
Tight Bounds for Linkages in Planar Graphs

Isolde Adler1 Stavros G. Kolliopoulos2 Philipp Klaus Krause1

Daniel Lokshtanov3 Saket Saurabh4 Dimitrios Thilikos2

1 Goethe-Universität, Frankfurt am Main
2 National and Kapodistrian University of Athens

3 University of California, San Diego
4 Institute of Mathematical Sciences, Chennai

Abstract. The Disjoint-Paths Problem asks, given a graph G and a set of
pairs of terminals (s1, t1), . . . , (sk, tk), whether there is a collection of k pairwise
vertex-disjoint paths linking si and ti, for i = 1, . . . , k. In their f(k) · n3 algo-
rithm for this problem, Robertson and Seymour introduced the irrelevant vertex
technique according to which in every instance of treewidth greater than g(k)
there is an “irrelevant” vertex whose removal creates an equivalent instance of
the problem. This fact is based on the celebrated Unique Linkage Theorem, whose
– very technical – proof gives a function g(k) that is responsible for an immense
parameter dependence in the running time of the algorithm. In this paper we
prove this result for planar graphs achieving g(k) = 2O(k). Our bound is radi-
cally better than the bounds known for general graphs. Moreover, our proof is
new and self-contained, and it strongly exploits the combinatorial properties of
planar graphs. We also prove that our result is optimal, in the sense that the
function g(k) cannot become better than exponential. Our results suggest that
any algorithm for the Disjoint-Paths Problem that runs in time better than

22
o(k)

· nO(1) will probably require drastically different ideas from those in the
irrelevant vertex technique.

Keywords: Disjoint-Paths Problem, Planar Graphs, Linkages, Treewidth, Parame-
terized Algorithms.

1 Introduction

One of the most studied problems in graph algorithms is the Disjoint-Paths Problem
(DPP): Given a graph G, and a set of k pairs of terminals, (s1, t1), . . . , (sk, tk), decide
whether G contains k vertex-disjoint paths P1, . . . , Pk where Pi has endpoints si and ti,
i = 1, . . . , k. In addition to its numerous applications in areas such as network routing
and VLSI layout, this problem has been the catalyst for extensive research in algorithms
and combinatorics [22]. DPP is NP-complete, along with its edge-disjoint or directed
variants, even when the input graph is planar [23,16,13,15]. The celebrated algorithm of
Roberson and Seymour solves it however in f(k) ·n3 steps, where f is some computable
function [17]. This implies that when we parameterize DPP by the number k of termi-
nals, the problem is fixed-parameter tractable. The Robertson-Seymour algorithm is the
central algorithmic result of the Graph Minors series of papers, one of the deepest and
most influential bodies of work in graph theory.

The basis of the algorithm in [17] is the so called irrelevant-vertex technique which
can be summarized very roughly as follows. As long as the input graph G violates certain
structural conditions, then it is possible to find a vertex v that is solution-irrelevant:
every collection of paths certifying a solution to the problem can be rerouted to an
equivalent one, that links the same pairs of terminals, but in which the new paths avoid
v. One then iteratively removes such irrelevant vertices until the structural conditions
are met. By that point the graph has been simplified enough so that the problem can
be attacked via dynamic programming.

The following two structural conditions are used by the algorithm in [17]: (i) G ex-
cludes a clique, whose size depends on k, as a minor and (ii) G has treewidth bounded
by some function of k. When it comes to enforcing Condition (ii), the aim is to prove
that in graphs without big clique-minors and with treewidth at least g(k) there is al-
ways a solution-irrelevant vertex. This is the most complicated part of the proof and
it was postponed until the later papers in the series [18,19]. The bad news is that the
complicated proofs also imply an immense dependence, as expressed by the function f,
of the running time on the parameter k. This puts the algorithm outside the realm of
feasibility even for elementary values of k.

The ideas above were powerful enough to be applicable also to problems outside
the context of the Graph Minors series. During the last decade, they have been applied
to many other combinatorial problems and now they constitute a basic paradigm in
parameterized algorithm design (see, e.g., [3,4,7,9,10,12]). However, in most applications,
the need for overcoming the high parameter dependence emerging from the structural
theorems of the Graph Minors series, especially those in [18,19], remains imperative.
Hence two natural directions of research are: simplify parts of the original proof for
the general case or focus on specific graph classes that may admit proofs with better
parameter dependence. An important step in the first direction was taken recently by
Kawarabayashi and Wollan in [11] who gave an easier and shorter proof of the results
in [18,19]. While the parameter dependence of the new proof is certainly much better
than the previous, immense, function, it is still huge: a rough estimation from [11] gives

a lower bound for g(k) of magnitude 22
2Ω(k)

which in turn implies a lower bound for

f(k) of magnitude 22
22

Ω(k)

.
In this paper we offer a solid advance in the second direction, focusing on planar

graphs. We prove that, for planar graphs, g(k) is singly exponential. In particular we
prove the following result.

Theorem 1. There is a constant c such that every n-vertex planar graph G with treewidth
at least ck contains a vertex v such that every solution to DPP with input G and k pairs
of terminals can be replaced by an equivalent one avoiding v.

Given the above result, our Theorem 6 shows how to reduce, in O(n2) time, an
instance of DPP to an an equivalent one whose graph G� has treewidth 2O(k). Then,
using dynamic programming, a solution, if one exists, can be found in kO(treewidth(G�)) ·

n = 22
O(k)

· n steps.
The proof of Theorem 1 deviates significantly from those in [18,19,11]. It is self-

contained and exploits extensively the combinatorics of planar graphs. Moreover, we
give strong evidence that a parameterized algorithm for DPP with singly exponential
dependence, if one exists, should require entirely different techniques. Indeed, in that
sense, the result in Theorem 1 is tight:

Theorem 2. There exists an instance of the DPP on a 2Ω(k)-treewidth planar graph
G that has a unique solution spanning all the vertices of G.

Notice that, due to the recent lower bounds in [14], the Disjoint-Paths Problem
cannot be solved in 2o(w logw) · nO(1) for graphs of treewidth at most w, unless the
Exponential Time Hypothesis (ETH) fails. This result, along with Theorem 2, reveals
the limitations of the irrelevant vertex technique: any algorithm for the Disjoint-Paths
Problem whose parameter dependence that is better than doubly exponential, will
probably require drastically different techniques.

2 Preliminaries

Graphs are finite, undirected and simple. We denote the vertex set of a graph G by V (G)
and the edge set by E(G). Every edge is a two-element subset of V (G). A graph H is a
subgraph of a graph G, denoted by H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). A path
in a graph G is a sequence P = v1, . . . , vn of pairwise distinct vertices of G, such that
vivi+1 ∈ E(G) for all 1 ≤ i ≤ n− 1. For a graph G with e = vw ∈ E(G) let G/e denote
the graph obtained from G by contracting e, i.e. V [G/e] := (V (G) \ {v, w}) ∪ {xe},
where xe is a new vertex, and E(G/e) :=

�
E(G) \

�
uu� | uu� ∩ e �= ∅

��
∪
�
uxe | uv ∈

E(G) or uw ∈ E(G)
�
. A graph H is a minor of a graph G, if H can be obtained from a

subgraph of G by a sequence of edge contractions. We use standard graph terminology
as in [5]. The disjoint paths problem (DPP) is the following problem.

DPP

Input: A graph G, and pairs of terminals
(s1, t1), . . . , (sk, tk) ∈ V (G)2k

Question: Are there k pairwise vertex disjoint paths
P1, . . . , Pk in G such that Pi has endpoints si and ti?

We will call such a sequence P1, . . . , Pk a solution of the DPP.
Given an instance (G, (s1, t1), . . . , (sk, tk)) of DPP we say that a non-terminal vertex

v ∈ V (G) is irrelevant, if (G, (s1, t1), . . . , (sk, tk)) is a YES-instance if and only if (G \

v, (s1, t1), . . . , (sk, tk)) is a YES-instance. From now on G will always be an instance to
DPP accompanied by k terminal pairs.

Definition 1 (Grid). Let m,n ≥ 1. The (m × n) grid is the Cartesian product of a
path of length m− 1 and a path of length n− 1. In case of a square grid where m = n,
then we say that n is the size of the grid.

A subdivided grid is a graph obtained from a grid by replacing some edges of the grid
by pairwise internally vertex disjoint paths of length at least one. Embeddings of graphs
in the plane, plane graphs, planar graphs and faces are defined in the usual way. A graph
is outerplanar, if it has an embedding in the plane where all vertices are incident to the
infinite face.

A cycle in a graph G is a subgraph H ⊆ G, such that V (H) = {x0, x1, . . . , xk−1},
E(H) = {x0x1, x1x2, . . . , xk−2xk−1, xk−1x0} for some k ∈ N, k �= 1, and i �= j ⇒ xi �=
xj . Notice that we allow cycles to consist of a single vertex.

We use the fact that a subdivided grid has a unique embedding in the plane (up to
homeomorphism). For (1 × 1) grids and subdivided (2 × 2) grids this is clear, and for
(n × n) grids with n ≥ 2 this follows from Tutte’s Theorem stating that 3-connected
graphs have unique embeddings in the plane (up to homeomorphism). This implies
that subdivisions of (n × n) grids have unique embeddings as well. The perimeter of a
subdivided grid H is the cycle in H that is incident to the outer face (in an/every planar
embedding of H).

A directed graph is a pair D = (V,E) where V is a set and E ⊆ V × V. We call the
elements of E directed edges. For a directed edge (u, v) ∈ E we say that u is the tail of
(u, v), u = tail(u, v), and v is the head of (u, v), v = head(u, v).

3 Upper Bounds

The main result of this section is Theorem 6 stating that there is an O(n2)-step algorithm
that, given an instance G of DPP of treewidth 2Ω(k), can find a set of irrelevant vertices
whose removal from G creates an equivalent instance of treewidth 2O(k).

3.1 Basic Definitions

For our proofs we need first some definitions.

Observation 1 Let G, (s1, t1, . . . , sk, tk) be a planar instance of DPP and let h ∈ N. If
G contains a subdivided ((h

√
2k + 1) × (h

√
2k + 1)) grid, then G contains a subdivided

h× h grid H such that in every embedding of H all terminals lie outside the open disc
bounded by the perimeter of H.

Notice that Observation 1 ensures that once we have a large grid we can also assume
that we have a large grid that does not contain any terminal vertices. Next we define a
specific kind of embedding of cycles that helps us enforce structure in the proof.

Definition 2 (Tight concentric cycles). Let G be a plane graph and let C0, . . . , Cn

be a sequence of cycles in G such that each cycle bounds a closed disc Di in the plane.
We call C0, . . . , Cn concentric, if for all i ∈ {0, . . . , n− 1}, the cycle Ci is contained in
the interior of Di+1. The concentric cycles C0, . . . , Cn are tight, if, in addition, C0 is
a single vertex and for every i ∈ {0, . . . , n − 1}, Di+1 \ Di does not contain a cycle C
bounding a disc D in the plane with Di+1 � D ⊇ Di.

Two simple remarks are in order about tight concentric cycles.

Remark 1. Let G be a plane graph and let C0, . . . , Cn be tight concentric cycles in G
bounding closed discs D1, . . . , Dn, respectively, in the plane. Let P be a path connecting
vertices u and v with u, v /∈ Dn. If a vertex of P is contained in the interior of Di (i.e.
in Di \ Ci), then P has a vertex on Ci−1.

Remark 2. If a graph contains a ((2n+1)× (2n+1)) grid minor, it contains a sequence
C0, . . . , Cn of tight concentric cycles.

A linkage in a graph G is a family of pairwise disjoint paths in G. The endpoints of
a linkage L are the endpoints of the paths in L, and the pattern of L is the matching on
the endpoints induced by the paths, i.e. the pattern is the set

�
{s, t} | L contains a path

from s to t
�
.

Definition 3 (Segment & Handle). Let G be a plane graph, let C be a cycle in G
bounding a closed disc D in the plane and let P be a path in G such that its endpoints
are outside of D. We say that a path P0 is a D-segment (resp. D-handle) of P , if P0

is a non-empty maximal subpath of P whose endpoints are on C, and P0 ⊆ D (resp.
P0 ∩D contains only the endpoints of P0). For a linkage P in G we say that a path P0

is a D-segment (D-handle) of P, if P0 is a D-segment (D-handle) of some path P of
P.

Remark 3. Let G be a plane graph, let C be a cycle in G bounding a closed disc D
in the plane and let P = su1 . . . uqt be a path in G such that s and t are outside D.
Suppose xa, xb, xc, . . . , xj is the order in which the vertices of path P appear on the
cycle C when we traverse it from s to t. Then the subpath of P between xa and xb is
a D-segment while the subpath of P between xb and xc is a D-handle, and D-segments
and D-handles alternate.

From now on we will assume that G is a plane graph containing a sequence C0, . . . , Cn

of concentric cycles bounding closed discs D0, . . . , Dn, respectively, in the plane. Fur-
thermore there are no terminals contained in D and G is an YES-instance. That is, there
are paths between si and ti such that they are mutually disjoint. These paths form a
linkage that will be denoted by P. From now onwards whenever we say linkage we mean
a set of disjoint paths between pairs (si, ti). We will often refer to the Dn-segments
(Dn-handles) of P simply as the segments (handles) of P.

Definition 4 (I(Handle) and β(Handle)). Let G be a plane graph containing a se-
quence C0, . . . , Cn of concentric cycles bounding closed discs D0, . . . , Dn, respectively, in
the plane and P be a linkage. Let P be a Dn-handle and let its endpoints be x and y. Let
Cn[x, y] denote the path between x, y on the cycle C such that the finite face bounded by
P ∪ Cn[x, y] does not contain the interior of Dn. By I(P) we denote the subgraph of G
that has boundary P ∪ Cn[x, y], and we let β(P) := Cn[x, y].

Definition 5 (Cheap solution). Let G be a plane graph containing a sequence C0, . . . , Cn

of concentric cycles bounding closed discs D0, . . . , Dn, respectively, in the plane. For
a linkage P of G, define its cost c(P) as the number of edges of P that do not be-
long to

�n

i=0 Ci. A linkage P is called cheap, if there is no other linkage Q, such that
c(Q) < c(P).

Observe that the contribution of a Dn-handle of P to c(P) is always positive. Edges
of Dn-segments contribute to c(P) whenever they do not belong to a concentric cycle.
We assume for the remainder of Section 3 that we are given a cheap solution P to our
input instance and we explore its structure.

3.2 Simple properties of a cheap solution P

Lemma 1 (�). If P is a cheap solution to the input instance then there is no segment
P of P with vertices appearing in the order . . . , v0, . . . , v1, . . . , v2, . . . where v0 and v2
are vertices of C�, and v1 is a vertex of Cj, for n ≥ j > � ≥ 0.

Lemma 2 (�). Let P be a cheap solution to the input instance and Q be a handle. Then
there is terminal inside I(Q).

We remark that Lemma 2 is true in more general setting. We will use the generalized
version in a proof later. Let D be a disc with the boundary cycle C and T be a subpath
of a path in P with endpoints x and y on the disc and no points in the interior of the disc.
Let C[x, y] denote the path between x, y on cycle C such that the finite face bounded
by T ∪C[x, y] does not contain the interior of D. By I(T) we denote the subgraph that
has boundary T ∪C[x, y]. A proof similar to the one in Lemma 2 gives us the following.

Lemma 3. Let P be a cheap solution to the input instance and T be a subpath of a path
in P with endpoints on the disc and no points in the interior of the disc. Then there is
a terminal inside I(T).

3.3 Bounding the number of segment types

In this section we define a notion of segment types and obtain an upper bound on the
number of segment types.

Definition 6 (Segment Type). Let P be a solution to the input instance. Let R and
S be two Dn-segments. Let Q and Q� be the two paths on Cn connecting an endpoint
of R with an endpoint of S and passing through no other endpoint of R or S. We say
that R and S are equivalent, and we write R � S, if no Dn-segment of P has both
endpoints on Q and no Dn-segment has both endpoints on Q�. A type of Dn-segments
is an equivalence class of Dn-segments under the relation �.

Definition 7 (Segment graph). We start with the subgraph of G contained in Dn.
Retain only the edges and vertices of

�
P ∪ Cn. Choose an edge. If it is part of Cn,

contract it unless it connects endpoints of segments of different type. If it is not part
of Cn, contract it unless it connects endpoints of segments. Repeat until there are no
contractable edges left. Remove duplicate edges and loops, such that the graph becomes
simple again. The resulting graph is the segment graph of Dn.

Segment graphs are outerplanar graphs. An example can be seen in Figure 1.

Definition 8 (Tongue tip). A Dn-segment type is called tongue tip, if it is a single
vertex in the segment graph of Dn.

Definition 9 (Segment dual graph). We take the dual graph of the segment graph
of Dn. Delete the vertex that represents the infinite face. Add the vertices represent-
ing the tongue tips of the segment graph and connect them to the vertices representing
neighboring faces in the segment graph. The resulting graph is the segment dual graph
of Dn.

It is easy to see that the segment dual graph is a tree. See Figure 1(b) for an example.

Remark 4. Since the segment graph is outerplanar, the segment dual graph is a tree. All
inner nodes of the segment dual graph have degree at least 3.

(a) Segments of 8 Types, with 6
of the types being tongue tips

(b) Segment graph (colored) and
segment dual graph (black)

Fig. 1. Segments

The next lemma is based on Lemmata 2 and 3 and is one of the main ingredients of
our proof. It.

Lemma 4 (Tongue-taming (�)). Let P be a cheap solution to the input instance.
Then there are at most 2k − 1 tongue tips.

Theorem 3. Let P be a cheap solution to the input instance then P has at most 4k− 3
different types of Dn-segments.

Proof. The segment types correspond to the edges in the segment dual graph. The
tongue tips correspond to the leaves of the segment dual graph. According to Lemma 4
this tree has at most 2k leaves, and according to Remark 4 all inner nodes have degree
at least three. Thus the segment dual graph has at most 4k − 3 edges. ��

3.4 Bounding the size of segment types

In this section we find a bound on the size of segment types in cheap solutions and we
combine it with the bound on the number of segment types obtained in the previous
section to find irrelevant vertices. Indeed, we find that cheep solutions only pass through
a bounded number of concentric cycles.

We find the bound on the size of segment types by rerouting in the presence of a
large segment type. In a first step, we allow ourselves to freely reroute in a disc (making
sure that the graph remains planar), and we bound the number of segments of solution
paths in the disc. In a second step, we realize our rerouting in a sufficiently large grid.

Lemma 5 (�). Let Σ be an alphabet of size |Σ| = k. Let w ∈ Σ∗ be a word over Σ. If
|w| > 2k, then w contains an infix y with |y| ≥ 2, such that every letter occurring in y
occurs an even number of times in y.

The following lemma is essentially the main combinatorial result from [1]. The proof
is included here for the sake of completeness.

Lemma 6 (Rerouting in a disc (�)). Let G be a plane graph with k pairs of terminals
such that the DPP has a solution P. Let G contain a cycle C bounding a closed disc D
in the plane, such that no terminal lies in D. Assume that

– every D-segment of P is simply an edge,
– besides vertices and edges of D-segments, the interior of D contains no other vertices

or edges of G.

If there is a segment type that contains more than 2k segments, then we can replace
the outerplanar graph O consisting of all D-segments of P by a new outerplanar graph
O� such that in (G \ O) ∪ O� the DPP (with the original terminals) has a solution and
|E(O�)| < |E(O)|.

Definition 10. Let n,m ∈ N. An untidy (n × m) grid is a graph obtained from a set
H of n pairwise vertex-disjoint (horizontal) paths and a set V = {V1, . . . , Vm} of m
pairwise vertex-disjoint (vertical) paths as follows: Every path in V intersects every path
in H in precicely one non-empty path, and each path H ∈ H consists of m vertex-disjoint
segments such that Vi intersects H only in its ith segment (for every i ∈ {1, . . . ,m}). A
subdivided untidy (n×m) grid is obtained from an (n×m) grid by subdividing edges.

Let τ be a segment type in the plane graph. Recall that all the segments in a type
are “parallel” to each other. We say that segments S1, . . . , Sn ∈ τ are consecutive, if
they appear in this order (or in the reverse order) in the plane. Segment types that go
far into the concentric cycles yield subdivided untidy grids. More precisely, we show the
following that is an easy consequence of Lemma 1.

Lemma 7. Let l, n, r ∈ N with n ≥ l−1. Let P be a cheap solution to the input instance.
If there is a type τ of Dn-segments of P with |τ | ≥ r such that r consecutive segments of
τ each contain a vertex of Dn−l+1, then G contains a subdivided untidy (2l× r) grid as
a subgraph, with the r consecutive segments of τ as vertical paths, and suitable subpaths
of Cn, . . . , Cn−l+1, Cn−l+1, . . . , Cn (in this order) as horizontal paths. ��

The following lemma shows that we can reroute a sufficiently large segment type in
the case that many segments of the type go far into the concentric cycles.

Lemma 8 (Rerouting in an untidy grid). Let n, k ∈ N with n ≥ 2k−1 − 1. Let P
be a cheap solution to the input instance. Then P has no type τ of Dn-segments with
|τ | ≥ 2k + 1, such that each of 2k + 1 consecutive segments in τ contains a vertex in
Dn−2k−1+1.

Proof. Towards a contradiction, assume that τ is a type of Dn-segments of P with
|τ | ≥ 2k + 1, such that each of 2k + 1 consecutive segments in τ contains a vertex in
Dn−2k−1+1. Let r := 2k+1 and let l := 2k−1. Let H ⊆ G be a subdivided untidy (2l×r)
grid as in Lemma 7. The proof that follows is similar to the proof of Lemma 6, that
is, we reroute some segments of τ . In addition, we make sure that we can realize the
rerouted segments in H. If we let D := Dn, contract every Dn-segment of P to a single
edge and remove all other vertices and edges of G in the interior of D, then we can apply
Lemma 6 to the segment τ0 obtained from τ by the contraction. We do this as follows:
order the segments of τ (and hence of τ0) according to their occurence in the plane.
Colour the first 2k +1 segments by the number of the path of P they belong to. Among
these consecutive paths, find an infix d of colours as in Lemma 5. Then 2 ≤ |d| ≤ 2k. Let
H � be the subdivided unitidy (2l × |d|) subgrid of H with vertical paths corresponding
only to the segments in d, and the horizontal paths shortened accordingly, as much as
possible.

Reroute the segments in τ that correspond to the the letters of d as in Lemma 6.
Then we obtain |d|

2 new segments (indeed, in the lemma each of them is a single edge,

but now we simply subdivide them if necessary) and a new solution P � of the DPP. For
routing the new segments in H �, we use the paths of the old segments as follows: For
routing a new segment, we use at most two old segments corresponding to a letter in
d (two vertical paths in H �), and, for crossing horizontally, one horizontal path in H.
Notice that all Dn-segments of P � use subpaths of P and horizontal paths of H � only.
Since 2 ≤ |d| ≤ 2k it follows that 1 ≤

|d|
2 ≤ 2k−1. But H � has 2l = 2k horizontal paths

and horizontal crossings of P � use at most |d|
2 < 2k of them. Hence one of them, h say, is

not used by any horizontal crossing of P �. But then h has a crossing with at least 1 ≤
|d|
2

vertical path in H � that is not used by any path in P �. With this it is easy to see that
c(P �) < c(P), a contradiction. ��

The following remark says that if we have a sufficiently large segment type, then
many segments will go far into the concentric cycles.

Lemma 9. Let n, l, r ∈ N. Let P be a cheap solution to the input instance. Let τ be
a type of Dn-segments with |τ | ≥ 2l + r. Then n ≥ l − 1 and τ contains r consecutive
segments such that each of them has a vertex in Dn−l+1.

Proof. Order the segments in τ according to ther occurence in the planar embedding.
Remove the l first and the l last segments. From Lemma 1 it follows that n ≥ l− 1 and
each of the remaining segments contains a vertex in Dn−l+1. ��

Theorem 4 (Bounding the number of segments). Let P be a cheap solution to
the input instance. Then there are at most (8k − 6) · 2k + 4k − 3 Dn-segments of P.

Proof. We first prove that every type of Dn-segments of P contains less than 2 · 2k + 1
segments. Let l := 2k−1 and r := 2k + 1. Towards a contradiction, assume that τ is
a type of Dn-segments with |τ | ≥ 2 · 2k + 1 = 2l + r. Then, by Lemma 9, τ contains
r = 2k+1 consecutive segments such that each of them has a vertex in Dn−l+1, but this
is not possible by Lemma 8, a contradiction.

Now, by Theorem 3 the number of types of Dn-segments of P is at most 4k − 3, so
the total number of segments is at most (8k− 6) · 2k +4k− 3, concluding the proof. ��

Theorem 5 (Irrelevant Vertex). Let G be a plane graph with k pairs of terminals,
n = (8k − 6) · 2k + 4k − 2, and let G contain a sequence C0, . . . , Cn of concentric cycles
bounding closed discs D0, . . . , Dn, respectively, in the plane, such that no terminal of
the DPP lies in Dn. Let C0 = {v}, and assume that the DPP has a solution. Then the
DPP has a solution that avoids v.

Let G be a plane graph with k pairs of terminals, n = (8k − 6) · 2k + 4k − 2, and
let G contain a sequence C0, . . . , Cn of tight concentric cycles bounding closed discs
D0, . . . , Dn, respectively, in the plane, such that no terminal of the DPP instance lies
in Dn. Assume that DPP has a solution. Then there is a vertex v ∈ V (G) such that
DPP has a solution that avoids v.

Proof. Without loss of generality we assume that the cycles C0, . . . , Cn form a sequence
of tight concentric cycles around some vertex v ∈ V (G). Let P be a cheap solution to
DPP. We argue that P avoids v. By Theorem 4 the number of Dn-segments of P is at
most n− 1.

Consider a Dn-segment P of P. Let i be the lowest integer such that P ∩Ci �= ∅. We
say that P peaks at Ci. Note that P peaks at exactly one cycle Ci. Suppose P does not
avoid v. Since the number of Dn-segments of P is at most n− 1, there is an i such that

no Dn-segment of P peaks at Ci and some Dn-segment P of P peaks at Ci−1. Let P � be
the subpath of P with endpoints in Ci and internal vertices in Di \Ci, in particular P �

contains P ∩Ci−1. Let Q be the path between the endpoints of P � such that Q ⊆ Ci and
v is not contained in a cycle formed by Q ∪ P. Since no segment peaks at Ci, Lemma 1
implies that no Dn-segments of P contains an interior vertex of Q. Hence we can reroute
P along Q rather than along P �, contradicting that P is a cheap solution. ��

Given a plane graph G and a vertex v we show how to check whether a particular
vertex v satisfies the conditions of Theorem 5. We set C0 = {v} and given Ci we
construct Ci+1 by performing a depth first search from a neighbor u of a vertex in Ci,
always chosing the rightmost edge leaving the vertex we are visiting. This search will
either output an innermost cyclic walk (which then can be pruned to a cycle) around
Ci or determine that no such walk exists. In the case that a cycle Ci+1 is output, we
check whether the cyclic walk contained a terminal si or ti. If it did, it means that this
terminal lies on Ci+1 or in its interior. At this point (or when the search outputs that
no cycle around Ci exists), we have determined that there are i tight concentric cycles
around v with no terminal in the interior of Ci. If i > (8k − 6) · 2k + 4k − 2 this implies
that v satisfies the conditions of Theorem 5. Clearly this procedure can be implemented
to run in linear time. This yields the following theorem.

Theorem 6. Let G be a plane graph with k pairs of terminals, there is an O(|V (G)2|)
time algorithm that outputs an induced subgraph G� of G such that tw(G�) ≤ 72

√
2k

3
2 ·2k

and G is a YES-instance for DPP if and only if G� does.

Proof. W.l.o.g. we assume that G is connected. For each vertex v ∈ V (G) we check
whether v satisfies the conditions of Theorem 5 in linear time. If it does, we delete v.
The resulting graph is G�. By Theorem 5 G has a DPP solution if and only if G� does.
Observe that no vertex of G� satisfies the conditions of Theorem 5 because deleting a
vertex u from a graph cannot increase the number of concentric cycles around a vertex
v. It remains to argue that tw(G�) ≤ 72

√
2k

3
2 · 2k. Suppose not, we will prove that G�

contains a vertex v and a sequence C0, . . . , Cn of concentric cycles bounding closed discs
D0, . . . , Dn, respectively, in the plane, such that no terminal of the DPP lies in Dn. This
will contradict the construction of G�.

By [21],[8, Theorem 1], G contains a grid minor of size η×η, where η = 16
√
2k

3
2 ·2k.

Since there are only 2k terminals, there is a (16k · 2k × 16k · 2k) subgrid embedded in a
disc D which does not contain any terminals. Thus, in D there is a sequence of at least
(8k− 1) · 2k concentric cycles. The vertex v in the innermost of these cycles satisfies the
conditions of Theorem 5, contradicting the construction of G�. ��

4 The Lower Bound

Let H ⊆ G be a subgraph of the plane graph G. An inner vertex of H is a vertex that
is not part of the boundary of H.

Definition 11 (Crossing). Let H ⊆ G be a subgraph of the plane graph G. We say that
a path crosses the subgraph H if it contains an inner vertex of H and its endpoints are not
inner vertices of H. For k ∈ N we say that a path P = p0, p1, . . . , pn crosses H k times,
if it can be split into k paths P0 = p0, p1, . . . , pi1 , P1 = pi1 , pi1+1, . . . pi2 , . . . , Pk−1 =
pik−1 , pik−1+1, . . . , pn with each Pi, i = 0, . . . k − 1 crossing H. The parts of the Pi that
do not lie outside of H are called crossings of H.

Intuitively, we construct our example from a grid H of sufficient size. We add end-
points s0 and t0 on the boundary of the grid, mark the areas opposite to the grid as
not part of the graph and connect s0 to t0 without crossing the grid. Now we continue
to mark vertices by si and ti in such a way that Pi has to cross H as often as possible
(in order to avoid crossing Pj , j < i). Once si and ti have been added we remove the
area opposite to the grid from si from the graph. Figure 2(a) shows the situation after
doing this for i up to 2. In this construction P0 does not cross the grid at all, while P1

crosses it once and Pi+1 crosses it twice as often as Pi for i > 0: Let ki be the number
of times Pi crosses the grid. k0 = 0, k1 = 1, ki+1 = 2ki, ki = 2i−1, i > 0. After the last
Pi has been added, the areas opposite to the grid from both si and ti are removed from
the graph as seen in Figure 2(c).

Formally, to construct problem and graph with k + 1 terminals, we use a ((2k +
1) × (2k + 1)) grid. Let the vertices on the left boundary of the grid be n0, . . . , n2k .
Terminals are assigned as follows: t0 is the topmost vertex on the left boundary on
the grid, t1 the middle vertices on the right boundary. For all other terminals: si :=
n2k−i , ti := n3·2k−i . Then add edges going around the ti to the graph: For i > 1, ti = nj

add nj−1nj+1, nj−2nj+1, . . . , nj−2k−i−1nj+2k−i−1, and on the right boundary of H do
the analogue for t1. See Figure 2(d) for a graph constructed this way.

(a) P0, . . . , P2 (b) P0, . . . , P3

(c) P0, . . . , P4 (d) Actual graph with grid

Fig. 2. Construction of graph and solution

Theorem 7 (�). There is only one solution to the constructed DPP, all vertices of the
graph lie on paths of the solution and the grid is crossed 2k − 1 times by such paths.

In particular, H has no irrelevant vertex in the sense of [19].

Corollary 1. There is a planar graph G with k + 1 pairs of terminals such that

– G contains a ((2k + 1)× (2k + 1)) grid as a subgraph,
– the disjoint paths problem on this input has a unique solution,
– the solution uses all vertices of G; in particular, no vertex of G is irrelevant.

Vital linkages and tree-width We refer the reader to [2] for the definitions of tree-width
and path-width. A linkage L in a graph G is a vital linkage in G, if V (

�
L) = V (G) and

there is no other linkage L� �= L in G with the same pattern as L.

Theorem 8 (Robertson and Seymour [20]). There are functions f and g such that
if G has a vital linkage with k components then G has tree-width at most f(k) and
path-width at most g(k).

Recall that the (n× n) grid has path-width n and tree-width n. Our example yields
a lower bound for f and g:

Corollary 2. Let f and g be as in Theorem 8. Then 2k−1+1 ≤ f(k) and 2k−1+1 ≤ g(k).

Proof. Looking at the graph G and DPP constructed above the solution to the DPP is,
due to its uniqueness, a vital linkage for the graph G. G contains a ((2k +1)× (2k +1))
grid as a minor. The tree-width of such a grid is 2k +1 , its path-width 2k +1 [6]. Thus
we get lower bounds 2k−1 + 1 ≤ f(k), g(k) for the functions f and g. ��

Acknowledgment. We thank Ken-ichi Kawarabayashi and Paul Wollan for providing
details on the bounds in [11].

References

1. I. Adler, S. G. Kolliopoulos, and D. Thilikos. Planar disjoint paths completion. Submitted
for publication, 2011.

2. H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernet., 11(1-2):1–21, 1993.
3. Anuj Dawar, Martin Grohe, and Stephan Kreutzer. Locally excluding a minor. In LICS’07,

pages 270–279. IEEE Computer Society, 2007.
4. Anuj Dawar and Stephan Kreutzer. Domination problems in nowhere-dense classes. In

IARCS Annual Conference on Foundations of Software Technology and Theoretical Com-

puter Science (FSTTCS 2009), pages 157–168, 2009.
5. R. Diestel. Graph Theory. Springer, 2005.
6. John Ellis and Robert Warren. Lower Bounds on the Pathwidth of some Grid-like Graphs.

Discrete Applied Mathematics, 156(5):545–555, 2008.
7. Petr A. Golovach, M. Kaminski, D. Paulusma, and D. M. Thilikos. Induced packing of

odd cycles in a planar graph. In Proceedings of the 20th International Symposium on

Algorithms and Computation (ISAAC 2009), volume 5878 of Lecture Notes in Comput.

Sci., pages 514–523. Springer, Berlin, 2009.
8. Qian-Ping Gu and Hisao Tamaki. Improved bounds on the planar branchwidth with respect

to the largest grid minor size. In ISAAC (2), volume 6507 of Lecture Notes in Computer

Science, pages 85–96, 2010.

9. Ken-ichi Kawarabayashi and Yusuke Kobayashi. The induced disjoint path problem. In
Proceedings of the 13th Conference on Integer Programming and Combinatorial Optimiza-

tion (IPCO 2008), volume 5035 of Lect. Notes Comp. Sc., pages 47–61. Springer, Berlin,
2008.

10. Ken-ichi Kawarabayashi and Bruce Reed. Odd cycle packing. In Proceedings of the 42nd

ACM Symposium on Theory of Computing (STOC 2010), pages 695–704, New York, NY,
USA, 2010. ACM.

11. Ken-ichi Kawarabayashi and Paul Wollan. A shorter proof of the graph minor algorithm:
the unique linkage theorem. In Proc. of the 42nd annual ACM Symposium on Theory of

Computing (STOC 2010), pages 687–694, 2010.
12. Yusuke Kobayashi and Ken-ichi Kawarabayashi. Algorithms for finding an induced cycle

in planar graphs and bounded genus graphs. In Proceedings of the twentieth Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA 2009), pages 1146–1155. ACM-SIAM,
2009.

13. M. R. Kramer and J. van Leeuven. The complexity of wire-routing and finding minimum
area layouts for arbitrary VLSI circuits. Advances in Comp. Research, 2:129–146, 1984.

14. Daniel Lokshtanov, Daniel Marx, and Saket Saurabh. Slightly superexponential parame-
terized problems. In 22st ACM–SIAM Symposium on Discrete Algorithms (SODA 2011),
pages 760–776, 2011.

15. J. F. Lynch. The equivalence of theorem proving and the interconnection problem. ACM

SIGDA Newsletter, 5:31–36, 1975.
16. Matthias Middendorf and Frank Pfeiffer. On the complexity of the disjoint paths problem.

Combinatorica, 13(1):97–107, 1993.
17. Neil Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem. J.

Combin. Theory Ser. B, 63(1):65–110, 1995.
18. Neil Robertson and Paul Seymour. Graph minors. XXI. Graphs with unique linkages. J.

Combin. Theory Ser. B, 99(3):583–616, 2009.
19. Neil Robertson and Paul D. Seymour. Graph Minors. XXII. Irrelevant vertices in linkage

problems. Journal of Combinatorial Theory, Series B. (to appear).
20. Neil Robertson and Paul D. Seymour. Graph minors. XXI. Graphs with unique linkages.

Journal of Combinatorial Theory, Series B, 99(3):583–616, 2009.
21. Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a planar graph.

J. Comb. Theory Series B, 62:323–348, 1994.
22. Alexander Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. A.

Springer-Verlag, Berlin, 2003.
23. Jens Vygen. NP-completeness of some edge-disjoint paths problems. Discrete Appl. Math.,

61(1):83–90, 1995.

Appendix

Proofs of the lemmata of Subsection 3.2

Proof (of Lemma 1). Assume that such a segment exists. Then there is an innermost
one, i.e. one for which � is minimal. Let P be such an innermost segment. Let v0 and

(a) Lemma 1 (b) Lemma 2

Fig. 3. Constructions in proofs of Lemmata 1 and 2

v2 be the vertices nearest to v1 in P , such that v0 and v2 are part of C�. P has vertices
. . . , v0, . . . , v3, . . . , v2, . . . , in this order, where v3 is in C�+1 : P has to go through C�+1

to reach Cj from C�. The part of P between v0 and v2 cannot be replaced by the part
of C� that connects them, since P is cheap: It contains vertices and these vertices are
used in the solution. This means that vertices in C� between v0 and v2 are part of some
other segment P �. However to reach these vertices P � has to share a vertex with Cl−1

according to Remark 1, since there is no terminal in Dn and P blocks all other ways to
leave (Figure 3(a)). This contradicts the choice of P . ��

Proof (of Lemma 2). Assume that there is no such terminal. Let Q be a handle of an
innermost such path P, i.e., there is no other such path that contains a vertex of I(Q).
Let v0 and v1 be the endpoints of Q. Q cannot be replaced by the part of Cn that
connects v0 to v1, since P is cheap: this part contains a vertex v2, and v2 is used in
the solution. This means that v2 is used by some segment P �. Since no terminal can
be reached from v2 without using a vertex in Cn−1 according to Remark 1 (Q together
with v0 and v1 block any way out). P � contains vertices in Cn−1 before and after v2, and
v2 is part of Cn (Figure 3(b)). However, this is not possible according to the previous
lemma. ��

Proof of the Lemma of Subsection 3.3

Proof (of the Tongue Taming Lemma (Lemma 4)). We represent each tongue tip by
the outermost segment r that it contains, that is, r is the segment that has a vertex in
common with Cn, but not with Cn−1. Throughout this proof, we call these outermost
segments of tongue tips representatives, and we will denote them by lowercase letters
even though they correspond to paths in the graph G.

Let P be the path to which r belongs, P breaks into segments, handles and at most
two pieces which are neither handles nor segments, namely the subpaths of P which
connect the endpoints of P with the disc D. We call these the parts of P . If a part
directly preceding or succeeding r on P is a handle, we associate that handle with r. If a
part directly preceding or succeeding r on P is not a handle and goes to a terminal, we
associate the terminal with r. We denote the two handles associated with r as Left(r)
and Right(r). Here Left(r) is a handle that starts in the endpoint of r that we reach by
starting at the center of r and moving counterclockwise along Cn. By abusing the term
“endpoint” we will also refer to r as an endpoint of the two handles associated with it.

S1

Cn

x

Left(x) Right(x)

I(Right(x))

x�

S2

Cn

x
S1

Right(x)

Left(x)

z

Fig. 4. An illustration of some cases from the proof of Lemma 4. On the top: Case 2a. On the
bottom, an illustration of the Case 2b, with S2 �= ∅.

We prove the lemma by showing the existence of a matching in an auxiliary bipartite
graph. More precisely we construct the following two graphs.

– A bipartite graph T with bipartitions A and B. The part A contains a vertex for
each representative and B contains the set of terminals. We add an edge between
a vertex denoting the representative r and a vertex denoting the terminal t if: t is

associated with r, t ∈ I(Left(r)) or t ∈ I(Right(r)). We will abuse notation by
referring with the same symbol both to vertices in T and to the object (terminal or
representative) that the vertices correspond to.

– A graph H containing a vertex for each representative. Two representatives are
adjacent if they share a handle, that is, if there is a handle associated with both
representatives. Observe that the graph H is a set of disjoint paths.

We show that |A| ≤ |B|−1 ≤ 2k−1 by showing that in T , for each S ⊆ A, |N(S)| >
|S|. Since |B| is bounded by 2k we obtain the desired bound for |A|. Our proof is by
contradiction. Specifically, suppose there is a set S ⊆ A such that |S| ≥ |N(S)|. Among
all such sets we pick one with smallest |N(S)|, and among the ones with smallest |N(S)|
we pick one with largest |S|. We now define a partial order among representatives. We
say that x is below y if x ∈ β(Left(y))∪β(Right(y)) and y /∈ β(Left(x))∪β(Right(x)).
Next we make a few observations about the set S.

1. The set T [S∪N(S)] is connected. Otherwise each component of T [S∪N(S)] contains
at least one vertex from A and at least one vertex from B. Hence there is an S� ⊆ S
such that T [S�∪N(S�)] is a connected component of T [S∪N(S)] and |S�| ≥ |N(S�)|
and |N(S�)| < |N(S)|. This contradicts our choice of S.

2. Let Z be the set of all representatives that are below some representatives in S.
Then by our choice of S we have that Z ⊆ S.

3. For any r ∈ S and t ∈ N(r) there must be an r� ∈ S different from r such that
t ∈ N(r�). Otherwise N(S) contains t while N(S \ {r}) does not, and hence |N(S \

{r})| ≤ |S \ {r}|, contradicting the choice of S. In other words, no representative in
S has a private neighbor.

Let S� = {u | u ∈ S and for all w ∈ S, u �= w, u is not below w}. Essentially no repre-
sentative in S� is below any other representative in S. Observe that N(S�) = N(S) and
hence T [S� ∪N(S�)] is connected. Notice that since no two vertices in S� are below each
other, the only way two vertices in S can be adjacent to the same terminal is by sharing
a handle. Thus H[S�] is a connected subpath of a path P ∗ of H. Observe that P ∗ may
contain vertices that are not in S�.Let Pxy = H[S�] and we denote the endpoints of Pxy

by x and y respectively.
At this point we distinguish between a few different cases based on the way the

handles of x are embedded. See Fig. 4 for an illustration.

1. There is a terminal associated to x. Assume that there is a terminal t associated
with x. Then t is a private neighbor of x, a contradiction.

2. There are two handles associated with x. We consider two subcases according to
whether the handles go in “opposite direction” or in the “same direction”. The
direction of a handle is h defined as follows. The handle h goes left from r if h =
Left(r) and r /∈ β(h) or h = Right(r) and r ∈ β(h), and h goes right otherwise.
(a) The handles of x go in opposite directions. Since x is an endpoint of Pxy and the

handles of x go in opposite directions, at least one of the two handles associated
with x must end in a tongue tip x� /∈ S. Without loss of generality Left(x) starts
in x and ends in x�. Let S1 = S ∩ β(Left(x)) and S2 = S ∩ β(Right(x)). By
Lemma 2 both I(Left(x)) and I(Right(x)) contain at least one terminal each.
Furthermore, if S1 �= ∅ we have that |N(S1)| > |S1| by the choice of S. But then
|N(S \ (S1 ∪ {x}))| ≤ |S \ (S1 ∪ {x})|. We need to argue that S \ (S1 ∪ {x}) �= ∅,
however since I(Right(x)) contains at least one terminal and this terminal is
not a private neighbor of x it follows that S \ (S1 ∪ {x}) �= ∅.

(b) Finally, we have the case that the handles of x go in the same direction. This
case requires a bit more care. Without loss of generality we assume that both
handles of x go to the right. Observe that the handle Right(x) is drawn inside
the handle Left(x). Let z be the other endpoint of Left(x). Now we define S∗

to contain all vertices in S which are below both x and z, but not below any
other vertex in S.
Let P1 be the subpath of H[S∗] that contains a neighbor of x in H. Note that x
has a neighbor in S∗ in H, namely the other endpoint of Right(x). Let S1 be the
set of representatives in S∗ which are on the path P1 or below a representative
on P1. Similarly, if z has a neighbor in S∗ in H then let P2 be the subpath of
H[S∗] that contains a neighbor of z in H. Let S2 be the set of representatives
in S∗ which are on the path P2 or below a representative on P2. If z has no
neighbor in H from S∗, set P2 to be an empty path and S2 = ∅. Finally, set
S3 = S∗ \ (S1 ∪ S2). Observe that N(S1), N(S2) and N(S3) are disjoint sets.
Furthermore, |N(S1)| > |S1|, if S2 �= ∅ then |N(S2)| > |S2| and if S3 �= ∅ then
|N(S3)| > |S3|.
The path P1, x, z, P2 in Z corresponds to a path Q in G with enpoints on Cn

and no vertices in the interior of Dn. Thus, by Lemma 3, there is a terminal
t ∈ I(Q). Since t ∈ I(Q) it follows that t ∈ I(Left(x)) and t /∈ N(S1 ∪ S2).
Hence, if S3 = ∅ we have that |N(S \ ({x, z} ∪ S1))| ≤ |S \ ({x, z} ∪ S1)|.
On the other hand, if S3 �= ∅ we have that |N(S\({x, z}∪S1∪S3))| ≤ |S\({x, z}∪
S1∪S3)|. It remains to argue that S\({x, z}∪S1∪S3) �= ∅. Consider the handleW
associated with z which does not end in x. By Lemma 2 there is a terminal t� in
I(W). If t� is adjacent to x in T, then the other endpoint of W is in S2 and hence
S2 is non-empty. If, on the other hand, t� is not adjacent to x, there must be a
representative z� ∈ S different from z, and not in I(Left(x)) such that t� ∈ N(z�)
because otherwise t� is a private neighbor of z. Since z� ∈ S \ ({x, z} ∪ S1 ∪ S3)
we have that S \ ({x, z} ∪ S1 ∪ S3) �= ∅, concluding the proof.

This completes the proof. ��

Proofs of the Lemmata of Subsection 3.4

Proof (of Lemma 5). Let Σ = {a1, . . . , ak}, and let w = w1 · · ·wn with n > 2k. Define
vectors zi ∈ {0, 1}k for i ∈ {1, . . . , n}, and we let the jth entry of vector zi be 0 if
and only if letter aj occurs an even number of times in the prefix w1 · · ·wi of w and
1 otherwise. Since n > 2k, there exist i, i� ∈ {1, . . . , n} with i �= i�, such that zi = zi� .
Then y = wi · · ·wi� proves the lemma. ��

Proof (of Lemma 6). Assume there is a segment type in O that contains more than 2k

edges. Choose an ordering of the edges of this segment type that corresponds to their
order in the plane. Label each of these edges by a word in {1, . . . , k} according to the
number i of the path Pi ∈ P that it belongs to. Hence we obtain a word w over the
alphabet {1, . . . , k} with |w| > 2k, and by Lemma 5 we know that w contains an infix y
with |y| ≥ 2, such that every letter occurring in y occurs an even number of times in y.
Let Y := {e1, e2, . . . , e|y|} be the set of edges of O that correspond to the letters in y.
For every path Pi ∈ P we orient all edges of Pi from si to ti. For a path Pi ∈ P with
E(Pi) ∩ Y �= ∅, let ei1, . . . , e

i
2ni

be the (even number of) edges of Y appearing on Pi in
this order when moving from si to ti. We introduce a shortcut for Pi as follows:

For every odd number j ∈ {1, . . . , 2ni}, we replace the subpath of Pi from tail(ei
j
)

to head(ei
j+1) by a new edge f i

j
in the disc D. Having done this for all odd numbers

j ∈ {1, . . . , 2ni}, we obtain a new path P �
i
from si to ti that uses strictly less edges in

D than Pi. Let O� be the graph obtained from O by modifying all paths P ∈ P with
E(P) ∩ Y �= ∅ in this way (see Figure 4). Since |y| ≥ 2 we have |E(O�)| < |E(O)|.
Ovbiously, the DPP has a solution in (G \O) ∪O�.

(a) Segments before rerouting

(b) Segments after rerouting

Fig. 5. Construction in proof of Lemma 6

Finally, we give a geometric argument showing that O� is outerplanar: Given the pla-
nar embedding of G as above, we transform D homeomorphically into a large rectangle
R. The upper side of R lies on a straight line U , and the lower side lies on a straight
line L. Let S be the straight line parallel to U and L, that divides D into halves. We

assume that every edge in Y is represented by a vertical straight line segment from U
to L. We now take a smaller rectangle R0 ⊆ R bounded by U and L, such that the only
Dn-segments it contains are the segments in Y . Let ∂R0 be the boundary of R0.

For every path Pi using an edge of Y , let F i
j
denote the subpath of Pi from head(ei

j
)

to tail(ei
j+1) (for j ∈ {1, . . . , 2ni}, j odd). We replace F i

j
by a single edge ci

j
. Then the

graph H with vertex set V (O) and edge set

{cij | i ∈ {1, . . . , k}, E(Pi) ∩ Y �= ∅, j ∈ {1, . . . , 2ni
}, j odd}

is outerplanar. Take the embedding of H obtained from the embedding of G using the

(a) P0, P4 (b) P0, P4, . . . , P3

(c) P0, P4, . . . , P2 (d) P0, P4, . . . , P1

Fig. 6. Optimality of solution

rectangle as above, where we embed the edges ci
j
along the subpaths F i

j
. We regard

the embedded ci
j
as simple curves. Now we reflect the curves ci

j
inward at ∂R0. We

may assume that after reflection, none of the ci
j
crosses S or the drawing of an edge

in E(O) \ Y . (If not, transform the drawing accordingly.) After reflection, the curves
still have their endpoints on ∂R0 and they are pairwise non-crossing. In a second step,
we now reflect the curves at S. Let (ci

j
)� denote the curve obtained from ci

j
by these

two reflections. Now (ci
j
)� connects tail(ei

j
) to head(ei

j+1) (while ci
j
connects head(ei

j
)

to tail(ei
j+1)). Due to symmetry, the (ci

j
)� are pairwise non-crossing, and none of them

crosses a drawing of an edge in E(O) \ Y . Hence the (ci
j
)� together with the drawing of

edges in E(O) \ Y provide an outerplanar drawing of O� (where (ci
j
)� is the drawing of

f i
j
). Hence O� is outerplanar. This concludes the proof of the lemma. ��

Proof of Theorem 7 from Section 4

Proof (of Theorem 7). To connect sk to tk we need to crossH at least once (Figure 6(a)).
However, a solution in which PK crosses H only once would block Pk−1. To connect sk−1

to tk−1 Pk has to be routed around tk−1, which requires leaving and reenteringH (Figure
6(b)). Thus inductively constructing a solution each Pi, i > 0 requires a crossing of H
and doubles the number of crossings in each Pj , j > i. The solution uses all edges on the
left side of H and uses all but one of the edges on the right side. Thus the only way to
connect s0 to t0 is without crossing the grid. ��

