Trellis based decoding of linear block codes

- Previous discussion on trellis based decoding of convolutional codes applies directly to any code with a (moderately complex) trellis. We have considered the following algorithms:
 - Viterbi
 - SOVA
 - MAP (or BCJR)
 - Log-MAP
 - Max-log-MAP
- Linear block codes have irregular trellises
 - May be more difficult to design HW decoder
Computational complexity of Viterbi

- Let $I_i = 2$ if there is an information symbol corresponding to output bit i, $I_i = 1$ otherwise
- The branch complexity is the number of (one-symbol) branches
- Thus, it is also equal to the number of additions in the Viterbi algorithm N_a, and it follows that
 \[N_a = \sum_{i=0}^{n-1} I_i \cdot 2^{\rho_i} \]
- Let $J_i = 0$ if there is only one branch entering each state at time $i+1$, $J_i = 1$ otherwise
- Then, the number of comparisons made in the Viterbi algorithm is
 \[N_c = \sum_{i=0}^{n-1} J_i \cdot 2^{\rho_{i+1}} \]

Example: (8,4) RM

- $N_a = 44$
- $N_c = 11$
Trellis sectionalization

- **Sectionalization** combines adjacent bits and provides a trellis with fewer time instances in order to simplify the decoder.
- Let $\Lambda = \{t_0, t_1, \ldots, t_\nu\}$ for $\nu \leq n$. Delete all state spaces (and their adjacent branches) at time instances NOT in Λ, and connect every pair of states, one at time t_j and the other at time t_{j+1} iff there was a path between these states in the original trellis. Label the new branches by the old path labels.
- A set of parallel paths forms a composite branch.
Trellis sectionalization: Example

Three trellis sections
Sectionalized trellis decoding

- For each composite branch:
 - Find the best single branch among those that form the composite branch. Make a note of who is the winner
 - Each composite branch is replaced by the winning branch
 - The rest proceeds as the ordinary Viterbi algorithm
Complexity of sectionalized trellis decoding

- The complexity depends on the choice of section boundaries
- **An optimum sectionalization** is a sectionalization that requires the minimum number of additions + comparisons
- Let $\varphi(x, y) = \text{the number of computations needed to process the trellis section from time } x \text{ to time } y \text{ in any sectionalized trellis with } x, y \in \Lambda \text{ and } x+1, x+2, ..., y-1 \notin \Lambda$
- Let $\varphi_{\text{min}}(x, y) = \text{the smallest number of computations needed to process the trellis section(s) from time } x \text{ to time } y \text{ in any sectionalized trellis with } x, y \in \Lambda$
- $\varphi_{\text{min}}(0, y) = \min\{\varphi(0, y), \min_{0 < x < y}\{\varphi_{\text{min}}(0, x) + \varphi(x, y)\}\}$, for $1 < y \leq n$, and $\varphi(0, 1)$ for $y = 1$ (Lafourcade & Vardy)

Algorithm:
- Calculate $\varphi(x, y)$ for $0 \leq x < y \leq n$
- Use these values to calculate $\varphi_{\text{min}}(0, y)$ for successive values of y
Examples

<table>
<thead>
<tr>
<th>Code</th>
<th>Viterbi based on 64-section trellis</th>
<th>Viterbi based on Lafourcade–Vardy algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$RM(2, 6)$</td>
<td>425,209</td>
<td>101,786</td>
</tr>
<tr>
<td>(64, 22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$RM(3, 6)$</td>
<td>773,881</td>
<td>538,799</td>
</tr>
<tr>
<td>(64, 42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$RM(4, 6)$</td>
<td>7,529</td>
<td>6,507</td>
</tr>
<tr>
<td>(64, 57)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recursive ML decoding (RMLD)

- Uses a sectionalized trellis and recursive combining of path metrics
- Start with a minimal trellis for an \((n,k)\) linear block code
- Let \(L(s_x, s_y)\) be the set of paths (forming one composite path) from state \(s_x\) at time \(x\) to state \(s_y\) at time \(y\)
- \(L(s_x = \text{zero state}, s_y = \text{zero state})\) is the linear block code \(C_{tr}^{x,y}\)
- Each \(L(s_x, s_y)\) is a coset of \(C_{tr}^{x,y}\), i.e., a coset in \(p_{x,y}(C) / C_{tr}^{x,y}\)
- The number of distinct cosets is \(2^{k(p_{x,y}(C)) - k(C_{x,y})}\)
- Thus, each coset appears \(2^{k - k(C_{0,x}) - k(C_{y,n}) - k(p_{x,y}(C))}\) times as a composite path
- Note that the expression in (9.19) on page 357 in the book is wrong! If the expression was correct, then each coset would appear only a single time as a composite path. (9.19) is correct when \(i = 0\) and / or \(j = n\)
Composite path metric table (CPMT)

- Store, in the table CPMT_{x,y}, for each distinct composite path \(L(s_x, s_y) \)
 - The label of the best path within the composite path, denoted by \(l(L(s_x, s_y)) \)
 - The metric of the best path within the composite path, denoted by \(m(L(s_x, s_y)) \)

- The table CPMT_{0,n} will contain just one path which is the ML path

- Construct the table CPMT_{x,y} by
 1. Computing metrics for each path within the composite paths. This requires \(2^k(C_{x,y})(y-x-1) \) additions and \(2^k(C_{x,y})-1 \) comparisons, i.e., \(2^k(C_{x,y})(y-x) - 1 \) operations in total for each composite path. **Use this technique only when \(y-x \) is small**
 2. Combining tables CPMT_{x,z} and CPMT_{z,y}. **Use this technique when \(y-x \) is larger**
RMLD (cont.)

- $L(s_x, s_y) = \bigcup_{s_z} L(s_x, s_z) \circ L(s_z, s_y)$
- $m(L(s_x, s_y)) = \max_{s_z} \{m(L(s_x, s_z)) + m(L(s_z, s_y))\}$
- $l(L(s_x, s_y)) = l(L(s_x, s^{*}_{z})) \circ l(L(s^{*}_{z}, s_y))$, where s^{*}_{z} gives the maximum above
- This computation requires μ_{z} additions and $\mu_{z} - 1$ comparisons, where μ_{z} = the number of states at time z on some path from state s_x to state s_y
- In fact, $\mu_{z} = 2^{k(C_{x,y}) - k(C_{x,z}) - k(C_{z,y})}$
- Thus, forming the table CPMT$_{x,y}$ requires $2^{k(p_{x,y}(C)) - k(C_{x,y})}(2\mu_{z} - 1)$ operations
Complexity comparisons

- The amount of computation for each composite path $L(s_x, s_y)$ is
 - $2^{k(C_{x,y})}(y-x) - 1$ when using the direct approach
 - $2\mu_z - 1 = 2^{k(C_{x,y})} - k(C_{x,z}) - k(C_{z,y}) + 1 - 1$ when combining tables
- Recursive computation is always faster if $y-x > 2$, independent of the value of z. Note that the complexity is the same if $y-x = 2$
- Thus, the direct approach should only be used at the beginning of the recursion process
- How do we combine metric tables efficiently?
 - We use a special two-section trellis for the code $p_{x,y}(C)$
The special trellis: Structural properties

- The special trellis $T(\{x, z, y\})$ is a trellis for $p_{x,y}(C)$ that has a single initial state $s_{x,0}$ at time x and multiple final states at time y.

- There is one-to-one correspondence between states in Σ_z and the cosets in $p_{x,z}(C) / C_{x,z}^\text{tr}$. The composite path connecting $s_{x,0}$ to $s(D_z)$ is $L(s_{x,0}, s(D_z))$, where $s(D_z)$ is a state in Σ_z and $D_z = L(s_{x,0}, s(D_z))$ is a coset in $p_{x,z}(C) / C_{x,z}^\text{tr}$.

- There is one-to-one correspondence between states in Σ_y and the cosets in $p_{x,y}(C) / C_{x,y}^\text{tr}$. The composite path connecting $s_{x,0}$ to $s(D_y)$ is $L(s_{x,0}, s(D_y))$, where $s(D_y)$ is a state in Σ_y and $D_y = L(s_{x,0}, s(D_y))$ is a coset in $p_{x,y}(C) / C_{x,y}^\text{tr}$.

- If a state $s(D_z)$ at time z is connected to a state $s(D_y)$ at time y, then the connecting composite path $L(s(D_z), s(D_y))$ is a coset of $p_{z,y}(C) / C_{z,y}^\text{tr}$. Note that every coset in $p_{z,y}(C) / C_{z,y}^\text{tr}$ appears as a composite path between a state in Σ_z and a state in Σ_y.

- For every state $s(D_y)$ at time y, there is a set of μ_z states in Σ_z that connect the initial state $s_{x,0}$ to state $s(D_y)$. We denote this set of states by $\Sigma_z(s_{x,0}, s(D_y))$.
The special trellis: Structural properties

- \(L(s_{x0}, s(D_y)) = \bigcup_{s(D_z) \in \Sigma_z(s_{x0}, s(D_y))} L(s_{x0}, s(D_z)) \circ L(s(D_z), s(D_y)) \)
- \(m(L(s_{x0}, s(D_y))) = \max_{s(D_z) \in \Sigma_z(s_{x0}, s(D_y))} \{ m(L(s_{x0}, s(D_z))) + m(L(s(D_z), s(D_y))) \} \)
- Using the above expressions, the metric table \(\text{CPMT}_{x,y} \) can be constructed from the metric tables \(\text{CPMT}_{x,z} \) and \(\text{CPMT}_{z,y} \) using the special two-section trellis and ACS operations.
The special trellis: Construction

- Choose a basis \(\{ g_1, g_2, \ldots, g_{k(p_{x,y}(C))} \} \) for \(p_{x,y}(C) \) such that the first \(k(C_{x,y}) \) vectors form a basis of \(C_{x,y}^{tr} \).
- Let \(n_{x,y} = y - x + k(p_{x,y}(C)) - k(C_{x,y}) \).
- Construct the matrix \(G(x, y) \) and a three level trellis for the corresponding code with section boundary locations at \(x, z, y, \) and \(x + n_{x,y} \).

\[
G(x, y) = \begin{bmatrix}
g_1 & \vdots & \vdots & 0 \\
\vdots & \ddots & \vdots & \vdots \\
g_{k(C_{x,y})} & \vdots & \vdots & \vdots \\
g_{k(C_{x,y})+1} & \vdots & \vdots & I \\
g_{k(p_{x,y}(C))} & \vdots & & \\
\end{bmatrix}, \]

\(C_{x,y}^{tr} \)
An RMLD-(I,V) algorithm

- Divide the code into very short sections
- Then, apply the **MakeCPMT-I**(x, y) procedure to these short sections
 - The **MakeCPMT-I**(x, y) procedure is ”brute-force”
- Then, apply the **CombCPMT-V**(x, y; z) procedure to larger sections
 - The **CombCPMT-V**(x, y; z) procedure uses the Viterbi algorithm (on the special trellis) to combine the tables CPMT_{x,z} and CPMT_{z,y}
Optimum sectionalization

- How do we choose the values for z?
- A sectionalization (or the choices for z) that results in the smallest number overall computational complexity is called an optimum sectionalization.
- To find an optimum sectionalization, we use the Lafourcade-Vardy algorithm in the same manner as before. See below.
- Note: The RMLD-(I,V) algorithm with an optimum sectionalization is more efficient than the Viterbi algorithm based on the Lafourcade-Vardy's optimum sectionalization of the bit-level trellis.

\[
\psi_{\text{min}}(x, y) \triangleq \begin{cases}
\psi_M^{(I)}(x, y), & \text{if } y = x + 1, \\
\min\{\psi_M^{(I)}(x, y), \min_{x < z < y}\psi_{R,\text{min}}(x, y; z)\}, & \text{otherwise},
\end{cases}
\]

where

\[
\psi_{R,\text{min}}(x, y; z) \triangleq \psi_{\text{min}}(x, z) + \psi_{\text{min}}(z, y) + \psi_c^{(V)}(x, y; z).
\]
Complexity comparisons

<table>
<thead>
<tr>
<th>Code</th>
<th>Viterbi based on 64-section trellis</th>
<th>RMLD-(I,V)</th>
<th>Viterbi based on Lafourcade–Vardy algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM (2, 6)</td>
<td>425,209</td>
<td>78,209</td>
<td>101,786</td>
</tr>
<tr>
<td>(64, 22)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM (3, 6)</td>
<td>773,881</td>
<td>326,017</td>
<td>538,799</td>
</tr>
<tr>
<td>(64, 42)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM (4, 6)</td>
<td>7,529</td>
<td>5,281</td>
<td>6,507</td>
</tr>
<tr>
<td>(64, 57)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the RMLD algorithm allows for parallel processing as well to speed up decoding.