REPORTS
 IN
 INFORMATICS

ISSN 0333-3590

Fast subexponential algorithm for non-local problems on graphs of bounded genus

Frederic Dorn and Fedor V. Fomin and Dimitrios M. Thilikos

Department of Informatics

Bergen, Norway

This report has URL http://www.ii.uib.no/publikasjoner/texrap/pdf/2006-320.pdf
Reports in Informatics from Department of Informatics, University of Bergen, Norway, is available at http://www.ii.uib.no/publikasjoner/texrap/.

Requests for paper copies of this report can be sent to:
Department of Informatics, University of Bergen, Høyteknologisenteret, P.O. Box 7800, N-5020 Bergen, Norway

Fast subexponential algorithm for non-local problems on graphs of bounded genus

Frederic Dorn and Fedor V. Fomin*
Department of Informatics
University of Bergen
PO Box 7800, 5020 Bergen, Norway
\{dorn,fomin\} @ii.uib.no

Dimitrios M. Thilikos ${ }^{\dagger}$
Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya
Barcelona, Spain
sedthilk@lsi.upc.edu

Abstract

We give a general technique for designing fast subexponential algorithms for several graph problems whose instances are restricted to graphs of bounded genus. We use it to obtain time $2^{O(\sqrt{n})}$ algorithms for a wide family of problems such as Hamiltonian Cycle, Σ-embedded Graph Travelling Salesman Problem, Longest Cycle, and Max Leaf Tree. For our results, we combine planarizing techniques with dynamic programming on special type branch decompositions. Our techniques can also be used to solve parameterized problems. Thus, for example, we show how to find a cycle of length p (or to conclude that there is no such a cycle) on graphs of bounded genus in time $2^{O(\sqrt{p})} \cdot n^{O(1)}$.

Keywords: Exact and parameterized algorithms, bounded genus, treewidth, branchwidth, travelling salesman problem, Hamiltonian cycle.

[^0]
1 Introduction

Many common computational problems are NP-hard and therefore do not seem to be solvable by efficient (polynomial time) algorithms. However, while NP-hardness is a good evidence for the intractability of a problem, in many cases, there is a real need for exact solutions. Consequently, an interesting and emerging question is to develop techniques for designing fast exponential or, when possible, sub-exponential algorithms for hard problems (see [17]).

The algorithmic study of graphs that can be embedded on a surface of small genus, and planar graphs in particular, has a long history. The first powerful tool for the design of sub-exponential algorithms on such graphs was the celebrated Lipton-Tarjan planar separator theorem [10, 11] and its generalization on graphs of bounded genus [8]. According to these theorems, an n-vertex graph of fixed genus can be "separated" into two roughly equal parts by a separator of size $O(\sqrt{n})$. This approach permits the use of a "divide and conquer" technique that provides subexponential algorithms of running time $2^{O(\sqrt{n})}$ for a wide range of combinatorial problems.

A similar approach is based on graph decompositions [7]. Here instead of separators one uses decompositions of small width, and instead of "divide and conquer" techniques, dynamic programming (here we refer to tree or branch decompositions - see Section 2 for details). The main idea behind this approach is very simple: Suppose that for a problem \mathcal{P} we are able to prove that for every n-vertex graph G of branchwidth at most ℓ, the problem \mathcal{P} can be solved in time $2^{O(\ell(G))} \cdot n^{O(1)}$. Since the branchwidth of an n-vertex graph of a fixed genus is $O(\sqrt{n})$, we have that \mathcal{P} is solvable on G in time $2^{O(\sqrt{n})} \cdot n^{O(1)}$.

For some problems like Minimum Vertex Cover or Minimum Dominating Set, such an approach yields directly algorithms of running time $2^{O(\sqrt{n})} \cdot n^{O(1)}$ on graphs of bounded genus. However, for some problems, like Hamiltonian Cycle, Σ-embedded Graph TSP, Max Leaf Tree, and Steiner Tree, branchwidth arguments do not provide us with time $2^{O(\sqrt{n})} \cdot n^{O(1)}$ algorithms. The reason is that all these problems are "non-local" and despite many attempts, no time $2^{o(\ell(G) \log \ell)} \cdot n^{O(1)}$ algorithm solving these problems on graphs of branchwidth at most ℓ is known.

Recently, it was observed by several authors that if a graph G is not only of branchwidth at most ℓ but is also planar, then for a number of "non-local" problems the $\log \ell$ overhead can be removed [4, 5], resulting in time $2^{O(\sqrt{n})} \cdot n^{O(1)}$ algorithms on planar graphs. Similar result can be obtained by making use of separators [2].

It is a common belief that almost every technique working on planar graphs can be extended on graphs embedded on a surface of bounded genus. However, this is not always a straightforward task. The main difficulty in generalizing planar graph techniques $[2,4,5]$ to graphs of bounded genus is that all these techniques are based on partitioning a graph embedded on a plane by a closed curve into smaller pieces. Deineko et al. use cyclic separators of triangulations [2], Demaine and Hajiaghayi use layers of k-outerplanar graphs [4], and Dorn et al. sphere cut decompositions [5]. But the essence of all these techniques is that, roughly speaking, the situation occurring in the "inner" part of the graph bounded by the closed curve can be represented in a compact way by Catalan structures. None of these tools works for graphs of bounded genus - separators are not cyclic anymore, nor are there sphere cut decompositions and k-outerplanarity in non-planar graphs.

In this paper we provide a method to design fast subexponential algorithms for graphs of bounded genus for a wide class of combinatorial problems. Our algorithms are "fast" in the sense that they avoid the $\log n$ overhead and also because the constants hidden in the big-Oh of the exponents are reasonable. The technique we use is based on reduction of the bounded genus instances of the problem to planar instances of a more general graph problem on planar graphs where Catalan structure arguments are still possible. Such a reduction employs several results from topological graph theory concerning graph structure and noncontractible cycles of non-planar embeddings.

Our techniques, combined with the excluded grid theorem for graphs of bounded genus and bidimensionality arguments [3] provide also faster parameterized algorithms. For example we introduce
the first time $2^{O(\sqrt{p})} \cdot n^{O(1)}$ algorithm for parameterized p-CYCLE which asks, given a positive integer p and a n-vertex graph G, whether G has a cycle of length at least p. Similar results can be obtained for other parameterized versions of non-local problems.

This paper is organized as follows. Towards simplifying the presentation of our results we decided to demonstrate how our approach works for the Hamiltonian Cycle problem. Later, at the end of Section 4, we will explain how it can be applied to other combinatorial problems. We start with some basic definitions in Section 2 and some results from topological graph theory. Section 3 is devoted to the solution of Hamiltonian Cycle problem (which asks if a given graph G has a cycle containing all its vertices) on torus-embedded graphs. These graphs already inherit all "nasty" properties of nonplanar graphs and all difficulties arising on surfaces of higher genus appear for torus-embedded graphs. However, the case of torus-embedded graphs is still sufficiently simple to exemplify the minimization technique used to obtained reasonable constants in the exponent. In Section 4, we explain how the results on torus-embedded graphs can be extended for any graphs embedded in a surface of fixed genus. Also in this section we discuss briefly applications of our results to parameterized algorithms on graphs of bounded genus.

2 Definitions and preliminary results

In this section we will give a series of definitions and results that will be useful for the presentation of the algorithms in Sections 3 and 4.
Surface embeddible graphs. We use the notation $V(G)$ and $E(G)$, for the set of the vertices and edges of G. A surface Σ is a compact 2-manifold without boundary (we always consider connected surfaces). We denote by \mathbb{S}_{0} the sphere $\left(x, y, z \mid x^{2}+y^{2}+z^{2}=1\right)$ and by \mathbb{S}_{1} the torus $\left(x, y, z \mid z^{2}=\right.$ $\left.1 / 4-\left(\sqrt{x^{2}+y^{2}}-1\right)^{2}\right)$. A line in Σ is subset homeomorphic to $[0,1]$. An O-arc is a subset of Σ homeomorphic to a circle. Whenever we refer to a Σ-embedded graph G we consider a 2 -cell embedding of G in Σ. To simplify notations we do not distinguish between a vertex of G and the point of Σ used in the drawing to represent the vertex or between an edge and the line representing it. We also consider G as the union of the points corresponding to its vertices and edges. That way, a subgraph H of G can be seen as a graph H where $H \subseteq G$. We call by region of G any connected component of $(\Sigma \backslash E(G)) \backslash V(G)$. (Every region is an open set.) A subset of Σ meeting the drawing only in vertices of G is called G-normal. If an O-arc is G-normal then we call it noose. The length of a noose N is the number of its vertices and we denote it by $|N|$. Representativity [13] is the measure how dense a graph is embedded on a surface. The representativity (or face-width) $\operatorname{rep}(G)$ of a graph G embedded in surface $\Sigma \neq \mathbb{S}_{0}$ is the smallest length of a noncontractible noose in Σ. In other words, $\operatorname{rep}(G)$ is the smallest number k such that Σ contains a noncontractible (non null-homotopic in Σ) closed curve that intersects G in k points. Given a Σ-embedded graph G, its radial graph (also known as vertex-face graph) is defined as the the graph R_{G} that has as vertex set the vertices and the faces of G and where an edge exists iff it connects a face and a vertex incident to it in G (R_{G} is also a σ-embedded graph). If the intersection of a noose with any region results into a connected subset, then we call such a noose tight. Notice that each tight noose N in a Σ-embedded graph G, corresponds to some cycle C of its radial graph R_{G} (notice that the length of such a cycle is $2 \cdot|N|$). Also any cycle C of R_{G} is a tight noose in G. As it was shown by Thomassen in [16] (see also Theorem 4.3.2 of [12]) a shortest noncontractible cycle in a graph embedded on a surface can be found in polynomial time. By Proposition 5.5.4 of [12]) a noncontractible noose of minimum size is always a tight noose, i.e. corresponds to a cycle of the radial graph. Thus we have the following proposition.

Proposition 1. There exists a polynomial time algorithm that for a given Σ-embedded graph G, where $\Sigma \neq \mathbb{S}_{0}$, finds a noncontractible tight noose of minimum size.

The Euler genus of a surface Σ is $\mathbf{e g}(\Sigma)=\min \{2 \mathbf{g}(\Sigma), \tilde{\mathbf{g}}(\Sigma)\}$ where \mathbf{g} is the orientable genus and $\tilde{\mathrm{g}}$ the nonorientable genus. We need to define the graph obtained by cutting along a noncontractible tight noose N. We suppose that for any $v \in N \cap V(G)$, there exists an open disk Δ containing v and such that for every edge e adjacent to $v, e \cap \Delta$ is connected. We also assume that $\Delta \backslash N$ has two connected components Δ_{1} and Δ_{2}. Thus we can define partition of $N(v)=N_{1}(v) \cup N_{2}(v)$, where $N_{1}(v)=\left\{u \in N(v):\{u, v\} \cap \Delta_{1} \neq \emptyset\right\}$ and $N_{2}(v)=\left\{u \in N(v):\{u, v\} \cap \Delta_{2} \neq \emptyset\right\}$. Now for each $v \in N \cap V(G)$ we duplicate v : (a) remove v and its incident edges (b) introduce two new vertices v^{1}, v^{2} and (c) connect v^{i} with the vertices in $N_{i}, i=1,2 . v^{1}$ and v^{2} are vertices of the new G-normal $O-\operatorname{arcs} N_{X}$ and N_{Y} that border Δ_{1} and Δ_{2}, respectively. We call N_{X} and N_{Y} cut-nooses. Note that cut-nooses are not necessarily tight (In other words, a cut-noose can enter and leave a region of G several times.) The following lemma is very useful in proofs by induction on the genus. The first part of the lemma follows from Proposition 4.2 .1 (corresponding to surface separating cycle) and the second part follows from Lemma 4.2 .4 (corresponding to non-separating cycle) in [12].

Proposition 2. Let G be a Σ-embedded graph where $\Sigma \neq \mathbb{S}_{0}$ and let G^{\prime} be a graph obtained from G by cutting along a noncontractible tight noose N on G. One of the following holds

- G^{\prime} can be embedded in a surface with Euler genus strictly smaller than $\mathbf{e g}(\Sigma)$.
- G^{\prime} is the disjoint union of graphs G_{1} and G_{2} that can be embedded in surfaces Σ_{1} and Σ_{2} such that $\mathbf{e g}(\Sigma)=\mathbf{e g}\left(\Sigma_{1}\right)+\mathbf{e g}\left(\Sigma_{2}\right)$ and $\operatorname{eg}\left(\Sigma_{i}\right)>0, i=1,2$.

Branchwidth. A branch decomposition of a graph G is a pair $\langle T, \mu\rangle$, where T is a tree with vertices of degree one or three and μ is a bijection from the set of leaves of T to $E(G)$. For a subset of edges $X \subseteq E(G)$ let $\delta_{G}(X)$ be the set of all vertices incident to edges in X and $E(G) \backslash X$. For each edge e of T, let $T_{1}(e)$ and $T_{2}(e)$ be the sets of leaves in two components of $T \backslash e$. For any edge $e \in E(T)$ we define the middle set as $\operatorname{mid}(e)=\bigcup_{v \in T_{1}(e)} \delta_{G}(\mu(v))$. The width of $\langle T, \mu\rangle$ is the maximum size of a middle set over all edges of T, and the branch-width of G, $\mathbf{b w}(G)$, is the minimum width over all branch decompositions of G. For a \mathbb{S}_{0}-embedded graph G, we define a sphere cut decomposition or sc-decomposition $\langle T, \mu, \pi\rangle$ as a branch decomposition such that for every edge e of T and the two subgraphs G_{1} and G_{2} induced by the edges in $\mu\left(T_{1}(e)\right)$ and $\mu\left(T_{2}(e)\right)$, there exists a tight noose O_{e} bounding two open discs Δ_{1} and Δ_{2} such that $G_{i} \subseteq \Delta_{i} \cup O_{e}, 1 \leq i \leq 2$. Thus O_{e} meets G only in $\operatorname{mid}(e)$ and its length is $|\operatorname{mid}(e)|$. Clockwise traversing of O_{e} in the drawing G defines the cyclic ordering π of $\operatorname{mid}(e)$. We always assume that in an sc-decomposition the vertices of every middle set $\operatorname{mid}(e)=V\left(G_{1}\right) \cap V\left(G_{2}\right)$ are enumerated according to π. The following result follows from the celebrated ratcatcher algorithm due to Seymour and Thomas [15] (the running time of the algorithm was recently improved in [9]; see also [5]).

Proposition 3. Let G be a connected \mathbb{S}_{0}-embedded graph without vertices of degree one. There exists an sc-decomposition of G of width $\mathbf{b w}(G)$. Moreover, such a branch decomposition can be constructed in time $O\left(n^{3}\right)$.

3 Hamiltonicity on torus-embedded graphs

The idea behind solving the Hamiltonian cycle problem on \mathbb{S}_{1}-embedded graphs is to suitably modify the graph G in such a way that the new graph G^{\prime} is \mathbb{S}_{0}-embedded (i.e. planar) and restate the problem to an equivalent problem on G^{\prime} that can be solved by dynamic programming on a scdecomposition of G^{\prime}. As we will see in Section 4, this procedure is extendable to graphs embedded on surfaces of higher genus.

Let G be an \mathbb{S}_{1}-embedded graph (i.e. a graph embedded in the torus). By Proposition 1 , it is possible to find in polynomial time a shortest noncontractible (tight) noose N of G. Let G^{\prime} be the graph obtained by cutting along N on G. By Proposition $2, G^{\prime}$ is \mathbb{S}_{0}-embeddible.

Figure 1: Cut-nooses. In the left diagram, one equivalence class of relaxed Hamiltonian sets is illustrated. All paths have endpoints in N_{X} and N_{Y}. Fix one path with endpoints x_{i} and y_{i}. In the right diagram we create a tunnel along this path. The empty disks Δ_{X} and Δ_{Y} are united to a single empty disk. Thus, we can order the vertices bordering the disk to $\pi_{X Y}$.

Definition 4. A cut of a Hamiltonian cycle C in G along a tight noose N is the set of disjoint paths in G^{\prime} resulting by cutting G along N.

Each cut-noose N_{X} and N_{Y} borders an open disk Δ_{X} and Δ_{Y}, respectively, with $\Delta_{X} \cup \Delta_{Y}=\emptyset$. Let $x_{i} \in N_{X}$ and $y_{i} \in N_{Y}$ be duplicated vertices of the same vertex in N.

Definition 5. A set of disjoint paths \mathbf{P} in G^{\prime} is relaxed Hamiltonian if:
(P1) Every path has its endpoints in N_{X} and N_{Y}.
(P2) Vertex x_{i} is an endpoint of some path P if and only if y_{i} is an endpoint of a path $P^{\prime} \neq P$.
(P3) For x_{i} and y_{i} : one is an inner vertex of a path if and only if the other is not in any path.
(P4) Every vertex of $G^{\prime} \backslash\left(N_{X} \cup N_{Y}\right)$ is in some path.
A cut of a Hamiltonian cycle in G is a relaxed Hamiltonian set in G^{\prime}, but not every relaxed Hamiltonian set in G^{\prime} forms a Hamiltonian cycle in G. However, given a relaxed Hamiltonian set \mathbf{P} one can check in linear time (by identifying the corresponding vertices of N_{X} and N_{Y}) if \mathbf{P} is a cut of Hamiltonian path in G. Two sets of disjoint paths $\mathbf{P}=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ and $\mathbf{P}^{\prime}=\left(P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{k}^{\prime}\right)$ are equivalent if for every $i \in\{1,2, \ldots, k\}$, the paths P_{i} and P_{i}^{\prime} have the same endpoints and an inner vertex in one set is also an inner vertex in the other set.

Lemma 6. Let G^{\prime} be a \mathbb{S}_{0}-embedded graph obtained from a \mathbb{S}_{1}-embedded graph G by cutting along a tight noose N. The number of different equivalence classes of relaxed Hamiltonian sets in G^{\prime} is $O\left(\frac{k^{2}}{2} 2^{3 k-2}+2^{3 k}\right)$, where k is the length of N.

Proof. In [5] it is argued that the number of non-crossing paths with its endpoints in one noose corresponds to a number of algebraic terms, namely the Catalan numbers. Here we deal with two cut-nooses and our intention is to transform them into one cut-noose. For this, assume two vertices $x_{i} \in N_{X}$ and $y_{j} \in N_{Y}$ being two fixed endpoints of a path $P_{i, j}$ in a relaxed Hamiltonian set \mathbf{P}. We look at all possible residual paths in $\mathbf{P} \backslash P_{i, j}$ and we observe that no path crosses $P_{i, j}$ in the \mathbb{S}_{0}-embedded graph G^{\prime}. So we are able to 'cut' the sphere \mathbb{S}_{0} along $P_{i, j}$ and, that way, create a "tunnel" between Δ_{X} and Δ_{Y} unifying them to a single disk $\Delta_{X Y}$. Take the counter-clockwise order of the vertices of N_{X} beginning with x_{i} and concatenate N_{Y} in clockwise order with y_{j} the last vertex. We denote the new cyclic ordering by $\pi_{X Y}$ (see Figure 1 for an example). In $\pi_{X Y}$, let a, b, c, d be four vertices where $x_{i}<a<b<c<d<y_{j}$. Notice that if there is a path $P_{a, c}$ between a and c, then there is no path between b and d since such a path either crosses $P_{a, c}$ or $P_{i, j}$. This means that we can encode the endpoints of each path with two symbols, one for the beginning and one for the ending of a path. The encoding corresponds to the brackets of an algebraic term. The number of
algebraic terms is defined by the Catalan numbers. We say that \mathbf{P} has a Catalan structure. With $k=\left|N_{X}\right|=\left|N_{Y}\right|$ and $x_{i}, y_{j} \in P_{i, j}$ fixed, there are $O\left(2^{2 k-2}\right)$ sets of paths having different endpoints and non-crossing $P_{i, j}$. An upper bound for the overall number of sets of paths satisfying (P1) is then $O\left(\frac{k^{2}}{2} 2^{2 k-2}+2^{2 k}\right)$ with the first summand counting all sets of paths for each fixed pair of endpoints x_{i}, y_{j}. The second summand counts the number of sets of paths when N_{X} and N_{Y} are not connected by any path. That is, each path has both endpoints in either only N_{X} or only N_{Y}. We now count the number of equivalent relaxed Hamiltonian sets \mathbf{P}. Apparently, in a feasible solution, if a vertex $x_{h} \in N_{X}$ is an inner vertex of a path, then $y_{h} \in N_{Y}$ does not belong to any path and vice versa. With (P3), there are two more possibilities for the pair of vertices x_{h}, y_{h} to correlate with a path. With $\left|N_{X}\right|=\left|N_{Y}\right|=k$, the overall upper bound of equivalent sets of paths is $O\left(\frac{k^{2}}{2} 2^{3 k-2}+2^{3 k}\right)$.

We call a candidate \mathbf{C} of an equivalence class of relaxed Hamiltonian sets to be a set of paths with vertices only in $N_{X} \cup N_{Y}$ satisfying conditions (P1)-(P3). Thus for each candidate we fix a path between N_{X} and N_{Y} and define the ordering $\pi_{X Y}$. By making use of dynamic programming on sc-decompositions we check for each candidate \mathbf{C} if there is a spanning subgraph of the planar graph G^{\prime} isomorphic to a relaxed Hamiltonian set \mathbf{P} such that \mathbf{P} is equivalent to \mathbf{C}.

Instead of looking at the Hamiltonian cycle problem on G we solve the relaxed Hamiltonian SET problem on the \mathbb{S}_{0}-embedded graph G^{\prime} obtained from G : Given a candidate \mathbf{C}, i.e. a set of vertex tuples $\mathbf{T}=\left\{\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)\right\}$ with $s_{i}, t_{i} \in N_{X} \cup N_{Y}, i=1, \ldots, k$ and a vertex set $\mathbf{I} \subset N_{X} \cup N_{Y}$. Does there exist a relaxed Hamiltonian set \mathbf{P} such that every $\left(s_{i}, t_{i}\right)$ marks the endpoints of a path and the vertices of \mathbf{I} are inner vertices of some paths? Our algorithm works as follows: first encode the vertices of $N_{X} \cup N_{Y}$ according to \mathbf{C} by making use of the Catalan structure of \mathbf{C} as it follows from the proof of Lemma 6. We may encode the vertices s_{i} as the 'beginning' and t_{i} as the 'ending' of a path of \mathbf{C}. Using order $\pi_{X Y}$, we ensure that the beginning is always connected to the next free ending. This allows us to design a dynamic programming algorithm using a small constant number of states. We call the encoding of the vertices of $N_{X} \cup N_{Y}$ base encoding to differ from the encoding of the sets of disjoint paths in the graph. We proceed with dynamic programming over middle sets of a rooted sc-decomposition $\langle T, \mu, \pi\rangle$ in order to check whether G^{\prime} contains a relaxed Hamiltonian set \mathbf{P} equivalent to candidate \mathbf{C}. As T is a rooted tree, this defines an orientation of its edges towards its root. Let e be an edge of T and let O_{e} be the corresponding tight noose in \mathbb{S}_{0}. Recall that the tight noose O_{e} partitions \mathbb{S}_{0} into two discs which, in turn, induces a partition of the edges of G into two sets. We define as G_{e} the graph induced by the edge set that corresponds to the "lower side" of e it its orientation towards the root. All paths of $\mathbf{P} \cap G_{e}$ start and end in O_{e} and $G_{e} \cap\left(N_{X} \cup N_{Y}\right)$. For each G_{e}, we encode the equivalence classes of sets of disjoint paths with endpoints in O_{e}. From the leaves to the root for a parent edge and its two children, we update the encodings of the parent middle set with those of the children (for an example of dynamic programming on sc-decompositions, see also [5]). We obtain the algorithm in Figure 2.

In the proof of the following lemma we show how to apply the dynamic programming step of HamilTor. The proof is technical, and has been moved to the appendix. But we sketch the main idea here: For a dynamic programming step we need the information on how a tight noose O_{e} and $N_{X} \cup N_{Y}$ intersect and which parts of $N_{X} \cup N_{Y}$ are a subset of the subgraph G_{e}. Define the vertex set $\mathcal{X}=\left(G_{e} \backslash O_{e}\right) \cap\left(N_{X} \cup N_{Y}\right) . G_{e}$ is bordered by O_{e} and $\mathcal{X} . G_{e}$ is partitioned into several edge-disjoint components that we call partial components. Each partial component is bordered by a noose that is the union of subsets of O_{e} and \mathcal{X}. Let us remark that this noose is not necessarily tight. The partial components intersect pairwise only in vertices of \mathcal{X} that we shall define as connectors. In each partial component we encode a collection of paths with endpoints in the bordering noose using Catalan structures. The union of these collections over all partial components must form a collection of paths in G_{e} with endpoints in O_{e} and in \mathcal{X}. We ensure that the encoding of the connectors of each two components fit. During the dynamic programming we need to keep track of the base encoding of

```
Algorithm HamilTor
Input: }\mp@subsup{\mathbb{S}}{1}{}\mathrm{ -embedded graph G
Output: Decision/Construction of the Hamiltonian cycle problem on G
Preliminary Step: Cut G along a shortest noncontractible (tight) noose N and
    output the }\mp@subsup{\mathbb{S}}{0}{}\mathrm{ -embedded graph G' and the cut-nooses }\mp@subsup{N}{X}{},\mp@subsup{N}{Y}{}\mathrm{ .
Main step: For all candidates C of relaxed Hamiltonian sets in G}\mp@subsup{G}{}{\prime}
    If C is equivalent to a Hamiltonian cycle when identifying the duplicated vertices in N}\mp@subsup{N}{X}{},\mp@subsup{N}{Y}{}
        Determine the pair of endpoints (si,ti) that build the first and last vertex in }\mp@subsup{\pi}{XY}{
        Make a base encoding of the vertices of N}\mp@subsup{N}{X}{}\mathrm{ and }\mp@subsup{N}{Y}{}\mathrm{ , marking the intersection of C and N}\mp@subsup{N}{X}{}\cup\mp@subsup{N}{Y}{}\mathrm{ .
        Compute a rooted sc-decomposition }\langleT,\mu,\pi\rangle\mathrm{ of }\mp@subsup{G}{}{\prime
        From the leaves to the root on each middle set Oe of T bordering Ge {
            Do dynamic programming - find all equivalence classes of sets of disjoint paths in Ge
            with endpoints in O}\mp@subsup{O}{e}{}\mathrm{ and in }\mp@subsup{G}{e}{}\cap(\mp@subsup{N}{X}{}\cup\mp@subsup{N}{Y}{})\mathrm{ with respect to the base encoding of N}\mp@subsup{N}{X}{},\mp@subsup{N}{Y}{}.
        If there exists a relaxed Hamiltonian set P}\mathrm{ in }\mp@subsup{G}{}{\prime}\mathrm{ equivalent to C}\mathbf{C}\mathrm{ , then {
        Reconstruct P}\mathrm{ from the root to the leaves of T and output corresponding Hamiltonian cycle.} } }
Output "No Hamiltonian Cycle exists".
```

Figure 2: Algorithm HamilTor.
\mathcal{X}. We do so by only encoding the vertices of O_{e} without explicitely memorizing with which vertices of \mathcal{X} they form a path. With several technical tricks we can encode O_{e} such that two paths with an endpoint in O_{e} and the other in \mathcal{X} can be connected to a path of \mathbf{P} only if both endpoints in \mathcal{X} are the endpoints of a common path in \mathbf{C}.

Lemma 7. For a given a sc-decomposition $\langle T, \mu, \pi\rangle$ of G^{\prime} of width ℓ and a candidate $\mathbf{C}=(\mathbf{T}, \mathbf{I})$ the running time of the main step of HamilTor on \mathbf{C} is $O\left(2^{5.433 \ell} \cdot\left|V\left(G^{\prime}\right)\right|^{O(1)}\right)$.

To finish the estimation of the running time we need some combinatorial results.
Lemma 8. Let G be a \mathbb{S}_{1}-embedded graph on n vertices and G^{\prime} the planar graph obtained by cutting along a noncontractible tight noose of G. Then $\mathbf{b w}\left(G^{\prime}\right) \leq \sqrt{4.5} \cdot \sqrt{n}+2$.
Proof. (sketch) Let N_{X} and N_{Y} be the cut-nooses in G^{\prime} bordering the empty disks Δ_{X} and Δ_{Y}. We will prove the theorem assuming that after cutting along a noncontractible tight noose N of G, all edges with both ends in N are incident to N_{X} (the general case is a slightly more technical implementation of the same idea). We construct a new graph G^{*} by removing the vertices of N_{Y} from G^{\prime}. Thus $\left|V\left(G^{*}\right)\right|=|V(G)|=n$. By $[7]$ there is a sc-decomposition $\langle T, \mu, \pi\rangle$ of G^{*} of width at most $\sqrt{4.5} \cdot \sqrt{n} . \Delta_{Y}$ is part of a region R of G^{*} bordered by a closed walk C. The neighborhood of N_{Y} in G^{\prime} is a subset of the vertices of C in G^{*}. Let E_{Y} be the set of edges in G^{\prime} incident to N_{Y}. Note that $E\left(G^{*}\right) \cup E_{Y}=E\left(G^{\prime}\right)$ and that E_{Y} induces a graph that is a subgraph that can be seen as a union of stars whose centers lay on C (this is based on the assumption that no edge has both ends in N_{Y}). We construct a branch decomposition of G^{\prime} from $\langle T, \mu, \pi\rangle$ by doing the following. For every edge $x \in E_{Y}$ we choose edge y of C having a common endpoint v with x and being the next edge of C in counter-clockwise ordering incident to v. Let e_{y} be the edge of T adjacent to the leaf of corresponding to y. We subdivide e_{y} by placing a new vertex on it and attach a new leaf corresponding to x. We claim that the width of the new branch decomposition $\left\langle T^{\prime}, \mu^{\prime}\right\rangle$ is at most the width of $\langle T, \mu, \pi\rangle$ plus two. For an edge y of C we may subdivide e_{y} of T several times creating a subtree T_{y}. But all the middle sets of the edges T_{y} have only one vertex in common, namely the common endpoint v. The middle set connecting T_{y} to T may have up to two more vertices that are, in order of appearance in $\pi_{X Y}$, the first and the last endpoints of the considered edges of E_{Y}. Let $E(C)$ be the edge set of C. Since $\langle T, \mu, \pi\rangle$ is a sc-decomposition, we have that for every e of $E(T)$, if the corresponding tight noose O_{e} bordering G_{e}^{*} intersects region R bordered by C, then $E(C) \cap G_{e}^{*}$ induces a connected subset of C. Note that in contrast O_{e} and C may intersect in single vertices only. Thus, O_{e} and that subset intersect in only two vertices $v, w . v$ and w each have at most one adjacent vertex in N_{Y}
that is connected to $C \backslash G_{e}^{*}$. Hence each middle set of T^{\prime} has at most two vertices more than the corresponding middle set of T.

Lemma 9. Let G be $a \mathbb{S}_{1}$-embedded graph on n vertices. Then $\operatorname{rep}(G) \leq \sqrt{4.5} \cdot \sqrt{n}+2$.
Proof. (sketch) Let G^{\prime} be the \mathbb{S}_{0}-embedded graph obtained by cutting along a noncontractible tight noose N of G. By Lemma 8 , there is a sc-decomposition $\langle T, \mu, \pi\rangle$ of G^{\prime} of width at most $\sqrt{4.5} \cdot \sqrt{n}+2$. We subdivide an arbitrary edge e of T into the edges e_{1}, e_{2} and root the tree at the new node r. Assume that for one of e_{1}, e_{2}, say e_{1}, both cut-nooses N_{X} and N_{Y} are properly contained in $G_{e_{1}}$. We traverse the tree from e_{1} to the leaves. We always branch towards a child edge e with middle set O_{e} such that $N_{X} \cup N_{Y} \subset G_{e}$. At some point we reach an e with either a) G_{e} properly containing exactly one cut-noose or b) O_{e} intersecting both cut-nooses or c) G_{e} properly containing one cut-noose and O_{e} intersecting the other. In case c) we continue traversing from e towards the leafs always branching towards the edge with c) until we reach an edge with either a) or b). In case a), tight noose O_{e} forms a noncontractible tight noose in G, hence the length of O_{e} must be at least the representativity of G. In case b), O_{e} is the union of two lines with the shortest, say N_{1}, of length at most $\frac{\left|O_{e}\right|}{2}$. But both endpoints of N_{1} are connected in the \mathbb{S}_{1}-embedded graph G by a line N_{2} of N of length L with $0 \leq L \leq \frac{|N|}{2} . N_{1}$ and N_{2} form a noncontractible tight noose in G of length at most $\frac{\left|O_{e}\right|}{2}+\frac{|N|}{2}$. Hence, $\left|O_{e}\right| \geq \operatorname{rep}(G)$.

Putting all together we obtain the following theorem.
Theorem 10. Let G be a graph on n vertices embedded on a torus \mathbb{S}_{1}. The Hamiltonian cycle problem on G can be solved in time $O\left(2^{17.893 \sqrt{n}} \cdot n^{O(1)}\right)$.

Proof. We run the algorithm HamilTor on G. The algorithm terminates positively when the dynamic programming is successful for some candidate of an equivalence class of relaxed Hamiltonian sets and this candidate is a cut of a Hamiltonian cycle. By Propositions 1, Step 0 can be performed in polynomial time. Let k be the minimum length of a noncontractible noose N, and let G^{\prime} be the graph obtained from G by cutting along N. By Lemma 6 , the number of all candidates of relaxed Hamiltonian sets in G^{\prime} is $O\left(2^{3 k}\right) \cdot n^{O(1)}$. So the main step of the algorithm is called $O\left(2^{3 k}\right) \cdot n^{O(1)}$ times. By Proposition 3, an optimal branch decomposition of G^{\prime} of width ℓ can be constructed in polynomial time. By Lemma 7, dynamic programming takes time $O\left(2^{5.433 \ell}\right) \cdot n^{O(1)}$. Thus the total running time of HamilTor is $O\left(2^{5.433 \ell} \cdot 2^{3 k}\right) \cdot n^{O(1)}$. By Lemma $9, k \leq \sqrt{4.5} \cdot \sqrt{n}+2$ and by Lemma 8, $\ell \leq \sqrt{4.5} \cdot \sqrt{n}+2$, and the theorem follows.

4 Hamiltonicity on graphs of bounded genus

Now we extend our algorithm to graphs of higher genus. For this, we use the following kind of planarization: We apply Proposition 2 and cut iteratively along shortest noncontractible nooses until we obtain a planar graph G^{\prime}. If at some step G^{\prime} is the disjoint union of two graphs G_{1} and G_{2}, we apply Proposition 2 on G_{1} and G_{2} separately.

Lemma 11. There exists a polynomial time algorithm that given a Σ-embedded graph G where $\Sigma \neq \mathbb{S}_{0}$, returns a minimum size noncontractible noose. Moreover, the length of such a noose, $\operatorname{rep}(G)$, is at most $\mathbf{b w}(G) \leq(\sqrt{4.5}+2 \cdot \sqrt{2 \cdot \mathbf{e g}(\Sigma)}) \sqrt{n}$.

Proof. In order to find a tight noose in G of minimum size we use Proposition 1, and we are looking instead for a shortest noncontractible cycle in R_{G}. This can be done by the algorithm of Thomassen in [16] (See also Theorem 4.3.2 of [12]). From [6], the branchwidth of an 2-cell-embedded graph on the surface Σ is bounded by $(\sqrt{4.5}+2 \cdot \sqrt{2 \operatorname{eg}(\Sigma)}) \sqrt{n}$. By Theorem 4.1 of $[14], \operatorname{rep}(G) \leq \mathbf{b w}(G)$.

We examine how a shortest noncontractible noose affects the cut-nooses of previous cuts:
Definition 12. Let \mathcal{K} be a family of cycles in G. We say that \mathcal{K} satisfies the 3 -path-condition if it has the following property. If x, y are vertices of G and P_{1}, P_{2}, P_{3} are internally disjoint paths joining x and y, and if two of the three cycles $C_{i, j}=P_{i} \cup P_{j},(1 \leq i<j \leq 3)$ are not in \mathcal{K}, then also the third cycle is not in \mathcal{K}.

Proposition 13. (Mohar and Thomassen [12]) The family of Σ-noncontractible cycles of a Σ embedded graph G satisfies the 3-path-condition.

Proposition 13 is useful to restrict the number of ways not only on how a shortest noncontractible tight noose may intersect a face but as well on how it may intersect the vertices incident to a face. The proof of the following lemma is moved to the appendix.

Lemma 14. Let G be Σ-embedded and F a face of G bordered by $V_{1} \subseteq V(G)$. Let $\bar{F}:=V_{1} \cup F$. Let N_{s} be a shortest noncontractible (tight) noose of G. Then one of the following holds

1) $\quad N_{s} \cap \bar{F}=\emptyset$.
2.1) $N_{s} \cap F=\emptyset$ and $\left|N_{s} \cap V_{1}\right|=1$.
2.2) $N_{s} \cap F=\emptyset, N_{s} \cap V_{1}=\{x, y\}$, and x and y are both incident to one more face
different than F which is intersected by N_{s}.
2) $\quad N_{s} \cap F \neq \emptyset$ and $\left|N_{s} \cap V_{1}\right|=2$.

We use Lemma 14 to extend the process of cutting along noncontractible tight nooses such that we obtain a planar graph with a small number of disjoint cut-nooses of small lengths. Let $g \leq \mathbf{e g}(\Sigma)$ be the number of iterations needed to cut along shortest noncontractible nooses such that they turn a Σ-embedded graph G into a planar graph G^{\prime}. However, these cut-nooses may not be disjoint. In our dynamic programming approach we need pairwise disjoint cut-nooses. Thus, whenever we cut along a noose, we manipulate the cut-nooses found so far. After g iterations, we obtain the set of cut-nooses \mathfrak{N} that is a set of disjoint cut-nooses bounding empty open disks in the embedding of G^{\prime}. Let $L(\mathfrak{N})$ be the length of \mathfrak{N} as the sum over the lengths of all cut-nooses in \mathfrak{N}. The proof of the following proposition is moved to the appendix.

Proposition 15. It is possible to find, in polynomial time, a set of cut-nooses \mathfrak{N} that contains at most $2 g$ disjoint cut-nooses. Furthermore $L(\mathfrak{N})$ is at most $2 g \operatorname{rep}(G)$.

We extend the definition of relaxed Hamiltonian sets from graphs embedded on a torus to graphs embedded on higher genus, i.e. from two cut-nooses N_{X} and N_{Y} to the set of cut-nooses \mathfrak{N}. For each vertex v in the vertex set $V(G)$ of graph G we define the vertex set D_{v} that contains all duplicated vertices v_{1}, \ldots, v_{f} of v in \mathfrak{N} along with v. Set $\mathfrak{D}=\bigcup_{v \in V(G)} D_{v}$.
Definition 16. A set of disjoint paths \mathbf{P} in G^{\prime} is relaxed Hamiltonian if:
(P1) Every path has its endpoints in \mathfrak{N}.
(P2) If a vertex $v_{i} \in D_{v} \in \mathfrak{D}$ is an endpoint of path P, then there is one $v_{j} \in D_{v}$ that is also an endpoint of a path $P^{\prime} \neq P$. All $v_{h} \in D_{v} \backslash\left\{v_{i}, v_{j}\right\}$ do not belong to any path.
(P3) $v_{i} \in D_{v}$ is an inner path vertex if and only if all $v_{h} \in D_{v} \backslash\left\{v_{i}\right\}$ are not in any path.
(P4) Every vertex of the residual part of G^{\prime} is in some path.
Similar to torus-embedded graphs, we order the vertices of \mathfrak{N} for later encoding in a counterclockwise order $\pi_{\mathbf{L}}$ depending on the fixed paths between the cut-nooses of \mathfrak{N} :

Lemma 17. Let G^{\prime} be the planar graph after cutting along $g \leq \operatorname{eg}(\Sigma)$ tight nooses of G along with its set of disjoint cut-nooses \mathfrak{N}. The number of different equivalence classes of relaxed Hamiltonian sets in G^{\prime} is $2^{O(g \cdot(\log g+\mathbf{r e p}(G))}$.

Proof. We create one cut-noose out of all the cut-nooses of \mathfrak{N} by using "tunnels" as in the proof of lemma 2. But the difficulty here is that the cut-nooses are connected by a relaxed Hamiltonian set in an arbitrary way. We use a tree structure in order to cut the sphere along that structure. Given such a tree structure, we create tunnels in order to connect open disks and to merge them to one disk. Let \mathbf{C} be a candidate of the relaxed Hamiltonian set. Define graph H such that each cut-noose $N_{i} \in \mathfrak{N}$ in G^{\prime} corresponds to a vertex i in $V(H)$. Two vertices i, j of H are adjacent if there is a path between vertices of N_{i} and N_{j} in \mathbf{C}. Let F be a spanning forest of H. For every pair of adjacent vertices i, j in F fix a path in G^{\prime} between two arbitrary vertices $v_{x}^{i} \in N_{i}$ and $v_{y}^{j} \in N_{j}$. Walk along a tree by starting and ending in a node r and visiting all nodes by always visiting the next adjacent neighbor in counterclockwise order. A node is visited as many times as many neighbors it has. In this way we create tunnels in G^{\prime} by ordering the vertices of the cut-nooses: Starting with an ordered list $\mathbf{L}=\{\emptyset\}$ and one cut-noose N_{i} and one endpoint $v_{x}^{i} \in N_{i}$ of a fixed path. Take in counterclockwise order the vertices of N_{i} into \mathbf{L} that are between v_{x}^{i} and the last vertex before the next endpoint $v_{y}^{i} \in N_{i}$ connected to $v_{z}^{j} \in N_{j}$ in the fixed path $P_{i, j}$. Concatenate to \mathbf{L} in counterclockwise order the vertices of N_{j} after v_{z}^{j} until the last vertex before the next endpoint of a fixed path. Repeat the concatenation until one reaches again v_{x}^{i}. Whenever an endpoint is visited for the second time concatenate it to \mathbf{L}, too. Create an ordered list \mathbf{L}_{C} for every component C in \mathbf{C} and concatenate \mathbf{L}_{C} to \mathbf{L}. The order of \mathbf{L} is then $\pi_{\mathbf{L}}$. (See Figure 7 in the Appendix for an example.) Consider all $\leq n^{n-2}$ possible spanning trees on n vertices ([1]), and so $\leq 2^{n} n^{n-2}$ possible spanning forrests. There is a spanning forrest over the $2 k$ cut-nooses for each candidate \mathcal{P}. With $2 g$ cut-nooses of \mathfrak{N} each of length at most $2 g \operatorname{rep}(G)$ there are $O\left((2 g \operatorname{rep}(G))^{2}\right)$ possible fixed path between each two cut-nooses. Then we obtain a rough upper bound of $O(2 g \operatorname{rep}(G))^{4 g}$) on the number possible fixed path between the cut-nooses in a given tree-structure. We obtain $O\left(2^{2 g}(2 g)^{2 g-2}(2 g \operatorname{rep}(G))^{4 g}\right)$ possibilities for above concatenation and tunneling of \mathfrak{N}. Again we argue \mathbf{C} has a Catalan structure when tunneling the cut-nooses in this way. Due to (P2) in definition 16, there are $O\left(2^{2 g r e p(G)}\right)$ many sets of paths with endpoints in the cut-nooses of \mathfrak{N} non-crossing the fixed paths. The number of relaxed Hamiltonian sets is due to (P3) $O\left(2^{3 g \mathbf{r e p}(G)}\right)$.

Given the order $\pi_{\mathbf{L}}$ of the vertices \mathfrak{N} in the encoding of candidate \mathbf{C}. As in the previous section, we preprocess the graph G^{\prime} and encode the vertices of \mathfrak{N} with the base values. We extend the dynamic porgramming approach by analysing how the tight noose O_{e} can intersect several cut-nooses. The proofs of the next two statements are moved to the Appendix.
Lemma 18. Let G^{\prime} be the planar graph after cutting along $g \leq \mathbf{e g}(\Sigma)$ shortest noncontractible nooses of G. For a given sc-decomposition $\langle T, \mu, \pi\rangle$ of G^{\prime} of width ℓ and a candidate \mathbf{C} the Relaxed Hamiltonian Set problem on G^{\prime} can be solved in time $2^{O\left(g^{2} \log \ell\right)} \cdot 2^{O(\ell)} \cdot n^{O(1)}$.

Lemma 19. Let G be a Σ-embedded graph with n vertices and G^{\prime} the planar graph obtained after cutting along $g \leq \mathbf{e g}(\Sigma)$ tight nooses. Then, $\mathbf{b w}\left(G^{\prime}\right) \leq \sqrt{4.5} \cdot \sqrt{n}+2 g$.

Lemmata $11,17,18$ and 19 imply the following:
Theorem 20. Given a Σ-embedded graph G on n vertices and $g \leq \operatorname{eg}(\Sigma)$. The Hamiltonian cycle problem on G can be solved in time $n^{O\left(g^{2}\right)} \cdot 2^{O(g \sqrt{g \cdot n})}$.

Our dynamic programming technique can be used to design faster parameterized algorithms as well. For example, the parameterized p-Cycle on Σ-Embedded Graphs problem asks for a given Σ-embedded graph G, to check for the existence of a cycle of length at least a parameter p. First, our technique can be used to find the longest cycle of G with $g \leq \operatorname{eg}(\Sigma)$ in time $n^{O\left(g^{2}\right)} \cdot 2^{O(g \sqrt{g \cdot n})}$. (On torus -embedded graphs this can be done in time $O\left(2^{17.957 \sqrt{n}} n^{3}\right)$.) By combining this running time with bidimensionality arguments from [3] we arrive at a time $2^{O\left(g^{2} \log p\right)} \cdot 2^{O(g \sqrt{g \cdot p})} \cdot n^{O(1)}$ algorithm solving the parameterized p-Cycle on Σ-embedded Graphs.

5 Conclusive Remarks

In this paper we have introduced a new approach for solving non-local problems on graphs of bounded genus. With some sophisticated modifications, this generic approach can be used to design time $2^{O(\sqrt{n})}$ algorithms for many other problems including Σ-Embedded Graph TSP (TSP with the shortest path metric of a Σ-embedded graph as the distance metric for TSP), Max Leaf Tree, and Steiner Tree, among others. Clearly, the ultimate step in this line of research is to prove the existence of time $2^{O(\sqrt{n})}$ algorithms for non-local problems on any graph class that is closed under taking of minors. Recently, we were able to complete a proof of such a general result, using results from the Graph Minor series. One of the steps of our proof is strongly based on the results and the ideas of this paper.

References

[1] A. Cayley, A theorem on trees, Quart J. Pure Appl. Math., 23 (1889), pp. 26-28.
[2] V. G. Deĭneko, B. Klinz, and G. J. Woeginger, Exact algorithms for the Hamiltonian cycle problem in planar graphs, Operations Research Letters, (2006), p. to appear.
[3] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos, Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free graphs, Journal of the ACM, 52 (2005), pp. 866893.
[4] E. D. Demaine and M. Hajiaghayi, Bidimensionality: new connections between fpt algorithms and ptass, in Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), New York, 2005, ACM-SIAM, pp. 590-601.
[5] F. Dorn, E. Penninkx, H. Bodlaender, and F. V. Fomin, Efficient exact algorithms on planar graphs: Exploiting sphere cut branch decompositions, in Proceedings of the 13th Annual European Symposium on Algorithms (ESA 2005), vol. 3669 of LNCS, Springer, Berlin, 2005, pp. 95-106.
[6] F. V. Fomin and D. M. Thilikos, Fast parameterized algorithms for graphs on surfaces: Linear kernel and exponential speed-up, in Proceedings of the 31st International Colloquium on Automata, Languages and Programming (ICALP 2004), vol. 3142 of LNCS, Berlin, 2004, Springer, pp. 581-592.
[7] - New upper bounds on the decomposability of planar graphs, Journal of Graph Theory, 51 (2006), pp. 53-81.
[8] J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan, A separator theorem for graphs of bounded genus, Journal of Algorithms, 5 (1984), pp. 391-407.
[9] Q.-P. Gu and H. Tamaki, Optimal branch-decomposition of planar graphs in $O\left(n^{3}\right)$ time, in Proceedings of the 32nd International Colloquium on Automata, Languages and Programming (ICALP 2005), vol. 3580 of LNCS, Springer, Berlin, 2005, pp. 373-384.
[10] R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math., 36 (1979), pp. 177-189.
[11] ——, Applications of a planar separator theorem, SIAM J. Comput., 9 (1980), pp. 615-627.
[12] B. Mohar and C. Thomassen, Graphs on surfaces, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2001.
[13] N. Robertson and P. D. Seymour, Graph minors. VII. Disjoint paths on a surface, J. Combin. Theory Ser. B, 45 (1988), pp. 212-254.
$[14]$-, Graph minors. XI. Circuits on a surface, J. Combin. Theory Ser. B, 60 (1994), pp. 72-106.
[15] P. D. Seymour and R. Thomas, Call routing and the ratcatcher, Combinatorica, 14 (1994), pp. 217-241.
[16] C. Thomassen, Embeddings of graphs with no short noncontractible cycles, J. Combin. Theory Ser. B, 48 (1990), pp. 155-177.
[17] G. Woeginger, Exact algorithms for NP-hard problems: A survey, in Combinatorial Optimization Eureka, you shrink!, vol. 2570 of LNCS, Springer-Verlag, Berlin, 2003, pp. 185-207.

A Appendix: Proof of Lemma 7

Preprocess G^{\prime}. In a preprocessing step we delete all vertices of $N_{X} \cup N_{Y}$ from G^{\prime} which do not belong to any path of \mathbf{C}. The other vertices in $N_{X} \cup N_{Y}$ are encoded by base values $\{[], S,, \square\}$. This base encoding depends on the order $\pi_{X Y}$ and is fixed throughout the phase of dynamic programming. Say in the tuple (s, t) of \mathbf{T}, s is marking the first vertex in $\pi_{X Y}$ and t the last vertex. We encode both s and t by ' S^{\prime} '. For every other tuple $\left(s_{i}, t_{i}\right)$ of \mathbf{T} we encode s_{i} by '[' and t_{i} by ']' where $s_{i}<t_{i}$ in $\pi_{X Y}$. The additional value ' S ' is important for a consistent dynamic programming. It determines the "tunnel" created by the path with endpoints s and t. As described in the proof of Lemma 6 the cut-nooses N_{X}, N_{Y} and the tunnel border the outer face that enables the encoding. The vertices of \mathbf{I} simply are encoded by base value ' \square '.
Constructing branch decomposition. We use Proposition 3 to obtain a sc-decomposition $\langle T, \mu, \pi\rangle$ of G^{\prime} of optimum width ℓ. For dynamic programming it is convenient to root T by choosing arbitrarily an edge e and subdividing e by inserting a new node s. Let $e^{\prime}, e^{\prime \prime}$ be the new edges then we set $\boldsymbol{\operatorname { m i d }}\left(e^{\prime}\right)=\boldsymbol{\operatorname { m i d }}(e)$ and $\boldsymbol{\operatorname { m i d }}\left(e^{\prime \prime}\right)=\boldsymbol{\operatorname { m i d }}(e)$. Create a new node root r and connect it to s and set $\boldsymbol{\operatorname { m i d }}(\{r, s\})=\emptyset$. Each node v of T now has one adjacent edge on the path from v to r, called parent edge e_{P}, and two adjacent edges towards the leaves, called left child e_{L} and right child e_{R}. For every edge e of T, we call the subtree towards the leaves the lower part and the rest the residual part concerning to e. We call the subgraph G_{e} induced by the leaves of the lower part of e the subgraph rooted at e. Let e be an edge of T and let O_{e} be the corresponding tight noose in \mathbb{S}_{0}. Recall that tight noose O_{e} partitions \mathbb{S}_{0} into two discs, one of which, Δ_{e}, contains G_{e}.

In the following, we often do not distinguish between $\operatorname{mid}(e)$ and $O_{e} \cap V(G)$. We start at the leaves of T and work 'bottom-up' processing the subgraphs rooted at the edges up to the root edge. All paths of $\mathbf{P} \cap G_{e}$ start and end in O_{e} and $G_{e} \cap\left(N_{X} \cup N_{Y}\right)$. For a dynamic programming step we need the information on how a tight noose O_{e} and $N_{X} \cup N_{Y}$ intersect and which parts of $N_{X} \cup N_{Y}$ are a subset of the subgraph G_{e}. Define the vertex set $\mathcal{X}=\left(G_{e} \backslash O_{e}\right) \cap\left(N_{X} \cup N_{Y}\right)$.

In the dynamic programming approach we differentiate three phases. In Phase 1 no vertex of $N_{X} \cup N_{Y}$ is contained in disk Δ_{e} bounded by O_{e}, thus $\mathcal{X}=\emptyset$. Note that in this phase ($\left.N_{X} \cup N_{Y}\right) \cap O_{e}$ is not necessary empty because O_{e} may touch N_{X}, N_{Y} in common vertices. Hence all paths must start and end in O_{e}. At some step of dynamic programming we arrive at Phase 2: $\mathcal{X} \neq \emptyset$ but neither $V\left(N_{X}\right) \subseteq \mathcal{X}$, nor $V\left(N_{Y}\right) \subseteq \mathcal{X}$. This is when we connect the loose paths-i.e. paths with endpoints in $O_{e} \backslash\left(N_{X} \cup N_{Y}\right)$-to their predestinated endpoints in N_{X} and N_{Y}. Finally, we arrive at the situation, Phase 3, when either $V\left(N_{X}\right) \subseteq \mathcal{X} \vee V\left(N_{Y}\right) \subseteq \mathcal{X}$, or $V\left(N_{X}\right) \subseteq \mathcal{X} \wedge V\left(N_{Y}\right) \subseteq \mathcal{X}$. Here we take care that the residual paths with one determined endpoint in N_{X} and N_{Y} are connected in the corresponding way.

Proposition 21. Phase 1: Given a sc-decomposition $\langle T, \mu, \pi\rangle$ of G^{\prime} of width ℓ and a candidate $\mathbf{C}=(\mathbf{T}, \mathbf{I})$. The phase of dynamic programming with $\mathcal{X}=\emptyset$ takes time $O\left(2^{3.292 \ell}\right)$.

Every vertex of the subgraph G_{e} below O_{e} is part of one of the vertex-disjoint paths P_{1}, \ldots, P_{q} with endpoints in O_{e}. The state of dynamic programming is specified by an ordered ℓ-tuple $\vec{t}_{e}:=\left(v_{1}, \ldots, v_{\ell}\right)$ with the variables v_{1}, \ldots, v_{ℓ} corresponding to the vertices of $O_{e} \cap V(G)$. The variables have one of the four values: $0,1_{[}, 1_{]}, 2$. For every state, we compute a Boolean value $B_{e}\left(v_{1}, \ldots, v_{\ell}\right)$ that is True if and only if P_{1}, \ldots, P_{q} in G_{e} have the following properties: (A1) Every vertex of $V\left(G_{e}\right) \backslash O_{e}$ is contained in one of the paths $P_{i}, 1 \leq i \leq q$.
(A2) Every P_{i} has both its endpoints in $O_{e} \cap V(G)$;
Let P be a path in G_{e}. Since none of the paths in G_{e} cross, we argue again by making use of the Catalan structure. We scan the vertices of $O_{e} \cap V(G)$ according to the ordering π and mark with ' 1 ' ' the first and with '1]' the last vertex of P. If a vertex of $O_{e} \cap V(G)$ is adjacent to two edges P we mark it with ' 2 '. If a vertex is not contained in any path we mark it with ' 0 '.
Processing middle sets. The first step in processing the middle sets is to initialize the leaves with values $(0,0),\left(1_{[}, 1_{]}\right)$. Then, bottom-up, update every pair of states of two child edges e_{L} and e_{R} to a state of the parent edge e_{P}. Let O_{L}, O_{R}, and O_{P} be the tight nooses corresponding to edges e_{L}, e_{R} and e_{P}. Due to the definition of branch decompositions, every vertex must appear in at least two of the three middle sets and we can define the following partition of the set $\left(O_{L} \cup O_{R} \cup O_{P}\right) \cap V(G)$ into sets $I:=O_{L} \cap O_{R} \cap V(G)$ and $D:=O_{P} \cap V(G) \backslash I$ (I stands for 'Intersection' and D for 'symmetric Difference'). The disc Δ_{P} bounded by O_{P} and including the subgraph rooted at e_{P} contains the union of the discs Δ_{L} and Δ_{R} bounded by O_{L}

Figure 3: Processing middle sets. The diagrams show a graph together with its sc-decomposition. The tight nooses O_{P}, O_{L} and O_{R} are emphasized. O_{P} touches the graph in vertices 2, 5, 7, O_{L} in 2, 5, 8 and O_{R} in $5,7,8$. Vertex 5 is the only portal vertex of $O_{L} \cap O_{R} \cap O_{P} \cap V(G)$.
and O_{R} and including the subgraphs rooted at e_{L} and e_{R}. Thus $\left|O_{L} \cap O_{R} \cap O_{P} \cap V(G)\right| \leq 2$. The vertices of $O_{L} \cap O_{R} \cap O_{P} \cap V(G)$ are called portal vertices. See Figure 3 for an illustration.

We compute all valid assignments to the variables $\vec{t}_{P}=\left(v_{1}, v_{2}, \ldots, v_{p}\right)$ corresponding to the vertices $\operatorname{mid}\left(e_{P}\right)$ from all possible valid assignments to the variables of \vec{t}_{L} and \vec{t}_{R}. For a symbol $x \in\left\{0,1_{[}, 1_{]}, 2\right\}$ we denote by $|x|$ its "numerical" part. Thus, for example $\left|1_{[}\right|=1$. We say that an assignment c_{P} is formed by assignments c_{L} and c_{R} if for every vertex $v \in\left(O_{L} \cup O_{R} \cup O_{P}\right) \cap V(G)$:

1. $\underline{v \in D}: c_{P}(v)=c_{L}(v)$ if $v \in O_{L} \cap V(G)$, or $c_{P}(v)=c_{R}(v)$ otherwise.
2. $v \in I \backslash O_{P}:\left(\left|c_{L}(v)\right|+\left|c_{R}(v)\right|\right)=2$.
3. v portal vertex: $\left|c_{P}(v)\right|=\left|c_{L}(v)\right|+\left|c_{R}(v)\right| \leq 2$.

We compute all ℓ-tuples for $\operatorname{mid}\left(e_{P}\right)$ that can be formed by tuples corresponding to $\operatorname{mid}\left(e_{L}\right)$ and $\operatorname{mid}\left(e_{R}\right)$ and check if the obtained assignment do not form cycles.
Running time. Assume we have three adjacent edges e_{P}, e_{L}, and e_{R} of T with $\left|O_{L}\right|=\left|O_{R}\right|=\left|O_{P}\right|=\ell$. Without loss of generality we limit our analysis to even values for ℓ, and for simplicity assume there are no portal vertices. This can only occur if $|I|=\left|D \cap O_{L}\right|=\left|D \cap O_{R}\right|=\frac{\ell}{2}$. We give an expression for $Q(\ell, m)$: the number of ℓ-tuples over ℓ vertices where the $\left\{0,1_{[}, 1_{]}, 2\right\}$ assignments for vertices from I is fixed and contains $m 1_{[}$'s and 1 ''s. The only freedom we have is thus in the $\ell / 2$ vertices in $D \cap O_{L}$ and $D \cap O_{R}$, respectively:

$$
\left.Q(\ell, m) \approx \sum_{i=0}^{\frac{\ell}{2}} \begin{array}{l}
\frac{\ell}{2} \tag{1}\\
i
\end{array}\right) 2^{\frac{\ell}{2}-i} 2^{i+m}=2^{\ell+m}
$$

This expression is a summation over the number of 1 's and $1_{]}$'s in $D \cap O_{L}$ and $D \cap O_{R}$, respectively. As we are interested in exponential behaviour for large values of ℓ we ignore that $i+m$ is even.

We can count the total cost of forming an ℓ-tuple from O_{P} by summing over i : the number of $1_{[}$'s and $1_{]}$'s in the assignment for I :

$$
\left.C(\ell)=\sum_{i=0}^{\frac{\ell}{2}} \begin{array}{c}
\frac{\ell}{2} \tag{2}\\
i
\end{array}\right) 2^{\frac{\ell}{2}-i} Q(\ell, i)^{2} \approx(4 \sqrt{6})^{\ell} \approx 2^{3.292 \ell}
$$

There is one restriction to the encoding of the vertices in $O_{e} \cap\left(N_{X} \cup N_{Y}\right)$: a vertex with base value ' [',']' or ' S ' cannot be assigned with ' 2 ' at any stage.

Proposition 22. Phase 2: The phase of dynamic programming with $\mathcal{X} \neq \emptyset$ and $V\left(N_{X}\right) \nsubseteq \mathcal{X}$ and $V\left(N_{Y}\right) \nsubseteq \mathcal{X}$ takes time $O\left(2^{6.360 \ell}\right)$.

Let us remind that $\mathcal{X}=\left(G_{e} \backslash O_{e}\right) \cap\left(N_{X} \cup N_{Y}\right)$. The difficulty of the second phase lies in keeping track of the base encoding of \mathcal{X}. Thus, we do not want to memorize explicitly with which endpoint in \mathcal{X} a vertex of O_{e} forms a path. We apply again the Catalan structures. The key to it is first that the vertices of O_{e} inherit the base values of the sets \mathbf{T} and \mathbf{I} - the sets of the definition of the relaxed Hamiltonian set problem. That is, if one vertex of O_{e} is paired with a vertex assigned by '[' it must be paired in $\overline{G_{e}}$ with a vertex with value ']'. Second, we observe that the cut-nooses $N_{X} \cup N_{Y}$ and the tight noose O_{e} intersect in a characteristic way: we show that we obtain a structure that allows us to encode paths in an easy way. In other words we make use of the structure of the subgraph G_{e} bordered by $N_{X} \cup N_{Y}$ and O_{e} for synchronizing the encoding of \mathbf{T} and \mathbf{I} with the encoding of O_{e}. Thus, we need some more definitions. A partial noose is a proper connected subset of a tight noose and cut-noose, respectively. A partial component of a graph is embedded on an open disk bounded by partial nooses. The vertices in the intersection of two partial components are called connectors. In fact, G_{e} can be partitioned into several partial components with no connector in three components. Each component is bordered by partial nooses of $N_{X} \cup N_{Y}$ and O_{e}.

Proposition 23. The subgraph G_{e} is the union of partial components $C_{1}, \ldots, C_{q}(q \geq 1)$ such that for every i

$$
C_{i} \cap\left(\bigcup_{r=1, r \neq i}^{q} C_{r}\right) \subseteq O_{e} \cap\left(N_{X} \cup N_{Y}\right) \text {. Furthermore, for every } i, j, h, C_{i} \cap C_{j} \cap C_{h}=\emptyset .
$$

Proof. Recall that by definition a tight noose intersects a region exactly once. Hence O_{e} intersects at most once the empty disks Δ_{X} and Δ_{Y} that are bounded by N_{X} and N_{Y}. In this case, O_{e} and ($N_{X} \cup N_{Y}$) can intersect in vertices or as well twice the arc between to successive vertices in N_{X} and N_{Y}, respectively. That is due to the fact that N_{X} and N_{Y} are cut-nooses and hence may have several arcs in one face. In contrast, O_{e} and $\left(N_{X} \cup N_{Y}\right)$ can touch arbitrarily often, but only in vertices. In Phase $2, \Delta_{e} \cap\left(\Delta_{X} \cup \Delta_{Y}\right) \neq \emptyset$. Hence, if one removes $\Delta_{X} \cup \Delta_{Y}$ then Δ_{e} is partitioned into several disks $\Delta_{1}, \ldots, \Delta_{q}$ each bordered by the union of some partial nooses bounded by vertices v of $V\left(O_{e}\right) \cap V\left(N_{X} \cup N_{Y}\right)$ or some points μ of the crossing of the arcs between two successive vertices of O_{e} and $N_{X} \cup N_{Y}$. Since N_{X} and N_{Y} do not intersect, we have that v and μ are the endpoints of at most four partial nooses. Hence, v is neighboring at most two partial components and μ one.

See the left diagram of Figure 4 for an example.
Proposition 24. Each C_{i} is bordered by sets of partial nooses A_{i} and B_{i} with $A_{i} \subset\left(N_{X} \cup N_{Y}\right) \backslash O_{e}$ and $B_{i} \subset O_{e}$ with $\bigcup_{i=1}^{k} A_{i} \cup B_{i}=G_{e} \cap\left(\left(N_{X} \cup N_{Y}\right) \cup O_{e}\right)$ such that one of the following hold:

1. $\left|A_{i}\right|=\left|B_{i}\right|=1$ with $A_{i} \subset N_{X}$ or $A_{i} \subset N_{Y}$,
2. $\left|A_{i}\right|=\left|B_{i}\right|=2$ with $A_{i} \subset N_{X}$ and $A_{i} \subset N_{Y}$.

There is at most one partial component C_{i} with property 2.
Proof. Assume, there is a component C_{i} with two partial noose $P_{i}^{1}, P_{i}^{2} \in A_{i} \cap N_{X}$. Two of the points bordering P_{i}^{1} and P_{i}^{2} bound the partial noose of O_{e} that intersects Δ_{X}. Then both other points that border P_{i}^{1} and P_{i}^{2} are each bordering two partial nooses of O_{e} intersecting G_{e}. Thus, there is no possible configuration in which P_{i}^{1} and P_{i}^{2} bound the same component. Assume two components C_{i} and C_{j} with $\left|A_{i}\right|=\left|A_{j}\right|=2$. Then there are four partial nooses of $B_{i} \subset O_{e}$ that must be connectable to a tight noose O_{e}. That is not possible without crossing Δ_{X} and Δ_{Y} more than once.

See the right diagram of Figure 4 for an illustration.
In contrast to the first phase we encode the vertices for each component C_{i} of Proposition 23 separately. The connectors, the vertices that are in two components are encoded twice. A restriction to the encoding of the vertices in $O_{e} \cap\left(N_{X} \cup N_{Y}\right)$ is the consideration of the base encoding, for example a vertex with base value '[' or ']' cannot be assigned with '2' at any stage.

We introduce new values for indicating a connection to vertices of $\mathcal{X}=\left(G_{e} \backslash O_{e}\right) \cap\left(N_{X} \cup N_{Y}\right)$. Proposition 24 guarantees that we can differentiate between three types of partial components C_{i}. The ones without any vertex in \mathcal{X} and the two that have properties 1 and 2 . For all three cases every vertex of $V\left(C_{i}\right) \backslash O_{e}$ is contained in one path.

Figure 4: Partial components and partial nooses. The left diagram illustrates how O_{e} and N_{X}, N_{Y} form the partial components C_{1}, \ldots, C_{4}. Observe that C_{1}, \ldots, C_{4} only intersect in vertices whereas O_{e} and N_{X}, N_{Y} do not have to. In the right diagram, each partial component is bounded by partial nooses. Only component C_{2} has $\left|A_{2}\right|=\left|B_{2}\right|=2$.

1. $C_{i} \cap \mathcal{X}=\emptyset$.

- Every path has both endpoints in $V\left(C_{i}\right) \cap O_{e}$.
- Every vertex of $V\left(C_{i}\right) \cap\left(N_{X} \cup N_{Y}\right)$ with base value '[' or ']' is not to be an inner vertex of a path.
- We use the same encoding as in phase 1.

2. $C_{i} \cap \mathcal{X} \neq \emptyset$ and $\left|A_{i}\right|=1$.

- Every path has both endpoints in $V\left(C_{i}\right) \cap\left(O_{e} \cup \mathcal{X}\right)$.
- A vertex of $V\left(C_{i}\right) \cap O_{e}$ with other endpoint w in \mathcal{X} is encoded with the base value of w, '[' or ']'. Since $\left|A_{i}\right|=1$ and the Catalan structure is retained for the border vertices of C_{i}, it is possible to reconstruct the order $\pi_{X Y}$ in which the other endpoints in \mathcal{X} are. The base value ' \square ' does not appear. We introduce ' S_{X} ' and ' S_{Y} ' for marking the connection to vertices in N_{X} and N_{Y} that have the base values ' S^{\prime}. ' S_{X} ' and ' S_{Y} ' appear at most once.
- For paths with both endpoints in $V\left(C_{i}\right) \cap O_{e}$ we use the same encoding as in phase 1.

3. $C_{i} \cap \mathcal{X} \neq \emptyset$ and $\left|A_{i}\right|=2$.

- Every path has both endpoints in $V\left(C_{i}\right) \cap\left(O_{e} \cup \mathcal{X}\right)$.
- As in the latter case we use the base encoding to encode the vertices of $V\left(C_{i}\right) \cap O_{e}$, too. Additionally, we introduce values ' $]_{L}{ }^{\prime},{ }^{\prime}\left[L^{\prime}\right.$ ' to mark each of the last two vertices in order π that are endpoint of a path with other endpoint in N_{X} and N_{Y}, respectively. These values are used only once in an unique C_{i} and hence do not play any role for the running time. Note that if there is no vertex encoded with ' $]_{L},{ }^{\prime},\left[{ }_{L}\right.$ ', this means that vertices encoded by ']', '[' are only connected to N_{X}. In contrast to, if there is only one vertex encoded with ' $]_{L}$ ',' $\left[L\right.$ ', and it is after N_{Y} then all vertices encoded by ']','[' are only connected to N_{Y}.
See Figure 5 for an example on the usage of encoding $\left.{ }^{\prime}\right]_{L}{ }^{\prime},{ }^{[}[L$ '.

Additional special cases.

Figure 5: Usage of ' $]_{L}$ 'and ' ${ }_{[L}$ '. The diagram shows the partial component that is bounded by four partial nooses. The vertices are clockwise ordered beginning in the upper left corner. ' $]_{L}$ ' on the right partial noose of O_{e} marks the last vertex of O_{e} connected to N_{X}. ' ${ }_{L}$ ' on the left partial noose of O_{e} marks the last vertex connected to N_{Y}.

- Base value ' S '.

We leave it to the reader to consider the special cases that occur with base value ' S '. Recall that ' S ' marks the fixed path $P_{i, j}$ and the beginning and the end of order $\pi_{X Y}$. It is easy to see that the encoding determines wether a vertex of $V\left(C_{i}\right) \cap O_{e}$ is connected to a vertex before or after an endpoint of $P_{i, j}$. For example, suppose both endpoints of $P_{i, j}$ are in $\mathcal{X} \cup O_{e}$ and $P_{i, j} \subset C_{i}$. Then $P_{i, j}$ separates C_{i} into two parts which cannot be connected by a path, since neither $N_{X} \subset C_{i}$ nor $N_{Y} \subset C_{i}$.

- Right encoding of connector. Let c be a connector between two partial components C_{i}, C_{j}. The two values of c must combine to the correct base value. If base value of c is not ' \square ', at least one of the two values in C_{i} or C_{j} must be ' 0 ' and none is ' 2 '.
- Path through several components. For every component C_{i}, a vertex v of the tight noose $O_{e} \cap C_{i}$ can be paired to a connector with base value ' \square '. Hence, v can be an endpoint of a path with other endpoint in \mathcal{X} in another component C_{j}. In this case assign v with the corresponding base value.
Processing middle sets. The middle sets are processed exactly as described in the first phase. In the first step every pair of states of two child edges e_{L} and e_{R} are updated to a state of the parent edge e_{P}. For a symbol of $\left\{[,], S_{X}, S_{Y},\right]_{L},[L\}$ the numerical value is 1 and we form the vertex assignments as above. I.e., base values are treated exactly as ' 1 ' ' or ' 1$]^{\prime}$ '. With the only restriction if the assignments c_{L} and c_{R} of a vertex v both are base values. The base value in O_{L} must fit to the base value in O_{R}, i.e., if wlog $c_{L}(v)$ has value '[' then $c_{R}(v)$ must have ']', if wlog $c_{L}(v)=S_{X}$ then $c_{R}(v)=S_{Y}$. In the second step, we not only check forbidden cycles, but consistency of the encoding regarding to the base values. With the help of an auxiliary graph consisting of G_{L} and G_{R} together with the partial components, we check the following:

1. The base values of c_{L} and c_{R} are connected respecting $\pi_{X Y}$. For a vertex v of I encoded by '[' and ']' in O_{L} and O_{R}, respectively, it must hold that the endpoint with base value '[' must be in order $\pi_{X Y}$ before the endpoint with ']'.
2. The vertices of a partial component C_{i} of O_{P} that are paired to a vertex of $\mathcal{X} \cap C_{i}$ are assigned with
the correct value of $\left\{[,], S_{X}, S_{Y},\right]_{L},[L\}$. Note that new connector vertices are generated, which must be encoded component-wise.

Running time. When counting the number of states we omit values $\left\{S_{X}, S_{Y},\right]_{L},[L\}$ since they are assigned to at most two vertices of O_{L} and O_{R}. Each connector is assigned with two values. The number of connectors can be in order size of a O_{L} and O_{R}, respectively. The values of the vertices in the D-set are transferred in time depending on the number of values $\left\{0,1_{[}, 1_{]}, 2,[],\right\}$ and the number of valid encoding of the connectors. There are 25 ways of encoding a connector correctly. Apparently, if a vertex is a connector in O_{L} then it is not in O_{R}. To simplify matters, assume that $V\left(O_{L}\right)$ are connectors and $V\left(O_{R}\right)$ are not. Then the update time for D is $O\left(25^{\left|D \cap O_{L}\right|} 6^{\left|D \cap O_{R}\right|}\right)$. There are 45 possible assignments for vertices in I to sum up to two. Thus, updating time for the I-set is $O\left(45^{|I|}\right)$. With analogous calcultions as before we get an overall running time $6^{0.5 \ell} 25^{0.5 \ell} 45^{0.5 \ell} \approx 2^{6.36 \ell}$.

Proposition 25. Phase 3: The phase of dynamic programming with $\mathcal{X} \neq \emptyset$ and either $V\left(N_{X}\right) \subseteq \mathcal{X}$ or $V\left(N_{Y}\right) \subseteq \mathcal{X}$ or both takes time $O\left(2^{6.360 \ell}\right)$.

In the last phase at least one of both cut-nooses N_{X}, N_{Y} are subsets of $V\left(G_{e}\right) \backslash O_{e}$. The difficulty is apparently to encode the endpoint of a path with one endpoint in such N_{X}, N_{Y}. We consider two cases:

1. The fixed path $P_{i, j}$ is crossing O_{e}.

If both N_{X} and N_{Y} are in $V\left(G_{e}\right) \backslash O_{e}$ we assume the first vertex v assigned by ' S_{X} ' in π and the other w by ' S_{Y} '. Use encoding with ' $\left[L^{\prime}, '\right]_{L}$ ' to mark the last vertex in the partial noose (v, w) connected to N_{X} and the last vertex in the partial noose (w, v) connected to N_{Y}. If wlog N_{X} crosses O_{e} we find a partial component C_{i} including N_{Y}. We mark two vertices with ' $\left[L_{L},{ }^{\prime}\right]_{L}$ in the same way, no matter if there is one or two of ' S_{X} ', S_{Y} ' in $V\left(C_{i}\right) \cap O_{e}$.
2. $P_{i, j} \subset G_{e} \backslash O_{e}$.

One vertex in O_{e} is marked ' $[X, L \text { ' or ' }]_{X, L}$ ' to be the last vertex in π connected to N_{X} and one vertex by ' ${ }_{Y, L}{ }^{\prime}$ or ' ' $]_{Y, L}$ ' to be the last connected to N_{X}. If one of N_{X}, N_{Y} cross O_{e} we again find a partial component C_{i} can be encoded in that way.
Since the new values '[*',']*' appear only twice per middle set, they do not affect the running time. The algorithm works the same as in phase two, considering the two latter cases.

With more complicated encodings and analysis we are able to improve the running time of phase 2 and 3 :
Proposition 26. Phase 2 and 3: takes time $O\left(2^{5.433 \ell}\right)$.
We omit the details here.

B Appendix: Proof of Lemma 14

Recall that N_{s} is tight i.e. it can be seen as a cycle in the radial graph R_{G}. This directly implies that if $\left|N_{s} \cap V_{1}\right|=1$, then $N_{s} \cap F=\emptyset$.

Suppose now that $N_{s} \cap V_{1}=\left\{v_{i}, v_{j}\right\}$ and $N_{s} \cap F=\emptyset$. Suppose also that there is no face as the one required in 2.2. Then the cycle C_{s} of R_{G} corresponding to N_{s} is partitioned into two paths P_{2} and P_{3}, each with ends v_{i} and v_{j} and of length >2. We use the notation v_{F} for the vertex of R_{G} corresponding to the face F. Let also $P_{1}=\left(v_{i}, v_{F}, v_{j}\right)$ and notice that the two cycles of R_{G} defined by $P_{1} \cup P_{3}$ and $P_{1} \cup P_{2}$ have length smaller than $P_{2} \cup P_{3}=C_{s}$ and therefore they are contractibe. By Proposition $13, N_{s}$ is contractible-a contradiction.

For the sake of contradiction, we assume that $\left|N_{s} \cap V_{1}\right| \geq 3$. Assume N_{s} intersects V_{1} in vertices $I=$ $v_{1}, \ldots, v_{k}, k \geq 3$, and with at most two vertices connected by the part of the noose of N_{s} that intersects F. In the radial graph R_{G} of G, N_{s} corresponds to the shortest noncontractible cycle C_{s}. In R_{G} each vertex of V_{1} is a neighbour of the vertex v_{F}.

We consider the two cases: $N_{s} \cap F \neq \emptyset$. That is, there exists a path $\left\{v_{i}, v_{F}, v_{j}\right\} \subset C_{s}$ in R_{G} with $v_{i}, v_{j} \in I$. Let v_{h} be another vertex in $I=V_{1} \cap C_{s}$. Consider the three paths in R_{G} connecting v_{F} and v_{h}, namely $P_{1}=\left(v_{F}, v_{i}, \ldots, v_{h}\right), P_{2}=\left(v_{F}, v_{j}, \ldots, v_{h}\right)$, and $P_{3}=\left(v_{F}, v_{h}\right)$. Notice also that the two cycles of R_{G} defined by $P_{1} \cup P_{3}$ and $P_{2} \cup P_{3}$ have length smaller than $P_{1} \cup P_{2}=C_{s}$ and therefore they are contractibe which is a contradiction to Proposition 13.

In case $N_{s} \cap F=\emptyset$, we choose $v_{i}, v_{j}, v_{h} \in I$ arbitrarily and the arguments of the previous case imply that the path $P_{1} \cup P_{2}$ is contractible. We define now the paths $Q_{1}=\left(v_{i}, \ldots, v_{h}, \ldots, v_{j}\right), Q_{2}=\left(v_{i}, v_{F}, v_{j}\right)$, and $Q_{3}=\left(v_{i}, \ldots, v_{j}\right)$ between the vertices v_{i} and v_{j}. As $Q_{1} \cup Q_{2}=P_{1} \cup P_{2}$, the cycle $Q_{1} \cup Q_{2}$ of R_{G} is contractible. The same holds for the cycle $Q_{2} \cup Q_{3}$ as its length is less than the length of $Q_{1} \cup Q_{3}=C_{s}$. Then again Proposition 13 implies that $Q_{1} \cup Q_{3}=C_{s}$ is contractible, a contradiction.

C Appendix: Proof of Proposition 15

Let \mathfrak{N}_{i} be the set of disjoint cut-nooses after i cuts. Consider the cases of Lemma 14 of how a shortest noncontractible (tight) noose N_{s} intersects a cut-noose of \mathfrak{N}_{i}.

- Suppose N_{s} intersects with the empty disk Δ_{j} bounded by $N_{j} \in \mathfrak{N}_{i}$. Let $P_{1} \cup P_{2}=N_{j}$ be the two partial nooses of N_{j} determined by the intersection of N_{j} and N_{s}. When we cut along N_{s}, we replace N_{s} by the contractible cut-nooses N_{X} and N_{Y}. We replace $N_{X} \cap \Delta_{j}$ by P_{1} and $N_{Y} \cap \Delta_{j}$ by P_{2}. In \mathfrak{N}_{i} we substitute N_{j} by N_{X} and N_{Y}. Note that N_{s} can intersect with several disjoint cut-nooses of \mathfrak{N}_{i} in this way. See upper diagrams Figure 6 for an example.

Figure 6: Making cut-nooses disjoint. The upper diagrams show how a noncontractible tight noose N_{s} partitions N_{j} into two partial nooses P_{1} and $P_{2} . N_{X} \cup P_{1}$ and $N_{Y} \cup P_{2}$ form new cut-nooses. The middle diagrams show how N_{s} touches N_{j} in only one vertex v. Since N_{j} and N_{Y} intersect in v, we set $N_{j}==N_{j} \backslash v$. The lower diagrams show how to shift the part of N_{s} between vertices x and y from the outside of Δ_{j} into the inside.

- Suppose N_{s} intersects with $N_{j} \in \mathfrak{N}_{i}$ in one vertex. One of the cut-nooses N_{X}, N_{Y} intersects with N_{j} in vertex v. Delete v from N_{j} and add N_{X}, N_{Y}. to \mathfrak{N}_{i}. Also here N_{s} can intersect with several disjoint cut-nooses of \mathfrak{N}_{i} in this way. See the middle diagrams in Figure 6 for an example.
- Suppose N_{s} intersects with $N_{j} \in \mathfrak{N}_{i}$ in two vertices x, y and $N_{s} \cap \Delta_{j}=\emptyset$ (corresponding to special case 2.2) in Lemma 14). Since there is no vertex in the part of N_{s} between x and y we are allowed to shift that part entirely inside of Δ_{j}. See the lower diagrams in Figure 6 for an example. Thus, we obtain the first case above that N_{s} intersects with the empty disk Δ_{j} bounded by $N_{j} \in \mathfrak{N}_{i}$.

D Appendix: Concerning proof of Lemma 17

See figure 7 .

Figure 7: Tree structure for fixing paths. The left diagram shows a candidate connecting five cut-nooses N_{1}, \ldots, N_{5} by paths. In the right diagram, the fixed paths are emphasized dashed. The nooses are connected by tunnels along these fixed paths. The order $\pi_{\mathbf{L}}$ of the vertices is illustrated by the labeled dotted and directed lines.

E Appendix: Proof of Lemma 18

As in the previous section, we preprocess the graph G^{\prime} by deleting all vertices in \mathfrak{N} that do not belong to any path in candidate \mathbf{C}. We also encode the vertices of \mathfrak{N} with the same base values, except for ' S ': we replace ' S ' by the values ' S_{1} ' to ' $S_{2 g}$ ' since the number of cut-nooses is bounded by $2 g$. The endpoints x, y of a fixed path with $x<y$ in π_{L} are encoded with S_{i} if $x \in N_{i}$.

Dynamic programming is done as described in the previous section with slight changes caused by the extension of Propositions 23 and 24. Due to Proposition 2 we can have the case that G^{\prime} consists of several components $G_{1}^{\prime}, G_{2}^{\prime}, \ldots$. We simply do dynamic programming for each component separately.

Consider subgraph G_{e} bordered by tight noose O_{e} and $\mathfrak{N}_{e} \subset \mathfrak{N}$ as the cut-nooses intersecting G_{e} :
Proposition 27. The subgraph G_{e} is the union of partial components $C_{1}, \ldots, C_{q}(q \geq 1)$ such that for every i

$$
C_{i} \cap\left(\bigcup_{r=1, r \neq i}^{q} C_{r}\right) \subseteq O_{e} \cap \mathfrak{N}_{e} . \text { Furthermore, for every } i, j, h, C_{i} \cap C_{j} \cap C_{h}=\emptyset .
$$

Proposition 28. Each C_{i} is bordered by partial nooses of A_{i} of tight nooses of $\mathfrak{N}_{e} \backslash O_{e}$ and partial nooses of $B_{i} \subset O_{e}$ with $\bigcup_{i=1}^{q} A_{i} \cup B_{i}=G_{e} \cap\left(\mathfrak{N}_{e} \cup O_{e}\right)$ such that one of the following hold:

1. $\left|A_{i}\right|=\left|B_{i}\right|=1$ with $A_{i} \subset N_{X}$ for a tight noose $N_{X} \in \mathfrak{N}_{e}$,
2. $\left|A_{i}\right|=\left|B_{i}\right| \leq 2 g$ with each partial noose of A_{i} part of a different tight noose of \mathfrak{N}_{e}.

For all partial components C_{i}, C_{j} with property 2: A_{i} contains at least one partial noose that is part of a cut-noose of \mathfrak{N}_{e} that has no partial noose in A_{j}. There are at most $2 g$ components with property 2 and $\left|\bigcup_{i=1}^{2 g} A_{i}\right| \leq 2 g$.

See Figure 8 for an illustration.

Figure 8: Partial components with several cut-nooses. The diagram shows how tight noose O_{e} intersects $\mathfrak{N}_{e}=\left\{N_{1}, \ldots, N_{4}\right\}$ and form the partial components C_{1}, \ldots, C_{4}. Observe that every partial noose of A_{i} $(1 \leq i \leq 4)$ is of a different cut-noose.

Component C_{i} with property 2 is encoded similarly as before only by replacing ' $\left[L_{L},{ }^{\prime}\right]_{L}$ ' by ' ${ }_{1}$ ', , $]_{1}$ ' to ' $\left.{ }_{2 g}{ }^{\prime},{ }^{\prime}\right]_{2 g}$ ': the last vertex in π of a vertex in a set of B_{i} connected to cut-noose $N_{j} \in \mathfrak{N}$ is encoded by '[j' or '] j '. In one set of B_{i} there are at most $2 g$ vertices encoded by the new values. Because of the last statement of Proposition 28 the size of the union over all B_{i} is also bounded by $2 g$. Hence, there are at most $4 g^{2}$ vertices in O_{e} encoded with ' $\left[1,,^{\prime}\right]_{1}$ ' to ' $\left[2 g^{\prime},{ }^{\prime}\right]_{2 g}{ }^{\prime}$ and $O\left(\left(2 g \mathbf{b w}\left(G^{\prime}\right)\right)^{4 g^{2}}\right.$ possibilities for assigning these values to $V\left(O_{e}\right)$.

F Appendix: Proof of Lemma 19

We only give an idea of the proof, that is extending the proof of Lemma 8. Here we delete temporarily all cut-nooses of \mathfrak{N} and construct the sc-decomposition $\langle T, \mu, \pi\rangle$ of G^{\prime} of width at most $\sqrt{4.5} \cdot \sqrt{n}$. Now we simply make use of the argument that a middle set O_{e} intersects a cut-noose in at most two vertices for each cut-noose separately. Thus, we obtain at most two vertices more for O_{e} per cut-noose that O_{e} intersects.

[^0]: *Additional support by the Research Council of Norway.
 †Supported by the Spanish CICYT project TIN-2004-07925 (GRAMMARS).

