Parameterized complexity of the anchored $k$-core problem for directed graphs

Rajesh Chitnis$^a$, Fedor V. Fomin$^{b,c}$, Petr A. Golovach$^{b,c,*}$

$^a$ Weizmann Institute of Science, Rehovot 7610001, Israel
$^b$ Department of Informatics, University of Bergen, N-5020 Bergen, Norway
$^c$ Steklov Institute of Mathematics at St. Petersburg, Russian Academy of Sciences, 27 Fontanka, 191023 St.Petersburg, Russia

**Abstract**

We consider the Directed Anchored $k$-Core problem, where the task is for a given directed graph $G$ and integers $b$, $k$ and $p$, to find an induced subgraph $H$ with at least $p$ vertices (the core) such that all but at most $b$ vertices (the anchors) of $H$ have in-degree at least $k$. We undertake a systematic analysis of the computational complexity of the Directed Anchored $k$-Core problem.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Degree-constrained subgraph problems have been extensively studied in theoretical computer science. One can describe degree-constrained subgraph problems in the following general setting: given a (un)directed graph $G$, find a maximum/minimum sized (induced, connected) subgraph $H$ subject to some condition $C$ imposed on the degrees of vertices. For example, INDEPENDENT SET or (INDUCED) MATCHING can be seen as problems within this framework. In this paper, we study an interesting variant of the degree-constrained subgraph problem where we have to find a large subgraph in which all (except a small set of anchor vertices) satisfy a degree constraint. Such problems arise in different settings in social sciences. Adding the anchors however leads to non-trivial computation challenges as we will see in this paper.

More precisely, the $k$-core of a directed graph $G$ is defined as the largest subgraph $H$ such that $\deg_H^-(v) \geq k$ for every $v \in V(H)$. This notion was introduced by Seidman [17] and is a well-known concept in the theory of social networks. It has also been studied in various social sciences literature [8,9]. It is easy to see that we can find the $k$-core of a given directed graph in polynomial time by the following procedure: iteratively remove any vertex that has in-degree less than $k$. However, one might not want to strictly enforce the condition of in-degree being at least $k$ for every vertex. In particular, we allow for a small number of special vertices (called anchors) which can have arbitrary in-degrees, but their purpose in the (anchored) $k$-core is to augment the in-degrees of the non-anchored vertices. Bhawalkar et al. [2] introduced the Anchored $k$-Core problem for (undirected) graphs. In the Anchored $k$-Core problem the input is an undirected graph $G = (V, E)$ and integers $b, k$, and the task is to find an induced subgraph $H$ of maximum size with all vertices but at most $b$ (which are

---


$^*$ Corresponding author.

E-mail addresses: rajes.chitnis@weizmann.ac.il (R. Chitnis), fedor.fomin@ii.uib.no (F.V. Fomin), petr.golovach@ii.uib.no (P.A. Golovach).
anchored) to be of degree at least k. In this work, we extend the notion of anchored k-core to directed graphs and define the parameterized version of the problem formally:

**Direced Anchored k-Core (Dir-AKC)**

*Input*: A directed graph $G = (V, E)$ and integers $b, k, p$.

*Parameter 1*: $b$.

*Parameter 2*: $k$.

*Parameter 3*: $p$.

*Question*: Do there exist sets of vertices $A \subseteq U \subseteq V(G)$ such that $|A| \leq b$, $|U| \geq p$, and every $v \in U \setminus A$ satisfies $d_{G[U]}^+(v) \geq k$?

We will refer to the set $A$ as the set of anchors and to the graph $H = G[U]$ as the anchored k-core. Note that the undirected version of the Anchored k-Core problem can be modeled by the directed version: simply replace each edge $(u, v)$ by arcs $(u, v)$ and $(v, u)$. Keeping the parameters $b, k, p$ unchanged it is now easy to see that the two instances are equivalent.

**Connection to preventing unraveling in social networks** Social networks are generally represented by making use of undirected or directed graphs, where the edge set represents the relationship between individuals in the network. The undirected graph model works fine for some networks, say Facebook, but the nature of interaction on some social networks such as Twitter is asymmetrical: the fact that user $A$ follows user $B$ does not imply that user $B$ also follows $A$. In this case, it is more appropriate to model interactions in the network by directed graphs. We add a directed edge $(u, v)$ if $v$ follows $u$. We can consider a model of user engagement where there is a threshold value $k$, such that each individual with less than $k$ people to follow (or equivalently whose in-degree is less than $k$) drops out of the network. This process can be contagious, and may affect even those individuals who initially were linked to more than $k$ people. An extreme example of this was given by Schelling (see p. 17 of [15]): consider a directed path on $n$ vertices and let $k = 1$. The left-endpoint has in-degree zero, it drops out and now the in-degree of its only out-neighbor in the path becomes zero and it drops out as well. It is not hard to see that this way the whole network eventually drops out as the result of a cascade of iterated withdrawals, i.e., the 1-core of this graph is the empty set. The unraveling process described above in Schelling’s example of a directed path can be highly undesirable in many scenarios. One can attempt to prevent this unraveling by introducing a few special vertices (called anchors) by “buying” them with extra incentives.

**Parameterized complexity** We are mainly interested in the parameterized complexity of Anchored k-Core. For general background on parameterized complexity, we refer to the recent books by Cygan et al. [10] and Downey and Fellows [12]. Parameterized complexity is basically a two dimensional framework for studying the computational complexity of a problem. One dimension is the input size $n$ and another one is a parameter $k$. A problem is said to be fixed parameter tractable (or FPT) if it can be solved in time $f(k) \cdot n^{O(1)}$ for some function $f$. A problem is said to be in XP, if it can be solved in time $O(n^{f(k)})$ for some function $f$. The W-hierarchy is a collection of computational complexity classes: we omit the technical definitions here. The following relation is known amongst the classes in the W-hierarchy: $\text{FPT} = W[0] \subseteq W[1] \subseteq W[2] \subseteq \ldots \subseteq W[P] \subseteq \text{XP}$. It is widely believed that $\text{FPT} \neq W[1]$, and hence if a problem is hard for the class $W[i]$ (for any $i \geq 1$) then it is considered to be fixed-parameter intractable.

**Previous results for undirected graphs** Bhawalkar et al. [2] initiated the algorithmic study of Anchored k-Core on undirected graphs. In particular, they obtained the following dichotomy result: the decision version of the problem is solvable in polynomial time for $k \leq 2$ and is NP-complete for all $k \geq 3$. In a followup paper, the current set of authors showed that for $k \geq 3$ the problem remains NP-complete even on planar graphs [7]. This motivates the study of the problem for $k \geq 3$ from the viewpoint of parameterized complexity. Unfortunately, the problem is $W[2]$-hard parameterized by $k$ [2] and $W[1]$-hard parameterized by $p$ even for $k = 3$ [7].

**Our results** In this paper, we initiate the study of Anchored k-Core on directed graphs and provide a new insight into the computational complexity of the problem. We obtain the following results.

- The decision version of Dir-AKC is NP-complete for every $k \geq 1$ even if the input graph is restricted to be a planar directed acyclic graph (DAG) of maximum degree at most $k + 2$. Thus the directed version is in some sense strictly harder than the undirected version which is known be in P if $k \leq 2$, and NP-complete if $k \geq 3$ [2]. These results are proven in Section 2.

- The NP-hardness result for Dir-AKC motivates us to make a more refined analysis of the Dir-AKC problem via the paradigm of parameterized complexity. We obtain (Section 3) the following dichotomy result: Dir-AKC is FPT parameterized by $p$ if $k = 1$, and $W[1]$-hard if $k \geq 2$.

This fixed-parameter intractability result parameterized by $p$ forces us to consider the complexity on special classes of graphs such as bounded-degree directed graphs or directed acyclic graphs.
In Section 4, for graphs of degree upper bounded by \( \Delta \), we show that the Dir-AKC problem is FPT parameterized by \( p + \Delta \) if \( k \geq \frac{\Delta}{2} \). In particular, it implies that Dir-AKC is FPT parameterized by \( p \) for directed graphs of maximum degree at most four.

We complement tractability results by showing in Section 5 that if \( k < \frac{\Delta}{2} \) and \( \Delta \geq 3 \), then Dir-AKC is W[2]-hard when parameterized by the number of anchors \( b \) even for DAGs. On the other hand, the problem is FPT when parameterized by \( \Delta + p \) for DAGs of maximum degree at most \( \Delta \). Note that we can always assume that \( b \leq p \), and hence any FPT result with parameter \( b \) implies FPT result with parameter \( p \) as well. On the other side, any hardness result with respect to \( p \) implies the same hardness with respect to \( b \).

2. Preliminaries

We consider finite directed and undirected graphs without loops or multiple arcs. The vertex set of a (directed) graph \( G \) is denoted by \( V(G) \) and its edge set (arc set for a directed graph) by \( E(G) \). The subgraph of \( G \) induced by a subset \( U \subseteq V(G) \) is denoted by \( G[U] \). For \( U \subseteq V(G) \) by \( G - U \) we denote the graph \( G[V(G) \setminus U] \). For a directed graph \( G \), we denote by \( G^* \) the undirected graph with the same set of vertices such that \( [u,v] \in E(G^*) \) if and only if \( (u,v) \in E(G) \). We say that \( G^* \) is the underlying graph of \( G \).

Let \( G \) be a directed graph. For a vertex \( v \in V(G) \), we say that \( u \) is an in-neighbor of \( v \) if \( (u,v) \in E(G) \). The set of all in-neighbors of \( v \) is denoted by \( N^-(v) \). The in-degree \( d^-(v) = |N^-(v)| \). Respectively, \( u \) is an out-neighbor of \( v \) if \( (v,u) \in E(G) \). The set of all out-neighbors of \( v \) is denoted by \( N^+(v) \), and the out-degree \( d^+(v) = |N^+(v)| \). The degree \( d(v) \) of a vertex \( v \) is the sum \( d^+(v) + d^-(v) \), and the maximum degree of \( G \) is \( \Delta(G) = \max_{v \in V(G)} d(v) \). A vertex \( v \) of \( d(v) = 0 \) is called a source, and if \( d^-(v) = 0 \), then \( v \) is a sink. Observe that isolated vertices are sources and sinks simultaneously.

Let \( G \) be a directed graph. For \( u,v \in V(G) \), it is said that \( v \) can be reached (or is reachable) from \( u \) if there is a directed path in \( G \) from \( u \) to \( v \) in the graph. Respectively, a vertex \( v \) can be reached from a set \( U \subseteq V(G) \) if \( v \) can be reached from some vertex \( u \in U \). Notice that each vertex is reachable from itself. We denote by \( R^+_{G}(u) \) (respectively \( R^-_{G}(u) \)) the set of vertices that can be reached from a vertex \( u \) (a set \( U \subseteq V(G) \) respectively). Let \( R^+_{G}(u) \) denote the set of all vertices \( v \) such that \( u \) can be reached from \( v \).

For two non-adjacent vertices \( s,t \) of a directed graph \( G \), a set \( S \subseteq V(G) \setminus \{s,t\} \) is said to be an \( s-t \) separator if \( t \notin R^+_{G-\{s\}}(s) \). An \( s-t \) separator \( S \) is minimal if no proper subset \( S' \subseteq S \) is an \( s-t \) separator.

The notion of important separators was introduced by Marx [14] and generalized for directed graphs in [5]. We need a special variant of this notion. Let \( G \) be a directed graph, and let \( s,t \) be non-adjacent vertices of \( G \). A minimal \( s-t \) separator \( S \) is an important \( s-t \) separator if there is no \( s-t \) separator \( S' \) with \( |S'| \leq |S| \) and \( R^+_{G-\{S'\}}(t) \subseteq R^+_{G-\{S\}}(t) \). The following lemma is a variant of Lemma 4.2 of [5], and can be obtained from it by replacing a directed graph by the graph obtained from it by reversing the direction of all arcs.

**Lemma 1.** (See [5].) Let \( G \) be a directed graph with \( n \) vertices, and let \( s,t \) be non-adjacent vertices of \( G \). Then for every \( h \geq 0 \), there are at most \( 4^h \) important \( s-t \) separators of size at most \( h \). Furthermore, all these separators can be enumerated in time \( O(4^{R} \cdot n^{O(1)}) \).

As further we are interested in the parameterized complexity of Dir-AKC, we show first NP-completeness of the problem.

**Theorem 1.** For any \( k \geq 1 \), Dir-AKC is NP-complete, even for planar DAGs of maximum degree at most \( k + 2 \).

**Proof.** Membership in NP is clear.

To show NP-hardness we consider a variant of the SATISFIABILITY problem. Let \( \phi \) be a Boolean formula in a conjunctive normal form with variables \( x_1, \ldots, x_n \) and clauses \( C_1, \ldots, C_m \). We associate the following directed graph \( G_{\phi} \) with \( \phi \):

- For each \( 1 \leq i \leq n \) introduce the vertices \( r_i, x_i \) and \( \overline{x}_i \). Add the arcs \( (x_i, r_i) \) and \( (\overline{x}_i, r_i) \)
- For each \( 1 \leq j \leq m \) introduce the vertex \( v_j \)
- For each \( 1 \leq i \leq n \) and \( 1 \leq j \leq m \) add an arc \( (x_i, v_j) \) (respectively the arc \( (\overline{x}_i, v_j) \)) if and only if \( x_i \) (respectively \( \overline{x}_i \)) belongs to the clause \( C_j \).

By the results of Dahlhaus et al. [11], the following problem is NP-hard:

**Restricted-Planar-3-SAT**

**Input:** A Boolean CNF formula \( \phi \) such that

- each clause has at most 3 literals,
- each variable is used in at most 3 clauses,
- each variable is used at least once in positive and at least once in negative,
- the underlying undirected graph \( G_{\phi} \) of \( G_{\phi} \) is planar.

**Question:** Is the formula \( \phi \) satisfiable?
We reduce from the Restricted-Planar-3-SAT problem. Consider an instance $\phi$ of Restricted-Planar-3-SAT with variables $x_1, x_2, \ldots, x_n$ and clauses $C_1, C_2, \ldots, C_m$. To the graph $G_\phi$, we add the following vertices and edges:

- For each $i \in \{1, \ldots, n\}$,
  - add a set of $k - 1$ vertices $Y_i$ and draw an arc from each of them to $r_i$;
  - for each vertex $y \in Y_i$, add $k$ vertices and draw an arc from each of them to $y$, denote the set of these $k(k - 1)$ vertices $Z_i$;

- For each $j \in \{1, \ldots, m\}$,
  - add a set of $k - 1$ vertices $U_j$ and draw an arc from each of them to $v_j$;
  - for each vertex $u \in U_j$, add $k$ vertices and draw an arc from each of them to $u$, denote the set of these $k(k - 1)$ vertices $W_j$.

Let the graph constructed be $G$. An example is shown in Fig. 1. Notice that if $k = 1$, then $Y_i = Z_i = U_j = W_j = \emptyset$. We set $b = n(k(k - 1) + 1) + mk(k - 1)$ and $p = n((k + 1)(k - 1) + 2) + m(k + 1)(k - 1) + 1$. It is straightforward to see that $G$ is a DAG. Because each variable $x_i$ is used at most 2 times in positive and at most 2 times in negations, $d_c(x_i), d_c(\overline{x_i}) \leq 3$ for all $i \in \{1, \ldots, n\}$, and $\Delta(G) \leq k + 2$. Because the underlying undirected graph $G_\phi^*$ of $G_\phi$ and we have only added planar gadgets after that to construct $G$, it follows that the underlying undirected graph $G^*$ of $G$ is also planar.

We claim that $\phi$ is satisfiable if and only if there are a set $A \subseteq V(G)$ and an induced subgraph $H$ of $G$ such that $A \subseteq V(H)$, $|A| \leq b$, $|V(H)| \geq p$, and for every $v \in V(H) \setminus A$, we have $d_H^-(v) \geq k$.

Suppose that $\phi$ is satisfiable. Consider a satisfying truth assignment of $x_1, \ldots, x_n$. We construct $A$ by including all the vertices $Z_1 \cup \ldots \cup Z_n \cup W_1 \cup \ldots \cup W_m$ in this set, and for each $i \in \{1, \ldots, n\}$, if $x_i = \text{true}$, then $x_i$ is included in $A$ and $\overline{x_i}$ is included otherwise. Clearly, $|A| = |Z_1| + \ldots + |Z_n| + |W_1| + \ldots + |W_m| = n + n(k(k - 1) + 1) + mk(k - 1) = b$. Let $H = G[A \cup Y_1 \cup \ldots \cup Y_n \cup U_1 \cup \ldots \cup U_m \cup \{r_1, \ldots, r_n\} \cup \{v_1, \ldots, v_m\}]$. Consider $w \in V(H) \setminus A$. If $w \in Y_i$ for $i = 1, \ldots, n$, then $w$ has $k$ in-neighbors in $Z_i \subseteq A$. If $w = r_i$ for $i = 1, \ldots, n$, then $w$ has $k - 1$ in-neighbors in $Y_i$ and either $x_i$ or $\overline{x_i}$ is an in-neighbor of $w$ as well. If $w \in U_j$, then $w$ has $k$ in-neighbors in $W_j \subseteq A$. Finally, if $w = v_j$ for some $j = 1, \ldots, m$, then $w$ has $k - 1$ in-neighbors in $V_j$. As the clause $C_j$ is satisfied, it contains a literal $x_i$ or $\overline{x_i}$ that has the value true. Then by the construction of $A$, the corresponding vertex $x_i$ or $\overline{x_i}$ respectively is in $A$, and $w$ has one in-neighbor in $A$. It remains to observe that $|V(H)| = |A| + |Y_1| + \ldots + |Y_n| + |U_1| + \ldots + |U_m| = n(k(k - 1) + 1) + mk(k - 1) + n(k + m) = p$.

Assume now there are a set $A \subseteq V(G)$ and an induced subgraph $H$ of $G$ such that $A \subseteq V(H)$, $|A| \leq b$, $|V(H)| \geq p$ and for every $v \in V(H) \setminus A$ we have $d_H^-(v) \geq k$. We will show that $\phi$ is satisfiable.

Let $S = \{w \in V(G) \mid d_G^-(w) = 0 \} = (\cup_{i=1}^n [x_i, \overline{x_i}]) \cup (\cup_{i=1}^n Z_i) \cup (\cup_{i=1}^m W_i)$ and $T = V(G) \setminus S = \{r_1, \ldots, r_n\} \cup (\cup_{i=1}^n Y_i) \cup (\cup_{i=1}^m U_i)$. We claim that $A \subseteq S$ and $T \subseteq V(H)$. To show it, observe that any vertex $w \in S$ is in $H$ if and only if $w \in A$ as $d_G^-(w) = 0$. Because $|V(G)| - |V(H)| \leq n$, at least $|S| - n$ vertices of $S$ are in $A$. Since $|S| = b + n$, we conclude that exactly $b = |S| - n$ vertices of $S$ are in $A$ and $A \subseteq S$. Moreover, $V(H) = T \cup A$.

Let $z \in Z_i$ for some $i \in \{1, \ldots, n\}$ and assume that $z$ is adjacent to $y \in Y_i$. If $z \notin A$, then $y \in T$ has at most $k - 1$ in-neighbors in $H$, a contradiction. Hence, $Z_1 \cup \ldots \cup Z_n \subseteq A$. By the same arguments we conclude that $W_1 \cup \ldots \cup W_m \subseteq A$. Then we have exactly $n$ elements of $A$ in $\cup_{i=1}^n [x_i, \overline{x_i}]$. Consider a pair of vertices $x_i, \overline{x_i}$ for $i = 1, \ldots, n$. If $x_i, \overline{x_i} \notin A$, then $r_i \in T$ has at most $k - 1$ in-neighbors in $H$, a contradiction. Therefore, for each $i \in \{1, \ldots, n\}$, exactly one vertex from the pair $x_i, \overline{x_i}$ is in $A$. For $i \in \{1, \ldots, n\}$, we set the variable $x_i = \text{true}$ if the vertex $x_i \in A$, and $x_i = \text{false}$ otherwise.

It remains to prove that this is a satisfying truth assignment for $\phi$. Consider a clause $C_j$ for $j = 1, \ldots, m$. The vertex $v_j \in T$ has $k - 1$ in-neighbors in $H$ that are vertices of $T$. Hence, it has at least one in-neighbor in $A$. It can be either a vertex $x_i$ or $\overline{x_i}$ that correspond to a literal in $C_j$. It is sufficient to observe that if $x_i \in A$, then the literal $x_i = \text{true}$, and if $\overline{x_i} \in A$, then the literal $\overline{x_i} = \text{true}$ by our assignment. □
We conclude this section by the simple observation that Dir-AKC is in XP when parameterized by the number of anchors \( b \). For a directed graph \( G \) with \( n \) vertices, we can consider all the at most \( \binom{n}{b} = n^O(b) \) possibilities to choose the anchors, and then recursively delete non-anchor vertices that have the in-degree at most \( k - 1 \). Trivially, if we obtain a directed graph with at least \( p \) vertices for some selection of the anchors, then we have a solution and otherwise we can answer NO.

3. Dir-AKC parameterized by the size of the core

In this section we consider the Dir-AKC problem for fixed \( k \) when \( p \) is the parameter, and obtain the following dichotomy: If \( k = 1 \) then the Dir-AKC problem is FPT parameterized by \( p \), otherwise for \( k \geq 2 \) it is W[1]-hard parameterized by \( p \).

**Theorem 2.** For \( k = 1 \), the Dir-AKC problem is solvable in time \( 2^{O(p)} \cdot n^2 \log n \) on digraphs with \( n \) vertices.

**Proof.** The proof is constructive, and we describe an FPT algorithm for the problem. Without loss of generality, we assume that \( b \leq p \leq n \).

We apply the following preprocessing rule reducing the instance to an acyclic graph. Let \( C_1, \ldots, C_r \) be the non-trivial strongly connected components of \( G \), i.e., \( |V(C_i)| \geq 2 \) for \( i \in \{1, \ldots, r\} \). Note that for each \( i \in \{1, \ldots, r\} \) and any \( v \in V(C_i) \), \( d^-_C(v) \geq 1 \). By making use of Tarjan’s algorithm [18], \( C_1, \ldots, C_r \) can be found in linear time. Let \( R = R^+_{\mathcal{C}}(\bigcup_{i=1}^r V(C_i)) \) be the set of vertices reachable from these strongly connected components. Then every \( v \in R \) satisfies \( d^-_{G[R]}(v) \geq 1 \). If \( |R| \geq p \), then \( H = G[R] \) is an anchored 1-core of size at least \( p \) for the empty set of anchors. If \( b \geq p - |R| > 0 \), then we select in \( V(G) \setminus R \) any arbitrary \( b' = p - |R| \) vertices \( a_1, \ldots, a_{b'} \). In this case we output the set of anchors \( A = \{a_1, \ldots, a_{b'}\} \) and the graph \( H = G[A \cup R] \). Otherwise, if \( b < p - |R| \), we set \( G' = G - R \) and \( p' = p - |R| \) and consider a new instance of Dir-AKC with the graph \( G' \) and the parameter \( p' \).

To see that the rule is safe, it is sufficient to observe that a set of anchors \( A \) and a subgraph \( H' \) of size at least \( p' \) is a solution of the obtained instance if and only if \( (A, H = G(V(H') \cup R)) \) is a solution for the original problem. Let us remark that the preprocessing rule can be easily performed in time \( O(n^3) \).

From now we can assume that \( G \) has no non-trivial strongly connected components, i.e., \( G \) is a directed acyclic graph. Denote by \( S = \{s_1, \ldots, s_h\} \) the set of sources of \( G \). If \( |S| \leq b \), then set \( A = S \). In this case, we output the pair \( (A, H = G) \). The pair \( (A, H) \) is a solution because every vertex \( v \in V(G) \setminus S \) satisfies \( d^-_{G}(v) \geq 1 \). It remains to consider the case when \( |S| > b \). For \( i \in \{1, \ldots, h\} \), let \( R_i = R^+_{\mathcal{C}}(s_i) \). Then \( V(G) = R^+_{\mathcal{C}}(S) = \bigcup_{i=1}^h R_i \). Without loss of generality, we can assume that every anchored vertex is from \( S \). Indeed, if \( s_i \) is an anchor, then each vertex of \( R_i \) can be included in a solution. Hence for every anchor \( a \in R_i \setminus \{s_i\} \), we can delete this anchor from \( A \) and replace it by \( s_i \). Since we can choose anchors only from \( S \), we are able to reduce the problem to PARTIAL SET COVER.

**PARTIAL SET COVER**

**Input:** A collection \( X = \{X_1, \ldots, X_r\} \) of subsets of a finite \( n \)-element set \( U \) and positive integers \( p, b \).

**Parameter:** \( p \).

**Question:** Are there at most \( b \) subsets \( X_{i_1}, \ldots, X_{i_b} \), \( 1 \leq i_1 < \ldots < i_b \leq r \), covering at least \( p \) elements of \( U \), i.e., \( \bigcup_{j=1}^b X_{i_j} \geq p \)?

Bläser [3] showed that PARTIAL SET COVER is FPT parameterized by \( p \) and can be solved in time \( O(2^{O(p)} \cdot r n \log n) \). For Dir-AKC, we consider the collection of subsets \( \{R_1, \ldots, R_r\} \) of \( V(G) \). If we can select at most \( b \) subsets \( R_{i_1}, \ldots, R_{i_b} \) such that \( |\bigcup_{j=1}^b R_{i_j}| \geq p \), we return the solution with anchors \( A = \{s_{i_1}, \ldots, s_{i_b}\} \) and \( H = G[\bigcup_{j=1}^b R_{i_j}] \). Otherwise, we return a NO-answer.

Because our preprocessing can be done in time \( O(n^2) \) and PARTIAL SET COVER is solvable in time \( 2^{O(p)} \cdot n^2 \log n \), we conclude that the total running time is \( 2^{O(p)} \cdot n^2 \log n \).

Now we complement Theorem 2 by showing that for \( k \geq 2 \), Dir-AKC becomes hard parameterized by the core size.

**Theorem 3.** For any fixed \( k \geq 2 \), the Dir-AKC problem is W[1]-hard parameterized by \( p \), even for DAGs.

**Proof.** We reduce from the \( b \)-CLIQUE problem which is known to be W[1]-hard [12]:

**b-CLIQUE**

**Input:** A undirected graph \( G \) and a positive integer \( b \).

**Parameter:** \( b \).

**Question:** Is there a clique of size \( b \) in \( G \)?
From a given graph $G = (V, E)$ we construct a directed graph $G'$ as follows.

- Add a copy of $V(G)$.
- For each edge $e = [u, v] \in E(G)$, construct a new vertex $w_e$ and add two edges in $E(G')$ by joining $u, v$ with $w_e$ in the copy of $V(G)$ by arcs $(u, w_e), (v, w_e)$. Call this set of $|E(G)|$ vertices as $W$.
- Construct a set $Z$ of $k^2 - 2$ vertices $z_1, \ldots, z_{k^2 - 2}$, and for each $e \in E(G)$ add $k - 2$ edges in $E(G')$ by joining $z_1, \ldots, z_{k^2 - 2}$ with $w_e$ by arcs $(z_1, w_e), \ldots, (z_{k^2 - 2}, w_e)$.

Let $V(G') = V(G) \cup W \cup Z$. It is straightforward to see that $G'$ is a directed acyclic graph. We call vertices of $W$ as subdivision vertices and vertices of copy of $V(G)$ as branch vertices. Let $b^2 = b + k^2 - 2$ and $p = \frac{b(b-1)}{2} + k - 2$. Let $Z = \{z_1, \ldots, z_{k^2 - 2}\}$. We claim that $G'$ has a clique of size $b$ if and only if there is a set of at most $b^2$ vertices $A \subseteq V(G')$ such that there exists an induced subgraph $H$ of $G'$ with at least $p$ vertices, $A \subseteq V(H)$ and for any $v \in V(H) \setminus A$ we have $d^+_H(v) \geq k$.

Suppose that $K$ forms a clique in $G$ of size $b$. We let $A = K \cup Z$ and define $U = \{w_e \mid e \in K\}$. Notice that $|U| = \frac{b(b-1)}{2}$ and each vertex of $U$ has two in-neighbors in $A \cap K$ and $k - 2$ in-neighbors in $Z$. We conclude that $H = G'[A \cup U]$ has $p$ vertices and every $v \in V(H) \setminus A$ satisfies $d^+_H(v) \geq k$.

Assume now that there is a set of at most $b^2$ vertices $A \subseteq V(G')$ such that there exists an induced subgraph $H$ of $G'$ with at least $p$ vertices, $A \subseteq V(H)$ and for any $v \in V(H) \setminus A$ we have $d^+_H(v) \geq k$. Since every vertex from $V(G) \cup Z$ has in-degree 0 in $G'$, it follows that $(V(H) \setminus A) \subseteq W$. Let $W_0 \subseteq W$ be the set $V(H) \setminus A$. Consider a vertex $y \in W_0$: there is such a vertex $y$ since $(V(H) \setminus A) \geq p - b = \frac{b(b-1)}{2}$. Since $d^+_H(y) = k$, it follows that the entire in-neighborhood of $y$ must be in $H$ (and hence in $A$). Hence, $Z \subseteq A$. Furthermore, we observed above that $(V(H) \setminus A) \subseteq W$ and so $Z \subseteq A$. We have already used up $k - 2$ budget from the total budget of anchors. Let $E_0 \subseteq E(G)$ be the set $\{e \mid w_e \in W_0\}$. Let $V_0 \subseteq V(G)$ be the set $V(G[E_0])$. Since $|E_0| = |W_0| = \frac{b(b-1)}{2}$, it follows that $|V_0| \geq b$. However, $Z \subseteq A$ and $|A| \leq b + k - 2$ and hence $|V_0| = |A| - |Z| \leq b$. Therefore, $|V_0| = b$. This implies $|E_0| \leq \frac{b(b-1)}{2}$, and so combining with the lower bound in upper line gives $|E_0| = \frac{b(b-1)}{2}$. The condition for adding edges between branch vertices implies that $V_0$ is indeed a clique in $G$ which concludes the proof. $\square$

4. Dir-AKC on graphs of bounded degree

In this section we show that Dir-AKC problem is FPT parameterized by $\Delta + p$ if $k \geq \frac{1}{2}$. In our algorithms we need to check the existence of solutions for Dir-AKC that have bounded size. It can be observed that if we are interested in solutions $(A, H)$ such that $p \leq |V(H)| \leq q$, then for every positive $q$, we can express this problem in First Order Logic. It was proved by Seese [16] that any graph problem expressible in First Order Logic can be solved in linear time on (directed) graphs of bounded degree. Later this result was extended for much more rich graph classes (see [13]). These meta theorems are very general, but do not provide good upper bounds on the running time for particular problems. Hence, we give the following lemma. Our algorithms use the random separation technique due to Cai et al. [4] (which is a variant of the color coding method introduced by Alon et al. [11]).

**Lemma 2.** There is a randomized algorithm with running time $2^{O(\sqrt{q})} \cdot n$ that for an instance of Dir-AKC with an $n$-vertex directed graph of maximum degree at most $\Delta$ and a positive integer $q \geq p$, either returns a solution $(A, H)$ with $V(H) \geq p$ or gives the answer that there is no solution with $|V(H)| \leq q$. Furthermore, the algorithm can be derandomized, and the deterministic variant runs in time $2^{O(\sqrt{q})} \cdot n \log n$.

**Proof.** Consider an instance of Dir-AKC with an $n$-vertex directed graph $G$ of maximum degree at most $\Delta$. We assume that $b \leq p \leq n$. For given $q \geq p$, to decide if $G$ contains a solution of size at most $q$, we do the following.

We color each vertex of $G$ uniformly at random with probability $\frac{1}{2}$ by one of two colors, say red or blue. Let $R$ be the set of vertices colored red. Observe that if there is a solution $(A, H)$ with $|V(H)| \leq q$, then with probability at least $\frac{1}{2^q}$ all vertices of $H$ are colored red and with probability at least $\frac{1}{2^q}$ all in- and out-neighbors of the vertices of $H$ that are outside of $H$ are colored blue. Using this observation, we assume that $H$ is the union of some weakly connected components of the graph $G[R]$ induced by red vertices.

In time $O(\Delta n)$ we find all weakly connected components of $G[R]$. If there is a component $C$ with at least $b + 1$ vertices of in-degree at most $k - 1$ (in $C$), then we discard this component as it cannot be a part of any solution. Denote by $C_1, \ldots, C_t$ the remaining components. For $i \in \{1, \ldots, t\}$, let $A_i = \{v \in V(C_i) \mid d^+_i(v) < k\}$, $b_i = |A_i|$ and $p_i = |V(C_i)|$.

Thus everything boils down to the problem of finding a set $I \subseteq \{1, \ldots, t\}$ such that $\sum_{i \in I} b_i \leq b$ and $\sum_{i \in I} p_i \geq p$. But this is the well known Knapsack problem, which is solvable in time $O(bn)$ by dynamic programming. If we obtain a solution $I$, then we output $(A, H)$, where $A = \cup_{i \in I} A_i$ and $H = G[\cup_{i \in I} V(C_i)]$. Otherwise, we return a NO-answer. Notice that this algorithm can also find a solution $(A, H)$ with $|V(H)| > q \geq p$.

It remains to observe that for any positive number $\alpha < 1$, there is a constant $c_\alpha$ such that after running our randomized algorithm $c_\alpha \cdot 2^{\sqrt{q}}$ times, we either find a solution $(A, H)$ or can claim that with probability $\alpha$ that it does not exist.
This algorithm can be derandomized by the technique proposed by Alon et al. [1]: replace the random colorings by a family of at most $2^{O(\Delta^2)} \cdot \log n$ hash functions which are known to be constructible in time $2^{O(\Delta^2)} \cdot n \log n$.

Our next aim is to prove that for $k > \Delta/2$ the Dir-AKC problem is FPT when parameterized by $\Delta + b$.

**Lemma 3.** Let $\Delta$ be a positive integer. If $k > \Delta/2$, then the Dir-AKC problem can be solved in time $2^{O(\Delta^2b)} \cdot n \log n$ for $n$-vertex directed graphs of maximum degree at most $\Delta$.

**Proof.** Suppose $(A, H)$ is a solution for the Dir-AKC problem. Let us observe that because $k > \Delta/2$, for every vertex $v \in V(H) \setminus A$, we have $d^-_H(v) > d^+_H(v)$. Recall that for any directed graph, the sum of in-degrees equals the sum of out-degrees. Then

$$
\sum_{v \in V(H) \setminus A} (d^-_H(v) - d^+_H(v)) = \sum_{v \in A} (d^-_H(v) - d^+_H(v)).
$$

Since for every vertex $v \in V(H) \setminus A$, $d^-_H(v) - d^+_H(v) \geq 1$, we have that

$$
|V(H) \setminus A| \leq \sum_{v \in V(H) \setminus A} (d^-_H(v) - d^+_H(v)).
$$

On the other hand, $d^+_H(v) - d^-_H(v)$, and we arrive at

$$
|V(H) \setminus A| \leq \sum_{v \in A} (d^-_H(v) - d^+_H(v)) = \sum_{v \in A} (d^-_H(v) - d^+_H(v)) \leq \Delta |A|.
$$

Hence, $|V(H)| \leq (\Delta + 1)|A| \leq (\Delta + 1)b$. Using this observation, we can solve the Dir-AKC problem as follows. If $p > (\Delta + 1)b$, then we return a NO-answer. If $p \leq (\Delta + 1)b$, we apply Lemma 2 for $q = (\Delta + 1)b$, and solve that problem in time $2^{O(\Delta^2b)} \cdot n \log n$. □

Now we show that if $k = \frac{\Delta}{2}$ then the Dir-AKC problem is FPT parameterized by $\Delta + p$.

**Lemma 4.** Let $\Delta$ be a positive integer. If $k = \Delta/2$, then the Dir-AKC problem can be solved in time $2^{O(\Delta^3b)} \cdot n^{O(1)}$ for $n$-vertex directed graphs of maximum degree at most $\Delta$.

**Proof.** We describe an FPT algorithm. Consider an instance of the Dir-AKC problem. Without loss of generality we assume that $b = p \leq n$.

We apply the following preprocessing rule. Suppose that $G$ has a (weakly) connected component $C$ such that for any $v \in V(C)$, $d^+_C(v) = d^-_C(v) = k$. If $b \geq p - |V(C)|$, then we choose a set $A$ of $b' = p - |V(C)|$ vertices arbitrary in $V(G \setminus V(C))$. Then we return a YES-answer, as the anchors $A$ and $H = G[A \cup V(C)]$ is a solution. Otherwise, if $b < p - |V(C)|$, we let $G' = G - V(C)$ and $p' = p - |V(C)|$. Now we consider a new instance of the problem with the graph $G'$ and the parameter $p'$. To see that the rule is safe, it is sufficient to observe that a set of anchors $A$ and a subgraph $H'$ of size at least $p'$ is a solution of the obtained instance if and only if $A$ and $H = G[V(H') \cup V(C)]$ is a solution for the original problem. Henceforth we assume that $G$ has no such components.

We need the following claim.

**Claim A.** If an instance of the Dir-AKC problem has a core with at least $(\Delta p + 1)b + 1$ vertices, then it has a solution $(A, H)$ with the following property: there is a vertex $t \in V(H) \setminus A$ reachable in $H$ from any vertex of $H$. Moreover, for each vertex $v$ of $H$, there is a path from $v$ to $t$ with all vertices except $v$ in $V(H) \setminus A$.

**Proof of Claim A.** Let $(A, H')$ be a solution with the set of anchors $A$ and such that $V(H') > (\Delta p + 1)b$.

We show that $V(H') = R^{-}_H(A)$, i.e., all vertices of $H'$ are reachable from the anchors. To obtain a contradiction, suppose that there is a vertex $u \in V(H')$ such that $u \notin R^{-}_H(A)$. Let $U = R^{-}_H(A)$, i.e., $U$ is the set of vertices from which we can reach $u$. Clearly, $A \cap U = \emptyset$. Therefore, $d^-_H(v) \geq k = \Delta/2$ for $v \in U$. Notice that for a vertex $v \in U$, $N^-_H(v) \subseteq U$ by the definition. Hence, $d^-_{G[U]}(v) \leq k = \Delta/2$ for $v \in U$. Because the sum of in-degrees equals the sum of out-degrees, for every vertex $v \in U$, we have that $d^-_{G[U]}(v) = d^-_{G'[U]}(v) = k = \Delta/2$. Then $C = G[U]$ is a component of $G$ such that for every $v \in V(C)$, $d^+_C(v) = d^-_C(v) = k$, but such components are excluded by the preprocessing; a contradiction.

Observe now that if $d^-_H(v) < d^-_H(v)$, then $d^+_H(v) < k$ and thus $v \in A$. Hence, by adding at most $\Delta b$ (maybe multiple) arcs from $V(H') \setminus A$ to $A$, joining the vertices $v \in V(H')$ of degrees $d^-_H(v) > d^+_H(v)$ with vertices of degrees $d^-_H(v) < d^+_H(v)$, we can transform $H'$ into a disjoint union of directed Eulerian graphs. Since $V(H') = R^{-}_H(A)$, each of these directed Eulerian
graphs contains at least one vertex of A. Thus the set of arcs of $H'$ can be covered by at most $\Delta b$ arc-disjoint directed walks, each walk starting from a vertex of A and never coming back to A. Because $d_H^+(v) \geq k$ for $v \in V(H') \setminus A$, we have that $|E(H')| \geq k(|V(H')| - b) > \Delta kbp$. Then there is a walk $W$ with at least $kp + 1$ arcs. Let $a \in A$ be the first vertex of $W$ and let $t$ be the last vertex of the walk. The walk $W$ visits $a$ only once, $t$ and all other vertices of $W$ are visited at most $k$ times. We conclude that $W$ has at least $p$ vertices.

Let $R = R_{H - A}(t)$ and let $A' = \{a \in A \mid \delta^+(a) \cap R \neq \emptyset\}$. Consider $H = G[R \cup A']$. Since $V(W) \subseteq V(H)$ it follows that $|V(H)| \geq p$. For any $v \in V(H) \setminus A$, the in-neighbors of $v$ in $H'$ are in $H$ by the construction and, therefore, $d^+_H(v) \geq k$. It remains to observe that to select at most $b$ anchors, we take $A' \subseteq V(H)$.

Using Claim A, we proceed with our algorithm. We try to find a solution such that $H$ has at most $q = (\Delta + 1)b$ vertices by applying Lemma 2. It takes time $O(2^{O(\Delta^2 b)} \cdot n \log n)$. If we obtain a solution, then we return it and stop. Otherwise, we conclude that every core contains at least $(\Delta + 1)b + 1$ vertices. By Claim A, we can search for a solution $H$ with a non-anchor vertex $t$ which is reachable from all other vertices of $H$ by directed paths avoiding $A$. Notice that since $t$ is a non-anchor vertex, we have that $d^+_H(t) \geq k$. We try at most $n$ possibilities for all possible choices of $t$, and solve our problem for each choice. Clearly, if we get a YES-answer for one of the choices, we return it and stop. Otherwise, if we fail, we return a NO-answer.

From now we assume that we have already selected $t$. We denote by $G'$ the graph obtained from $G$ by adding an artificial source vertex $s$ joined by arcs with all the vertices $v \in V(G)$ with $d^-_G(v) < k$. Observe that $(s, t) \notin E(G')$.

Suppose that $(A, H)$ is a solution with the set of anchors $A$ such that $t \in V(H) \setminus A$ is reachable in $H$ from any vertex of $H$ by a path with all inner vertices in $V(H) \setminus A$. Denote by $\delta_G^c(H)$ the set $\{v \in V(H) \mid N^c_G(v) \setminus V(H) \neq \emptyset\}$, i.e., $\delta_G^c(H)$ contains vertices that have in-neighbors outside $H$. We need a chain of claims about the structure of $H$ in $G'$.

Claim B. $|\delta^c_G(H) \setminus A| \leq \Delta b$.

**Proof of Claim B.** Let $X = \{v \in V(H) \mid d^+_H(v) \geq k$ and $d^+_H(v) < k\}$, $Y = \{v \in V(H) \mid d^+_H(v) = d^+_H(v) = k\}$ and $Z = \{v \in V(H) \mid d^+_H(v) < k\}$. Clearly,

$$\sum_{v \in X} (d^+_H(v) - d^+_H(v)) + \sum_{v \in Y} (d^+_H(v) - d^+_H(v)) = \sum_{v \in Z} (d^+_H(v) - d^+_H(v))$$

Observe that $d^+_H(v) - d^+_H(v) \geq 1$ for $v \in X$, $d^+_H(v) - d^+_H(v) = 0$ for $v \in Y$ and $d^+_H(v) - d^+_H(v) \leq \Delta$ for $v \in Z$. Hence, $|X| \leq \Delta |Z|$. If $d^+_H(v) < k$ for $v \in V(H)$, then $v \in A$. It follows that $Z \subseteq A$ and $|Z| \leq b$. We have $|X| \leq \Delta b$. Consider a vertex $v \in \delta_G^c(H) \setminus A$. It has at least one in-neighbor outside $H$ in $G$ and $d^+_H(v) \geq k$. Since maximum degree is $\Delta = 2k$, it follows that $d^+_H(v) < k$ and hence $v \in X$. We conclude that $\delta_G^c(H) \setminus A \subseteq X$ and $|\delta_G^c(H) \setminus A| \leq \Delta b$.

Claim C. There is an $s - t$ separator $S$ in $G'$ of size at most $(\Delta(k - 1) + 1)b$ such that $V(H) \setminus A \subseteq R_{G^c - S}(t)$.

**Proof of Claim C.** Let $S = \left(\delta_G^c(H) \cap A\right) \cup \left(\bigcup_{v \in \delta_G^c(H) \setminus A} (N^c_G(v) \setminus V(H))\right)$, i.e., the set containing all anchors that are in $\delta_G^c(H)$, and for each non-anchor vertex of $\delta_G^c(H)$ containing its in-neighbors outside of $H$. Consider a directed $(s, t)$-path $P$ in $G'$. Let $v$ be the first vertex in $P$ that is in $V(H)$ and let $u$ be its predecessor in $P$. If $v \in A$, then $v \in S$. If $v \notin A$, then $u \neq s$ as $H$ has no non-anchor vertices with in-degree at most $k - 1$ in $G$. Then $u \in S$. We conclude that each $(s, t)$-path contains a vertex of $S$, i.e., this set is an $s - t$ separator.

Note that $S$ either contains vertices of $A$, or vertices which are not in $H$. Since we know that $t$ can be reached from any vertex of $H$ in this graph by a path with all inner vertices in $V(H) \setminus A$, it follows that $V(H) \setminus A \subseteq R_{G^c - S}(t)$.

It remains to show that $|S| \leq (\Delta(k - 1) + 1)b$. By Claim B, $|\delta_G^c(H) \cap A| \leq \Delta b$. A vertex $v \in \delta_G^c(H) \setminus A$ has at least one out-neighbor in $H$ because $t$ is reachable from $v$. Also the in-degree in $H$ of $v \in \delta_G^c(H) \setminus A$ is at least $k$. Since the max degree is $\Delta = 2k$, it follow that $v$ has at most $k - 1$ in-neighbors outside $H$. Hence $|S| \leq |\delta_G^c(H) \cap A| + (k - 1) \cdot |\delta_G^c(H) \setminus A| \leq |A| + (k - 1) \cdot |\delta_G^c(H) \setminus A| \leq (\Delta(k - 1) + 1)b$.

Now we can prove the following claim about important $s - t$ separators in $G'$.

Claim D. There is an important $s - t$ separator $S^*$ of size at most $(\Delta(k - 1) + 1)b$ in $G'$ such that $V(H) \subseteq R_{G^c - S^*}(t) \cup S^*$.

**Proof of Claim D.** By Claim C, there is an $s - t$ separator $S$ in $G'$ of size at most $(\Delta(k - 1) + 1)b$ such that $V(H) \setminus A \subseteq R_{G^c - S}(t)$. Notice that $S$ may not necessary be a minimal separator, but there is a minimal $s - t$ separator $S' \subseteq S$. Clearly, $|S'| \leq |S| \leq (\Delta(k - 1) + 1)b$. Since $S' \subseteq S$ we have $R_{G^c - S'}(t) \subseteq R_{G^c - S}(t)$ and hence we have $V(H) \setminus A \subseteq R_{G^c - S'}(t)$.

If $S'$ itself is an important $s - t$ separator, then we are done by choosing $S^* = S'$. Otherwise there is an important separator $S^*$ such that $|S^*| \leq |S| \leq (\Delta(k - 1) + 1)b$ and $R_{G^c - S^*}(t) \subseteq R_{G^c - S'}(t)$. Hence, it follows that $V(H) \setminus A \subseteq R_{G^c - S^*}(t)$.
We now want to show that \( V(H) \subseteq R_{G^*}^- (t) \cup S^* \). Let \( a \in A \). If \( a \in S^* \), then clearly \( a \in R_{G^*}^- (t) \cup S^* \). Otherwise \( a \notin S^* \). By Claim A, we know that there is a path \( P \) from \( a \) to \( t \) whose internal vertices are all in \( V(H) \setminus A \). Since \( V(H) \setminus A \subseteq R_{G^*}^- (t) \), the path \( P \) gives a certificate that \( a \in R_{G^*}^- (t) \). Therefore, we have \( V(H) \subseteq R_{G^*}^- (t) \cup S^* \). ∎

The next step of our algorithm is to check all important \( s \rightarrow t \) separators in \( G' \) of size at most \((\Delta(k-1)+1)b \). By Lemma 1, there are at most \( d_{G^*}^{(\Delta(k-1)+1)b} \) important \( s \rightarrow t \) separators and they can be listed in time \( 2O(\Delta^2 b) \cdot p^O(1) \). For each important \( s \rightarrow t \) separator \( S^* \), we consider the set of vertices \( U = R_{G^*}^- (t) \cup S^* \) and decide whether there is a solution such that \( V(H) \subseteq U \). If we have a solution for some \( S^* \), then we return a YES-answer and stop. Otherwise, if we fail to find such a solution for all important separators, we use Claim D to deduce that there is no solution.

From now on, we assume that an important \( s \rightarrow t \) separator \( S^* \) is given and that \( U = R_{G^*}^- (t) \cup S^* \). In what follows, we describe a procedure of finding a solution with \( V(H) \subseteq U \).

Denote by \( D \) the set \( \{ v \in U \mid d_C^*(v) > k \} \). We need the following observation.

Claim E. Set \( D \) contains at most \((\Delta + 1)(\Delta(k-1)+1)b \) vertices.

Proof of Claim E. The idea of the proof is similar to that of Claim B. Let \( Q = G[U] \). Let \( X = \{ v \in V(Q) \mid d_Q^*(v) \geq k \} \) and \( d_Q^*(v) < k \), \( Y = \{ v \in V(Q) \mid d_Q^*(v) = d_Q^*(v) = k \} \) and \( Z = \{ v \in V(Q) \mid d_Q^*(v) < k \} \). Clearly,

\[
\sum_{v \in X} (d_Q^*(v) - d_Q^*(v)) + \sum_{v \in Y} (d_Q^*(v) - d_Q^*(v)) = \sum_{v \in Z} (d_Q^*(v) - d_Q^*(v))
\]

Observe that \( d_Q^*(v) - d_Q^*(v) \geq 1 \) for \( v \in X \), \( d_Q^*(v) - d_Q^*(v) = 0 \) for \( v \in Y \) and \( d_Q^*(v) - d_Q^*(v) \leq \Delta \) for \( v \in Z \). Hence, \( |X| \leq \Delta |Z| \).

Recall that \( G^* \) is obtained from \( G \) by joining \( S \) with all vertices of in-degree at most \( k - 1 \). Since \( S^* \) is an \( s \rightarrow t \) separator, if \( v \in U \), \( d_C^*(v) < k \), then \( v \in S^* \). Hence, \( Z \subseteq S^* \) and \( |Z| \leq |S^*| \leq (\Delta(k-1)+1)b \). If for \( v \in U \), \( d_C^*(v) > k \), then \( v \in X \cup Z \).

We conclude that \( |D| \leq |X| + |Z| \leq (\Delta + 1)|Z| \leq (\Delta + 1)(\Delta(k-1)+1)b \). ∎

Recall that \( \delta_C^*(H) \) contains vertices of \( H \) that have in-neighbors outside of \( H \). If \( v \in \delta_C^*(H) \setminus A \), then it has at least \( k \) in-neighbors in \( H \) and at least one in-neighbour outside \( H \). Notice that \( s \notin N_C^*(v) \) because \( d_C^*(v) \geq d_H^*(v) \geq k \). Hence, \( d_C^*(v) > k \). Because \( V(H) \subseteq U \), \( \delta_C^*(H) \setminus A \subseteq D \). By Claim C, \( \delta_C^*(H) \setminus A \subseteq D \), and by Claim E, \( |D| \leq (\Delta + 1)(\Delta(k-1)+1)b \). We consider all at most \( 2^{(\Delta + 1)(\Delta(k-1)+1)b} \) possibilities to select \( \delta_C^*(H) \setminus A \). For each choice of \( \delta_C^*(H) \setminus A \), we guess the arcs that join the vertices that are outside \( H \) with the vertices of \( \delta_C^*(H) \setminus A \) and delete them. Denote the graph obtained from \( G \) by \( F \). Recall that from each vertex \( v \) of \( \delta_C^*(H) \setminus A \), there is a directed path to \( t \) that avoids \( A \). Hence, \( v \) has at least one out-neighbor in \( H \) and at most \( \Delta - 1 \) in-neighbors in \( G \). Also \( v \) has at least \( k \) in-neighbors in \( H \), and we delete at most \( d_C^*(v) - k \) arcs. Therefore, for \( v \) we choose at most \( k - 1 \) arcs out of at most \( \Delta - 1 \) arcs. We can upper bound the number of possibilities for \( v \) by \( 2^{\Delta - 1} \), and the total number of possibilities for \( \delta_C^*(H) \setminus A \) by \( 2^{(\Delta - 1)kb} \).

Observe that \( (A, H) \) is a solution for the new instance of \( \text{Dnr-AKC} \), where \( G \) is replaced by \( F \) for a correct guess of the deleted arcs. Also each solution for the new instance provides a solution for the graph \( G \), because if we put deleted arcs back, then we can only increase the in-degrees. Hence, we can check for each possible choice of the set of deleted arcs, whether the new instance has a solution. If for some choice we obtain a solution, then we return a YES-answer. Otherwise, if we fail for all choices, then we return a NO-answer. Further we assume that \( F \) is given.

Denote by \( F' \) the graph obtained from \( F \) by the addition of a vertex \( s \) joined by arcs with all the vertices \( N_C^*(v) \). Now \( \delta_F^*(H) = \{ v \in V(H) \mid N_F^*(v) \setminus V(H) \neq \emptyset \} \). By the choice of \( F \), we have \( \delta_F^*(H) = \delta_C^*(H) \setminus A \) and therefore \( |\delta_F^*(H)| \leq b \). Also \( \delta_F^*(H) \) is an \( s \rightarrow t \) separator in \( F' \). By Claim C.

Now we can prove the following.

Claim F. There is an important \( s \rightarrow t \) separator \( \hat{S} \) of size at most \( b \) in \( F' \) such that \( (\hat{S}, G[R_{F'}^- (t) \cup \hat{S}]) \) is a solution for the instance of the \( \text{Dnr-AKC} \) problem for the graph \( G \).

Proof of Claim F. It was already observed above that \( \delta_F^*(H) \) is an \( s \rightarrow t \) separator in \( F' \) of size at most \( b \). Because for any vertex \( v \) of \( H \), there is a directed \( (v, t) \) path with all inner vertices in \( V(H) \setminus A \), it follows that \( V(H) \setminus A \subseteq R_{F'}^- (\delta_F^*(H)) \). Notice that \( \delta_F^*(H) \) may not necessary be a minimal separator, but there is a minimal \( s \rightarrow t \) separator \( S \subseteq \delta_F^*(H) \). Clearly, \( |S| \leq |\delta_F^*(H)| \leq b \). Since \( S \subseteq \delta_F^*(H) \), we have \( R_{F'}^- (\delta_F^*(H)) \subseteq R_{F'}^- (t) \), and hence it follows that \( V(H) \setminus A \subseteq R_{F'}^- (t) \).

If \( S \) itself is an important \( s \rightarrow t \) separator, then we are done by choosing \( \hat{S} = S \). Otherwise there is an important separator \( \hat{S} \) such that \( |\hat{S}| \leq |S| \leq b \) and \( R_{F'}^- (\hat{S}) \subseteq R_{F'}^- (t) \). Hence, it follows that \( V(H) \setminus A \subseteq R_{F'}^- (t) \). We now want to show that \( V(H) \subseteq R_{F'}^- (t) \cup \hat{S} \). Let \( a \in A \). If \( a \notin \hat{S} \), then clearly \( a \in R_{F'}^- (t) \cup \hat{S} \). Otherwise \( a \notin \hat{S} \). By Claim A, we know that there is a path \( P \) from \( a \) to \( t \) whose internal vertices are all in \( V(H) \setminus A \). Since \( V(H) \setminus A \subseteq R_{F'}^- (t) \), the path \( P \) gives a certificate that \( a \in R_{F'}^- (t) \). Therefore, we have \( V(H) \subseteq R_{F'}^- (t) \cup \hat{S} \).
It remains to observe that $s$ is adjacent to all vertices of $G$ with in-degrees at most $k - 1$ and $\hat{S}$ is an $s - t$ separator. It immediately follows that for any vertex $v \in R_{F - \hat{S}}(t)$ we have $d_{F(U)}^-(v) \geq k$. Then $(\hat{S}, G[R_{F - \hat{S}}(t) \cup \hat{S}])$ is a solution for the Dir-AKC problem. 

The final step of our algorithm is to enumerate all important $s - t$ separators $\hat{S}$ of size at most $b$ in $F'$, which number by Lemma 1 is at most $4^b$, and for each $\hat{S}$, check whether $(\hat{S}, G[R_{F - \hat{S}}(t) \cup \hat{S}])$ is a solution. Recall that all these separators can be listed in time $2^{O(b)} \cdot n^{O(1)}$. We return a YES-answer if we obtain a solution for some important separator, and a NO-answer otherwise.

To complete the proof, let us observe that each step of the algorithm runs either in polynomial or FPT time. Particularly, the preprocessing is done in time $O(\Delta n)$. Then we check the existence of a solution of a bounded size in time $2^{O(\Delta^3 b \cdot \log n)}$. Further we consider at most $n$ possibilities to choose $t$. For each $t$, we consider at most $4^{(\Delta (k-1)+1)b}$ important $s - t$ separators $S^*$. Recall that they can be listed in time $2^{O(\Delta^3 b)} \cdot n^{O(1)}$. Then for each $S^*$, we have at most $2^{(\Delta + 1)(\Delta (k-1)+1)b + (\Delta - 1)b}$ possibilities to construct $F$, and it can be done in time $2^{O(\Delta^3 b)} + O(\Delta n)$. Finally, there are at most $4^b$ important $s - t$ separators $\hat{S}$ and they can be listed in time $2^{O(b)} \cdot n^{O(1)}$. We conclude that the total running time is $2^{O(\Delta^3 b + \Delta^3 b \cdot \log n)} \cdot n^{O(1)}$. 

Combining Lemmas 3 and 4, we obtain the following theorem.

**Theorem 4.** Let $\Delta$ be a positive integer. If $k \geq \frac{\Delta}{2}$, then the Dir-AKC problem can be solved in time $2^{O(\Delta^3 b + \Delta^3 b \cdot \log n)} \cdot n^{O(1)}$ for $n$-vertex directed graphs of maximum degree at most $\Delta$.

**Theorems 2 and 4 give the next corollary.**

**Corollary 1.** The Dir-AKC problem can be solved in time $2^{O(b)} \cdot n^{O(1)}$ for $n$-vertex directed graphs of maximum degree at most 4.

5. **Dir-AKC on directed acyclic graphs**

For the special case of directed acyclic graphs (DAGs), we understand the complexity of Dir-AKC on graphs of bounded degree much better. Theorem 3 showed that Dir-AKC on DAGs is W[1]-hard parameterized by $p$ for every fixed $k \geq 2$, when the degree of the graph is not bounded. We now show the following theorem that gives W[2]-hardness of Dir-AKC when parameterized by the number of anchors $b$ (recall that we can always assume that $b \leq p$).

**Theorem 5.** For any $\Delta \geq 3$ and any positive $k < \frac{\Delta}{2}$, Dir-AKC is W[2]-hard (even on DAGs) when parameterized by the number of anchors $b$ on graphs of maximum degree at most $\Delta$.

**Proof.** First, we prove the claim for $k = 1$ and $\Delta = 3$. We reduce from the $b$-Set Cover problem which is known to be W[2]-hard [12]:

**b-Set Cover**

*Input:* A collection $X = \{X_1, \ldots, X_r\}$ of subsets of a finite $n$-element set $U$ and a positive integer $b$.

*Parameter:* $b$.

*Question:* Are there at most $b$ subsets $X_{i_1}, \ldots, X_{i_b}$ such that these sets cover $U$, i.e., $U = \bigcup_{j=1}^{b} X_{i_j}$?

Let $U = \{u_1, \ldots, u_n\}$. We construct the directed graph $G$ as follows (see Fig. 2).

- For $i \in \{1, \ldots, r\}$, assume that $X_i = \{u_{j_1}, \ldots, u_{j_s}\}$ and
  - construct a vertex $v_i$ and $s$ vertices $x_{j_1}, \ldots, x_{j_s}$;
  - construct arcs $(v_i, x_{j_1}), (x_{j_1}, x_{j_2}), \ldots, (x_{j_{s-1}}, x_{j_s})$.
- For $j \in \{1, \ldots, n\}$, assume that $u_j$ is included in the sets $X_{i_1}, \ldots, X_{i_t}$ and
  - construct a vertex $w_j$ and $t$ vertices $y_{j_1}, \ldots, y_{j_t}$;
  - construct arcs $(y_{j_1}, y_{j_2}), \ldots, (y_{j_{t-1}}, y_{j_t})$;
  - join $y_{j_t}$ with $w_j$ by a directed path $P_j$ of length $\ell = 2rt + r$.
- For $i \in \{1, \ldots, r\}$ and $j \in \{1, \ldots, n\}$, if $u_j \in X_i$, then construct an arc $(x_{j_1}, y_{j_1})$.

It is straightforward to see that $G$ is a directed acyclic graph of maximum degree at most 3. We set $p = nt$. We claim that $U$ can be covered by at most $b$ sets if and only if there is a set of at most $b$ vertices $A$ such that there exists an induced subgraph $H$ of $G$ with at least $p$ vertices, $A \subseteq V(H)$ and for any $v \in V(H) \setminus A$, $d_H^+(v) \geq 1$.

Notice that $v_1, \ldots, v_r$ are the sources of $G$, $w_1, \ldots, w_n$ are the sinks, and $V(G) = \bigcup_{i=1}^{r} R_{G}^+(v_i)$. Observe also that $w_j$ can be reached from $v_j$ if and only if $u_j \in X_i$. 
Suppose that $U$ can be covered by at most $b$ sets say $X_1, \ldots, X_b$. Let $A = \{v_1, \ldots, v_b\}$ and $H = G[R^+_2(A)]$. It is straightforward to see that for any vertex $x \in V(H)$, $d_G^+(x) \geq 1$. Because $U$ is covered, all vertices $w_1, \ldots, w_n$ are in $H$ and, therefore, $V(P_1) \cup \ldots \cup V(P_n) \subseteq V(H)$. It remains to observe that $|V(P_1) \cup \ldots \cup V(P_n)| = n(\ell + 1) \geq p$ and we conclude that $(A, H)$ is a solution of our instance of Dir-AKC.

Assume now that $(A, H)$ is a solution of the Dir-AKC problem. Without loss of generality we can assume that each $a \in A$ is a source of $G$. Otherwise, $a \in R^+_2(v_i)$ for some source $v_i$, and we can replace $a$ by $v_i$ in $A$ (or delete it if $v_i \in A$ already). Let $[i \mid 1 \leq i \leq n, v_i \in A] = [i_1, \ldots, i_b]$. We show that $X_{i_1}, \ldots, X_{i_b}$ cover $U$. To obtain a contradiction, assume that there is an element $u_j \in U$ such that $u_j \notin X_{i_1} \cup \ldots \cup X_{i_b}$. Then the vertex $w_j$ is not reachable from $A$. Hence, the vertices of $P_j$ are not reachable from $A$. It follows that $V(P_j) \cap V(H) = \emptyset$. We have that $|V(H)| \leq |V(G)| - |V(P_j)|$. Because $|X_j| \leq n$ for $j \in \{1, \ldots, r\}$ and each $u_k$ is included in at most $r$ sets for $h \in \{1, \ldots, n\}$, $|V(G)| \leq r(n + 1) + n(r + \ell) = 2rn + r + n\ell = 2rn + r + p$. Therefore, $|V(H)| \leq p + (2rn + r - (\ell + 1)) < p$ because $P_j$ has $\ell + 1$ vertices; a contradiction.

Now we prove $W[2]$-hardness for $k \geq 2$ and $\Delta \geq 2k$. We reduce from the instance of the Dir-AKC problem with $k = 1$ and $\Delta = 3$. Consider an instance of this problem with a directed acyclic graph $G$ and positive integers $b, p$. Assume that $b \leq p \leq |V(G)|$ and $|V(G)| \geq 3$. We construct the graph $G'$ as follows (see Fig. 3).

- Construct a copy of $G$ and denote its vertices by $v_1, \ldots, v_n$.
- For each $i \in \{1, \ldots, n\}$, construct a set of $k$ vertices $D_i$ and join $k - 1$ vertices of this set with $v_i$ by arcs.
- For each $i \in \{2, \ldots, n\}$, join each vertex of $D_{i-1}$ with all vertices of $D_i$ by arcs.

Clearly, $G'$ is a directed acyclic graph. We let $b' = b + k$ and $p' = p + nk$. Let also $D = D_1 \cup \ldots \cup D_n$. Notice that for each $v \in V(G)$, $d_{G'}(v) = d_G(v) + k - 1 \leq k + 2 \leq \Delta$ as maximum degree of $G$ is 3. For $v \in D$, $d_{G'}(v) \leq 2k + 1 \leq \Delta$. Hence maximum degree of $G'$ is at most $\Delta$. We now claim that there is a set of at most $b$ vertices $A \subseteq V(G)$ such that there exists an induced subgraph $H$ of $G$ with at least $p$ vertices, $A \subseteq V(H)$ and for any $v \in V(H) \setminus A$, $d_H(v) \geq 1$ if and only if there is a set of at most $b'$ vertices $A' \subseteq V(G')$ such that there exists an induced subgraph $H'$ of $G'$ with at least $p'$ vertices, $A' \subseteq V(H')$ and for any $v \in V(H') \setminus A$, $d_{H'}(v) \geq k$.

Suppose that our original instance of Dir-AKC has a solution $(A, H)$. We let $A' = A \cup D_1$ and $H' = G'[V(H) \cup D]$. Then each vertex $v \in D \setminus A'$ has $k$ in-neighbors in $D$. It remains to observe that each vertex $v$ of $G'$ from $V(G) \setminus A'$ has at least one in-neighbor in $V(G)$ and $k - 1$ in-neighbors in $D$. Therefore, $d_{H'}(v) \geq k$.

Assume now that $(A', H')$ is a solution for the constructed instance of Dir-AKC with $|A'| \leq b'$ and $|V(H')| \geq p'$. If $|D \cap A'| < k$, then we claim that $D \cap V(H') \subseteq A'$. To prove it, suppose that $(V(H') \cap D) \setminus A \neq \emptyset$ and consider the smallest index $i$ such that there is $v \in (V(H') \cap D_i) \setminus A$. Clearly, $i \geq 2$. The vertex $v$ has in-neighbors only in $D_{i-1}$. By the choice of $i$, $D_{i-1}$ has at most $k - 1$ vertices of $H'$, because they can be only anchors and $|D \cap A'| < k$. Then $d_{H'}(v) < k$, a contradiction.

Then if $|D \cap A'| < k$, $V(H') \subseteq V(G) \cup A'$ and $|V(H')| \leq n + b + k \leq n + p + k < p'$ as $n \geq 3$ and $k \geq 2$. This contradicts our assumption about size of $H'$. Hence, at least $k$ anchors are in $D$ and $|A' \setminus D| \leq b$. Let $A = A' \setminus D$ and $H = H' - D$. If $v \in V(H) \setminus A$, then $d_{H'}(v) \geq k$ and $v$ has at most $k - 1$ in-neighbors from $D$ in $H'$. Then $v$ has at least one in-neighbor in $V(H)$ and $d_{H'}(v) \geq 1$. □
The complexity of Dir-AKC parameterized by $b$ on DAGs for the case of $k \geq \frac{\Delta}{2}$ is left open. However, we can show that Dir-AKC is FPT on DAGs of maximum degree $\Delta$, when parameterized by $\Delta + p$.

**Theorem 6.** For any positive integers $p$ and $\Delta$, Dir-AKC can be solved in time $2^{O(p)} \cdot n \log n$ for $n$-vertex DAGs of maximum degree at most $\Delta$.

**Proof.** Consider an instance of Dir-AKC with an $n$-vertex directed acyclic graph $G$. Without loss of generality we can assume that $b \leq p \leq n$. Observe that for DAGs if there is a solution of size $\geq p$ then there is a solution of size exactly $p$: given a solution of size $> p$, we can (repeatedly) remove a sink vertex since such a vertex does not have outgoing edges to any other vertex.

We apply Lemma 2 for $q = p$. In time $2^{O(p)} \cdot n \log n$ we either obtain a solution of size $p$ or can conclude that for any solution $(A, H)$ we have $H$ has size at least $p + 1$. If we obtain a solution of size $p$ then return it. Otherwise by above paragraph, it follows that there is no solution of size $\geq p$. □

Let us remark that this result can be easily extended for any class of directed acyclic graphs $G$ such that the corresponding class of underlying graphs $\{G \mid G \in G\}$ has (locally) bounded expansion by making use of the results by Dvorak et al. [13].

6. Conclusions

We proved that Dir-AKC is NP-complete even for planar DAGs of maximum degree at most $k + 2$. It was also shown that Dir-AKC is FPT when parameterized by $p + \Delta$ for directed graphs of maximum degree at most $\Delta$ whenever $k \geq \Delta/2$ and we obtained some further results for DAGs. It is natural to ask whether the problem is FPT for other values $k$. This question is interesting even for the special case $\Delta = 5$ and $k = 2$. Another interesting question is what happens when the input graph is planar? We know that the problem is NP-complete on planar graphs for fixed $k \geq 1$ and maximum degree $k + 2$. Is the problem FPT on planar directed graphs when parameterized by the size of the core $p$?

Acknowledgments

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 267959, the Government of the Russian Federation (grant 14.Z50.31.0030), by NSF CAREER award 1053605, NSF grant CCF-1161626, ONR YIP award N000141110662, DARPA/AFOSR grant FA9550-12-1-0423, a Simons Award for Graduate Students in Theoretical Computer Science and a Summer International Research Fellowship from the University of Maryland.

References