
REPORTS
IN

INFORMATICS

ISSN 0333-3590

Fast subexponential algorithm for
non-local problems on graphs of bounded

genus

Frederic Dorn and Fedor V. Fomin and
Dimitrios M. Thilikos

REPORT NO 320 April 2006

Department of Informatics

UNIVERSITY OF BERGEN

Bergen, Norway

This report has URL http://www.ii.uib.no/publikasjoner/texrap/pdf/2006-320.pdf

Reports in Informatics from Department of Informatics, University of Bergen, Norway, is available at
http://www.ii.uib.no/publikasjoner/texrap/.

Requests for paper copies of this report can be sent to:

Department of Informatics, University of Bergen, Høyteknologisenteret,
P.O. Box 7800, N-5020 Bergen, Norway

Fast subexponential algorithm for non-local problems on graphs

of bounded genus

Frederic Dorn and Fedor V. Fomin∗

Department of Informatics

University of Bergen

PO Box 7800, 5020 Bergen, Norway

{dorn,fomin}@ii.uib.no

Dimitrios M. Thilikos†

Departament de Llenguatges i Sistemes Informàtics

Universitat Politècnica de Catalunya

Barcelona, Spain

sedthilk@lsi.upc.edu

Abstract

We give a general technique for designing fast subexponential algorithms for several graph prob-
lems whose instances are restricted to graphs of bounded genus. We use it to obtain time 2O(

√
n)

algorithms for a wide family of problems such as Hamiltonian Cycle, Σ-embedded Graph
Travelling Salesman Problem, Longest Cycle, and Max Leaf Tree. For our results, we
combine planarizing techniques with dynamic programming on special type branch decomposi-
tions. Our techniques can also be used to solve parameterized problems. Thus, for example, we
show how to find a cycle of length p (or to conclude that there is no such a cycle) on graphs of
bounded genus in time 2O(

√
p) · nO(1).

Keywords: Exact and parameterized algorithms, bounded genus, treewidth, branchwidth, travelling
salesman problem, Hamiltonian cycle.

∗Additional support by the Research Council of Norway.
†Supported by the Spanish CICYT project TIN-2004-07925 (GRAMMARS).

1 Introduction

Many common computational problems are NP-hard and therefore do not seem to be solvable by
efficient (polynomial time) algorithms. However, while NP-hardness is a good evidence for the in-
tractability of a problem, in many cases, there is a real need for exact solutions. Consequently, an
interesting and emerging question is to develop techniques for designing fast exponential or, when
possible, sub-exponential algorithms for hard problems (see [17]).

The algorithmic study of graphs that can be embedded on a surface of small genus, and planar
graphs in particular, has a long history. The first powerful tool for the design of sub-exponential
algorithms on such graphs was the celebrated Lipton-Tarjan planar separator theorem [10, 11] and
its generalization on graphs of bounded genus [8]. According to these theorems, an n-vertex graph
of fixed genus can be “separated” into two roughly equal parts by a separator of size O(

√
n). This

approach permits the use of a “divide and conquer” technique that provides subexponential algorithms
of running time 2O(

√
n) for a wide range of combinatorial problems.

A similar approach is based on graph decompositions [7]. Here instead of separators one uses
decompositions of small width, and instead of “divide and conquer” techniques, dynamic programming
(here we refer to tree or branch decompositions – see Section 2 for details). The main idea behind this
approach is very simple: Suppose that for a problem P we are able to prove that for every n-vertex
graph G of branchwidth at most `, the problem P can be solved in time 2O(`(G)) · nO(1). Since the
branchwidth of an n-vertex graph of a fixed genus is O(

√
n), we have that P is solvable on G in time

2O(
√

n) · nO(1).
For some problems like Minimum Vertex Cover or Minimum Dominating Set, such an ap-

proach yields directly algorithms of running time 2O(
√

n) ·nO(1) on graphs of bounded genus. However,
for some problems, like Hamiltonian Cycle, Σ-embedded Graph TSP, Max Leaf Tree, and
Steiner Tree, branchwidth arguments do not provide us with time 2O(

√
n) · nO(1) algorithms. The

reason is that all these problems are “non-local” and despite many attempts, no time 2o(`(G) log `) ·nO(1)

algorithm solving these problems on graphs of branchwidth at most ` is known.
Recently, it was observed by several authors that if a graph G is not only of branchwidth at most `

but is also planar, then for a number of “non-local” problems the log ` overhead can be removed [4, 5],
resulting in time 2O(

√
n) ·nO(1) algorithms on planar graphs. Similar result can be obtained by making

use of separators [2].
It is a common belief that almost every technique working on planar graphs can be extended on

graphs embedded on a surface of bounded genus. However, this is not always a straightforward task.
The main difficulty in generalizing planar graph techniques [2, 4, 5] to graphs of bounded genus is
that all these techniques are based on partitioning a graph embedded on a plane by a closed curve
into smaller pieces. Deineko et al. use cyclic separators of triangulations [2], Demaine and Hajiaghayi
use layers of k-outerplanar graphs [4], and Dorn et al. sphere cut decompositions [5]. But the essence
of all these techniques is that, roughly speaking, the situation occurring in the “inner” part of the
graph bounded by the closed curve can be represented in a compact way by Catalan structures. None
of these tools works for graphs of bounded genus—separators are not cyclic anymore, nor are there
sphere cut decompositions and k-outerplanarity in non-planar graphs.

In this paper we provide a method to design fast subexponential algorithms for graphs of bounded
genus for a wide class of combinatorial problems. Our algorithms are “fast” in the sense that they avoid
the log n overhead and also because the constants hidden in the big-Oh of the exponents are reasonable.
The technique we use is based on reduction of the bounded genus instances of the problem to planar
instances of a more general graph problem on planar graphs where Catalan structure arguments are
still possible. Such a reduction employs several results from topological graph theory concerning graph
structure and noncontractible cycles of non-planar embeddings.

Our techniques, combined with the excluded grid theorem for graphs of bounded genus and bidi-
mensionality arguments [3] provide also faster parameterized algorithms. For example we introduce

1

the first time 2O(
√

p) ·nO(1) algorithm for parameterized p-Cycle which asks, given a positive integer
p and a n-vertex graph G, whether G has a cycle of length at least p. Similar results can be obtained
for other parameterized versions of non-local problems.

This paper is organized as follows. Towards simplifying the presentation of our results we decided
to demonstrate how our approach works for the Hamiltonian Cycle problem. Later, at the end of
Section 4, we will explain how it can be applied to other combinatorial problems. We start with some
basic definitions in Section 2 and some results from topological graph theory. Section 3 is devoted to
the solution of Hamiltonian Cycle problem (which asks if a given graph G has a cycle containing
all its vertices) on torus-embedded graphs. These graphs already inherit all “nasty” properties of non-
planar graphs and all difficulties arising on surfaces of higher genus appear for torus-embedded graphs.
However, the case of torus-embedded graphs is still sufficiently simple to exemplify the minimization
technique used to obtained reasonable constants in the exponent. In Section 4, we explain how the
results on torus-embedded graphs can be extended for any graphs embedded in a surface of fixed
genus. Also in this section we discuss briefly applications of our results to parameterized algorithms
on graphs of bounded genus.

2 Definitions and preliminary results

In this section we will give a series of definitions and results that will be useful for the presentation of
the algorithms in Sections 3 and 4.
Surface embeddible graphs. We use the notation V (G) and E(G), for the set of the vertices and
edges of G. A surface Σ is a compact 2-manifold without boundary (we always consider connected
surfaces). We denote by S0 the sphere (x, y, z | x2 + y2 + z2 = 1) and by S1 the torus (x, y, z | z2 =
1/4 − (

√
x2 + y2 − 1)2). A line in Σ is subset homeomorphic to [0, 1]. An O-arc is a subset of Σ

homeomorphic to a circle. Whenever we refer to a Σ-embedded graph G we consider a 2-cell embedding
of G in Σ. To simplify notations we do not distinguish between a vertex of G and the point of Σ
used in the drawing to represent the vertex or between an edge and the line representing it. We also
consider G as the union of the points corresponding to its vertices and edges. That way, a subgraph
H of G can be seen as a graph H where H ⊆ G. We call by region of G any connected component
of (Σ \ E(G)) \ V (G). (Every region is an open set.) A subset of Σ meeting the drawing only in
vertices of G is called G-normal. If an O-arc is G-normal then we call it noose. The length of a noose
N is the number of its vertices and we denote it by |N |. Representativity [13] is the measure how
dense a graph is embedded on a surface. The representativity (or face-width) rep(G) of a graph G
embedded in surface Σ 6= S0 is the smallest length of a noncontractible noose in Σ. In other words,
rep(G) is the smallest number k such that Σ contains a noncontractible (non null-homotopic in Σ)
closed curve that intersects G in k points. Given a Σ-embedded graph G, its radial graph (also known
as vertex-face graph) is defined as the the graph RG that has as vertex set the vertices and the faces
of G and where an edge exists iff it connects a face and a vertex incident to it in G (RG is also a
σ-embedded graph). If the intersection of a noose with any region results into a connected subset,
then we call such a noose tight. Notice that each tight noose N in a Σ-embedded graph G, corresponds
to some cycle C of its radial graph RG (notice that the length of such a cycle is 2 · |N |). Also any
cycle C of RG is a tight noose in G. As it was shown by Thomassen in [16] (see also Theorem 4.3.2
of [12]) a shortest noncontractible cycle in a graph embedded on a surface can be found in polynomial
time. By Proposition 5.5.4 of [12]) a noncontractible noose of minimum size is always a tight noose,
i.e. corresponds to a cycle of the radial graph. Thus we have the following proposition.

Proposition 1. There exists a polynomial time algorithm that for a given Σ-embedded graph G, where
Σ 6= S0, finds a noncontractible tight noose of minimum size.

2

The Euler genus of a surface Σ is eg(Σ) = min{2g(Σ), g̃(Σ)} where g is the orientable genus and
g̃ the nonorientable genus. We need to define the graph obtained by cutting along a noncontractible
tight noose N . We suppose that for any v ∈ N ∩ V (G), there exists an open disk ∆ containing v and
such that for every edge e adjacent to v, e ∩ ∆ is connected. We also assume that ∆ \ N has two
connected components ∆1 and ∆2. Thus we can define partition of N(v) = N1(v) ∪ N2(v), where
N1(v) = {u ∈ N(v) : {u, v} ∩ ∆1 6= ∅} and N2(v) = {u ∈ N(v) : {u, v} ∩ ∆2 6= ∅}. Now for each
v ∈ N ∩ V (G) we duplicate v: (a) remove v and its incident edges (b) introduce two new vertices
v1, v2 and (c) connect vi with the vertices in Ni, i = 1, 2. v1 and v2 are vertices of the new G-normal
O-arcs NX and NY that border ∆1 and ∆2, respectively. We call NX and NY cut-nooses. Note that
cut-nooses are not necessarily tight (In other words, a cut-noose can enter and leave a region of G
several times.) The following lemma is very useful in proofs by induction on the genus. The first
part of the lemma follows from Proposition 4.2.1 (corresponding to surface separating cycle) and the
second part follows from Lemma 4.2.4 (corresponding to non-separating cycle) in [12].

Proposition 2. Let G be a Σ-embedded graph where Σ 6= S0 and let G′ be a graph obtained from G
by cutting along a noncontractible tight noose N on G. One of the following holds
• G′ can be embedded in a surface with Euler genus strictly smaller than eg(Σ).
• G′ is the disjoint union of graphs G1 and G2 that can be embedded in surfaces Σ1 and Σ2 such that
eg(Σ) = eg(Σ1) + eg(Σ2) and eg(Σi) > 0, i = 1, 2.

Branchwidth. A branch decomposition of a graph G is a pair 〈T, µ〉, where T is a tree with vertices
of degree one or three and µ is a bijection from the set of leaves of T to E(G). For a subset of edges
X ⊆ E(G) let δG(X) be the set of all vertices incident to edges in X and E(G) \X. For each edge
e of T , let T1(e) and T2(e) be the sets of leaves in two components of T \ e. For any edge e ∈ E(T)
we define the middle set as mid(e) =

⋃
v∈T1(e)

δG(µ(v)). The width of 〈T, µ〉 is the maximum size
of a middle set over all edges of T , and the branch-width of G, bw(G), is the minimum width over
all branch decompositions of G. For a S0-embedded graph G, we define a sphere cut decomposition
or sc-decomposition 〈T, µ, π〉 as a branch decomposition such that for every edge e of T and the two
subgraphs G1 and G2 induced by the edges in µ(T1(e)) and µ(T2(e)), there exists a tight noose Oe

bounding two open discs ∆1 and ∆2 such that Gi ⊆ ∆i ∪ Oe, 1 ≤ i ≤ 2. Thus Oe meets G only
in mid(e) and its length is |mid(e)|. Clockwise traversing of Oe in the drawing G defines the cyclic
ordering π of mid(e). We always assume that in an sc-decomposition the vertices of every middle
set mid(e) = V (G1) ∩ V (G2) are enumerated according to π. The following result follows from the
celebrated ratcatcher algorithm due to Seymour and Thomas [15] (the running time of the algorithm
was recently improved in [9]; see also [5]).

Proposition 3. Let G be a connected S0-embedded graph without vertices of degree one. There exists
an sc-decomposition of G of width bw(G). Moreover, such a branch decomposition can be constructed
in time O(n3).

3 Hamiltonicity on torus-embedded graphs

The idea behind solving the Hamiltonian cycle problem on S1-embedded graphs is to suitably
modify the graph G in such a way that the new graph G′ is S0-embedded (i.e. planar) and restate
the problem to an equivalent problem on G′ that can be solved by dynamic programming on a sc-
decomposition of G′. As we will see in Section 4, this procedure is extendable to graphs embedded on
surfaces of higher genus.

Let G be an S1-embedded graph (i.e. a graph embedded in the torus). By Proposition 1, it is
possible to find in polynomial time a shortest noncontractible (tight) noose N of G. Let G′ be the
graph obtained by cutting along N on G. By Proposition 2, G′ is S0-embeddible.

3

∆X

yjyj

xi xi

∆Y

Figure 1: Cut-nooses. In the left diagram, one equivalence class of relaxed Hamiltonian sets is illustrated.

All paths have endpoints in NX and NY . Fix one path with endpoints xi and yi. In the right diagram we

create a tunnel along this path. The empty disks ∆X and ∆Y are united to a single empty disk. Thus, we

can order the vertices bordering the disk to πXY .

Definition 4. A cut of a Hamiltonian cycle C in G along a tight noose N is the set of disjoint paths
in G′ resulting by cutting G along N .

Each cut-noose NX and NY borders an open disk ∆X and ∆Y , respectively, with ∆X ∪∆Y = ∅.
Let xi ∈ NX and yi ∈ NY be duplicated vertices of the same vertex in N .

Definition 5. A set of disjoint paths P in G′ is relaxed Hamiltonian if:
(P1) Every path has its endpoints in NX and NY .
(P2) Vertex xi is an endpoint of some path P if and only if yi is an endpoint of a path P ′ 6= P .
(P3) For xi and yi: one is an inner vertex of a path if and only if the other is not in any path.
(P4) Every vertex of G′ \ (NX ∪NY) is in some path.

A cut of a Hamiltonian cycle in G is a relaxed Hamiltonian set in G′, but not every relaxed
Hamiltonian set in G′ forms a Hamiltonian cycle in G. However, given a relaxed Hamiltonian set P
one can check in linear time (by identifying the corresponding vertices of NX and NY) if P is a cut
of Hamiltonian path in G. Two sets of disjoint paths P = (P1, P2, . . . , Pk) and P′ = (P ′1, P

′
2, . . . , P

′
k)

are equivalent if for every i ∈ {1, 2, . . . , k}, the paths Pi and P ′i have the same endpoints and an inner
vertex in one set is also an inner vertex in the other set.

Lemma 6. Let G′ be a S0-embedded graph obtained from a S1-embedded graph G by cutting along
a tight noose N . The number of different equivalence classes of relaxed Hamiltonian sets in G′ is
O(k2

2 23k−2 + 23k), where k is the length of N .

Proof. In [5] it is argued that the number of non-crossing paths with its endpoints in one noose
corresponds to a number of algebraic terms, namely the Catalan numbers. Here we deal with two
cut-nooses and our intention is to transform them into one cut-noose. For this, assume two vertices
xi ∈ NX and yj ∈ NY being two fixed endpoints of a path Pi,j in a relaxed Hamiltonian set P.
We look at all possible residual paths in P \ Pi,j and we observe that no path crosses Pi,j in the
S0-embedded graph G′ . So we are able to ’cut’ the sphere S0 along Pi,j and, that way, create a
“tunnel” between ∆X and ∆Y unifying them to a single disk ∆XY . Take the counter-clockwise order
of the vertices of NX beginning with xi and concatenate NY in clockwise order with yj the last vertex.
We denote the new cyclic ordering by πXY (see Figure 1 for an example) . In πXY , let a, b, c, d be
four vertices where xi < a < b < c < d < yj . Notice that if there is a path Pa,c between a and c,
then there is no path between b and d since such a path either crosses Pa,c or Pi,j . This means that
we can encode the endpoints of each path with two symbols, one for the beginning and one for the
ending of a path. The encoding corresponds to the brackets of an algebraic term. The number of

4

algebraic terms is defined by the Catalan numbers. We say that P has a Catalan structure. With
k = |NX | = |NY | and xi, yj ∈ Pi,j fixed, there are O(22k−2) sets of paths having different endpoints
and non-crossing Pi,j . An upper bound for the overall number of sets of paths satisfying (P1) is then
O(k2

2 22k−2 + 22k) with the first summand counting all sets of paths for each fixed pair of endpoints
xi, yj . The second summand counts the number of sets of paths when NX and NY are not connected
by any path. That is, each path has both endpoints in either only NX or only NY . We now count
the number of equivalent relaxed Hamiltonian sets P . Apparently, in a feasible solution, if a vertex
xh ∈ NX is an inner vertex of a path, then yh ∈ NY does not belong to any path and vice versa. With
(P3), there are two more possibilities for the pair of vertices xh, yh to correlate with a path. With
|NX | = |NY | = k, the overall upper bound of equivalent sets of paths is O(k2

2 23k−2 + 23k).

We call a candidate C of an equivalence class of relaxed Hamiltonian sets to be a set of paths
with vertices only in NX ∪ NY satisfying conditions (P1)–(P3). Thus for each candidate we fix a
path between NX and NY and define the ordering πXY . By making use of dynamic programming on
sc-decompositions we check for each candidate C if there is a spanning subgraph of the planar graph
G′ isomorphic to a relaxed Hamiltonian set P such that P is equivalent to C.

Instead of looking at the Hamiltonian cycle problem on G we solve the relaxed Hamiltonian
set problem on the S0-embedded graph G′ obtained from G: Given a candidate C, i.e. a set of
vertex tuples T = {(s1, t1), (s2, t2), . . . , (sk, tk)} with si, ti ∈ NX ∪ NY , i = 1, . . . , k and a vertex
set I ⊂ NX ∪ NY . Does there exist a relaxed Hamiltonian set P such that every (si, ti) marks the
endpoints of a path and the vertices of I are inner vertices of some paths? Our algorithm works as
follows: first encode the vertices of NX ∪NY according to C by making use of the Catalan structure
of C as it follows from the proof of Lemma 6. We may encode the vertices si as the ’beginning’ and
ti as the ’ending’ of a path of C. Using order πXY , we ensure that the beginning is always connected
to the next free ending. This allows us to design a dynamic programming algorithm using a small
constant number of states. We call the encoding of the vertices of NX ∪ NY base encoding to differ
from the encoding of the sets of disjoint paths in the graph. We proceed with dynamic programming
over middle sets of a rooted sc-decomposition 〈T, µ, π〉 in order to check whether G′ contains a relaxed
Hamiltonian set P equivalent to candidate C. As T is a rooted tree, this defines an orientation of
its edges towards its root. Let e be an edge of T and let Oe be the corresponding tight noose in S0.
Recall that the tight noose Oe partitions S0 into two discs which, in turn, induces a partition of the
edges of G into two sets. We define as Ge the graph induced by the edge set that corresponds to
the “lower side” of e it its orientation towards the root. All paths of P ∩ Ge start and end in Oe

and Ge ∩ (NX ∪ NY). For each Ge, we encode the equivalence classes of sets of disjoint paths with
endpoints in Oe. From the leaves to the root for a parent edge and its two children, we update the
encodings of the parent middle set with those of the children (for an example of dynamic programming
on sc-decompositions, see also [5]). We obtain the algorithm in Figure 2.

In the proof of the following lemma we show how to apply the dynamic programming step of
HamilTor. The proof is technical, and has been moved to the appendix. But we sketch the main
idea here: For a dynamic programming step we need the information on how a tight noose Oe and
NX ∪NY intersect and which parts of NX ∪NY are a subset of the subgraph Ge. Define the vertex set
X = (Ge \Oe)∩ (NX ∪NY). Ge is bordered by Oe and X . Ge is partitioned into several edge-disjoint
components that we call partial components. Each partial component is bordered by a noose that
is the union of subsets of Oe and X . Let us remark that this noose is not necessarily tight. The
partial components intersect pairwise only in vertices of X that we shall define as connectors. In
each partial component we encode a collection of paths with endpoints in the bordering noose using
Catalan structures. The union of these collections over all partial components must form a collection
of paths in Ge with endpoints in Oe and in X . We ensure that the encoding of the connectors of each
two components fit. During the dynamic programming we need to keep track of the base encoding of

5

Algorithm HamilTor
Input: S1-embedded graph G.
Output: Decision/Construction of the Hamiltonian cycle problem on G.

Preliminary Step: Cut G along a shortest noncontractible (tight) noose N and
output the S0-embedded graph G′ and the cut-nooses NX ,NY .

Main step: For all candidates C of relaxed Hamiltonian sets in G′ {
If C is equivalent to a Hamiltonian cycle when identifying the duplicated vertices in NX ,NY {

Determine the pair of endpoints (si, ti) that build the first and last vertex in πXY .
Make a base encoding of the vertices of NX and NY , marking the intersection of C and NX ∪NY .
Compute a rooted sc-decomposition 〈T, µ, π〉 of G′.
From the leaves to the root on each middle set Oe of T bordering Ge {

Do dynamic programming — find all equivalence classes of sets of disjoint paths in Ge

with endpoints in Oe and in Ge ∩ (NX ∪NY) with respect to the base encoding of NX ,NY .}
If there exists a relaxed Hamiltonian set P in G′ equivalent to C, then {
Reconstruct P from the root to the leaves of T and output corresponding Hamiltonian cycle.} } }

Output “No Hamiltonian Cycle exists”.

Figure 2: Algorithm HamilTor.

X . We do so by only encoding the vertices of Oe without explicitely memorizing with which vertices
of X they form a path. With several technical tricks we can encode Oe such that two paths with an
endpoint in Oe and the other in X can be connected to a path of P only if both endpoints in X are
the endpoints of a common path in C.

Lemma 7. For a given a sc-decomposition 〈T, µ, π〉 of G′ of width ` and a candidate C = (T, I) the
running time of the main step of HamilTor on C is O(25.433` · |V (G′)|O(1)).

To finish the estimation of the running time we need some combinatorial results.

Lemma 8. Let G be a S1-embedded graph on n vertices and G′ the planar graph obtained by cutting
along a noncontractible tight noose of G. Then bw(G′) ≤ √

4.5 · √n + 2.

Proof. (sketch) Let NX and NY be the cut-nooses in G′ bordering the empty disks ∆X and ∆Y .
We will prove the theorem assuming that after cutting along a noncontractible tight noose N of
G, all edges with both ends in N are incident to NX (the general case is a slightly more technical
implementation of the same idea). We construct a new graph G∗ by removing the vertices of NY from
G′. Thus |V (G∗)| = |V (G)| = n. By [7] there is a sc-decomposition 〈T, µ, π〉 of G∗ of width at most√

4.5 · √n. ∆Y is part of a region R of G∗ bordered by a closed walk C. The neighborhood of NY in
G′ is a subset of the vertices of C in G∗. Let EY be the set of edges in G′ incident to NY . Note that
E(G∗) ∪ EY = E(G′) and that EY induces a graph that is a subgraph that can be seen as a union
of stars whose centers lay on C (this is based on the assumption that no edge has both ends in NY).
We construct a branch decomposition of G′ from 〈T, µ, π〉 by doing the following. For every edge
x ∈ EY we choose edge y of C having a common endpoint v with x and being the next edge of C in
counter-clockwise ordering incident to v. Let ey be the edge of T adjacent to the leaf of corresponding
to y. We subdivide ey by placing a new vertex on it and attach a new leaf corresponding to x. We
claim that the width of the new branch decomposition 〈T ′, µ′〉 is at most the width of 〈T, µ, π〉 plus
two. For an edge y of C we may subdivide ey of T several times creating a subtree Ty. But all the
middle sets of the edges Ty have only one vertex in common, namely the common endpoint v. The
middle set connecting Ty to T may have up to two more vertices that are, in order of appearance
in πXY , the first and the last endpoints of the considered edges of EY . Let E(C) be the edge set
of C. Since 〈T, µ, π〉 is a sc-decomposition, we have that for every e of E(T), if the corresponding
tight noose Oe bordering G∗e intersects region R bordered by C, then E(C)∩G∗e induces a connected
subset of C. Note that in contrast Oe and C may intersect in single vertices only. Thus, Oe and
that subset intersect in only two vertices v, w. v and w each have at most one adjacent vertex in NY

6

that is connected to C \ G∗e. Hence each middle set of T ′ has at most two vertices more than the
corresponding middle set of T .

Lemma 9. Let G be a S1-embedded graph on n vertices. Then rep(G) ≤ √
4.5 · √n + 2.

Proof. (sketch) Let G′ be the S0-embedded graph obtained by cutting along a noncontractible tight
noose N of G. By Lemma 8, there is a sc-decomposition 〈T, µ, π〉 of G′ of width at most

√
4.5 ·√n+2.

We subdivide an arbitrary edge e of T into the edges e1,e2 and root the tree at the new node r.
Assume that for one of e1, e2, say e1, both cut-nooses NX and NY are properly contained in Ge1 . We
traverse the tree from e1 to the leaves. We always branch towards a child edge e with middle set Oe

such that NX ∪NY ⊂ Ge. At some point we reach an e with either a) Ge properly containing exactly
one cut-noose or b) Oe intersecting both cut-nooses or c) Ge properly containing one cut-noose and
Oe intersecting the other. In case c) we continue traversing from e towards the leafs always branching
towards the edge with c) until we reach an edge with either a) or b). In case a), tight noose Oe forms
a noncontractible tight noose in G, hence the length of Oe must be at least the representativity of
G. In case b), Oe is the union of two lines with the shortest, say N1, of length at most |Oe|

2 . But
both endpoints of N1 are connected in the S1-embedded graph G by a line N2 of N of length L with
0 ≤ L ≤ |N |

2 . N1 and N2 form a noncontractible tight noose in G of length at most |Oe|
2 + |N |

2 . Hence,
|Oe| ≥ rep(G).

Putting all together we obtain the following theorem.

Theorem 10. Let G be a graph on n vertices embedded on a torus S1. The Hamiltonian cycle
problem on G can be solved in time O(217.893

√
n · nO(1)).

Proof. We run the algorithm HamilTor on G. The algorithm terminates positively when the dynamic
programming is successful for some candidate of an equivalence class of relaxed Hamiltonian sets and
this candidate is a cut of a Hamiltonian cycle. By Propositions 1, Step 0 can be performed in
polynomial time. Let k be the minimum length of a noncontractible noose N , and let G′ be the
graph obtained from G by cutting along N . By Lemma 6, the number of all candidates of relaxed
Hamiltonian sets in G′ is O(23k) · nO(1). So the main step of the algorithm is called O(23k) · nO(1)

times. By Proposition 3, an optimal branch decomposition of G′ of width ` can be constructed in
polynomial time. By Lemma 7, dynamic programming takes time O(25.433`) · nO(1). Thus the total
running time of HamilTor is O(25.433` ·23k) ·nO(1). By Lemma 9, k ≤ √

4.5 ·√n+2 and by Lemma 8,
` ≤ √

4.5 · √n + 2, and the theorem follows.

4 Hamiltonicity on graphs of bounded genus

Now we extend our algorithm to graphs of higher genus. For this, we use the following kind of
planarization: We apply Proposition 2 and cut iteratively along shortest noncontractible nooses until
we obtain a planar graph G′. If at some step G′ is the disjoint union of two graphs G1 and G2, we
apply Proposition 2 on G1 and G2 separately.

Lemma 11. There exists a polynomial time algorithm that given a Σ-embedded graph G where Σ 6= S0,
returns a minimum size noncontractible noose. Moreover, the length of such a noose, rep(G), is at
most bw(G) ≤ (

√
4.5 + 2 ·

√
2 · eg(Σ))

√
n.

Proof. In order to find a tight noose in G of minimum size we use Proposition 1, and we are looking
instead for a shortest noncontractible cycle in RG. This can be done by the algorithm of Thomassen
in [16] (See also Theorem 4.3.2 of [12]). From [6], the branchwidth of an 2-cell-embedded graph on
the surface Σ is bounded by (

√
4.5 + 2 ·

√
2eg(Σ))

√
n. By Theorem 4.1 of [14], rep(G) ≤ bw(G).

7

We examine how a shortest noncontractible noose affects the cut-nooses of previous cuts:

Definition 12. Let K be a family of cycles in G. We say that K satisfies the 3-path-condition if it
has the following property. If x, y are vertices of G and P1, P2, P3 are internally disjoint paths joining
x and y, and if two of the three cycles Ci,j = Pi ∪ Pj , (1 ≤ i < j ≤ 3) are not in K, then also the
third cycle is not in K.

Proposition 13. (Mohar and Thomassen [12]) The family of Σ-noncontractible cycles of a Σ-
embedded graph G satisfies the 3-path-condition.

Proposition 13 is useful to restrict the number of ways not only on how a shortest noncontractible
tight noose may intersect a face but as well on how it may intersect the vertices incident to a face.
The proof of the following lemma is moved to the appendix.

Lemma 14. Let G be Σ-embedded and F a face of G bordered by V1 ⊆ V (G). Let F := V1 ∪ F . Let
Ns be a shortest noncontractible (tight) noose of G. Then one of the following holds

1) Ns ∩ F = ∅.
2.1) Ns ∩ F = ∅ and |Ns ∩ V1| = 1.
2.2) Ns ∩ F = ∅, Ns ∩ V1 = {x, y}, and x and y are both incident to one more face

different than F which is intersected by Ns.
3) Ns ∩ F 6= ∅ and |Ns ∩ V1| = 2.

We use Lemma 14 to extend the process of cutting along noncontractible tight nooses such that
we obtain a planar graph with a small number of disjoint cut-nooses of small lengths. Let g ≤ eg(Σ)
be the number of iterations needed to cut along shortest noncontractible nooses such that they turn
a Σ-embedded graph G into a planar graph G′. However, these cut-nooses may not be disjoint. In
our dynamic programming approach we need pairwise disjoint cut-nooses. Thus, whenever we cut
along a noose, we manipulate the cut-nooses found so far. After g iterations, we obtain the set of
cut-nooses N that is a set of disjoint cut-nooses bounding empty open disks in the embedding of G′.
Let L(N) be the length of N as the sum over the lengths of all cut-nooses in N. The proof of the
following proposition is moved to the appendix.

Proposition 15. It is possible to find, in polynomial time, a set of cut-nooses N that contains at
most 2g disjoint cut-nooses. Furthermore L(N) is at most 2g rep(G).

We extend the definition of relaxed Hamiltonian sets from graphs embedded on a torus to graphs
embedded on higher genus, i.e. from two cut-nooses NX and NY to the set of cut-nooses N. For each
vertex v in the vertex set V (G) of graph G we define the vertex set Dv that contains all duplicated
vertices v1, . . . , vf of v in N along with v. Set D =

⋃
v∈V (G) Dv.

Definition 16. A set of disjoint paths P in G′ is relaxed Hamiltonian if:
(P1) Every path has its endpoints in N.
(P2) If a vertex vi ∈ Dv ∈ D is an endpoint of path P , then there is one vj ∈ Dv that is also an
endpoint of a path P ′ 6= P . All vh ∈ Dv \ {vi, vj} do not belong to any path.
(P3) vi ∈ Dv is an inner path vertex if and only if all vh ∈ Dv \ {vi} are not in any path.
(P4) Every vertex of the residual part of G′ is in some path.

Similar to torus-embedded graphs, we order the vertices of N for later encoding in a counterclock-
wise order πL depending on the fixed paths between the cut-nooses of N:

Lemma 17. Let G′ be the planar graph after cutting along g ≤ eg(Σ) tight nooses of G along with
its set of disjoint cut-nooses N. The number of different equivalence classes of relaxed Hamiltonian
sets in G′ is 2O(g·(log g+rep(G)).

8

Proof. We create one cut-noose out of all the cut-nooses of N by using ”tunnels” as in the proof of
lemma 2. But the difficulty here is that the cut-nooses are connected by a relaxed Hamiltonian set
in an arbitrary way. We use a tree structure in order to cut the sphere along that structure. Given
such a tree structure, we create tunnels in order to connect open disks and to merge them to one
disk. Let C be a candidate of the relaxed Hamiltonian set. Define graph H such that each cut-noose
Ni ∈ N in G′ corresponds to a vertex i in V (H). Two vertices i, j of H are adjacent if there is a path
between vertices of Ni and Nj in C. Let F be a spanning forest of H. For every pair of adjacent
vertices i, j in F fix a path in G′ between two arbitrary vertices vi

x ∈ Ni and vj
y ∈ Nj . Walk along

a tree by starting and ending in a node r and visiting all nodes by always visiting the next adjacent
neighbor in counterclockwise order. A node is visited as many times as many neighbors it has. In this
way we create tunnels in G′ by ordering the vertices of the cut-nooses: Starting with an ordered list
L = {∅} and one cut-noose Ni and one endpoint vi

x ∈ Ni of a fixed path. Take in counterclockwise
order the vertices of Ni into L that are between vi

x and the last vertex before the next endpoint
vi

y ∈ Ni connected to vj
z ∈ Nj in the fixed path Pi,j . Concatenate to L in counterclockwise order

the vertices of Nj after vj
z until the last vertex before the next endpoint of a fixed path. Repeat

the concatenation until one reaches again vi
x. Whenever an endpoint is visited for the second time

concatenate it to L, too. Create an ordered list LC for every component C in C and concatenate LC

to L. The order of L is then πL. (See Figure 7 in the Appendix for an example.) Consider all ≤ nn−2

possible spanning trees on n vertices ([1]), and so ≤ 2nnn−2 possible spanning forrests. There is a
spanning forrest over the 2k cut-nooses for each candidate P. With 2g cut-nooses of N each of length
at most 2g rep(G) there are O((2g rep(G))2) possible fixed path between each two cut-nooses. Then
we obtain a rough upper bound of O(2g rep(G))4g) on the number possible fixed path between the
cut-nooses in a given tree-structure. We obtain O(22g(2g)2g−2(2g rep(G))4g) possibilities for above
concatenation and tunneling of N. Again we argue C has a Catalan structure when tunneling the
cut-nooses in this way. Due to (P2) in definition 16, there are O(22g rep(G)) many sets of paths with
endpoints in the cut-nooses of N non-crossing the fixed paths.The number of relaxed Hamiltonian sets
is due to (P3) O(23g rep(G)).

Given the order πL of the vertices N in the encoding of candidate C. As in the previous section,
we preprocess the graph G′ and encode the vertices of N with the base values. We extend the dynamic
porgramming approach by analysing how the tight noose Oe can intersect several cut-nooses. The
proofs of the next two statements are moved to the Appendix.

Lemma 18. Let G′ be the planar graph after cutting along g ≤ eg(Σ) shortest noncontractible nooses
of G. For a given sc-decomposition 〈T, µ, π〉 of G′ of width ` and a candidate C the Relaxed

Hamiltonian Set problem on G′ can be solved in time 2O(g2 log `) · 2O(`) · nO(1).

Lemma 19. Let G be a Σ-embedded graph with n vertices and G′ the planar graph obtained after
cutting along g ≤ eg(Σ) tight nooses. Then, bw(G′) ≤ √

4.5 · √n + 2g.

Lemmata 11, 17, 18 and 19 imply the following:

Theorem 20. Given a Σ-embedded graph G on n vertices and g ≤ eg(Σ). The Hamiltonian cycle

problem on G can be solved in time nO(g2) · 2O(g
√

g·n).

Our dynamic programming technique can be used to design faster parameterized algorithms as
well. For example, the parameterized p-Cycle on Σ-embedded Graphs problem asks for a given
Σ-embedded graph G, to check for the existence of a cycle of length at least a parameter p. First, our
technique can be used to find the longest cycle of G with g ≤ eg(Σ) in time nO(g2) · 2O(g

√
g·n). (On

torus -embedded graphs this can be done in time O(217.957
√

nn3).) By combining this running time
with bidimensionality arguments from [3] we arrive at a time 2O(g2 log p) · 2O(g

√
g·p) · nO(1) algorithm

solving the parameterized p-Cycle on Σ-embedded Graphs.

9

5 Conclusive Remarks

In this paper we have introduced a new approach for solving non-local problems on graphs of bounded
genus. With some sophisticated modifications, this generic approach can be used to design time
2O(

√
n) algorithms for many other problems including Σ-embedded Graph TSP (TSP with the

shortest path metric of a Σ-embedded graph as the distance metric for TSP), Max Leaf Tree,
and Steiner Tree, among others. Clearly, the ultimate step in this line of research is to prove the
existence of time 2O(

√
n) algorithms for non-local problems on any graph class that is closed under

taking of minors. Recently, we were able to complete a proof of such a general result, using results
from the Graph Minor series. One of the steps of our proof is strongly based on the results and the
ideas of this paper.

References

[1] A. Cayley, A theorem on trees, Quart J. Pure Appl. Math., 23 (1889), pp. 26–28.

[2] V. G. Dĕıneko, B. Klinz, and G. J. Woeginger, Exact algorithms for the Hamiltonian cycle problem
in planar graphs, Operations Research Letters, (2006), p. to appear.

[3] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos, Subexponential parameterized
algorithms on graphs of bounded genus and H-minor-free graphs, Journal of the ACM, 52 (2005), pp. 866–
893.

[4] E. D. Demaine and M. Hajiaghayi, Bidimensionality: new connections between fpt algorithms and
ptass, in Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005),
New York, 2005, ACM-SIAM, pp. 590–601.

[5] F. Dorn, E. Penninkx, H. Bodlaender, and F. V. Fomin, Efficient exact algorithms on planar graphs:
Exploiting sphere cut branch decompositions, in Proceedings of the 13th Annual European Symposium on
Algorithms (ESA 2005), vol. 3669 of LNCS, Springer, Berlin, 2005, pp. 95–106.

[6] F. V. Fomin and D. M. Thilikos, Fast parameterized algorithms for graphs on surfaces: Linear kernel
and exponential speed-up, in Proceedings of the 31st International Colloquium on Automata, Languages
and Programming (ICALP 2004), vol. 3142 of LNCS, Berlin, 2004, Springer, pp. 581–592.

[7] , New upper bounds on the decomposability of planar graphs, Journal of Graph Theory, 51 (2006),
pp. 53–81.

[8] J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan, A separator theorem for graphs of bounded
genus, Journal of Algorithms, 5 (1984), pp. 391–407.

[9] Q.-P. Gu and H. Tamaki, Optimal branch-decomposition of planar graphs in O(n3) time, in Proceed-
ings of the 32nd International Colloquium on Automata, Languages and Programming (ICALP 2005),
vol. 3580 of LNCS, Springer, Berlin, 2005, pp. 373–384.

[10] R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math., 36
(1979), pp. 177–189.

[11] , Applications of a planar separator theorem, SIAM J. Comput., 9 (1980), pp. 615–627.

[12] B. Mohar and C. Thomassen, Graphs on surfaces, Johns Hopkins Studies in the Mathematical Sciences,
Johns Hopkins University Press, Baltimore, MD, 2001.

[13] N. Robertson and P. D. Seymour, Graph minors. VII. Disjoint paths on a surface, J. Combin. Theory
Ser. B, 45 (1988), pp. 212–254.

[14] , Graph minors. XI. Circuits on a surface, J. Combin. Theory Ser. B, 60 (1994), pp. 72–106.

[15] P. D. Seymour and R. Thomas, Call routing and the ratcatcher, Combinatorica, 14 (1994), pp. 217–241.

[16] C. Thomassen, Embeddings of graphs with no short noncontractible cycles, J. Combin. Theory Ser. B,
48 (1990), pp. 155–177.

[17] G. Woeginger, Exact algorithms for NP-hard problems: A survey, in Combinatorial Optimization -
Eureka, you shrink!, vol. 2570 of LNCS, Springer-Verlag, Berlin, 2003, pp. 185–207.

10

A Appendix: Proof of Lemma 7

Preprocess G′. In a preprocessing step we delete all vertices of NX ∪NY from G′ which do not belong to any
path of C. The other vertices in NX ∪NY are encoded by base values {[,], S, ¤}. This base encoding depends
on the order πXY and is fixed throughout the phase of dynamic programming. Say in the tuple (s, t) of T, s
is marking the first vertex in πXY and t the last vertex. We encode both s and t by ’S’. For every other tuple
(si, ti) of T we encode si by ’[’ and ti by ’]’ where si < ti in πXY . The additional value ’S’ is important for a
consistent dynamic programming. It determines the “tunnel” created by the path with endpoints s and t. As
described in the proof of Lemma 6 the cut-nooses NX , NY and the tunnel border the outer face that enables
the encoding. The vertices of I simply are encoded by base value ’¤’.

Constructing branch decomposition. We use Proposition 3 to obtain a sc-decomposition 〈T, µ, π〉 of G′

of optimum width `. For dynamic programming it is convenient to root T by choosing arbitrarily an edge e
and subdividing e by inserting a new node s. Let e′, e′′ be the new edges then we set mid(e′) = mid(e)
and mid(e′′) = mid(e). Create a new node root r and connect it to s and set mid({r, s}) = ∅. Each node v
of T now has one adjacent edge on the path from v to r, called parent edge eP , and two adjacent edges towards
the leaves, called left child eL and right child eR. For every edge e of T , we call the subtree towards the leaves
the lower part and the rest the residual part concerning to e. We call the subgraph Ge induced by the leaves
of the lower part of e the subgraph rooted at e. Let e be an edge of T and let Oe be the corresponding tight
noose in S0. Recall that tight noose Oe partitions S0 into two discs, one of which, ∆e, contains Ge.

In the following, we often do not distinguish between mid(e) and Oe ∩ V (G). We start at the leaves of T
and work ’bottom-up’ processing the subgraphs rooted at the edges up to the root edge. All paths of P ∩Ge

start and end in Oe and Ge ∩ (NX ∪NY). For a dynamic programming step we need the information on how
a tight noose Oe and NX ∪NY intersect and which parts of NX ∪NY are a subset of the subgraph Ge. Define
the vertex set X = (Ge \Oe) ∩ (NX ∪NY).

In the dynamic programming approach we differentiate three phases. In Phase 1 no vertex of NX ∪NY is
contained in disk ∆e bounded by Oe, thus X = ∅. Note that in this phase (NX ∪NY) ∩ Oe is not necessary
empty because Oe may touch NX ,NY in common vertices. Hence all paths must start and end in Oe. At some
step of dynamic programming we arrive at Phase 2: X 6= ∅ but neither V (NX) ⊆ X , nor V (NY) ⊆ X . This
is when we connect the loose paths—i.e. paths with endpoints in Oe \ (NX ∪ NY)—to their predestinated
endpoints in NX and NY . Finally, we arrive at the situation, Phase 3, when either V (NX) ⊆ X ∨V (NY) ⊆ X ,
or V (NX) ⊆ X ∧V (NY) ⊆ X . Here we take care that the residual paths with one determined endpoint in NX

and NY are connected in the corresponding way.

Proposition 21. Phase 1: Given a sc-decomposition 〈T, µ, π〉 of G′ of width ` and a candidate C = (T, I).
The phase of dynamic programming with X = ∅ takes time O(23.292`).

Every vertex of the subgraph Ge below Oe is part of one of the vertex-disjoint paths P1, . . . , Pq with
endpoints in Oe. The state of dynamic programming is specified by an ordered `-tuple ~te := (v1, . . . , v`)
with the variables v1, . . . , v` corresponding to the vertices of Oe ∩ V (G). The variables have one of the four
values: 0, 1[, 1], 2. For every state, we compute a Boolean value Be(v1, . . . , v`) that is True if and only if
P1, . . . , Pq in Ge have the following properties: (A1) Every vertex of V (Ge) \ Oe is contained in one of the
paths Pi, 1 ≤ i ≤ q.
(A2) Every Pi has both its endpoints in Oe ∩ V (G);

Let P be a path in Ge. Since none of the paths in Ge cross, we argue again by making use of the Catalan
structure. We scan the vertices of Oe ∩V (G) according to the ordering π and mark with ’1[’ the first and with
’1]’ the last vertex of P . If a vertex of Oe ∩ V (G) is adjacent to two edges P we mark it with ’2’. If a vertex
is not contained in any path we mark it with ’0’.
Processing middle sets. The first step in processing the middle sets is to initialize the leaves with val-
ues (0, 0), (1[, 1]). Then, bottom-up, update every pair of states of two child edges eL and eR to a state of
the parent edge eP . Let OL, OR, and OP be the tight nooses corresponding to edges eL, eR and eP . Due
to the definition of branch decompositions, every vertex must appear in at least two of the three middle sets
and we can define the following partition of the set (OL ∪ OR ∪ OP) ∩ V (G) into sets I := OL ∩ OR ∩ V (G)
and D := OP ∩V (G) \ I (I stands for ’Intersection’ and D for ’symmetric Difference’). The disc ∆P bounded
by OP and including the subgraph rooted at eP contains the union of the discs ∆L and ∆R bounded by OL

11

j

l

b m

k

g
{2, 5, 7}

c

a d

f
h

i

c

8

4 6

1 3
a b

f g

c d m

h i j k

l

5

7

2

OP

OL

OR

OR

OL

OP

Figure 3: Processing middle sets. The diagrams show a graph together with its sc-decomposition. The

tight nooses OP , OL and OR are emphasized. OP touches the graph in vertices 2, 5, 7, OL in 2, 5, 8 and OR in

5, 7, 8. Vertex 5 is the only portal vertex of OL ∩OR ∩OP ∩ V (G).

and OR and including the subgraphs rooted at eL and eR. Thus |OL ∩OR ∩OP ∩ V (G)| ≤ 2. The vertices of
OL ∩OR ∩OP ∩ V (G) are called portal vertices. See Figure 3 for an illustration.

We compute all valid assignments to the variables ~tP = (v1, v2, . . . , vp) corresponding to the vertices
mid(eP) from all possible valid assignments to the variables of ~tL and ~tR. For a symbol x ∈ {0, 1[, 1], 2} we
denote by |x| its ”numerical” part. Thus, for example |1[| = 1. We say that an assignment cP is formed by
assignments cL and cR if for every vertex v ∈ (OL ∪OR ∪OP) ∩ V (G):

1. v ∈ D: cP (v) = cL(v) if v ∈ OL ∩ V (G), or cP (v) = cR(v) otherwise.

2. v ∈ I \OP : (|cL(v)|+ |cR(v)|) = 2.

3. v portal vertex: |cP (v)| = |cL(v)|+ |cR(v)| ≤ 2.

We compute all `-tuples for mid(eP) that can be formed by tuples corresponding to mid(eL) and mid(eR)
and check if the obtained assignment do not form cycles.
Running time. Assume we have three adjacent edges eP , eL, and eR of T with |OL| = |OR| = |OP | = `.
Without loss of generality we limit our analysis to even values for `, and for simplicity assume there are no
portal vertices. This can only occur if |I| = |D ∩OL| = |D ∩OR| = `

2
. We give an expression for Q(`, m): the

number of `-tuples over ` vertices where the {0, 1[, 1], 2} assignments for vertices from I is fixed and contains
m 1[’s and 1]’s. The only freedom we have is thus in the `/2 vertices in D ∩OL and D ∩OR, respectively:

Q(`, m) ≈
`
2X

i=0

Ã
`
2

i

!
2

`
2−i2i+m = 2`+m (1)

This expression is a summation over the number of 1[’s and 1]’s in D ∩OL and D ∩OR, respectively. As
we are interested in exponential behaviour for large values of ` we ignore that i + m is even.

We can count the total cost of forming an `-tuple from OP by summing over i: the number of 1[’s and 1]’s
in the assignment for I:

C(`) =

`
2X

i=0

Ã
`
2

i

!
2

`
2−iQ(`, i)2 ≈ (4

√
6)` ≈ 23.292` (2)

There is one restriction to the encoding of the vertices in Oe ∩ (NX ∪NY): a vertex with base value ’[’,’]’
or ’S’ cannot be assigned with ’2’ at any stage.

12

Proposition 22. Phase 2: The phase of dynamic programming with X 6= ∅ and V (NX) * X and V (NY) * X
takes time O(26.360`).

Let us remind that X = (Ge \Oe)∩ (NX ∪NY). The difficulty of the second phase lies in keeping track of
the base encoding of X . Thus, we do not want to memorize explicitly with which endpoint in X a vertex of
Oe forms a path. We apply again the Catalan structures. The key to it is first that the vertices of Oe inherit
the base values of the sets T and I—the sets of the definition of the relaxed Hamiltonian set problem. That is,
if one vertex of Oe is paired with a vertex assigned by ’[’ it must be paired in Ge with a vertex with value ’]’.
Second, we observe that the cut-nooses NX ∪NY and the tight noose Oe intersect in a characteristic way: we
show that we obtain a structure that allows us to encode paths in an easy way. In other words we make use
of the structure of the subgraph Ge bordered by NX ∪NY and Oe for synchronizing the encoding of T and I
with the encoding of Oe. Thus, we need some more definitions. A partial noose is a proper connected subset
of a tight noose and cut-noose, respectively. A partial component of a graph is embedded on an open disk
bounded by partial nooses. The vertices in the intersection of two partial components are called connectors.
In fact, Ge can be partitioned into several partial components with no connector in three components. Each
component is bordered by partial nooses of NX ∪NY and Oe.

Proposition 23. The subgraph Ge is the union of partial components C1, . . . , Cq (q ≥ 1) such that for every
i

Ci ∩ (
Sq

r=1,r 6=i Cr) ⊆ Oe ∩ (NX ∪NY). Furthermore, for every i, j, h, Ci ∩ Cj ∩ Ch = ∅.
Proof. Recall that by definition a tight noose intersects a region exactly once. Hence Oe intersects at most
once the empty disks ∆X and ∆Y that are bounded by NX and NY . In this case, Oe and (NX ∪ NY) can
intersect in vertices or as well twice the arc between to successive vertices in NX and NY , respectively. That
is due to the fact that NX and NY are cut-nooses and hence may have several arcs in one face. In contrast,
Oe and (NX ∪NY) can touch arbitrarily often, but only in vertices. In Phase 2, ∆e ∩ (∆X ∪∆Y) 6= ∅. Hence,
if one removes ∆X ∪∆Y then ∆e is partitioned into several disks ∆1, . . . , ∆q each bordered by the union of
some partial nooses bounded by vertices v of V (Oe)∩V (NX ∪NY) or some points µ of the crossing of the arcs
between two successive vertices of Oe and NX ∪NY . Since NX and NY do not intersect, we have that v and
µ are the endpoints of at most four partial nooses. Hence, v is neighboring at most two partial components
and µ one.

See the left diagram of Figure 4 for an example.

Proposition 24. Each Ci is bordered by sets of partial nooses Ai and Bi with Ai ⊂ (NX ∪ NY) \ Oe and
Bi ⊂ Oe with

Sk
i=1 Ai ∪Bi = Ge ∩ ((NX ∪NY) ∪Oe) such that one of the following hold:

1. |Ai| = |Bi| = 1 with Ai ⊂ NX or Ai ⊂ NY ,

2. |Ai| = |Bi| = 2 with Ai ⊂ NX and Ai ⊂ NY .

There is at most one partial component Ci with property 2.

Proof. Assume, there is a component Ci with two partial noose P 1
i , P 2

i ∈ Ai∩NX . Two of the points bordering
P 1

i and P 2
i bound the partial noose of Oe that intersects ∆X . Then both other points that border P 1

i and P 2
i

are each bordering two partial nooses of Oe intersecting Ge. Thus, there is no possible configuration in which
P 1

i and P 2
i bound the same component. Assume two components Ci and Cj with |Ai| = |Aj | = 2. Then

there are four partial nooses of Bi ⊂ Oe that must be connectable to a tight noose Oe. That is not possible
without crossing ∆X and ∆Y more than once.

See the right diagram of Figure 4 for an illustration.
In contrast to the first phase we encode the vertices for each component Ci of Proposition 23 separately.

The connectors, the vertices that are in two components are encoded twice. A restriction to the encoding of
the vertices in Oe ∩ (NX ∪NY) is the consideration of the base encoding, for example a vertex with base value
’[’ or ’]’ cannot be assigned with ’2’ at any stage.

We introduce new values for indicating a connection to vertices of X = (Ge \Oe)∩(NX ∪NY). Proposition
24 guarantees that we can differentiate between three types of partial components Ci. The ones without any
vertex in X and the two that have properties 1 and 2. For all three cases every vertex of V (Ci)\Oe is contained
in one path.

13

NX

NY

Oe

C2

C1

C3
C4

NX

NY

A2

A2
B2

B2

Oe

A1

B1

A3

B3 B4

A4

Figure 4: Partial components and partial nooses. The left diagram illustrates how Oe and NX ,NY form

the partial components C1, . . . , C4. Observe that C1, . . . , C4 only intersect in vertices whereas Oe and NX ,NY

do not have to. In the right diagram, each partial component is bounded by partial nooses. Only component

C2 has |A2| = |B2| = 2.

1. Ci ∩ X = ∅.
- Every path has both endpoints in V (Ci) ∩Oe.

- Every vertex of V (Ci) ∩ (NX ∪NY) with base value ’[’ or ’]’ is not to be an inner vertex of a path.

- We use the same encoding as in phase 1.

2. Ci ∩ X 6= ∅ and |Ai| = 1.

- Every path has both endpoints in V (Ci) ∩ (Oe ∪ X).

- A vertex of V (Ci)∩Oe with other endpoint w in X is encoded with the base value of w, ’[’ or ’]’. Since
|Ai| = 1 and the Catalan structure is retained for the border vertices of Ci, it is possible to reconstruct
the order πXY in which the other endpoints in X are. The base value ’¤’ does not appear. We introduce
’SX ’ and ’SY ’ for marking the connection to vertices in NX and NY that have the base values ’S’. ’SX ’
and ’SY ’ appear at most once.

- For paths with both endpoints in V (Ci) ∩Oe we use the same encoding as in phase 1.

3. Ci ∩ X 6= ∅ and |Ai| = 2.

- Every path has both endpoints in V (Ci) ∩ (Oe ∪ X).

- As in the latter case we use the base encoding to encode the vertices of V (Ci)∩Oe, too. Additionally,
we introduce values ’]L’,’[L’ to mark each of the last two vertices in order π that are endpoint of a path
with other endpoint in NX and NY , respectively. These values are used only once in an unique Ci and
hence do not play any role for the running time. Note that if there is no vertex encoded with ’]L’,’[L’,
this means that vertices encoded by ’]’,’[’ are only connected to NX . In contrast to, if there is only one
vertex encoded with ’]L’,’[L’, and it is after NY then all vertices encoded by ’]’,’[’ are only connected to
NY .

See Figure 5 for an example on the usage of encoding ’]L’,’[L’.

Additional special cases.

14

Nx

Oe

[

]L

[

0
[]] [

0

]L

1]

1[

0

[

[

[] [[

Oe

Ny

Figure 5: Usage of ’]L’and ’[L’. The diagram shows the partial component that is bounded by four partial

nooses. The vertices are clockwise ordered beginning in the upper left corner. ’]L’ on the right partial noose

of Oe marks the last vertex of Oe connected to NX . ’]L’ on the left partial noose of Oe marks the last vertex

connected to NY .

• Base value ’S’.

We leave it to the reader to consider the special cases that occur with base value ’S’. Recall that ’S’
marks the fixed path Pi,j and the beginning and the end of order πXY . It is easy to see that the encoding
determines wether a vertex of V (Ci) ∩ Oe is connected to a vertex before or after an endpoint of Pi,j .
For example, suppose both endpoints of Pi,j are in X ∪ Oe and Pi,j ⊂ Ci. Then Pi,j separates Ci into
two parts which cannot be connected by a path, since neither NX ⊂ Ci nor NY ⊂ Ci.

• Right encoding of connector. Let c be a connector between two partial components Ci,Cj . The
two values of c must combine to the correct base value. If base value of c is not ’¤’, at least one of the
two values in Ci or Cj must be ’0’ and none is ’2’.

• Path through several components. For every component Ci, a vertex v of the tight noose Oe ∩Ci

can be paired to a connector with base value ’¤’. Hence, v can be an endpoint of a path with other
endpoint in X in another component Cj . In this case assign v with the corresponding base value.

Processing middle sets. The middle sets are processed exactly as described in the first phase. In the first
step every pair of states of two child edges eL and eR are updated to a state of the parent edge eP . For a
symbol of {[,], SX , SY ,]L, [L} the numerical value is 1 and we form the vertex assignments as above. I.e., base
values are treated exactly as ’1[’ or ’1]’. With the only restriction if the assignments cL and cR of a vertex
v both are base values. The base value in OL must fit to the base value in OR, i.e., if wlog cL(v) has value
’[’ then cR(v) must have ’]’, if wlog cL(v) = SX then cR(v) = SY . In the second step, we not only check
forbidden cycles, but consistency of the encoding regarding to the base values. With the help of an auxiliary
graph consisting of GL and GR together with the partial components, we check the following:

1. The base values of cL and cR are connected respecting πXY . For a vertex v of I encoded by ’[’ and ’]’
in OL and OR, respectively, it must hold that the endpoint with base value ’[’ must be in order πXY

before the endpoint with ’]’.

2. The vertices of a partial component Ci of OP that are paired to a vertex of X ∩ Ci are assigned with

15

the correct value of {[,], SX , SY ,]L, [L}. Note that new connector vertices are generated, which must be
encoded component-wise.

Running time. When counting the number of states we omit values {SX , SY ,]L, [L} since they are assigned
to at most two vertices of OL and OR. Each connector is assigned with two values. The number of connectors
can be in order size of a OL and OR, respectively. The values of the vertices in the D-set are transferred in
time depending on the number of values {0, 1[, 1], 2, [,]} and the number of valid encoding of the connectors.
There are 25 ways of encoding a connector correctly. Apparently, if a vertex is a connector in OL then it is
not in OR. To simplify matters, assume that V (OL) are connectors and V (OR) are not. Then the update time
for D is O(25|D∩OL|6|D∩OR|). There are 45 possible assignments for vertices in I to sum up to two. Thus,
updating time for the I-set is O(45|I|). With analogous calcultions as before we get an overall running time
60.5`250.5`450.5` ≈ 26.36`.

Proposition 25. Phase 3: The phase of dynamic programming with X 6= ∅ and either V (NX) ⊆ X or
V (NY) ⊆ X or both takes time O(26.360`).

In the last phase at least one of both cut-nooses NX ,NY are subsets of V (Ge) \ Oe. The difficulty is
apparently to encode the endpoint of a path with one endpoint in such NX , NY . We consider two cases:

1. The fixed path Pi,j is crossing Oe.

If both NX and NY are in V (Ge) \Oe we assume the first vertex v assigned by ’SX ’ in π and the other
w by ’SY ’. Use encoding with ’[L’,’]L’ to mark the last vertex in the partial noose (v, w) connected to
NX and the last vertex in the partial noose (w, v) connected to NY . If wlog NX crosses Oe we find a
partial component Ci including NY . We mark two vertices with ’[L’,’]L in the same way , no matter if
there is one or two of ’SX ’,’SY ’ in V (Ci) ∩Oe.

2. Pi,j ⊂ Ge \Oe.

One vertex in Oe is marked ’[X,L’ or ’]X,L’ to be the last vertex in π connected to NX and one vertex
by ’[Y,L’ or ’]Y,L’ to be the last connected to NX . If one of NX ,NY cross Oe we again find a partial
component Ci can be encoded in that way.

Since the new values ’[∗’,’]∗’ appear only twice per middle set, they do not affect the running time. The
algorithm works the same as in phase two, considering the two latter cases.

With more complicated encodings and analysis we are able to improve the running time of phase 2 and 3 :

Proposition 26. Phase 2 and 3: takes time O(25.433`).

We omit the details here.

B Appendix: Proof of Lemma 14

Recall that Ns is tight i.e. it can be seen as a cycle in the radial graph RG. This directly implies that if
|Ns ∩ V1| = 1, then Ns ∩ F = ∅.

Suppose now that Ns∩V1 = {vi, vj} and Ns∩F = ∅. Suppose also that there is no face as the one required
in 2.2. Then the cycle Cs of RG corresponding to Ns is partitioned into two paths P2 and P3, each with ends
vi and vj and of length > 2. We use the notation vF for the vertex of RG corresponding to the face F . Let
also P1 = (vi, vF , vj) and notice that the two cycles of RG defined by P1 ∪P3 and P1 ∪P2 have length smaller
than P2 ∪P3 = Cs and therefore they are contractibe. By Proposition 13, Ns is contractible—a contradiction.

For the sake of contradiction, we assume that |Ns ∩ V1| ≥ 3. Assume Ns intersects V1 in vertices I =
v1, . . . , vk, k ≥ 3, and with at most two vertices connected by the part of the noose of Ns that intersects F .
In the radial graph RG of G, Ns corresponds to the shortest noncontractible cycle Cs. In RG each vertex of
V1 is a neighbour of the vertex vF .

We consider the two cases: Ns∩F 6= ∅. That is, there exists a path {vi, vF , vj} ⊂ Cs in RG with vi, vj ∈ I.
Let vh be another vertex in I = V1 ∩ Cs. Consider the three paths in RG connecting vF and vh, namely
P1 = (vF , vi, . . . , vh), P2 = (vF , vj , . . . , vh), and P3 = (vF , vh). Notice also that the two cycles of RG defined
by P1 ∪ P3 and P2 ∪ P3 have length smaller than P1 ∪ P2 = Cs and therefore they are contractibe which is a
contradiction to Proposition 13.

16

In case Ns ∩ F = ∅, we choose vi, vj , vh ∈ I arbitrarily and the arguments of the previous case imply
that the path P1 ∪ P2 is contractible. We define now the paths Q1 = (vi, . . . , vh, . . . , vj), Q2 = (vi, vF , vj),
and Q3 = (vi, . . . , vj) between the vertices vi and vj . As Q1 ∪ Q2 = P1 ∪ P2, the cycle Q1 ∪ Q2 of RG is
contractible. The same holds for the cycle Q2 ∪Q3 as its length is less than the length of Q1 ∪Q3 = Cs. Then
again Proposition 13 implies that Q1 ∪Q3 = Cs is contractible, a contradiction.

C Appendix: Proof of Proposition 15

Let Ni be the set of disjoint cut-nooses after i cuts. Consider the cases of Lemma 14 of how a shortest
noncontractible (tight) noose Ns intersects a cut-noose of Ni.
• Suppose Ns intersects with the empty disk ∆j bounded by Nj ∈ Ni. Let P1 ∪ P2 = Nj be the two partial
nooses of Nj determined by the intersection of Nj and Ns. When we cut along Ns, we replace Ns by the
contractible cut-nooses NX and NY . We replace NX ∩ ∆j by P1 and NY ∩ ∆j by P2. In Ni we substitute
Nj by NX and NY . Note that Ns can intersect with several disjoint cut-nooses of Ni in this way. See upper
diagrams Figure 6 for an example.

Ns

∆j

Nj

P1

P2

P1

P2

NX

NY

Ns

∆j

Nj

v

∆j

Nj

v

NY

NX

Ns

∆j

Nj

x

y Ns

∆j

Nj

x

y

Figure 6: Making cut-nooses disjoint. The upper diagrams show how a noncontractible tight noose Ns

partitions Nj into two partial nooses P1 and P2. NX ∪ P1 and NY ∪ P2 form new cut-nooses. The middle

diagrams show how Ns touches Nj in only one vertex v. Since Nj and NY intersect in v, we set Nj == Nj \v.

The lower diagrams show how to shift the part of Ns between vertices x and y from the outside of ∆j into

the inside.

17

• Suppose Ns intersects with Nj ∈ Ni in one vertex. One of the cut-nooses NX , NY intersects with Nj in
vertex v. Delete v from Nj and add NX , NY . to Ni. Also here Ns can intersect with several disjoint cut-nooses
of Ni in this way. See the middle diagrams in Figure 6 for an example.
• Suppose Ns intersects with Nj ∈ Ni in two vertices x, y and Ns ∩∆j = ∅ (corresponding to special case 2.2)
in Lemma 14). Since there is no vertex in the part of Ns between x and y we are allowed to shift that part
entirely inside of ∆j . See the lower diagrams in Figure 6 for an example. Thus, we obtain the first case above
that Ns intersects with the empty disk ∆j bounded by Nj ∈ Ni.

D Appendix: Concerning proof of Lemma 17

See figure 7.

N1
N2

N3

N4

N5

1.

2.

3.

4.

5.

6.

7. 8.

Figure 7: Tree structure for fixing paths. The left diagram shows a candidate connecting five cut-nooses

N1, . . . , N5 by paths. In the right diagram, the fixed paths are emphasized dashed. The nooses are connected

by tunnels along these fixed paths. The order πL of the vertices is illustrated by the labeled dotted and

directed lines.

E Appendix: Proof of Lemma 18

As in the previous section, we preprocess the graph G′ by deleting all vertices in N that do not belong to any
path in candidate C. We also encode the vertices of N with the same base values, except for ’S’: we replace
’S’ by the values ’S1’ to ’S2g’ since the number of cut-nooses is bounded by 2g. The endpoints x, y of a fixed
path with x < y in πL are encoded with Si if x ∈ Ni.

Dynamic programming is done as described in the previous section with slight changes caused by the
extension of Propositions 23 and 24. Due to Proposition 2 we can have the case that G′ consists of several
components G′1, G

′
2, We simply do dynamic programming for each component separately.

Consider subgraph Ge bordered by tight noose Oe and Ne ⊂ N as the cut-nooses intersecting Ge:

Proposition 27. The subgraph Ge is the union of partial components C1, . . . , Cq (q ≥ 1) such that for every
i

Ci ∩ (
Sq

r=1,r 6=i Cr) ⊆ Oe ∩Ne. Furthermore, for every i, j, h, Ci ∩ Cj ∩ Ch = ∅.
Proposition 28. Each Ci is bordered by partial nooses of Ai of tight nooses of Ne \Oe and partial nooses of
Bi ⊂ Oe with

Sq
i=1 Ai ∪Bi = Ge ∩ (Ne ∪Oe) such that one of the following hold:

18

1. |Ai| = |Bi| = 1 with Ai ⊂ NX for a tight noose NX ∈ Ne ,

2. |Ai| = |Bi| ≤ 2g with each partial noose of Ai part of a different tight noose of Ne.

For all partial components Ci, Cj with property 2: Ai contains at least one partial noose that is part of a
cut-noose of Ne that has no partial noose in Aj. There are at most 2g components with property 2 and
|S2g

i=1 Ai| ≤ 2g.

See Figure 8 for an illustration.

N1
N2

N3

N4

N5

C1

C2

C3

C4

Oe

Figure 8: Partial components with several cut-nooses. The diagram shows how tight noose Oe intersects

Ne = {N1, . . . , N4} and form the partial components C1, . . . , C4. Observe that every partial noose of Ai

(1 ≤ i ≤ 4) is of a different cut-noose.

Component Ci with property 2 is encoded similarly as before only by replacing ’[L’, ’]L’ by ’[1’,’]1’ to
’[2g’,’]2g’: the last vertex in π of a vertex in a set of Bi connected to cut-noose Nj ∈ N is encoded by ’[j ’ or
’]j ’. In one set of Bi there are at most 2g vertices encoded by the new values. Because of the last statement of
Proposition 28 the size of the union over all Bi is also bounded by 2g. Hence, there are at most 4g2 vertices

in Oe encoded with ’[1’,’]1’ to ’[2g’,’]2g’ and O((2gbw(G′))4g2
possibilities for assigning these values to V (Oe).

F Appendix: Proof of Lemma 19

We only give an idea of the proof, that is extending the proof of Lemma 8. Here we delete temporarily all
cut-nooses of N and construct the sc-decomposition 〈T, µ, π〉 of G′ of width at most

√
4.5 ·√n. Now we simply

make use of the argument that a middle set Oe intersects a cut-noose in at most two vertices for each cut-noose
separately. Thus, we obtain at most two vertices more for Oe per cut-noose that Oe intersects.

19

