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Prefetching is a basic mechanism for faster data access and efficient computing. An
important issue in prefetching is the trade-off between the amount of network’s resources
wasted by the prefetching and the gain of time. For instance, in the Web, browsers may
download documents in advance while a Web surfer is surfing. Since the Web surfer
follows the hyperlinks in an unpredictable way, the choice of the Web pages to be
prefetched must be computed online. The question is then to determine the minimum
amount of resources used by prefetching that ensures that all documents accessed by the
Web surfer have previously been loaded in the cache.
We model this problem as a two-player game similar to Cops and Robber Games in
graphs. Let k � 1 be any integer. The first player, a fugitive, starts on a marked vertex
of a (di)graph G . The second player, an observer, marks at most k vertices, then the fugitive
moves along one edge/arc of G to a new vertex, then the observer marks at most k vertices,
etc.
The fugitive wins if it enters an unmarked vertex, and the observer wins otherwise. The
surveillance number of a (di)graph is the minimum k such that the observer marking at
most k vertices at each step can win against any strategy of the fugitive. We also consider
the connected variant of this game, i.e., when a vertex can be marked only if it is adjacent
to an already marked vertex.
We study the computational complexity of the game. All our results hold for both variants,
connected or unrestricted. We show that deciding whether the surveillance number of a
chordal graph is at most 2 is NP-hard. We also prove that deciding if the surveillance
number of a DAG is at most 4 is PSPACE-complete. Moreover, we show that the problem
of computing the surveillance number is NP-hard in split graphs. On the other hand, we
provide polynomial time algorithms computing surveillance numbers of trees and interval
graphs. Moreover, in the case of trees, we establish a combinatorial characterization of the
surveillance number.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Prefetching is a basic technique in computer science. It exploits the parallelism between the execution of one task and the
transfer of information necessary to the next task, in order to reduce waiting times. The classical instance of the problem
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occurs in CPU, where instructions and data are prefetched from the memory while previous instructions are executed.
The modern instance occurs in the Web, where browsers may download documents connected to the currently viewed
document (Web page, video, etc.) while it is being read or viewed. Accessing the next document appears to be instantaneous
to the user, and gives the impression of a large navigation speed [8]. For this reason, link prefetching has been proposed
as a draft Internet standard by Mozilla [29]. However, prefetching all documents that can be accessed in the current state
may exceed networking capacities, or at least, result in a waste of bandwidth since most of the alternatives will not be
used. Hence, it is necessary to balance the gain of time against the waste of networking resources. Local storage memory is
also a potential issue, and prefetching is classically associated with the question of cache management. However, memory
in modern computers is not scarce anymore, which makes network resources the critical ones.

The models developed so far in the literature to study prefetching problems are based on the execution digraph, where
the nodes represent the tasks (e.g., Web pages) and arcs model the fact that a task can be executed once another has been
done (e.g., arcs represent hyperlinks that can be followed from a Web page). The execution of the program or the surfing
of the Web then corresponds to a path in the execution digraph. The quantitative optimization of prefetching will then be
based on some cost function defined on paths, reflecting for instance the inconvenience of waiting for some information
while executing the tasks or surfing the Web, and possibly taking into account the consumption of network or memory
resources. The related dimensioning problem consists in determining how much network bandwidth should be available so
that the prefetching performance stays within some predetermined range.

It is quite likely that such optimization problems are very difficult to solve exactly. For instance, in Markovian mod-
els [21], where arcs of the execution digraph are associated with transition probabilities (modeling a random Web surfer),
the prefetching problem can then be cast as an optimization problem in the Stochastic Dynamic Programming frame-
work [20,24]. Its exact solution requires a computational effort which is exponential with respect to the number of nodes
in the execution digraph: this is the size of the state space of these Markov Decision models.

As a first step in the analysis of prefetching optimization, we therefore consider the following simpler problem. We
consider a surfer evolving over the execution digraph, and we are concerned with perfect prefetching, i.e., ensuring that the
Web surfer never accesses a document that has not been prefetched yet. In other words, the surfer is “impatient” in the
sense that it does not tolerate waiting for information. Due to network’s capacity (bandwidth) limitation, it is important
to limit the number of Web pages that can be prefetched at each step: We aim at determining its minimum value. In
addition to being simpler than a fully specified optimization problem, this question does not need specific assumptions on
the behavior of the Web surfer as in [20,24].

Let D be an execution digraph and let v0 ∈ V (D) be a node corresponding to the Web page from which the surfer starts.
At each step, some amount of Web pages are prefetched and then the surfer either moves along an arc to an out-neighbor
of its current position, or skips its move. The surveillance number of D starting in v0 is the minimum integer k such that
prefetching at most k Web pages at each step guarantees the Web surfer never waits (whatever the surfer does).

1.1. Our results

We model the above prefetching problem as a two-player game similar to Cops and Robber game (e.g., see [3,9,11,25,26]).
We first prove that “monotonicity does not help”, that is, if the fugitive follows only induced paths, the smallest k such
that there is a winning k-strategy is equal to the surveillance number. We prove that the problem of deciding whether
the surveillance number of a chordal graph is at most 2 is NP-hard. In particular, this shows that the decision problem
associated with the surveillance number is not Fixed Parameter Tractable. Then, we show that computing the surveillance
number is NP-hard in split graphs, a subclass of chordal graphs. In the case of digraphs, we show that deciding if the
surveillance number of a DAG is at most 4 is PSPACE-complete. We propose an exact exponential-time algorithm to compute
the surveillance number in general (di)graphs.

On the other hand, we provide polynomial time algorithms that compute the surveillance number and a corresponding
optimal strategy in trees and interval graphs. Moreover, in the case of trees, we establish a combinatorial characterization
of the surveillance number. Specifically, we show that the surveillance number of a tree T starting in v0 ∈ V (T ) equals
maxS� |N[S]|−1

|S| �, where S is taken among all subtrees of T containing v0 and N[S] denotes the closed neighborhood of S .
We conclude with several open questions.

1.2. Cops and Robber games

Two-player turn-by-turn games in graphs have been widely studied in the literature (e.g. Maker–Breaker games, Avoider–
Enforcer games, Cops and Robber games). The game we consider here is similar to Cops and Robber games because
our surfer aims at escaping the observer as the robber does in Cops and Robber games. In the initial variant of these
games [25,26], one cop is placed at a vertex of a graph, then the robber chooses one vertex to be placed on, and then the
players move their token along the edges of the graph, alternately starting with the cop. The cop wins if at some step of
the game it occupies the same vertex as the robber. In [1], the Cop Player is allowed to use a team of k � 1 cops. One
optimization problem is then to decide the cop number of a graph G , i.e., the minimum number of cops that are required
to capture the robber in G . It is known to be W[2]-hard in general [13,18]. Lower and upper bounds on the cop number of
various classes of graphs have been proved [4,5,16,28].
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Several variants have been studied such as when the cops and the robber have different speeds [2,7,13,23], when the
robber can be captured at some distance [6], when each cop can be moved a bounded number of times [15], etc. In the
variant proposed in [12,14], the goal for the cops is to guard some part of a graph, i.e., to prevent the robber to reach some
particular vertices in the graph. Eternal dominating set and eternal vertex cover can also be viewed as cops and robber
games, where the robber has no token but can attack a vertex (or an edge) at each step and the cop must move its tokens
in response to the attack [10,19].

2. Preliminaries

In this section, we formally define the problems we consider and present the notations used throughout the paper. We
also present some basic results.

For any (di)graph G = (V , E) considered in this paper, when v0 ∈ V is fixed as the starting vertex, we assume that, for
any v ∈ V , there is a (directed) path from v0 to v . In particular, if G is an undirected graph, we assume that G is connected.

Let �(G) be the maximum degree of G (we denote it by � when no ambiguity occurs). If G is a digraph, we denote by
�+(G) its maximum out-degree.

For any undirected graph G = (V , E) and any S ⊆ V , let G[S] be the subgraph induced by S in G . The open neighborhood
N(S) of set S is the set of vertices in V \ S having a neighbor in S and the closed neighborhood of S , denoted by N[S], is
defined as N(S)∪ S . If S = {v}, we use N(v) and N[v] instead of N({v}) and N[{v}]. Similarly, in a directed graph D = (V , E),
N+[S] denotes the closed out-neighborhood of S ⊆ V , i.e., the set of vertices that are in S or are an out-neighbor of a vertex
in S .

A graph is a tree if it has no cycle as a subgraph. A digraph is a directed acyclic graph (DAG) if it has no directed cycle as
a subgraph. A graph is chordal if it does not contain an induced cycle of length at least 4. A graph G = (V , E) is a split graph
if there is a partition (A, B) of V such that A induces a clique and B induces an independent set. Finally, G is an interval
graph if V is a set of real intervals and two vertices are adjacent if their corresponding intervals intersect.

2.1. The surveillance game

The surveillance problem deals with the following two-player game in an n-node (di)graph G = (V , E) with a given
starting vertex v0 ∈ V . There are two-player, fugitive and observer. The fugitive wants to escape the control of an observer
whose purpose is to keep the fugitive under constant surveillance.

Let k � 1 be a fixed integer.
The game starts when the fugitive stands at v0 which is initially marked. All nodes of G but v0 are initially not marked.

Then, turn by turn, the observer controls, or marks, at most k vertices and then the fugitive either moves along an edge to
a (out-) neighbor of its current position, or skips its move. In particular, at every step of the game, the observer enlarges
the observable part of the graph by adding to it at most k vertices. His task is to ensure that the fugitive is always in the
observable area. Note that, once a vertex has been marked, it remains marked until the end of the game. The fugitive wins
if, at some step, it reaches an unmarked vertex; and the observer wins otherwise. That is, the game ends when either the
fugitive enters an unmarked vertex (and then the fugitive wins) or all vertices have been marked (and then observer wins).

A configuration of the game consists of a pair (M, f ) where v0 ∈ M ⊆ V represents the set of the vertices that have
already been marked (containing v0) and f ∈ M corresponds to the current position of the fugitive. A k-strategy (for the
observer) is a function σ that assigns to any configuration C the set σ(C) of at most k vertices that must be marked by
the observer in this configuration. Note that, at each step, the observer has interest to mark as many unmarked vertices as
possible.

More formally, a configuration is a pair (M, f ) with v0 ∈ M ⊆ V and f ∈ M . A k-strategy is a function σ : 2V × V → 2V

that assigns, to any configuration (M, f ), a subset S = σ(M, f ) ⊆ V \ M such that |S| = min{k, |V \ M|}.
A k-strategy is winning if the observer using that strategy wins whatever be the walk followed by the fugitive starting

in v0. In other words, a strategy σ is winning if N( f ) \ M ⊆ σ(M, f ) for any configuration (M, f ) that is realizable starting
from ({v0}, v0) with the observer following σ .

The surveillance number of G starting from v0, denoted by sn(G, v0), is the smallest k such that there is a winning
k-strategy in G starting from v0.

In the surveillance game, the fugitive plays the role of the Web surfer moving in the execution (di)graph while the
observer must prefetch the Web pages before the fugitive reaches them. Before going further, we discuss some hypotheses
of our model.

First, we assume a constant prefetching time for all the Web pages. It is however not a strong assumption since the
surveillance game may also model the fact that some Web pages are heavier than others. Indeed, let us assume that each
Web page u has a proper size W(u) and so a proper prefetching time, assumed to be an integer. Consider the graph G p

obtained by replacing any node u of G by a clique Ku of size W(u) and any edge {u, v} by a complete bipartite graph
between Ku and K v . Thus, the surveillance problem for the weighted graph G is equivalent to the problem in G p .

Another assumption of our model is that Web-pages are all equivalent, in the sense that the Web surfer does not spend
more time on some pages than on other pages. We actually assume that the step duration is the minimum visiting time
among all pages. If there exists a perfect prefetching strategy with this constant duration time, then this strategy is also
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a perfect prefetching strategy with the initial visiting times for all the pages. This hypothesis corresponds to studying the
worst case in which the visiting time of all pages is constant (and so corresponds to the minimum visiting time among all
the pages).

Finally, we implicitly assume that all prefetched pages fit in the memory. This assumption is discussed in the conclusion.

2.2. Connectivity and bounds

In this section, we define a variant of the game by introducing new natural constraints and prove basic results.
In the connected variant of the surveillance game, the observer must mark only vertices that have neighbors already

marked. In other words, the set of marked vertices must always induce a connected subgraph. A connected strategy σ
is a strategy with the additional constraint that σ(M, f ) ∪ M must induce a connected subgraph for any connected subset
M ⊆ V containing v0. Note that it is not required that σ(M, f ) induces a connected subgraph. Let csn(G, v0) be the smallest
k such that there is a winning connected k-strategy in G when the fugitive starts from v0.

We first show that imposing the connectedness of a strategy is a strong constraint.

Lemma 1. Let k � 2. There exist a graph G and a vertex v0 ∈ V (G) such that csn(G, v0) > sn(G, v0) = k.

Proof. Let k � 2. Let G be the graph with 6k vertices, built as follows: a path (v0, v1, v2) then 2k vertices ai and bi ,
1 � i � k, such that ai is adjacent to v2 and bi , and finally a set K of 4k − 3 vertices each of which is adjacent to all bi ,
i � k. Then k = sn(G, v0) < csn(G, v0) = k + 1.

Indeed, the following k-strategy is winning: at each step, the observer marks all i � 0 unmarked neighbors of the current
position of the fugitive, and then marks k − i vertices in K . Hence sn(G, v0) � k.

On the other hand, in the connected variant, at least 4 vertices, say {v1, v2,a1,b1}, must be marked before at least one
vertex in K is marked. The fugitive first goes to v1 and v2. Then if a vertex ai is unmarked, the fugitive goes to it and
wins. Otherwise, it goes to a2 and then b2. At the fifth turn of the fugitive, at least k + 4 vertices not in K must have been
marked (that is the set of vertices {v1, v2,a1, . . . ,ak,b1,b2}). Then, when at most k vertices can be marked per step, at
most 5k − (k + 4) = 4k − 4 vertices of K have been marked. Thus, the fugitive can win reaching an unmarked vertex in K .
Hence csn(G, v0) > k.

Finally, it is easy to show that csn(G, v0) � k + 1 and that sn(G, v0) > k − 1. �
Question 1. Does there exist a constant bounding the ratio (or the difference) between csn and sn in all graphs?

The surveillance number of a graph is constrained by the degrees of its vertices. More precisely:

Claim 2. For any (di)graph G with maximum (out-)degree �(+) and for any v0 with (out-)degree deg(+)(v0), we have deg(+)(v0) �
sn(G, v0) � csn(G, v0) � �(+) . Moreover, in undirected graphs, csn(G, v0) = � if, and only if, v0 has degree �.

Proof. Clearly, sn(G, v0) � deg(+)(v0) and by definition sn(G, v0) � csn(G, v0). On the other hand, the following �(+)-strate-
gy is winning for the observer. At each step, the observer simply marks all unmarked (out-)neighbors of the current position
of the fugitive. Hence, csn(G, v0) � �(+) . Moreover, in the undirected case, the fugitive always arrives to any vertex (but v0)
through a neighbor already marked. Hence, following the previous strategy, the observer marks at most � − 1 vertices at
each step, except the first one. So, if deg(+)(v0) < � then we get that csn(G, v0) < �. �

The next lemma is a straightforward consequence of the previous claim.

Lemma 3. Let G be a connected undirected graph with maximum degree � � 3 and at least one edge. Then, 1 � csn(G, v0) =
sn(G, v0) � 3 and

• csn(G, v0) = sn(G, v0) = 1 iff G is a path, where v0 has degree one;
• csn(G, v0) = sn(G, v0) = 3 iff v0 has degree 3.

Thus, the problem of computing the surveillance number of a graph with maximum degree at most 3 is trivial.

Question 2. What is the complexity of computing the surveillance number in the class of graphs with maximum degree 4? with
bounded degree?

The proof of the following lemma is also straightforward.

Lemma 4. Let G be an undirected graph with a universal vertex. For any v0 ∈ V (G), we have sn(G, v0) = csn(G, v0) =
max{deg(v0), �n−1

2 �}.
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2.3. The monotone variant of the game

Finally, we define a restriction of the game that will be useful throughout this paper.
In the monotone variant of the surveillance game, the fugitive is restricted to move at every step and to follow only

induced paths in G . That is, for all � > 0, after having followed a path (v0, . . . , v�), the fugitive is not allowed to reach a
vertex in N[{v0, . . . , v�−1}]. Note that if the fugitive cannot move, then it loses. Let msn(G, v0) be the smallest k such that
there is a winning monotone k-strategy in G when the fugitive starts from v0, i.e., the observer can win, marking at most
k vertices at each step, against a fugitive constrained to follow induced paths.

The monotone game is easier to analyze. Furthermore, we now prove that “monotonicity does not help”, that is, for any
graph G and v0 ∈ V (G), msn(G, v0) = sn(G, v0). In other words, if the fugitive follows only induced paths, no k-strategy can
be a winning (monotone) strategy, for any k < sn(G, v0). This means that in the following proofs, we can always consider
that the fugitive follows induced paths, and so that the fugitive has to move at every step because an induced path is
necessarily a simple path.

To prove the announced result, we give an alternative definition of a winning strategy in terms of trees reminiscent of
those used in the decomposition of graphs.

First, we give some intuition about the proof. Consider a monotone k-strategy σ for the observer. We turn this strategy
into a non-monotone k-strategy handling all possible trajectories (not only along induced paths) of the fugitive. To do
so, while the fugitive follows an induced path, the observer uses σ . Now, assume that the fugitive follows a walk W =
(v0, v1, . . . , vm) and then moves to vm+1 which is a neighbor of v j for 0 � j � m − 1. Intuitively, we can find a subset of
V (W ) inducing an induced path P from v0 to v j and then to vm+1, and such that the observer can apply the strategy σ
as if the fugitive had followed P .

Recall that a strategy is defined by a function σ : 2V × V → 2V , where |σ(M, f )| � k for any M ⊆ V , f ∈ V and σ(M, f )
represents the set of vertices that must be marked when the fugitive is in f and the vertices in M have already been
marked. Clearly, such a strategy can be viewed as a decision-tree, where each vertex of this decision tree represents a path
that has been followed by the fugitive.

We first describe a tree-structure to represent the paths of G , starting from v0. An internal vertex of a rooted tree is a
vertex with at least one child, other vertices are called the leaves.

Definition 1. Let G be a (di)graph and v0 ∈ V (G). A path-tree is a pair (T ,ω), where T is a tree rooted at r ∈ V (T ) and
ω : V (T ) → V (G) is a mapping from the vertices of the tree to that of the (di)graph, such that ω(r) = v0 and any internal
vertex t ∈ V (T ) has � = |N(+)[ω(t)]| children {t1, . . . , t�} with {ω(t1), . . . ,ω(t�)} = N(+)[ω(t)].

In a path-tree T , any vertex ti ∈ V (T ) (i � 0), where (r = t0, t1, . . . , ti) is the path from r to ti in T represents the walk
Pti = (v0 = ω(r),ω(t1), . . . ,ω(ti)) in G . The next structure restricts the paths we want to represent to the induced paths of
G starting from v0.

Definition 2. Let G be a (di)graph and v0 ∈ V (G). An induced path-tree is a pair (T ,ω), where T is a tree rooted at r
and ω : V (T ) → V (G) such that ω(r) = v0 and, for any internal vertex ti ∈ V (T ), where (r = t0, t1, . . . , ti) is the path
from r to ti in T and N = N(+)

G (ω(ti)) \ N(+)
G [{ω(t0),ω(t1), . . . ,ω(ti−1)}], then ti has � = |N| children {u1, . . . , u�} with

{ω(u1), . . . ,ω(u�)} = N .

Definition 3. A (monotone) k-decision-tree (k-DT) rooted at v0 of a (di)graph G is a triple (T ,ω, M) defined as follows. (T ,ω)

is a (induced) path-tree rooted at r and M : V (T ) → 2V (G) and the following properties are satisfied: v0 ∈ M(r) and, for any
vertex ti ∈ V (T ), where (r = t0, t1, . . . , ti) is the path from r to ti in T ,

• |M(ti) \ {v0}| � k;
• for any child t of ti , ω(t) ∈ ⋃

j�i M(t j);
• ti is a leaf iff

– In a k-decision-tree:
⋃

j�i M(t j) = V (G);
– In a monotone k-decision-tree: either

⋃
j�i M(t j) = V (G) or ω(t0),ω(t1), . . . ,ω(ti) is a maximal induced path in G .

The (induced) path-tree allows to represent all walks (induced paths) starting in v0 in G . Namely, given ti ∈ V (T )

with P = (r, t1, . . . , ti) the path in T from r to ti , ti represents the (induced) path Pti = (v0 = ω(r),ω(t1), . . . ,ω(ti)) in G .
Moreover, for any t ∈ V (T ), the bag M(t) represents the subset of vertices that must be marked at the step after the fugitive
has followed the path Pt in G . As a consequence of the properties stated in Definition 3, no more than k vertices are marked
at each step and no path in G may allow the fugitive to avoid marked vertices.

Decision-trees should be more constrained to express that it is useless to mark several times the same vertex or not to
mark the maximum number of vertices at each step.
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Definition 4. A (monotone) k-decision-tree (T ,ω, M) is said to be refined if

• for any internal vertex t ∈ V (T ), |M(t) \ {v0}| = k;
• for any vertex ti ∈ V (T ), where (r = t0, t1, . . . , ti) is the path from r to ti in T , M(ti) ⊆ V (G) \ ⋃

j<i M(t j).

Recall that the height of a rooted tree is the maximum length (number of edges) of a path between the root and a leaf
of the tree. Note that a refined k-DT of n-node graph G has height at most �n−1

k �.

Lemma 5. If G admits a (monotone) k-decision-tree rooted at v0 , then G admits a (monotone) refined k-decision-tree rooted at v0 .

Proof. We show that every decision-tree that is not refined can be transformed into one “more refined”. Iterating the
process ends with a (monotone) refined k-decision-tree rooted at v0.

Let (T ,ω, M) be a (monotone) k-DT rooted at v0. Among the paths (r = t0, t1, . . . , ti) in T , that do not satisfy the
conditions of a refined k-DT, pick one for which ti is the closest from r, the root of T . If M(ti) ∩ ⋃

j<i M(t j) 
= ∅, then
replace M(ti) with M(ti) \ ⋃

j<i M(t j). Otherwise, let v ∈ V (G) \ ⋃
j�i M(t j) and replace M(ti) with M(ti) ∪ {v}. Finally, if

⋃
j�i M(t j) = V (G), remove from T all subtrees rooted at a child of ti . The path now satisfies the conditions of a refined

DT. �
Lemma 6. A (di)graph G admits a (respectively, monotone) k-decision-tree rooted at v0 if, and only if, sn(G, v0) � k (respectively, if,
and only if, msn(G, v0) � k).

Proof. Assume sn(G, v0) � k (respectively, msn(G, v0) � k) and let σ be a k-strategy such that σ(M, f ) ⊆ V (G) \ M , and
|σ(M, f )| = k or M ∪ σ(M, f ) = V (G) for any M ⊆ V (G), f ∈ M . Let (T ,ω) be the (induced) path-tree representing all
walks (or induced paths) of G starting in v0 and of length at most � |V (G)|−1

k �. Then, let M(r) = {v0} ∪ σ({v0}, v0), and, for
any vertex ti ∈ V (T ) \ {r}, where (r = t0, t1, . . . , ti) is the path from r to ti in T , let us define M(ti) = σ(

⋃
j<i M(t j),ω(ti)).

All conditions of Definition 3 are satisfied and thus (T ,ω, M) is a (monotone) k-DT rooted at v0. In particular, the third
condition is satisfied because of the height of T and the fact that σ marks as many unmarked nodes as possible at each
step.

Let (T ,ω, M) be a k-DT rooted at v0. Let σ : 2V (G) × V (G) → 2V (G) be any application satisfying that, for any ti ∈ V (T ),
where (r = t0, t1, . . . , ti) is the path from r to ti in T , σ(

⋃
j<i M(t j),ω(ti)) = M(ti)\{v0}. Then, σ is a winning k-strategy. �

Now, we can prove the main result of this section.

Theorem 7. For any (di)graph G and v0 ∈ V (G), sn(G, v0) = msn(G, v0).

Proof. By definition, sn(G, v0) � msn(G, v0).
If msn(G, v0) � k, by Lemma 6, there is a monotone k-DT of G rooted at v0. By Lemma 5, there is a refined monotone

k-DT of G rooted at v0. We show that a k-DT rooted at v0 of G can be built from any refined monotone k-DT (T ,ω, M) of
G rooted at v0. Then, by Lemma 6, sn(G, v0) � k.

Let (T ,ω, M) be a refined monotone k-DT of G rooted at v0. If (T ,ω, M) is a k-DT, we are done. Assume therefore that
(T ,ω, M) is not a k-DT. This means that (T ,ω) is an induced path-tree and not a path-tree. In other words, there is a vertex
t ∈ V (T ) with children (u1, . . . , u�) such that there is, in G , a neighboring vertex y ∈ NG [ω(t)] and, for all i � �, ω(ui) 
= y.
We say that such a vertex t satisfies property P , with y a “bad neighbor”. Consider one such vertex closest to r. Two cases
are to be considered according to whether the bad vertex y is ω(t) or in NG(ω(t)).

• Assume first y = ω(t). Let S be the subtree of T rooted at t . We transform (T ,ω, M) into (T ′,ω′, M ′) by adding the
sub-decision-tree “induced” by S as a child of t in T . That is: T ′ is obtained from T by adding a copy of S with its
root adjacent to t in T . Then, for any z ∈ V (T ′) = V (T ) ∪ V (S), ω′(z) = ω(z) and M ′(z) = M(z). Then, let (T ∗,ω∗, M∗)
be obtained by refining the resulting path-tree, i.e., by applying to (T ′,ω′, M ′) the process described in the proof of
Lemma 5.

• Now, assume that y ∈ NG(ω(t)). Let (r = t0, t1, . . . , ti = t) be the path from r to t in T . Since y /∈ {ω(u j): j � �}, by
definition of monotone decision-trees, it means that there is j < i such that t j has a child s and ω(s) = y. Let S be the
subtree of T rooted at s. We transform (T ,ω, M) by adding the sub-decision-tree “induced” by S as a child of t in T .
Then, we refine the obtained decision-tree.

The process consists in repeating the transformation while there is a node t that satisfies property P . Note that, while
there still are some vertices satisfying P , the resulting structure is neither a decision-tree nor a monotone decision-tree
since the tree T ∗ of this structure is neither a path-tree nor an induced path-tree (actually, it is “between” a path-tree and
an induced path-tree). However, all other properties of a decision-tree remain satisfied.
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We finally show that a finite number of such transformations is sufficient to obtain a decision-tree. Indeed, it is sufficient
to remark that the following “potential function” Φ strictly decreases each time the transformation is applied. Moreover,
the size of the structure remains bounded in the size of the initial monotone decision-tree (T ,ω, M) since we consider only
refined versions.

Let Φ(T ,ω, M) be the sum of the values φ(d(t, r))×(|N(+)
G [ω(t)]|−|{ω(s): s child of t in T }|), over all vertices t in V (T ),

where d(t, r) is the distance between t and r and φ is any function such that for all i, φ(i) − �� n−1
k �−i+1φ(i + 1) � c > 0,

where c is some positive constant.
Each time we apply the procedure on a node t ∈ V (T ) at distance i of the root, we add one child to t . Hence,

(|N(+)
G [ω(t)]| − |{ω(s): s child of t in T }|) is decreased by one and this contributes to decreasing Φ(T ,ω, M) by φ(i). How-

ever, as “child” of t , we add a subtree S with height at most �n−1
k � − i (because it is refined). Therefore, S may have

at most �� n−1
k �−i vertices and the contribution of each vertex is at most � · φ(i + 1). This contributes to increasing the

global sum Φ(T ,ω, M) of at most �� n−1
k �−i+1φ(i + 1). Since φ(i) − �� n−1

k �−i+1φ(i + 1) > c, the global sum Φ(T ,ω, M)

decreases by at least c at each step. Furthermore, a finite number of transformations is sufficient because for all i,

φ(i) − �� n−1
k �−i+1φ(i + 1) � c. �

The same result holds for the connected variant. Indeed, a (monotone) decision-tree (T ,ω, M) corresponds to a con-
nected strategy if and only if for any path (r = t0, . . . , ti) in T , the set

⋃
0� j�i M(t j) induces a connected subgraph of G .

Starting from a decision-tree that corresponds to a connected strategy, the transformation of decision-trees described in the
proof of the previous theorem preserves this property (i.e., the connectivity of the strategy).

Let mcsn(G, v0) be the smallest k such that there is a winning monotone connected k-strategy in G when the fugitive
starts from v0, i.e., the observer can win, marking at most k vertices at each step such that the set of marked vertices must
always induce a connected subgraph, against a fugitive constrained to follow induced paths.

Theorem 8. For any (di)graph G and v0 ∈ V (G), csn(G, v0) = mcsn(G, v0).

3. Difficult problems

In this section, we study the computational complexity of the decision version of the problem: given a graph G with
v0 ∈ V (G) and an integer k, the task is to decide whether sn(G, v0) � k. We also consider the variant of the problem where
the fugitive must win in a fixed number of steps. Moreover, for all the G graphs we consider in our reductions, we have
sn(G, v0) = csn(G, v0). Hence, our hardness results also apply to the connected variant of the problem.

We use in Theorem 9 and in Theorem 10, a reduction from the 3-Hitting Set Problem. In the 3-Hitting Set Problem,
we are given a set I of elements, a set S of subsets of size 3 of I and k ∈ N as the input. The question is to decide
whether there exists a set H ⊆ I of size at most k such that H ∩ S 
= ∅ for all S ∈ S . The 3-Hitting Set Problem is a classical
NP-complete problem [17].

We start by proving that deciding whether sn(G, v0) � 2 for a graph G and v0 ∈ V (G) is NP-hard on chordal graphs. Let
us remind that a graph is chordal if it contains no induced cycle of length at least 4.

Theorem 9. Deciding if sn(G, v0) � 2 (respectively, csn(G, v0) � 2) is NP-hard in chordal graphs.

Proof. Let (I = {e1, . . . , en},S = {S1, . . . , Sm}) and k � 1 be an instance of the 3-Hitting Set Problem. We construct the
chordal graph G as follows. Let P = {v0, . . . , vm+k−2} be a path, Km be the complete graph with vertices {S1, . . . , Sm} and
e1, . . . , en be n isolated vertices. We add an edge from vm+k−2 to all vertices of Km , and for each i � n and j � m, add an
edge between ei and S j if and only if ei ∈ S j . Clearly, G is chordal.

First, we show that, if there exists a set H ⊆ I of size k such that H ∩ S 
= ∅ for all S ∈ S , then sn(G, v0) � 2. The
2-strategy of the observer first consists in marking the vertices v1 to vm+k−2 in order, then the vertices of Km and finally
the vertices of H . This can be done in m + k − 1 steps where, at each step, all neighbors of the current position of the
fugitive are marked. Because H is a hitting set of S , after the (m + k − 1)-th step, each vertex Si , i � m, has at most
two unmarked neighbors, all other vertices have all their neighbors marked and only some vertices in e1, . . . , en can be
unmarked. Finally, from this step, the strategy of the observer consists in marking the unmarked neighbors of the current
position of the fugitive. Clearly, the fugitive cannot win and the strategy we described is a winning 2-strategy. Note that
this strategy is a connected 2-strategy. Hence, sn(G, v0) � csn(G, v0) � 2.

Now, assume that, for any H ⊆ I of size at most k, there is S ∈ S such that S ∩ H = ∅. We show that sn(G, v0) > 2
in this case. Assume that the observer can mark up to 2 vertices in each step, and we describe a winning strategy for the
fugitive, which implies that 2 < sn(G, v0) � csn(G, v0). The escape strategy for the fugitive first consists of going to vm+k−2
(this takes m + k − 2 steps). Then, we may assume that after the (m + k − 1)-th step of the observer, all vertices of P and
Km are marked—otherwise the fugitive either would have won earlier, or can win by going to an unmarked vertex in Km
in its next move. This means that at most k of e1, . . . , en has been marked up to this step. Let H denote the set of these
vertices. Hence, when it is the turn of the fugitive who is occupying vertex vm+k−2, there is Si ∈ V (Km) with H ∩ Si = ∅,



8 F.V. Fomin et al. / Theoretical Computer Science 526 (2014) 1–17
Fig. 1. Example of graph G in the reduction of the proof of Theorem 10. L( j), j � m, represents the set of m + k − 2 leaves adjacent to S j .

i.e., all three neighbors of Si are unmarked. Then, the fugitive goes to Si . The observer marks at most 2 of the neighbors of
Si , and the fugitive can reach an unmarked vertex. Hence, sn(G, v0) > 2. �

We prove that the problem of deciding whether sn(G, v0) � k is NP-hard on split graphs. Let us remind that a graph
is a split graph if the vertices can be partitioned into a clique and an independent set. Furthermore, we prove that this
NP-hardness result also holds if the number of steps is constrained to be at most 2.

Let � � 1. We define a restriction of the game where the fugitive wins if it reaches an unmarked vertex in at most �

steps. Let sn(G, v0, �) (respectively, csn(G, v0, �)) be the smallest k such that there is a (connected) winning k-strategy in G
against a fugitive starting from v0 in this setting.

Theorem 10. The problems of deciding whether sn(G, v0) � k, or csn(G, v0) � k, or sn(G, v0,2) � k, or csn(G, v0,2) � k are NP-
hard in split graphs with k as part of the input.

Proof. Again, we reduce the 3-Hitting Set Problem to this problem. Let (I = {x1, . . . , xn},S = {S1, . . . , Sm}) and k � 1 be an
instance of the 3-Hitting Set Problem.

Let us build the split graph G described in Fig. 1. Let Km+1 be the complete graph with vertices {v0, S1, . . . , Sm} and let
{x1, . . . , xn} be n isolated vertices. For all 1 � i � m, add m + k − 2 extra nodes, each of degree 1, adjacent to Si and for all
1 � j � n add an edge between x j and Si if x j ∈ Si . Note that, in this graph, there are no induced paths starting from v0
and with more than two edges. Hence, by Theorems 7 and 8, sn(G, v0) = sn(G, v0,2) and csn(G, v0) = csn(G, v0,2).

As in the proof of Theorem 9, we prove that sn(G, v0) � k + m (and csn(G, v0) � k + m) if and only if (I =
{x1, . . . , xn},S = {S1, . . . , Sm}) admits a hitting set of size at most k.

Indeed, if there is a hitting set H of size k, then the observer, allowed to mark k + m vertices per step, first marks
all vertices of Km+1 (except v0 that is already marked) and all vertices of H . At the second step, the observer marks the
unmarked neighbors of the current position of the fugitive.

Conversely, assume that S admits no hitting set of size at most k and let us assume that the observer can mark at most
m + k vertices. The first move of the fugitive is to go toward a vertex S j (1 � j � m) with at least m + k + 1 unmarked
neighbors. Then, the fugitive wins after its second move. This concludes the proof. �

Next, we show that the problem of deciding whether sn(G, v0) � 4 is PSPACE-complete in DAGs. In the following, we re-
duce the 3-QSAT problem to our problem. For a set of boolean variables x0, y0, x1, y1, . . . , xn, yn and a boolean formula F =
C1 ∧· · ·∧Cm , (C j is a 3-clause), the 3-QSAT problem aims at deciding whether the expression Φ = ∀x0∃y0∀x1∃y1 · · · ∀xn∃yn F
is true. 3-QSAT is PSPACE-complete [17].

Lemma 11. The problem of deciding whether sn(G, v0) � 4 (respectively, csn(G, v0) � 4) is PSPACE-hard in DAGs.

Proof. Let F = C1 ∧ · · · ∧ Cm be a boolean formula with x0, y0, x1, y1, . . . , xn, yn as variables and

Φ = ∀x0∃y0∀x1∃y1 · · · ∀xn∃yn F

be an instance of the 3-QSAT Problem. Let D be the DAG built as follows.
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Fig. 2. Example of the reduction in the proof of Lemma 11. A black node labeled with integer i and that is the out-neighbor of a vertex v , corresponds to
i leaves that are in N+(v).

We start with the set of vertices {ui, vi, x′
i, x̄′

i, xi, x̄i, y′
i, ȳ′

i, yi, ȳi}0�i�n . For all 0 � i � n, there are arcs from vi to x′
i and

x̄′
i , one arc from x′

i to xi and one arc from x̄′
i to x̄i . For all 0 � i � n, there are arcs from x′

i and x̄′
i to ui , arcs from ui to both

y′
i and ȳ′

i and arcs from both of y′
i and ȳ′

i to both of yi and ȳi . Then, for all 0 � i < n, there is one arc from ui to vi+1.
Add the directed path (w1, . . . , wm−1) with one arc from un to w1 and such that wm−1 has m out-neighbors C1, . . . , Cm .
For all j � m and 0 � i � n, add one arc from C j to xi (respectively, x̄i, yi, ȳi ) if xi (respectively, x̄i, yi, ȳi ) appears in the
clause C j . Finally, for all 0 � i � n, k � m − 1, j � m add two out-neighbors leaves to each vertex in {vi, x′

i, x̄′
i, wk, C j}, and,

for all 0 � i � n, add three out-neighbors leaves to each of y′
i and ȳ′

i . An example of such DAG D is depicted in Fig. 2.
Since v0 has out-degree 4, csn(D, v0) � sn(D, v0) � 4 and the first step of the observer, endowed with 4 marks, is to

mark all four out-neighbors of v0 (the two leaves and x′
0 and x̄′

0). We now show that sn(D, v0) = 4 (and csn(D, v0) = 4) if
and only if Φ is true.

Intuitively, during the game, the fugitive chooses the xi ’s arbitrarily, and the observer chooses the yi ’s accordingly. The
fugitive chooses each xi by entering it, and the observer chooses each yi by marking it. More precisely, the fugitive will
have to follow a path from v0 to w1 because otherwise, we prove that it loses. During this walk, the fugitive chooses the
xi ’s arbitrarily: at each step it occupies some node vi (0 � i � n), it may go to x′

i which will force the observer to mark
xi ∈ N(x′

i), or the fugitive may go to x̄′
i and then x̄i must be marked. Moreover, our construction ensures that the observer

can mark only one of xi and x̄i . On the other hand, our construction ensures that, when the fugitive arrives at some node
ui (0 � i � n), the observer can freely choose to mark either yi or ȳi . In particular, this choice of the observer depends on
the previous choices of the fugitive and of the observer. We show that, if the observer can ensure that its choices satisfy Φ

then it wins, and the fugitive wins otherwise.
We first prove that the fugitive has to follow an induced path from v0 to w1 and that, when it arrives there, some

property (see Claim 12) is satisfied. This property will allow us to prove the lemma.

Claim 12. After the 3(n + 1)-th move of the fugitive,

1. the fugitive occupies vertex w1 after having followed the directed path P = (v0,a′
0, u0, v1,a′

1, u1, . . . , vn,a′
n, un, w1), where

a′
j ∈ {x′

j, x̄′
j} for all 0 � j � n, and

2. at this step, the set of vertices marked consists of all the vertices of P and the out-neighbors of the vertices in P but N+(w1), plus,
for all j � n, exactly one of y j and ȳ j , and

3. for all j � n, the choice of which vertex has been marked in {y j, ȳ j} depends only on the observer (not on the path followed by
the fugitive).

Proof. First, we will prove by induction on i that, after the (3i + 1)-th step of the observer, some property Pi is satisfied,
for all 0 � i < n. Then, assuming that Pn−1 is satisfied after the (3(n − 1) + 1)-th step of the observer, we can prove the
claim using the same arguments as in the induction.
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For all 0 � i < n, we say that Property Pi is satisfied if, after the (3i + 1)-th step of the observer:

1. the fugitive occupies vertex vi after having followed the directed path P = (v0,a′
0, u0, v1,a′

1, u1, . . . , vi−1,a′
i−1, ui−1, vi),

where a′
j ∈ {x′

j, x̄′
j} for all 0 � j < i, and

2. at this step, the set of vertices marked consists of all the vertices in P and the out-neighbors of the vertices in P plus,
for all j < i, exactly one of y j or ȳ j , and

3. for all j < i, the choice of which vertex has been marked in {y j, ȳ j} depends only on the observer (not on the path
followed by the fugitive).

All these assumptions are satisfied for i = 0: P0 holds true. Now, let us assume that Pi holds for some 0 � i � n. We show
that: Pi+1 holds if i < n, and that the claim holds if i = n.

Consider the game just after the (3i + 1)-th step of the observer. Note that, by the induction hypothesis (Pi holds),
the four out-neighbors of vi (two of which are leaves) are marked. Since it is useless for the fugitive to remain at vi
(Theorem 7), then it goes to a′

i ∈ {x′
i, x̄′

i}. Node a′
i has four out-neighbors that are, by the induction hypothesis, unmarked.

Hence, the observer must mark these four vertices. In particular, if a′
i = x′

i (respectively, if a′
i = x̄′

i ) then the observer marks
ai = xi (respectively, ai = x̄i ) while x̄i (respectively, xi ) remains unmarked. Then, the fugitive must go to ui since the other
three out-neighbors of a′

i have no out-neighbors.
Since ui has three out-neighbors (y′

i , ȳ′
i and vi+1), the observer must mark these three vertices. Moreover, assume that

the fourth vertex marked by the observer at this step is neither yi nor ȳi : then the fugitive goes to the vertex in {y′
i, ȳ′

i}
with still its five out-neighbors unmarked, and then the fugitive will win at the next step. Hence, the observer must mark
bi that is either yi or ȳi . It is important to note that the choice of which of these two vertices is marked is completely
free for the observer. After this step of the observer, both y′

i and ȳ′
i have four unmarked out-neighbors and all the five

out-neighbors of y′
i and ȳ′

i have no out-neighbors themselves. Hence, the fugitive would lose if it went to y′
i or ȳ′

i . Hence,
the fugitive must go to vi+1 (where vn+1 is set to be w1).

If i < n, then vi+1 has exactly four out-neighbors that must be marked by the observer, and then the induction hypothesis
is satisfied for i + 1. If i = n, then vi+1 = w1 and the claim holds. �

Let X be the set of vertices consisting of {w2, . . . , wm−1, C1, . . . , Cm} plus the 2(m − 1) leaves adjacent to w1, . . . , wm−1.
Let Y be the set of vertices consisting of {x0, x̄0, y0, ȳ0, . . . , xn, x̄n, yn, ȳn} plus the 2m leaves adjacent to the C j ’s.

By Claim 12, after the 3(n +1)-th move of the fugitive, no vertices in X are marked. Moreover, the set of marked vertices
in Y is {a0,b0, . . . ,an,bn}, where, for all i � n, ai ∈ {xi, x̄i} has been imposed by the fugitive and bi ∈ {yi, ȳi} has been chosen
by the observer. In particular, if Φ is true, the observer can choose the bi ’s such that F (a0,b0, . . . ,an,bn) is true whatever
be the choices of the fugitive. On the other hand, if Φ is false, the fugitive can choose the ai ’s such that F (a0,b0, . . . ,an,bn)

is false whatever be the choices of the observer.
Now, from the (3n + 1)-th step of the observer to the end of its (3n + m)-th step, the observer can mark at most

4(m − 1) = |X | vertices. Moreover, between these steps, the fugitive must follow the path Q = (w1, . . . , wm−1) (all other
vertices the fugitive can access having no out-neighbors). Hence, the only choice for the observer is to successively mark all
vertices in X otherwise, at some step along the path Q or just after the (3n + m)-th step of the observer, the fugitive could
have reached an unmarked vertex. Note that the marking process can be done in a connected way.

Finally, after the (3n + m)-th step of the observer, the fugitive stands on wm−1, all vertices in {C1, . . . , Cm} are marked
while the set of marked vertices in Y is {a0;b0, . . . ,an,bn}. Now, if Φ is false, by the choice of the ai ’s by the fugitive, there
is a clause C j with its five out-neighbors unmarked: the fugitive goes to C j and will win at the next step. On the other
hand, if Φ is true, by the choice of the bi ’s by the observer, all C j ’s have at most four unmarked out-neighbors. Whatever
be the next moves of the fugitive, it will reach a marked vertex without out-neighbors.

This concludes the proof of Lemma 11. �
Lemma 13. For every k � 1, the problem of deciding whether sn(G, v0) � k (respectively, csn(G, v0) � k) is in PSPACE.

Proof. The proof is similar as that of Lemma 4 in [15], so we do not go into the details. Let n be the number of vertices
in graph G . Every game lasts at most n rounds. At each round, the configuration (M, f ) can be encoded within polynomial
space. This means that the problem is in NPSPACE (nondeterministic polynomial space)—a nondeterministic Turing machine
deciding the problem uses polynomial space on every branch of its computation. By Savitch’s theorem [27], the problem is
in PSPACE. �
Theorem 14. The problem of deciding whether sn(G, v0) � 4 is PSPACE-complete in DAGs.

An interesting question is to determine if the problem remains PSPACE-hard in undirected graphs. In comparison,
Mamino recently proved that the cops and robber game is PSPACE-hard in undirected graphs [22].

The following theorem provides an exponential algorithm for computing sn(G, v0) (respectively, csn(G, v0)). Here, we
use a modified big-Oh notation that suppresses all polynomially bounded factors. For functions f and g we write f (n) =
O ∗(g(n)) if f (n) = O (g(n)poly(n)), where poly(n) is a polynomial.
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Theorem 15. Given an n-node graph and a node v0 ∈ V (G), sn(G, v0) (respectively, csn(G, v0)) can be computed in time O ∗(4n).

Proof. For each k � 1, we decide if sn(G, v0) � k. We consider the arena digraph G whose vertices are configurations of the
game, i.e., the pairs (M, f ), where v0, f ∈ M ⊆ V (G), N[ f ] ⊆ M and |M \ {v0}| = ki for some i > 0 (or M = V (G)). Moreover,
there is an arc from (M, f ) to (M ′, f ′) if f ′ ∈ N( f ) and M ⊂ M ′ and |M ′| = |M| + k (or |V (G) \ M| � k and M ′ = V (G)).
Note that G is a DAG (because of M ⊂ M ′) and that |V (G)| � 2nn (since there are at most 2n choices for M and n choices
for f ). Hence, the amount of arcs in G is O ∗(4n).

We consider the following labeling process. Initially, all configurations (V (G), v), for all v ∈ V (G), are labeled with �n−1
k �,

and all other configurations are labeled with ∞. Iteratively, a configuration (M, f ) with |M| = ki + 1 is labeled i if, for all
f ′ ∈ NG( f ), then f ′ ∈ M and there is an out-neighbor (M ′, f ′) of (M, f ) and that is labeled at most i + 1. We show that
sn(G, v0) � k if and only if there is a configuration (M, v0), |M| = k + 1, labeled with 1.

We first show by induction on i, that the observer can win starting from any configuration labeled with �n−1
k � − i. If

i = 0, the result holds trivially. Assume that the result holds for some i, 0 < i < �n−1
k � − 1. Let (M, f ) be a configuration

labeled with �n−1
k � − (i + 1). For any f ′ ∈ N( f ), by definition of the labeling process, there is a configuration (M ′, f ′)

out-neighbor of (M, f ) and labeled with �n−1
k �− i. If the fugitive goes from f to f ′ , then the observer marks the vertices in

M ′ \ M and the game reaches the configuration (M ′, f ′). Hence, by the induction hypothesis, the observer wins. So, applying
the result for i = �n−1

k � − 1, the observer wins starting from any configuration (M, v0), |M| = k + 1, labeled 1. To reach this
configuration, the first step of the observer is to mark the k vertices in M \ {v0}. Therefore, sn(G, v0) � k.

Now assume that sn(G, v0) � k. Let σ be a winning k-strategy for the observer. For any walk W = (v0, v1, . . . , vi)

followed by the fugitive, let M(W ) be the set of vertices marked by the observer (using σ ) after the fugitive has followed
W until vi and when it is the turn of the fugitive. By reverse induction on i, the labeling process labels (M(W ), vi) with
i + 1. This shows that ({v0} ∪ σ({v0}, v0), v0) is labeled with 1.

For each k, the algorithm runs in time proportional to the size of G (number of arcs). Thus the total running time of the
algorithm is O ∗(4n) since at most n values of k must be tested.

To obtain the same result with csn(G, v0), it is sufficient to modify the definition of a configuration (M, f ) by imposing
that M must induce a connected subgraph. �
4. Polynomial-time algorithms in some graph classes

In this section, we describe polynomial-time algorithms to compute the surveillance number of trees and interval graphs.
Moreover, in both these classes of graphs, we show that connectedness does not cost, in the sense that the surveillance
number equals the connected surveillance number.

4.1. Keeping a tree under surveillance

We first present a polynomial-time algorithm to compute sn(T , v0) = csn(T , v0) for any tree T = (V , E) and any v0 ∈ V .
For convenience but without loss of generality, we will say that T is rooted at v0. Recall that the height of T is the
maximum length (number of edges) of a path between the root v0 and a leaf of T . Let k0 � 0.

In the following, we will use a generalization of the original game, in which v0 plus at most k0 other vertices chosen by
the observer are initially marked. Said differently, during its first move in the game, the observer may mark k + k0 vertices.
Let k � 0. We define the function fk : V (T ) →N in the following recursive way:

• fk(v) = 0 for any leaf v of T ;
• for any v ∈ V (T ) with d children, fk(v) = max{0,d + ∑

w∈C fk(w) − k}, where C is the set of children of v .

Lemma 16. Let T be a tree rooted at v0 . Then fk(v0) = 0 if, and only if, sn(T , v0) � k, and if, and only if, csn(T , v0) � k.

Proof. We prove by induction on the height of T that the observer cannot win the game by marking at most k vertices per
step, even if any set of at most fk(v0)− 1 vertices in V (T ) \ {v0} are initially marked. Moreover, we prove that the observer
can win in a connected way, marking at most k vertices per step, if some set of at most fk(v0) vertices (chosen by the
observer) plus v0 are initially marked.

The result holds if T is reduced to one vertex. So we may assume that T has height at least 1.
If T has height 1 and v0 has degree d, then fk(v0) = max{0,d − k} and the result holds. Indeed, if v0 and fk(v0) other

vertices are initially marked, then during its first step, the observer marks all remaining vertices (their number is at most k)
and wins. Such a strategy is clearly connected. On the other hand, if v0 and at most fk(v0) − 1 vertices are marked, then
after the first step of the observer (when he has marked k other vertices), at least one neighbor of v0 is still unmarked. The
fugitive can go there and wins.

Now, assume that the result holds for any tree of height at most h � 1. Let T be rooted at v0 and be of height h + 1. We
show that the result holds for T .
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Let (v1, . . . , vr) be the children of v0 and let Ti be the subtree of T rooted at vi , 1 � i � r. By the induction hypothesis,
for all 1 � i � r, there is a set Ii ⊆ V (Ti) \ {vi} of fk(vi) vertices such that Ii ∪ {vi} induces a subtree of Ti and, if the
vertices of Ii and vi are initially marked in Ti , then the observer can win in Ti starting from vi , marking at most k vertices
per step, and in a connected way. On the contrary, if strictly less than fk(vi) vertices are initially marked in V (Ti) \ {vi},
then the fugitive wins in Ti against an observer marking at most k vertices per step.

We describe a connected k-strategy that allows the observer to win in T when it can mark fk(v0) extra vertices during
its first step. First, the observer marks all nodes in J = (N[v0] ∪ (

⋃
1�i�r Ii)) \ {v0}. The set J ∪ {v0} induces a connected

subtree of T and it is possible since | J | � fk(v0) + k. Then the fugitive moves to some child vi (1 � i � r) of v0. Since the
vertices of Ii and vi are already marked, the observer will win in Ti in a connected way.

On the contrary, if strictly less than fk(v0) vertices can be marked initially in V (T ) \ {v0}, then there is at least one
child vi (1 � i � r) such that either vi is not marked after the first step of the observer, or at most fk(vi) − 1 vertices in
V (Ti) \ {vi} are marked after the first step of the observer. In both cases, the fugitive will win in Ti . �
Theorem 17. For any tree T and any v0 , the value of sn(T , v0) = csn(T , v0) can be computed in time O (n · log n).

Proof. By definition of the connected variant of the surveillance game, we have csn(T , v0) � sn(T , v0). The strategy for the
observer described in the proof of Lemma 16 is connected. Thus sn(T , v0) = csn(T , v0) = min{k: fk(v0) = 0}. Note that,
v being fixed, fk(v) is a decreasing function of k. The result comes from the fact that fk(v0) can be computed in linear
time and so, the minimum k such that fk(v0) = 0 can be searched using dichotomy. �

We now give a combinatorial characterization of sn(T , v0) for any tree T rooted at v0.

Lemma 18. For any tree T , for any v0 ∈ V (T ), and for any k < sn(T , v0), there is a set of vertices S ⊆ V (T ) inducing a subtree of T
containing v0 and such that � |N[S]|−1

|S| � > k.

Proof. Let k < sn(T , v0). By Lemma 16, fk(v0) > 0. Let S be the inclusion-maximal subtree of T containing v0 and such
that fk(v) > 0 for all vertices v in S . We show by induction on the height of S that fk(v0) = |N[S]| − 1 − k|S|. If S = {v0}
and v0 has degree d, then fk(v0) = d − k = |N[S]| − 1 − k|S| > 0 because for any child v of v0, fk(v) = 0.

Assume that the result holds for any subtree of height at most h and assume that S has height h + 1. Let d be the degree
of v0 and let v1, . . . , vr , 1 � r � d, be the children of v0 with fk(vi) > 0. Let Si be the subtree of S rooted at vi , 1 � i � r,
and let N[Si] be the vertices of Si or in the neighborhood of Si in the subtree of T rooted at vi . By the induction hypothesis,
fk(vi) = |N[Si]| − 1 − k|Si | for all 1 � i � r. Now, fk(v0) = d − k + ∑

1�i�r fk(vi) = d − k + ∑
1�i�r(|N[Si]| − 1 − k|Si |) =

d − k + (|N[S]| − 1 − (d − r)) − r − k(|S| − 1) = |N[S]| − 1 − k|S|. �
Lemma 19. For any tree T , for any v0 ∈ V (T ), for any k � sn(T , v0), for any S ⊆ V (T ) inducing a subtree of T containing v0 , we
have � |N[S]|−1

|S| � � k.

Proof. We consider the following game. Initially, an unbounded number of fugitives are in v0 which is initially marked.
Then, at most k vertices of T \ {v0} are marked. At each turn, each fugitive can move along an edge of the tree, and then,
for each vertex v that is reached for the first time by a fugitive, at most k vertices can be marked in T v the subtree of T
rooted at v . The fugitives win if at least one fugitive reaches an unmarked vertex. They lose otherwise.

We first show that if k � sn(T , v0) then the fugitives lose in this game. Assume that k � sn(T , v0). Then there is a
winning k-strategy σ for the “normal” surveillance game in T starting from v0. Recall that by Theorem 7, we can restrict
the fugitive to follow an induced path. Since for any t ∈ V (T ), there is a unique induced path from v0 to t , σ can be defined
uniquely by the position of the fugitive. That is, in the case of trees, we can define a k-strategy as a function that assigns
a subset σ(t) ⊆ V (Tt) (of size at most k) to any vertex t ∈ V (T ). Now, in the game with several fugitives, we consider the
following strategy: each time a vertex t is reached for the first time by a fugitive, we mark the vertices in σ(t). The fugitives
cannot win against such a strategy.

Finally, we show that if there is a subtree S containing v0 such that � |N[S]|−1
|S| � > k, then the fugitives win the new game.

Indeed, the fugitives first occupy all vertices of S . At this step, at most k · |S| + 1 vertices have been marked (because S is
connected and v0 is marked and for each vertex in S at most k vertices in V (T )\ {v0} are marked). Since |N[S]| > k · |S|+1,
at least one unmarked vertex in N[S] will be reached by some fugitive during the next step.

Hence, sn(T , v0) � max� |N[S]|−1
|S| �, where the maximum is taken over all S ⊆ V (T ) inducing a subtree of T contain-

ing v0. �
Theorem 20. For any graph G and v0 ∈ V (G), we have sn(G, v0) � max� |N[S]|−1

|S| �, where the maximum is taken over all subsets
S ⊆ V (G) inducing a connected subgraph of G containing v0 . Moreover, there is equality in the case of trees.
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Proof. Let S ⊆ V (G) that induces a connected subgraph containing v0. Let T S be a spanning tree of G[S] rooted at v0 and let
T be a spanning tree of G having T S as a subtree. Clearly, sn(G, v0) � sn(T , v0). By Lemma 19, sn(T , v0) � � |N[S]|−1

|S| �. Hence,

sn(G, v0) � max� |N[S]|−1
|S| �, the maximum being taken over all S ⊆ V (G) inducing a connected subgraph of G containing v0.

In the case of trees, the equality follows from Lemma 18. �
4.2. Keeping interval graphs under surveillance

We recall that an interval graph G is the intersection graph of a set of real intervals. This set of real intervals is a
realization of G . In this section, we give a polynomial-time algorithm for computing the surveillance number in interval
graphs. Moreover, we show that surveillance numbers for the connected variant and the unrestricted variant are equal in
this class of graphs. It is important to recall that, by Theorems 7 and 8, we do not help the observer when forcing the
fugitive to move at each step and to follow induced paths (in both variants). Hence, in this section, we assume that the
fugitive obeys these restrictions.

Let G be a connected interval graph and v0 ∈ V (G). We consider any realization I of G such that, no two intervals have
a common end (such a realization always exists). Let us say that v ≺L w if the left (smallest) end of (the interval of) v is
smaller than the left end of w , and v �R w if the right (largest) end of v is larger than the right end of w .

We partition V (G) into several subsets. Let C be the subset of vertices the interval of which contains the interval of v0.
Note that v0 ∈ C ⊆ N[v0] and that C induces a clique. Since G is an interval graph, V \ N[v0] induces a subgraph H the
connected components of which are interval graphs. Let L be the vertices of the components of H with their interval more
to the left than the interval of v0, i.e., the largest end of an interval in L is strictly smaller than the smallest end of the
interval of v0. Similarly, let R be the vertices of the components of H with their interval more to the right than the interval
of v0. Note that R and L are disjoint and are separated by N[v0] because G is an interval graph: no interval can be both
more to the left and more to the right than the interval of v0. Let CL be the vertices in N(v0) \ C with neighbors in L and
let CR be the vertices in N(v0) \ C with neighbors in R. Finally, let C′ = V (G) \ (L ∪ CL ∪ C ∪ CR ∪ R). Note that, for any
v ∈ C′ , v0 ∈ N(v) ⊆ N[v0].

Claim 21. (L,CL,C,C′,CR ,R) is a partition of V (G).

Proof. Since, N[v0] = C ∪ C′ ∪ CR ∪ CL , (L,CL,C,C′,CR ,R) covers V (G). It only remains to prove that CR ∩ CL = ∅. Indeed,
if v ∈ CR ∩ CL , then v must be adjacent to a vertex in L and to a vertex in R. However, it means that the interval of v
contains the one of v0 and v ∈ C , a contradiction. �

Recall that the fugitive is forced to follow an induced path. We now describe the structure of induced paths in G .
Roughly, the next lemma says that once the fugitive has chosen a “side” (left or right) it has to remain on this side, and the
choice occurs after one or two moves. Moreover, once the fugitive has chosen a side, it must go “further” into this side or
it should stop.

Lemma 22. Let P = (v0, v1, . . . , v p) be an induced path starting from v0 in any connected interval graph G. Let L,CL,C,C′,CR ,R
be defined as above. Then, there are three possible cases:

1. Either v1 ∈ C′ and then p = 1;
2. Either v2 ∈L, and

• for all i > 1, vi ∈L and v1 ∈ CL ∪ C;
• for all 0 < i < p − 1, vi+1 ≺L vi ;
• if v p−1 ≺L v p then N(v p) ⊆ N(v p−1).

3. Or v2 ∈R, and
• for all i > 1, vi ∈R and v1 ∈ CR ∪ C;
• for all 0 < i < p − 1, vi+1 �R vi ;
• if v p−1 �R v p then N(v p) ⊆ N(v p−1).

Proof. Clearly, v2 cannot be in N[v0] = C ∪ C′ ∪ CR ∪ CL because P is induced. Hence, v2 ∈ R ∪ L. If v1 ∈ C′ , then all
neighbors of v1 are in N[v0] and thus p = 1. Let us assume that v2 ∈L. The case v2 ∈R can be dealt with similarly.

By the previous remark, v2 cannot be adjacent to a vertex in CR ∪ C′ . Hence, v1 ∈ CL ∪ C = N[v0] \ (CR ∪ C′). Moreover,
for all i > 1, vi /∈ N[v0] because P is induced. Since N[v0] separates R and L, and since v2 ∈L, for all i > 1, vi ∈L.

Let us assume that vi ≺L vi+1 for some 0 < i < p such that i is minimum with this property. We show that i = p − 1
and N(v p) \ ⋃

j<p N(v j) = ∅.
We first consider the case when the interval of vi does not contain the interval of vi+1. Since vi ≺L vi+1, we get that

vi+1 �R vi . Since P is induced, vi+1 /∈ N(vi−1). This implies, since vi ∈ N(vi−1), that vi �R vi−1. Since, by minimality of i,
vi ≺L vi−1, the interval of vi−1 must be contained in the interval of vi . Therefore, if i > 1, then N(vi−1) ⊆ N(vi), which
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contradicts vi−2 ∈ N(vi−1) \ N(vi). Then i = 1 and the interval of vi−1 = v0 is strictly more to the left than the interval of
vi+1 = v2 which contradicts the fact that v2 ∈L.

Therefore, the interval of vi+1 must be contained into the interval of vi . Then N(vi+1) ⊆ N(vi) ⊆ ⋃
j�i N(v j).

If i < p − 1, then vi+2 ∈ N(vi+1) ∩ N(vi) contradicting the fact that P is induced. Hence i = p − 1, and we get
N(v p) \ ⋃

j<p N(v j) = ∅. �
The next lemma shows that, in interval graphs, we can define few particular induced paths that “dominate” all paths.

That is, if the observer is able to win when the fugitive is constrained to follow one of these particular paths, then the
observer always wins.

Let v L ∈ CL be the smallest vertex of CL according to ≺L , i.e., v L ≺L w for every w ∈ CL \ {v L}. For any v1 ∈ C ∪ {v L},
let us define P L(v1) as the longest induced path (v0, v1, v2, . . . , v p) such that, for all i � 1, vi+1 is the smallest vertex of
N(vi) according to ≺L , i.e., vi+1 ≺L w for every w ∈ N(vi). Intuitively, except for the first move, we choose as next vertex
the neighbor with leftmost left end.

Symmetrically, let v R ∈ CR be the largest vertex of CR according to �R , i.e., v R �R w for any w ∈ CR \ {v R}. For any
v1 ∈ C ∪ {v R}, let us define P R(v1) as the longest induced path (v0, v1, v2, . . . , v p) such that, for all i � 1, vi+1 is the
largest vertex of N(vi) according to �R , i.e., vi+1 �R w for every w ∈ N(vi). Except for the first move, we choose as next
vertex the neighbor with rightmost right end.

Finally, for any path P = (v0, . . . , v p) and for all i � p, let P i = N[{v0, . . . , vi}] the set of the vertices that are in
{v0, . . . , vi} or that have a neighbor in {v0, . . . , vi}.

Lemma 23. Let G be a connected interval graph, let P = (v0, . . . , v p) be an induced path starting from v0 with p > 1, and let Q be
the path defined as follows:

• Q = P L(v L) if v1 ∈ CL ;
• Q = P R(v R) if v1 ∈ CR ;
• Q = P L(v1) if v1 ∈ C and v2 ∈L, and
• Q = P R(v1) if v1 ∈ C and v2 ∈R.

For all i � p, we have P i ⊆ Q i′ , where i′ = min{i, |Q | − 1}.

Proof. By Lemma 22, P must satisfy one of the four cases.
Let us first assume that v1 ∈ CL , and let Q = P L(v L) = (v0, v L,q2,q3, . . . ,qp′). By Lemma 22, vi ∈ L for all i � 2. Hence,

since no vertices of L∪ CL have a neighbor in R, we have N[P ] ⊆L∪ N[v0].
Similarly, N[Q ] ⊆L∪ N[v0]. We show that N[Q ] =L∪ N[v0]. Clearly, N[v0] ⊆ N[Q ]. Let v ∈L \ Q . Note that L∪ N[v0]

is connected and let R = (v0,a1,a2, . . . ,ai, v) (i � 1) be a shortest path from v0 to v . Since, v ∈L and R is a shortest path,
we get ai ≺L ai−1 ≺L · · · ≺L a1 ≺L v0. Furthermore, either v ≺L ai or ai contains v . By induction on j � i, we show that
(v0, v L,q2, . . . ,q j,a j+1, . . . ,ai, v) is a shortest path from v0 to v and therefore v ∈ N[Q ]. Since v L is the smallest neighbor
of v0 according to ≺L , then a2 ∈ N[v L] (or v ∈ N[v L] if i = 1) and then (v0, v L,a2, . . . ,ai, v) is a shortest path from v0
to v . Assume that (v0, v L,q2, . . . ,q j,a j+1, . . . ,ai, v) is a shortest path from v0 to v for some j < i. Then, j < p′ because
otherwise, Q would not be a maximal induced path. Moreover, since q j+1 is the smallest neighbor of q j according to ≺L ,
then a j+2 ∈ N[q j+1] (or v ∈ N[q j+1] if j = i − 1) and then (v0, v L,q2, . . . ,q j,q j+1,a j+2, . . . ,ai, v) is a shortest path from v0
to v . Hence, L∪ N[v0] ⊆ N[Q ] and so N[Q ] =L∪ N[v0].

Therefore, for all i � p′ = |Q | − 1, P i ⊆L∪ N[v0] = N[Q ] = Q p′
.

Now, we show by induction on i < p′ that P i ⊆ Q i . Since P 0 = Q 0 = N[v0], the result holds for i = 0. Let 0 � i < p′ − 1
and assume that P i ⊆ Q i . Let v ∈ P i+1 \ P i . Then, (v0, v1, . . . , vi+1, v) is an induced path from v0 to v . As above, we show
that (v0, v L,q2, . . . ,qi+1, v) is an induced path from v0 to v . Therefore, v ∈ Q i+1 and the result holds.

The case v1 ∈ CR can be handled similarly by symmetry.
Now, if v1 ∈ C and v2 ∈ L, we can prove in a similar way that N[P ] ⊆ L ∪ N[v1] = N[P L(v1)]. Hence, for all i � p′ =

|P L(v1)| − 1, P i ⊆ L ∪ N[v0] = N[P L(v1)] = Q p′
. Moreover, a similar induction on i < p′ allows to prove that P i ⊆ Q i . The

case v1 ∈ C and v2 ∈R is symmetric. �
The previous two lemmas roughly say that the fugitive can only choose five kinds of induced paths: the ones with

second vertex in C′ (such induced paths have only one edge), the ones with second vertex in CL and going through L, those
with second vertex in CR and going through R, and the paths with second vertex x ∈ C and then either going through L
or through R. Moreover, once the observer knows which kind of path has been chosen, it is sufficient for it to protect one
particular path. However, during the first step (before the first move of the fugitive), the first set S0 of marked vertices
must be chosen by the observer independently of what the fugitive will choose. Similarly, if the fugitive first goes to x ∈ C ,
the observer cannot guess yet on which side the fugitive will flee. Hence, the set Sx of marked vertices during the second
step (before the second move of the fugitive) must be independent of the next choice of the fugitive (Sx may only depend
on x). The next theorem formalizes these ideas.
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Now, we order the vertices of V (G) in the following way. The vertices in N[v0] are ordered arbitrarily, any vertex in L
is smaller than a vertex in N[v0] and any vertex in R is larger than the vertices in N[v0]. Finally, vertices in L are ordered
according to �R , i.e., for any v, w ∈ L, v < w if, and only if, w �R v . Symmetrically, vertices in R are ordered according
to ≺L . We say that a set S ⊆ V (G) is contiguous if for any a,b ∈ S and a < w < b, then w ∈ S . Note that a contiguous subset
including N[v0] of a connected interval graph induces a connected subgraph.

Theorem 24. Let G be an interval graph and v0 ∈ V (G). Let k be the smallest integer such that:

• there exists S0 ⊆ V (G) with N[v0] ⊆ S0 , |S0 \ {v0}| � k, and
• for all i > 0, |P i

L(v L) \ S0| � i · k and |P i
R(v R) \ S0| � i · k, and

• for any x ∈ C \ {v0}, there is Sx ⊆ V (G) \ S0 with N[v0] ∪ N[x] ⊆ S0 ∪ Sx and |Sx| � k, and
• for all i > 1 and any x ∈ C \ {v0}, |P i

L(x) \ (S0 ∪ Sx)| � (i − 1) · k and |P i
R(x) \ (S0 ∪ Sx)| � (i − 1) · k.

Then, sn(G, v0) = csn(G, v0) = k. Moreover, S0 can be chosen contiguous and the sets Sx can be chosen such that S0 ∪ Sx is contiguous
for any x ∈ C (without increasing k).

Proof. Let k be the smallest integer defined as in the statement of the theorem. We first show that k′ = sn(G, v0) is at
least k.

Claim 25. sn(G, v0) = k′ � k.

Let σ be any optimal winning strategy for the observer, i.e., marking k′ vertices at each step. Let S0 = σ({v0}, v0) ∪ {v0}
and, for any x ∈ C , let Sx = σ(S0, x). Obviously, |S0| � k′ + 1, |Sx| � k′ , N[v0] ⊆ S0 and N[x] ∪ N[v0] ⊆ S0 ∪ Sx .

Now, assume that the fugitive follows the induced path P L(x) = (v0, x, v2, . . . , v p) for some x ∈ C . At step i (1 <

i � p), when it is the turn of the fugitive that stands at vi , the observer must have marked at least the vertices in
N[{v0, x, v2, . . . , vi}]. Moreover, during the first two steps of the strategy, the observer has marked the vertices of S0 and
Sx by definition of σ . Hence, during the i − 1 steps after the first two steps, the observer must have marked the vertices in
N[{v0, x, v2, . . . , vi}] \ (S0 ∪ Sx) = P i

L(x) \ (S0 ∪ Sx) which proves that |P i
L(x) \ (S0 ∪ Sx)| � (i − 1) · k′ .

The other properties can be proved in the same way and thus, k′ � k.

Claim 26. There exist S∗
0 and S∗

x (x ∈ C) that are contiguous sets and that satisfy the same properties as S0 and Sx (x ∈ C). In other
words, S0 and Sx (x ∈ C) may be chosen contiguous.

Proof. Recall that to define contiguous sets, we have ordered the vertices in V (G).
Let � = |S0 ∩ L| and r = |S0 ∩R|. Let S∗

0 be the set obtained from the union of N[v0], the � greatest vertices in L and
the r smallest vertices in R. Note that S∗

0 is contiguous and that S0 = S∗
0 if, and only if, S0 is contiguous.

Similarly, for any x ∈ C , let �x = |Sx ∩L| and rx = |Sx ∩R|. Let S∗
x be the set obtained from the union of the �x greatest

vertices in L \ S∗
0 and the rx smallest vertices in R \ S∗

0. Note that S∗
0 ∪ S∗

x is contiguous and that Sx = S∗
x if, and only if,

S0 ∪ Sx is contiguous.
We claim that S∗

0 and the sets S∗
x , x ∈ C , satisfy the desired properties.

Indeed, (N[v0], S0 ∩L, S0 ∩R) is a partition of S0 hence, k + 1 = |N[v0]| + r + � and then |S∗
0| = k + 1 and N[v0] ⊆ S∗

0.
Moreover, |S∗

x | = �x + rx = |Sx| � k. Since N[v0] ∪ N[x] ⊆ S0 ∪ Sx , N[x] ∩ L ⊆ (S0 ∪ Sx) ∩ L. Hence, |N[x] ∩ L| � � + �x .
Moreover, N[x] ∩ L must be contiguous. Therefore, N[x] ∩ L ⊆ (S∗

0 ∪ S∗
x) ∩ L. By symmetry, N[x] ∩ R ⊆ (S∗

0 ∪ S∗
x) ∩ R, and

then N[v0] ∪ N[x] ⊆ S∗
0 ∪ S∗

x .
Let i > 1 and x ∈ C \ {v0}. We have |P i

L(x) \ (S0 ∪ Sx)| � (i − 1) · k. Moreover, P i
L(x) \ (S0 ∪ Sx) ⊆ L, hence |P i

L(x) ∩L| �
(i − 1) · k + � + �x . Also, P i

L(x) ∩ L must be contiguous, so either P i
L(x) ⊆ S∗

0 ∪ S∗
x in which case the result is trivial, or

(S∗
0 ∪ S∗

x) ∩L⊆ P i
L(x) ∩L. In the latter case, |P i

L(x) \ (S∗
0 ∪ S∗

x)| = |P i
L(x) ∩L| − |(S∗

0 ∪ S∗
x) ∩L| � (i − 1) · k.

The other properties can be checked in a similar way. �
Now, we describe a k-winning connected strategy for the observer. According to Claim 26, we may assume that the sets

S0 and Sx (x ∈ C) are contiguous.

Claim 27. csn(G, v0) � k.

Proof. We define a winning, connected k-strategy for the observer when the fugitive is constrained to follow induced paths.
By Theorem 7, this is sufficient to prove the claim.

Initially, the observer marks the vertices in S0. Let P = (v0, v1, . . .) be an induced path followed by the fugitive starting
from v0. If v1 ∈ C′ then the fugitive must stop there and loses. So assume that v1 /∈ C′ . By Lemma 22, v1 ∈ C ∪ CR ∪ CL and
v2 ∈ L ∪ R. First: if v1 ∈ C , at the second step, the observer marks the vertices in S v1 . Next, if v1 ∈ CL or v2 ∈ L, then at
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each step (but the second one if v1 ∈ C), the observer marks the k greatest vertices unmarked in L. Finally, if v1 ∈ CR or
v2 ∈ R, then at each step (but the second one if v1 ∈ C), the observer marks the k smallest vertices unmarked in R. Such
a strategy is connected since, at each step, the set of marked vertices is contiguous and connected to the set of previously
marked vertices. It is a k-strategy: the observer marks at most k vertices at each step because |S0 \ {v0}| � k and |S v1 | � k.

Let us show that the strategy is winning. Assume that v1 ∈ C and v2 ∈ L; the other cases can be handled in a similar
way. Clearly, the fugitive cannot win during the first two steps since N[v0] ⊆ S0 and N[v0] ∪ N[v1] ⊆ S0 ∪ S v1 . Now, after
its i-th step, i > 2, the observer has marked the vertices in S0 ∪ S v1 and the vertices in the set M formed with the (i − 2) ·k
greatest vertices in L\(S0 ∪ S v1 ). Since M is contiguous, P i−1

L (v1)\(S0 ∪ S v1 ) is also contiguous and |P i−1
L (v1)\(S0 ∪ S v1 )| �

(i − 2) · k, we get that P i−1
L (v1) \ (S0 ∪ S v1 ) ⊆ M . Finally, by Lemma 23, P i−1 = N[{v0, v1, . . . , vi−1}] ⊆ P i−1

L (v1). Therefore,
P i−1 ⊆ M ∪ (S0 ∪ S v1 ). Hence, all neighbors of the current position vi−1 of the fugitive are marked and the fugitive cannot
escape during its next move.

Hence, csn(G, v0) � k. �
This concludes the proof of Theorem 24. �

Theorem 28. Given an n-node interval graph with maximum degree � and a node v0 ∈ V (G), the value of sn(G, v0) (respectively,
csn(G, v0)) can be computed in time O (n · �3).

Proof. By Theorem 24, it is sufficient to prove that the smallest integer k defined in Theorem 24 can be computed in
polynomial time. An exhaustive check is sufficient: k being fixed, it can be checked in polynomial-time whether k satisfies
the properties. Indeed, by Theorem 24, the sets S0 and Sx (x ∈ C) that must be checked can be restricted to be contiguous.

Consequently, since S0 has k + 1 vertices and must contain v0, there are at most k such sets. Then, for any x ∈ C , S0
being fixed, there are at most k sets Sx since S0 ∪ Sx must be contiguous. Moreover, given x, x′ ∈ C , Sx and Sx′ can be
checked independently.

Hence, for any integer k, we have to check at most k sets S0 and k sets Sx for each x ∈ C . Since each test can be done in
linear time with respect to n, since C ⊆ N[v0] and k � �, the complexity of the algorithm is O (n · �3). �
5. Conclusion and further work

In this section, we summarize open questions and we discuss the different variants we plan to investigate.
We first solve the case of an invisible fugitive. Generally, in cops and robber games, both visible and invisible robbers

are difficult to handle. In our game, the invisible (or blind) case is trivial. In the case of an invisible fugitive, a winning
k-strategy for the observer is a sequence (X1, . . . , Xr) of subsets of vertices of G such that |Xi | � k for all i � r and for
any walk W (followed by the fugitive) starting from v0 and of length i, W ⊆ ⋃

j�i X j ∪ {v0}. The strategy is connected if
⋃

j�i X j ∪ {v0} induces a connected subgraph for all i � r. Let bsn(G, v0) (cbsn(G, v0)) be the smallest k such that there
exists a (connected) winning k-strategy for the observer. It is straightforward that:

Theorem 29. For any connected (di)graph G and v0 ∈ V (G), bsn(G, v0) = cbsn(G, v0) and equals the smallest k such that, for all
i � 1, |V i| � ki + 1, where V i is the set of vertices at distance at most i from v0 . Moreover, it can be computed in linear time in the
number of edges.

We now recall the questions we have asked throughout the paper and add some new questions:

• Does the problem of deciding sn in undirected graphs belong to NP?
• Does there exist a constant bounding the ratio (or the difference) between csn and sn in any graph?
• Does there exist a constant bounding the ratio (or the difference) between max� |N[S]|−1

|S| �, where the maximum is taken
over all S ⊆ V (G) inducing a connected subgraph of G containing v0, and sn(G, v0) for any graph G and any v0?

• What is the complexity of computing the surveillance number in the class of graphs with maximum degree 4? With
bounded degree? With bounded treewidth?

• Do there exist a constant c < 4 and an algorithm that computes sn(G, v0) in time O (cn) in general graphs G?

To conclude, we discuss the different variants of the problem we plan to study in the future. In this paper, the strongest
assumption is probably about the unbounded memory: when a Web page is prefetched, then it remains prefetched. In other
words, a vertex that is marked remains marked for all the following steps of the surveillance game. We plan to investigate
two more realistic models corresponding to two cache management policies. The first variant assumes that a marked vertex
becomes unmarked after a constant number of steps. The second model allows the observer to unmark some vertices,
respecting the constraint that the total number of nodes that are marked never exceeds a given threshold corresponding to
the maximum number of Web pages that can be prefetched simultaneously.

We also plan to model the variant in which the minimum visiting time can be different among the pages.
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Finally, we believe that the connected version of the game is particularly interesting since it is closer to the more
realistic online version of the prefetching problem. In an online version, the observer has no global knowledge of the graph
but discovers progressively the neighbors of the vertices he marks. We will further investigate this variant.
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