) (see [9,7] for further lower bounds on planar graphs). For example,

Planar k-Vertex Cover can be solved in O(23.57
√

k) + O(n) steps, Planar

k-Dominating Set can be solved in O(211.98·
√

k) + O(n3) steps, and Planar k-

Longest Path can be solved in O(210.52·
√

k · n) + O(n3) steps. Similar algorithms
are now known for a wide class of parameterized problems, not only for planar
graphs, but also for several other sparse graph classes.

Since the first paper in this area appeared [2], the study of fast subexponential
algorithms attracted a lot of attention. In fact, it not only offered a good ground for
the development of parameterized algorithms, but it also prompted combinatorial
results, of independent interest, on the structure of several parameters in sparse
graph classes such as planar graphs [1,3,5,8,11,26,29,32,34] bounded genus graphs
[12,28], graphs excluding some single-crossing graph as a minor [17], apex-minor-free
graphs [10] and H-minor-free graphs [12,13,14].
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We here present general approaches for obtaining subexponential parameterized
algorithms (Section 2) and we reveal their relation with combinatorial results related
to the Graph Minors project of Robertson and Seymour. All these algorithms exploit
the structure of graph classes that exclude some graph as a minor. This was used
to develop techniques such as Bidimensionality Theory (Section 3) and the use
of Catalan numbers for better bounding the steps of dynamic programming when
applied to minor closed graph classes (Sections 4 and 5).

2 Preliminaries

Given an edge e = {x, y} of a graph G, the graph G/e is obtained from G by
contracting the edge e; that is, to get G/e we identify the vertices x and y and
remove all loops and replace all multiple edges by simple edges. A graph H obtained
by a sequence of edge-contractions is said to be a contraction of G. H is a minor
of G if H is a subgraph of a contraction of G. We use the notation H ¹ G (resp.
H ¹c G) when H is a minor (a contraction) of G. It is well known that H ¹ G or
H ¹c G implies bw(H) ≤ bw(G). We say that a graph G is H-minor-free when it
does not contain H as a minor. We also say that a graph class G is H-minor-free
(or, excludes H as a minor) when all its members are H-minor-free. E.g., the class
of planar graphs is a K5-minor-free graph class.

Let G be a graph on n vertices. A branch decomposition (T, µ) of a graph G
consists of an unrooted ternary tree T (i.e. all internal vertices of degree three)
and a bijection µ : L → E(G) from the set L of leaves of T to the edge set of
G. We define for every edge e of T the middle set mid(e) ⊆ V (G) as follows: Let
T1 and T2 be the two connected components of T \ {e}. Then let Gi be the graph
induced by the edge set {µ(f) : f ∈ L ∩ V (Ti)} for i ∈ {1, 2}. The middle set is
the intersection of the vertex sets of G1 and G2, i.e., mid(e) := V (G1) ∩ V (G2).
The width bw of (T, µ) is the maximum order of the middle sets over all edges of
T , i.e., bw(T, µ) := max{|mid(e)| : e ∈ T}. An optimal branch decomposition of
G is defined by the tree T and the bijection µ which give the minimum width, the
branchwidth, denoted by bw(G).

A parameter P is any function mapping graphs to nonnegative integers. The
parameterized problem associated with P asks, for some fixed k, whether P (G) = k
for a given graph G. We say that a parameter P is closed under taking of mi-
nors/contractions (or, briefly, minor/contraction closed) if for every graph H, H ¹
G / H ¹c G implies that P (H) ≤ P (G).

Many subexponential parameterized graph algorithms [1,17,28,29,32,34] are as-
sociated with parameters P on graph classes G satisfying the following two condi-
tions for some constants α and β:

(A) For every graph G ∈ G, bw(G) ≤ α ·
√

P (G) + O(1)
(B) For every graph G ∈ G and given a branch decomposition (T, µ) of G, the

value of P (G) can be computed in 2β·bw(T,µ)nO(1) steps.

Conditions (A) and (B) are essential due to the following generic result.

Theorem 1. Let P be a parameter and let G be a class of graphs such that (A) and
(B) hold for some constants α and β respectively. Then, given a branch decomposi-
tion (T, µ) where bw(T, µ) ≤ λ ·bw(G) for a constant λ, the parameterized problem
associated with P can be solved in 2O(

√
k)nO(1) steps.

Proof. Given a branch decomposition (T, µ) as above, one can solve the parame-
terized problem associated with P as follows. If bw(T, µ) > λ · α ·

√
k, then the

answer to the associated parameterized problem with parameter k is ”NO” if it is
a minimization and ”YES” if it is a maximization problem. Else, by (B), P (G) can
be computed in 2λ·α·β·

√
knO(1) steps.



To apply Theorem 1, we need an algorithm that computes, in time t(n), a branch
decomposition (T, µ) of any n-vertex graph G ∈ G such that bw(T, µ) ≤ λ·bw(G)+
O(1). Because of [38], t(n) = nO(1) and λ = 1 for planar graphs. For H-minor-free
graphs (and thus, for all graph classes considered here), t(n) = f(|H|) · nO(1) and
λ ≤ f(|H|) for some function f depending only on the size of H (see [16,21,24]).

In this survey we discuss how

– to obtain a general scheme of proving bounds required by (A) and to extend pa-
rameterized algorithms to more general classes of graphs like graphs of bounded
genus and graphs excluding a minor (Section 3);

– to improve the running times of such algorithms (Section 4), and
– to prove that the running time of many dynamic programming algorithms on

planar graphs (and more general classes as well) satisfies (B) (Section 5).

The following three sample problems capture the most important properties of
the investigated parameterized problems.

k-Vertex Cover. A vertex cover C of a graph is a set of vertices such that every
edge of G has at least one endpoint in C. The k-Vertex Cover problem is to
decide, given a graph G and a positive integer k, whether G has a vertex cover of
size k. Let us note that vertex cover is closed under taking minors, i.e. if a graph
G has a vertex cover of size k, then each of its minors has a vertex cover of size at
most k.

k-Dominating set. A dominating set D of a graph G is a set of vertices such
that every vertex outside D is adjacent to a vertex of D. The k-Dominating Set
problem is to decide, given a graph G and a positive integer k, whether G has a
dominating set of size k. Let us note that the dominating set is not closed under
taking minors. However, it is closed under contraction of edges.

Given a branch decomposition of G of width ≤ ` both problems k-Vertex
Cover and k-Dominating Set can be solved in time 2O(`)nO(1). For the next
problem, no such an algorithm is known.

k-Longest path. The k-Longest Path problem is to decide, given a graph G
and a positive integer k, whether G contains a path of length k. This problem is
closed under the operation of taking minor but the best known algorithm solving
this problem on a graph of branchwidth ≤ ` runs in time 2O(` log `)nO(1).

3 Property (A) and bidimensionality

In this section we show how to obtain subexponential parameterized algorithms in
the case when condition (B) holds for general graphs. The main tool for this is Bidi-
mensionality Theory developed in [10,12,13,15,18]. For a survey on Bidimensionality
Theory see [14].

Planar graphs. While the results of this subsection can be extended to wider graph
classes, we start from planar graphs where the general ideas are easier to explain.
The following theorem is the main ingredient for proving condition (A).

Theorem 2 ([37]). Let ` ≥ 1 be an integer. Every planar graph of branchwidth
≥ ` contains an (`/4× `/4)-grid as a minor.

We start with Planar k-Vertex Cover as an example. Let G be a planar
graph of branchwidth ≥ `. Observe that given a (r× r)-grid H, the size of a vertex
cover in H is at least br/2c·r (because of the existence of a matching of size br/2c·r
in H). By Theorem 2, we have that G contains an (`/4× `/4)-grid as a minor. The
size of any vertex cover of this grid is at least `2/32. As such a grid is a minor of
G, property (A) holds for α = 4

√
2.



For the Planar k-Dominating Set problem, the arguments used above to
prove (A) for Planar k-Vertex Cover do not work. Since the problem is not
minor-closed, we cannot use Theorem 2 as above. However, since the parameter is
closed under edge contractions, we can use a partially triangulated (r×r)-grid which
is any planar graph obtained from the (r× r)-grid by adding some edges. For every
partially triangulated (r × r)-grid H, the size of a dominating set in H is at least
(r−2)2

9 (every “inner” vertex of H has a closed neighborhood of at most 9 vertices).
Theorem 2 implies that a planar graph G of branchwidth ≥ ` can be contracted to
a partially triangulated (`/4× `/4)-grid which yields that Planar k-Dominating
Set also satisfies (A) for α = 12.

These two examples induce the following idea: if the graph parameter is closed
under taking minors or contractions, the only thing needed for the proof of (A) is
to understand how this parameter behaves on a (partially triangulated) grid. This
brings us to the following definition.

Definition 1 ([12]). A parameter P is minor bidimensional with density δ if

1. P is closed under taking of minors, and
2. for the (r × r)-grid R, P (R) = (δr)2 + o((δr)2).

A parameter P is called contraction bidimensional with density δ if

1. P is closed under contractions,
2. for any partially triangulated (r × r)-grid R, P (R) = (δRr)2 + o((δRr)2), and
3. δ is the smallest δR among all paritally triangulated (r × r)-grids.

In either case, P is called bidimensional. The density δ of P is the minimum of
the two possible densities (when both definitions are applicable), 0 < δ ≤ 1.

Intuitively, a parameter is bidimensional if its value depends on the area of a grid
and not on its width or height. By Theorem 2, we have the following.

Lemma 1. If P is a bidimensional parameter with density δ then P satisfies prop-
erty (A) for α = 4/δ, on planar graphs.

Many parameters are bidimensional. Some of them, like the number of vertices
or the number of edges, are not so much interesting from an algorithmic point of
view. Of course the already mentioned parameter vertex cover (dominating set) is
minor (contraction) bidimensional (with densities 1/

√
2 for vertex cover and 1/9 for

dominating set). Other examples of bidimensional parameters are feedback vertex
set with density δ ∈ [1/2, 1/

√
2], minimum maximal matching with density δ ∈

[1/
√

8, 1/
√

2] and longest path with density 1.
By Lemma 1, Theorem 1 holds for every bidimensional parameter satisfying

(B). Also, Theorem 1 can be applied not only to bidimensional parameters but to
parameters that are bounded by bidimensional parameters. For example, the clique-
transversal number of a graph G is the minimum number of vertices intersecting
every maximal clique of G. This parameter is not contraction-closed because an
edge contraction may create a new maximal clique and cause the clique-transversal
number to increase. On the other hand, it is easy to see that this graph parameter
always exceeds the size of a minimum dominating set which yields (A) for this
parameter.

Non-planar extensions and limitations. One of the natural approaches of ex-
tending Lemma 1 from planar graphs to more general classes of graphs is via ex-
tending of Theorem 2. To do this we have to treat separately minor closed and
contraction closed parameters.

The following extension of Theorem 2 holds for bounded genus graphs:



Theorem 3 ([12]). If G is a graph of Euler genus at most γ with branchwidth
more than r, then G contains a (r/4(γ + 1)× r/4(γ + 1))-grid as a minor.

Working analogously to the planar case, Theorem 3 implies the following.

Lemma 2. Let P be a minor bidimensional parameter with density δ. Then for
any graph G of Euler genus at most γ, property (A) holds for α = 4(γ + 1)/δ.

Next step is to consider graphs excluding a fixed graph H as a minor. The proof
extends Theorem 3 by making (nontrivial) use of the structural characterization of
H-minor-free graphs by Robertson and Seymour in [36].

Theorem 4 ([13]). If G is an H-minor-free graph with branchwidth more than
r, then G has the (Ω(r) × Ω(r))-grid as a minor (the hidden constants in the Ω
notation depend only on the size of H).

As before, Theorem 3 implies property (A) for all minor bidimensional parameters
for some α depending only on the excluded minor H.

For contraction-closed parameters, the landscape is different. In fact, each possi-
ble extension of Lemma 2, requires a stronger version of bidimensionality. For this,
we can use the notion of a (r, q)-gridoid that is obtained from a partially triangu-
lated (r × r)-grid by adding at most q edges. (Note that every (r, q)-gridoid has
genus ≤ q.) The following extends Theorem 2 for graphs of bounded genus.

Theorem 5 ([12]). If a graph G of Euler genus at most γ excludes all (k−12γ, γ)-
gridoids as contractions, for some k ≥ 12γ, then G has branchwidth at most 4k(γ +
1).

A parameter is genus-contraction bidimensional if a) it is contraction closed and
b) its value on every (r,O(1))-gridoid is Ω(r2) (here the hidden constants in the
big-O and the big-Ω notations depend only on the Euler genus). Then Theorem 5
implies property (A) for all genus-contraction bidimensional parameters for some
constant that depends only on the Euler genus.

An apex graph is a graph obtained from a planar graph G by adding a vertex
and making it adjacent to some vertices of G. A graph class is apex-minor-free
if it does not contain a graph with some fixed apex graph as a minor. An (r, s)-
augmented grid is an (r× r)-grid with some additional edges such that each vertex
is attached to at most s vertices that in the original grid had degree 4. We say that
a contraction closed parameter P is apex-contraction bidimensional if a) it is closed
under taking of contractions and b) its value on every (r,O(1))-augmented grid
is Ω(r2) (here the hidden constants in the big-O and the big-Ω notations depend
only on the excluded apex graph). According to [10] and [13], every apex-contraction
bidimensional parameter satisfies property (A) for some constant that depends only
on the excluded apex graph.

A natural question appears: until what point property (A) can be satisfied for
contraction-closed parameters (assuming a suitable concept of bidimensionality)?
As it was observed in [10], for some contraction-closed parameters, like dominating
set, the branchwidth of an apex graph cannot be bounded by any function of their
values. Consequently, apex-free graph classes draw a natural combinatorial limit on
the the above framework of obtaining subexponential parameterized algorithms for
contraction-closed parameters. (On the other side, this is not the case for minor-
closed parameters as indicated by Theorem 4.) However, it is still possible to cross
the frontier of apex-minor-free graphs for the dominating set problem and some
of its variants where subexponential parameterized algorithms exist, even for H-
minor-free graphs, as shown in [12]. These algorithms are based on a combination
of dynamic programming and the the structural characterization of H-minor-free
graphs from [36].



4 Further optimizations

In this section, we present several techniques for accelerating the algorithms emerg-
ing by the framework of Theorem 1.

Making algorithms faster. While proving properties (A) and (B), it is natural to
ask for the best possible constants α and β, as this directly implies an exponential
speed-up of the corresponding algorithms. While, Bidimensionality Theory provides
some general estimation of α, in some cases, deep understanding of the parameter
behavior can lead to much better constants in (A). For example, it holds that for
Planar k-Vertex Cover, α ≤ 3 (see [30]) and for Planar k-Dominating Set,
α ≤ 6.364 (see [29]). (Both bounds are based on the fact that planar graphs with n
vertices have branchwidth at most

√
4.5
√

n, see [30].) Similar results hold also for
bounded genus graphs [28].

On the other hand, there are several ways to obtain faster dynamic programming
algorithms and to obtain better bounds for β in (B). A typical approach to compute
a solution of size k works as follows:

– Root the branch decomposition (T, µ) of graph G picking any of the vertices of
its tree and apply dynamic programming on the middle sets, bottom up, from the
leaves towards the root.
– Each middle set mid(e) of (T, µ) represents the subgraph Ge of G induced by the
leaves below. Recall that the vertices of mid(e) are separators of G.
– In each step of the dynamic programming, all optimal solutions for a subproblem
in Ge are computed, subject to all possibilities of how mid(e) contributes to an
overall solution for G. E.g., for Vertex Cover, there are up to 2bw(T,µ) subsets
of mid(e) that may constitute a vertex cover of G. Each subset is associated with
an optimal solution in Ge with respect to this subset.
– The partial solutions of a middle set are computed using those of the already
processed middle sets of the children and stored in an appropriate data structure.
– An optimal solution is computed at the root of T .

Encoding the middle sets in a refined way, may speed up the processing time
significantly. Though, the same time is needed to scan all solutions assigned to a
mid(e) after introducing vertex states, there are some methods to accelerate the
update of the solutions of two middle sets to a parent middle set:

Using the right data structure: storing the solutions in a sorted list compensates
the time consuming search for compatible solutions and allows a fast computing of
the new solution. E.g., for k-Vertex Cover, the time to process two middle sets
is reduced from O(23·bw(T,µ)) (for each subset of the parent middle set, all pairs of
solutions of the two children are computed) to O(21.5·bw(T,µ)). In [19] matrices are
used as a data structure for dynamic programming that allows an updating even in
time O(2

ω
2 bw(T,µ)) for k-Vertex Cover (where ω is the fast matrix multiplication

constant, actually ω < 2.376).
A compact encoding : assign as few as possible vertex states to the vertices and reduce
the number of processed solutions. Alber et al. [1], using the so-called “monotonicity
technique”, show that 3 vertex states are sufficient in order to encode a solution of
k-Dominating Set. A similar approach was used in [29] to obtain, for the same
problem, a O(31.5·bw(T,µ))-step updating process, that has been improved by [19]
to O(22·bw(T,µ)).
Employing graph structures: as we will see in the Section 5, one can improve the
runtime further for dynamic programming on branch decompositions whose middle
sets inherit some structure of the graph. Using such techniques, the update process
for Planar k-Dominating Set is done in time O(3

ω
2 bw(T,µ)) [19].

The above techniques can be used to prove the following result.



Theorem 6 ([19]). Planar k-Vertex Cover can be solved in O(23.56
√

k) ·nO(1)

runtime and Planar k-Dominating Set in O(211.98
√

k) · nO(1) runtime.

Kernels. Many of the parameterized algorithms discussed in this section can be
further accelerated to time O(nθ) + 2O(

√
k) for θ being a small integer (usually

ranging from 1 to 3). This can be done using the technique of kernelization that is a
prolynomial step preprocessing of the initial input of the problem towards creating
an equivalent one, whose size depends exclusively on the parameter. Examples of
such problems are Planar k-Dominating Set [4,8,28], k-Feedback Vertex
Set [6], k-Vertex Cover and others [25]. See the books of [23,27,35] for a further
reference.

5 Property (B) and Catalan structures

All results of the previous sections provide subexponential parameterized algorithms
when property (B) holds. However, there are many bidimensional parameters for
which there is no known algorithm providing property (B) in general. The typ-
ical running times of dynamic programming algorithms for these problems are
O(bw(G)!) ·nO(1), O(bw(G)bw(G)) ·nO(1), or even O(2bw(G)2) ·nO(1). Examples of
such problems are parameterized versions of k-Longest Path, k-Feedback Ver-
tex Set, k-Connected Dominating Set, and k-Graph TSP. Usually, these are
problems in NP whose certificate verifications involves some connectivity question.
In this section, we show that for such problems one can prove that (B) actually
holds for the graph class that we are interested in. To do this, one has to make
further use of the structural properties of the class (again from the Graph Minors
Theory) that can vary from planar graphs to H-minor-free graphs. In other words,
we use the structure of the graph class not only for proving (A) but also for proving
(B).

Planar graphs. The following type of decomposition for planar graphs follows
from a proof by Seymour and Thomas in [38] and is extremely useful for making
dynamic programming on graphs of bounded branchwidth faster (see [22,19]).

Let G be a planar graph embedded in a sphere S. An O-arc is a subset of S
homeomorphic to a circle. An O-arc in S is called a noose of the embedding of G if
it meets G only in vertices. The length of a noose O is the number of vertices of G
it meets. Every noose O bounds two open discs ∆1, ∆2 in S, i.e., ∆1 ∩∆2 = ∅ and
∆1 ∪∆2 ∪O = S.

We define a sphere cut decomposition or sc-decomposition (T, µ, π) as a branch
decomposition with the following property: for every edge e of T , there exists a
noose Oe meeting every face at most once and bounding the two open discs ∆1

and ∆2 such that Gi ⊆ ∆i ∪ Oe, 1 ≤ i ≤ 2. Thus Oe meets G only in mid(e) and
its length is |mid(e)|. A clockwise traversal of Oe in the embedding of G defines the
cyclic ordering π of mid(e). We always assume that the vertices of every middle
set mid(e) = V (G1) ∩ V (G2) are enumerated according to π.

Theorem 7. Let G be a planar graph of branchwidth at most ` without vertices of
degree one embedded on a sphere. Then there exists an sc-decomposition of G of
width at most ` that can be constructed in time O(n3).

In what follows, we sketch the main idea of a 2O(bw(T,µ,π))nO(1) algorithm for
the k-Planar Longest Path. One may use k-Longest path as an exemplar for
other problems of the same nature.

Let G be a graph and let E ⊆ E(G) and S ⊆ V (G). To count the number of
states at each step of the dynamic programming, we should estimate the number
of collections of internally vertex disjoint paths using edges from E and having



their (different) endpoints in S. We use the notation P to denote such a path
collection and we define pathsG(E, S) as the set of all such path collections. Define
equivalence relation ∼ on pathsG(E, S): for P1,P2 ∈ pathsG(E,S), P1 ∼ P2 if
there is a bijection between P1 and P2 such that bijected paths in P1 and P2

have the same endpoints. Denote by q-pathsG(E, S) = |pathsG(E, S)/ ∼ | the
cardinality of the quotient set of pathsG(E,S) by ∼.

Recall that we define q-pathsG(E,S) because, while applying dynamic program-
ming on some middle set mid(e) of the branch decomposition (T, µ), the number
of states for e ∈ E(T ) is bounded by O(q-pathsGi

(E(Gi),mid(e))).
Given a graph G and a branch decomposition (T, µ) of G, we say that (T, µ) has

Catalan structure if for every edge e ∈ E(T ) and any i ∈ {1, 2},
q-pathsGi

(E(Gi),mid(e)) = 2O(bw(T,µ)) (1)

Now, (B) holds for planar graphs because of the following combinatorial result.

Theorem 8 ([22]). Every planar graph has an optimal branch decomposition with
the Catalan structure that can be constructed in polynomial time.

The proof of Theorem 8 uses an sc-decomposition (T, µ, π) (constructed using
the polynomial algorithm in [38]). Let Oe be a noose meeting some middle set
mid(e) of (T, µ, π). Let us count in how many ways this noose can cut paths of
G. Observe that each path is cut into at most bw(T, µ, π) parts. Each such part is
itself a path whose endpoints are pairs of vertices in Oe. Notice also that, because of
planarity, no two such pairs can cross. Therefore, counting the ways Oe can intersect
paths of G is equivalent to counting non-crossing pairs of vertices in a cycle (the
noose) of length bw(T, µ, π) which, in turn, is bounded by the Catalan number of
bw(T, µ, π) that is 2O(bw(T,µ,π)).

We just concluded that the application of dynamic programming on an sc-
decomposition (T, µ, π) is the 2O(bw(T,µ,π))nO(1) algorithm for proving property (B)
for planar graphs. By further improving the way the members of q-pathsGi

(E(Gi),mid(e))
are encoded during this procedure, one can bound the hidden constants in the big-O
notation on the exponent of this algorithm (see [22]). For example, for Planar k-
Longest Path β ≤ 2.63. With analogous structures and arguments it follows that
for Planar k-Graph TSP β ≤ 3.84, for Planar k-Connected Dominating
Set β ≤ 3.82, for Planar k-Feedback Vertex Set β ≤ 3.56 [19].

In [20], all above results were generalized for graphs with bounded genus (now
constants for each problem depend also on the genus). This generalization requires
a suitable “bounded genus”-extension of Theorem 8 and its analogues for other
problems.

Excluding a minor. The final step is to prove property (B) for H-minor-free
graphs. For the proof of this, we need the following analogue of Theorem 8.

Theorem 9 ([21]). Let G be a graph class excluding some fixed graph H as a mi-
nor. Then every graph G ∈ G with bw(G) ≤ ` has an branch decomposition of width
O(`) with the Catalan structure (here the hidden constants in the big-O notations in
O(`) and the upper bound certifying the Catalan structure in Equation (1) depend
only on H). Moreover, such a decomposition can be constructed in f(|H|) · nO(1)

steps, where f is a function depending only on H.

The proof of Theorem 9 is based on an algorithm constructing the claimed branch
decomposition using a structural characterization of H-minor-free graphs, given in
[36]. Briefly, any H-minor-free graph can be seen as the result of gluing together
(identifying constant size cliques and, possibly, removing some of their edges) graphs
that, after the removal of some constant number of vertices (called apices) can be
“almost” embedded in a surface of constant genus. Here, by “almost” we mean



that we permit a constant number of non-embedded parts (called vortices) that are
“attached” around empty disks of the embedded part and have a path-like structure
of constant width. The algorithm of Theorem 9, as well as the proof of its correctness,
has several phases, each dealing with some level of this characterisation, where an
analogue of sc-decomposition for planar graphs is used. The core of the proof is
based on the fact that the structure of the embeddible parts of this characterisation
(along with vortices) is “close enough” to be plane, so to roughly maintain the
Catalan structure property.

Theorem 9 implies (B) for k-Longest Path on H-minor-free graphs. Similar
results can be obtained for all problems examined in this section on H-minor-
free graphs. Since property (A) holds for minor/apex-contraction bidimensional
parameters on H-minor-free/apex-minor-free graphs, we have that one can design
2O(

√
k)·nO(1) step parameterized algorithms for all problems examined in this section

for H-minor-free/ apex-minor-free graphs (here the hidden constant in the big-O
notation in the exponent depend on the size on the excluded minor).

6 Conclusion

In Section 3, we have seen that bidimensionality can serve as a general combinato-
rial criterion implying property (A). Moreover, no such a characterization is known,
so far, for proving property (B). In Section 5, we have presented several problems
where an analogue of Theorem 9 can be proven, indicating the existence of Catalan
structures in H-minor-free graphs. It would be challenging to find a classification
criterion (logical or combinatorial) for the problems that are amenable to this ap-
proach.
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