
Linear Kernels for (Connected) Dominating Set on H-minor-free graphs

Fedor V. Fomin ∗ Daniel Lokshtanov† Saket Saurabh‡ Dimitrios M. Thilikos§

Abstract

We give the first linear kernels for DOMINATING SET and CONNECTED DOMINATING SET prob-
lems on graphs excluding a fixed graph H as a minor. In other words, we give polynomial time algo-
rithms that, for a given H-minor free graph G and positive integer k, output an H-minor free graph G′

on O(k) vertices such that G has a (connected) dominating set of size k if and only if G′ has. Prior
to our work, the only polynomial kernel for DOMINATING SET on graphs excluding a fixed graph H
as a minor was due to Alon and Gutner [ECCC 2008, IWPEC 2009] and to Philip, Raman, and Sikdar
[ESA 2009] but the size of their kernel is kc(H), where c(H) is a constant depending on the size of
H . Alon and Gutner asked explicitly, whether one can obtain a linear kernel for DOMINATING SET on
H-minor free graphs. We answer this question in affirmative. For CONNECTED DOMINATING SET no
polynomial kernel on H-minor free graphs was known prior to our work.

Our results are based on a novel generic reduction rule producing an equivalent instance of the
problem with treewidth O(

√
k). The application of this rule in a divide-and-conquer fashion together

with protrusion techniques brings us to linear kernels.
As a byproduct of our results we obtain the first subexponential time algorithms for CONNECTED

DOMINATING SET, a deterministic algorithm solving the problem on an n-vertex H-minor free graph
in time 2O(

√
k log k) +nO(1) and a Monte Carlo algorithm of running time 2O(

√
k) +nO(1). For DOMI-

NATING SET our results implies a significant simplification and refinement of a 2O(
√

k)nO(1) algorithm
on H minor free graphs due to Demaine et al. [SODA 2003, J. ACM 2005].
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1 Introduction

In the DOMINATING SET (DS) problem, we are given a graph G and a non-negative integer k, and the
question is whether G contains a set of k vertices whose closed neighborhood contains all the vertices
of G. In the connected variant, CONNECTED DOMINATING SET (CDS), we also demand the subgraph
induced by the dominating set to be connected. DS, together with its numerous variants, is one of the
most classic and well-studied problems in algorithms and combinatorics [33]. A considerable part of
the algorithmic study on this NP-complete problem has been focused on the design of parameterized
algorithms. Formally, a parameterization of a problem is assigning an integer k to each input instance
and a parameterized problem is fixed-parameter tractable (FPT) if there is an algorithm that solves the
problem in time f(k) · |I|O(1), where |I| is the size of the input and f is an arbitrary computable function
depending on the parameter k only. In general, DS is W[2]-complete and therefore it cannot be solved
by a parameterized algorithm, unless an unexpected collapse occurs in the Parameterized Complexity
(see [22, 26, 40]). However, there are interesting graph classes where FPT-algorithms exist for the DS
problem. The project of widening the horizon where such algorithms exist spanned a multitude of ideas that
made DS the testbed for some of the most cutting-edge techniques of parameterized algorithm design. For
example, the initial study of parameterized subexponential algorithms for DS on planar graphs [1, 15, 30]
resulted in the creation of bidimensionality theory characterizing a broad range of graph problems that
admit efficient approximate schemes or fixed-parameter solutions on a broad range of graphs [16, 18, 21].

Another emerging technique in parameterized complexity is kernelization. A parameterized problem
is said to admit a polynomial kernel if there is a polynomial time algorithm (the degree of polynomial is
independent of the parameter k), called a kernelization algorithm, that reduces the input instance down
to an instance with size bounded by a polynomial p(k) in k, while preserving the answer. This reduced
instance is called a p(k) kernel for the problem. If the size of the kernel is O(k), then we call it a linear
kernel (for a more formal definition, see Section 2). Kernelization appears to be an interesting both from
practical and theoretical perspectives. Preprocessing (data reduction) is one of the basic practical algo-
rithmic approaches. There are many real-world applications where even very simple preprocessing can be
surprisingly effective, leading to significant size-reduction of the input. Kernelization is a natural tool not
only for measuring the quality of preprocessing rules proposed for specific problems but also for design-
ing new powerful preprocessing algorithms. From theoretical perspective, kernelization provides a deep
insight into the hierarchy of parameterized problems in FPT, the most interesting class of parameterized
problems. The recent breakthroughs [7, 14] establishes links between lower bounds on the sizes of kernels
and classical computational complexity.

One of the first results on linear kernels is the celebrated work of Alber, Fellows, and Niedermeier
on DS on planar graphs [2]. This work augmented significantly the interest in proving polynomial (or
preferably linear) kernels for other parameterized problems. The result from [2], see also [9], has been
extended to much more general graph classes like graphs of bounded genus [8] and apex-minor free graphs
[29]. An important step in this direction was done by Alon and Gutner [3, 32] who obtained a kernel of
sizeO(kh) for DS onH-minor free graphs, where the constant h depends on the excluded graphH . Later,
Philip, Raman, and Sikdar [41] obtained a kernel of size O(kh) on Ki,j-free and d-degenerated graphs,
where h depends on i, j and d respectively. Sizes of kernels in [3, 32, 41] are bounded by polynomials
in k with degrees depending on the size of the excluded minor H . Therefore, the challenge is to ask for
polynomial kernels of size f(h)·kO(1), where the function f depends exclusively on the graph class. In this
direction, there are already results for more restricted graph classes. According to the meta-algorithmic
results on kernels introduced in [8], DS has a kernel of size f(g) · k on graphs of genus g. Recently, an
alternative meta-algorithmic framework, based on bidimensionality theory [16], was introduced in [29],
implying the existence of a kernel of size f(H) · k for DS on graphs excluding an apex graph H as a
minor. While apex-minor free graphs form much more general class of graphs than graphs of bounded
genus, H-minor free graphs form much larger class than apex-minor free graphs. For example, the class
of graphs excluding H = K7, the complete graph on 7 vertices, as a minor, contains all apex graphs. Alon
and Gutner in [3] and Gutner in [32] posed as an open problem whether one can obtain a linear kernel for
DS on H-minor free graphs.

In this work we obtain a linear kernel for DS on graphs excluding some fixed graph H as a minor,
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which answers affirmatively the question of Alon and Gutner. Moreover, a non-trivial modification of the
ideas for DS kernelization can be used to obtain a linear kernel for CDS, which is usually much more
difficult problem to handle due to connectivity constrains. The extension of the results for planar graphs
from [2] and apex-minor free graphs from [29] to the more general family of H-minor free graphs cannot
be straightforward. Similar difficulties in transition of algorithmic techniques from apex-minor free to H-
minor free graphs were observed in approximation [19] and parameterized algorithms [16, 23]. Intuitively,
the explanation is that excluding an apex graph makes it possible to bound the tree-decomposability of the
input graph by a sublinear function of the size of a dominating set which is not the case for more general
classes of H-minor free graphs.

The main idea behind our algorithm is to identify and remove “irrelevant” vertices without changing
the solution such that in the reduced graph one can selectO(k) vertices which removal leaves protrusions,
that is, subgraphs of constant treewidth separated from the remaining vertices by a constant number of
vertices. As far as we are able to obtain such a graph, we can use the techniques from [29] to construct the
linear kernel. Roughly speaking, our rule to identify “irrelevant” vertices works as follows: we try specific
vertex subsets of constant size, for each subset we try all “feasible” scenarios how dominating sets can
interact with the subset, and find neighbours of theses subsets which removal does not change the outcome
of any feasible scenario. The main difference of this new reduction rule in comparison to other rules for
DS [2, 9] is that instead of reducing the size of the graph to O(k), it reduces the treewidth of the graph to
O(
√
k). Thus idea-wise, it is more closer to the “irrelevant vertex” approach developed by Robertson and

Seymour for disjoint paths and minor checking problems [42]. However, the significant difference with
this technique is that in all applications of “irrelevant vertex” the bounds on the treewidth are exponential
or even worse [36, 37, 38]. Moreover, Adler et al. [34] provide instances of the disjoint paths problem
on planar graphs, for which the irrelevant vertex approach of Robertson and Seymour produces graphs of
treewidth 2Ω(k). Our rule provides a reduced graph with sublinear treewidth.

The proof that after deletion of all irrelevant vertices the treewidth of the graph becomes sublinear is
non-trivial. For this proof we need the theorem of Robertson and Seymour [43] on decomposing a graph
into a set of torsos connected via clique-sums. By making use of this theorem, we show that by applying
the rule for all subsets of apex vertices of each torso, it is possible to reduce the treewidth of each torso
to O(

√
k). This implies that the treewidth of the reduced graph is also O(

√
k). However, the number of

torsos can be Ω(n), and the sublinear treewidth of the reduced graph still does not bring us directly to the
desired constant-treewidth vertex removal property. To overcome this obstacle, we have to implement the
irrelevant vertex rule in a divide and conquer manner, and only after that we can guarantee that the reduced
graph has the constant-treewidth vertex removal property.

Besides linear kernels for DS and CDS, an immediate byproduct of our “irrelevant vertex technique” is
a radical simplification of the subexponential parameterized algorithm of Demaine et al. [16] for DS, and
the first parameterized subexponential algorithms for CDS on H-minor free graphs. Also our kernels can
be used to obtain subexponential parameterized algorithms for these problems that use polynomial space.

2 Definitions and Notations

In this section we give various definitions which we make use of in the paper. We refer to Diestel’s book
[20] for standard definitions from Graph Theory. Let G be a graph with vertex set V (G) and edge set
E(G). A graph G′ is a subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). For subset V ′ ⊆ V (G),
the subgraph G′ = G[V ′] of G is called a subgraph induced by V ′ if E(G′) = {uv ∈ E(G) | u, v ∈ V ′}.
By NG(u) we denote (open) neighborhood of u in graph G that is the set of all vertices adjacent to u
and by N [u] = N(u) ∪ {u}. Similarly, for a subset D ⊆ V , we define NG[D] = ∪v∈DNG[v] and
NG(D) = NG[D] \ D. We omit the subscripts when it is clear from the context. Throughout the paper,
given a graphG and vertex subsets Z and S, whenever we say that a subset Z dominates all but (everything
but) S then we mean that V (G) \ S ⊆ N [Z]. Observe that a vertex of S can also be dominated by the set
Z.

We denote byKh the complete graph on h vertices. For integer r ≥ 1 and vertex subsets P,Q ⊆ V (G),
we say that a subset Q is r-dominated by P , if for every v ∈ Q there is u ∈ P such that the distance
between u and v is at most r. For r = 1, we simply say that Q is dominated by P . We denote by N r

G(P )
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the set of vertices r-dominated by P .
Given an edge e = xy of a graph G, the graph G/e is obtained from G by contracting the edge e, that

is, the endpoints x and y are replaced by a new vertex vxy which is adjacent to the old neighbors of x and y
(except from x and y). A graph H obtained by a sequence of edge-contractions is said to be a contraction
of G. We denote it by H ≤c G. A graph H is a minor of a graph G if H is the contraction of some
subgraph of G and we denote it by H ≤m G. We say that a graph G is H-minor-free when it does not
containH as a minor. We also say that a graph class GH isH-minor-free (or, excludesH as a minor) when
all its members are H-minor-free. An apex graph is a graph obtained from a planar graph G by adding
a vertex and making it adjacent to some of the vertices of G. A graph class GH is apex-minor-free if GH
excludes a fixed apex graph H as a minor. We denote by tw(G) the treewidth of graph G. (See Appendix
for the definition of treewidth.)

Kernels and Protrusions. A parameterized problem Π is a subset of Γ∗×N for some finite alphabet Γ. An
instance of a parameterized problem consists of (x, k), where k is called the parameter. We will assume
that k is given in unary and hence k ≤ |x|O(1). A central notion in parameterized complexity is fixed
parameter tractability (FPT) which means, for a given instance (x, k), solvability in time f(k) · p(|x|),
where f is an arbitrary function of k and p is a polynomial in the input size [22]. The notion of kernelization
is formally defined as follows.

A kernelization algorithm, or in short, a kernelization, for a parameterized problem Π ⊆ Γ∗ × N is
an algorithm that given (x, k) ∈ Γ∗ × N outputs in time polynomial in |x| + k a pair (x′, k′) ∈ Γ∗ × N
such that (a) (x, k) ∈ Π if and only if (x′, k′) ∈ Π and (b) |x′|, k′ ≤ g(k), where g is some computable
function. The output of kernelization (x′, k′) ∈ Π is referred as the kernel and the function g is referred to
as the size of the kernel. If g(k) = kO(1) or g(k) = O(k) then we say that Π admits a polynomial kernel
and linear kernel respectively.

Given a graph G, we say that a set X ⊆ V (G) is an r-protrusion of G if tw(G[X]) ≤ r and the
number of vertices in X with a neighbor in V (G) \X is at most r.

Treewidth, torso and Graph Structure Theorem. A tree decomposition of a graph G is a pair (X , T )
where T is a tree and X = {Xi | i ∈ V (T )} is a collection of subsets of V such that:
1.
⋃
i∈V (T )Xi = V (G),

2. for each edge xy ∈ E(G), {x, y} ⊆ Xi for some i ∈ V (T );
3. for each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree of T .

The width of the tree decomposition is maxi∈V (T ) |Xi|−1. The treewidth of a graphG is the minimum
width over all tree decompositions of G. We denote by tw(G) the treewidth of graph G.

A torso of a tree-decomposition (X , T ) of a graph G is a graph Lt, t ∈ V (T ), obtained from G[Xt] by
adding edges uv such that u and v are in Xt ∩Xt′ , where t and t′ are nodes adjacent in T . Observe that it
is possible that u and v may not be adjacent in G and thus Lt is not necessarily a subgraph of G. To state
the next theorem we need also the notion of a graph that can be h-nearly embedded in a surface.

Definition 1 (h-nearly embeddable graphs). Let Σ be a surface with boundary cyclesC1, . . . , Ch, i.e. each
cycle Ci is the border of a disc in Σ. A graphG is h-nearly embeddable in Σ, ifG has a subsetX of size at
most h, called apices, such that there are (possibly empty) subgraphs G0 = (V0, E0), . . . , Gh = (Vh, Eh)
of G \X such that

• G \X = G0 ∪ · · · ∪Gh,

• G0 is embeddable in Σ, we fix an embedding of G0,

• graphs G1, . . . , Gh (called vortices) are pairwise disjoint,

• for 1 ≤ · · · ≤ h, let Ui := {ui1 , . . . , uimi
} = V0 ∩ Vi, Gi has a path decomposition (Bij), 1 ≤ j ≤

mi, of width at most h such that

– for 1 ≤ i ≤ h and for 1 ≤ j ≤ mi we have uj ∈ Bij
– for 1 ≤ i ≤ h, we have V0 ∩ Ci = {ui1 , . . . , uimi

} and the points ui1 , . . . , uimi
appear on Ci

in this order (either if we walk clockwise or anti-clockwise).
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The following theorem is one of the most fundamental results in Graph Minors Theory of Robertson
and Seymour, see also Section 12.4 in Diestel’s book [20].

Theorem 1 ([43]). For every graph H there exists an integer h, depending only on the size of H , such that
every graph excluding H as a minor has a tree-decomposition whose torsos can be h-nearly embedded in
a surface Σ in which H cannot be embedded.

Kawarabayashi and Wollan [35] prove a constructive version of this theorem, and gave an algorithm
computing such a tree-decomposition of an n-vertex graph G in time O(f(H)n3). Thus, throughout the
paper we will assume that such a decomposition of the graph is given. So when we talk of the torsos of G
we mean the torsos of this decomposition.

The main consequence of Theorem 1 we need for our purposes is that for everyH there exist constants
h and h′ such that for every torso L of the decomposition from Theorem 1, there exists a set of vertices
A ⊆ V (L) of size at most h, called apices, such that the graph obtained from L after deleting the apices
does not contain some apex graph H ′ of size h′ as a minor. See, e.g. [31, Theorem 13].

3 Kernel for DOMINATING SET

In this section we give a linear kernel for the DS problem. The kernelization algorithm has two phases. The
key ingredient of the first phase is a rule that removes “irrelevant vertices” in order to obtain an equivalent
graph with treewidth bounded by O(

√
k). The irrelevant vertex rule is applied in multiple rounds in a

recursive fashion, and obtain a set D of size O(k) vertices such that its deletion leaves a graph of constant
treewidth. We call such set D as treewidth deletion set. Then applying a “protrusion rule” [8] together
with the fact that DS has finite integer index, we get the desired linear kernel for DS .

Obtaining an equivalent graph of treewidth at most O(
√
k). Let G be an n-vertex graph excluding some

fixed graphH as a minor. In this section we assume that we are given a tree-decomposition (X , T ) ofG as
in Theorem 1, such that the torsos of the tree-decomposition can be h-nearly embedded in a surface Σ in
which H cannot be embedded. Such a decomposition can be constructed in timeO(f(H)n3) [35]. Let Lt
be a torso corresponding to some vertex t ∈ V (T ). Next we show how to obtain an equivalent graphG′, in
fact an induced subgraph ofG obtained by deleting vertices from Lt, such that the subgraph corresponding
to Lt in G′ has treewidth O(

√
k). We repeat this procedure for every torso corresponding to vertices in

V (T ). Finally we obtain an equivalent graph G′ such that it has a tree-decomposition (X ′, T ) such that all
its torsos have treewidth O(

√
k). Since the treewidth of a graph is at most the maximum treewidth of its

torsos, see e.g. [16], this implies that the treewidth of G′ is O(
√
k).

Irrelevant Vertex Rule. The irrelevant vertex rule will be used in a recursive fashion. In each recursive step
it is used in order to reduce the treewidth of torsos and hence also the entire graph. Then the graph is split
in two pieces and the procedure is applied recursively to the two pieces. In this way we obtain a treewidth
deletion set of the reduced graph of size O(k). Let G be a graph given with its tree-decomposition (X , T )
as described in Theorem 1, and Lt be one of its torsos. Let S be a dominating set of G, and A, |A| ≤ h, be
the set of apices of Lt. The reduction rule essentially “preserves” all dominating sets of size at most |S| in
G, without introducing any new ones.

To describe the reduction rule we need several definitions. The first step in our reduction rule is to
classify different subsets A′ of A into feasible and infeasible sets. The intuition behind the definition is
that a subset A′ of A is feasible if there exists a set D in G of size at most |S|+ 1 that dominates all but S
and so that D∩A = A′. However, we cannot test in polynomial time whether such a set D exists. We will
therefore say that a subset A′ of A is feasible if the 2-approximation for Dominating Set on H-minor-free
graphs [17, 28] outputs a set D of size at most 2(|S|+ 2) that dominates V (G) \ (A ∪ S). Observe that if
such a set D of size at most |S|+ 1 exists then A′ is surely feasible, while if no such set D of size at most
2|S|+ 2 exists, then A′ is surely not feasible. We will frequently use this in our arguments. Let us remark
that there always exists a feasible set A′ ⊆ A. In particular, A′ = S ∩ A is feasible since S dominates G.
For feasible sets A′ we will denote by D(A′) the set D output by the approximation algorithm.

For every subsetA′ ⊆ A, we select a vertex v ofG such thatA′ ⊆ NG[v]. If such a vertex exist, we call
it a representative ofA′. Let us remark that some sets can have no representatives and some distinct subsets
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of A may have the same representative. We define R to be the set of representative vertices for subsets of
A. The size ofR is at most 2|A|. ForA′ ⊆ A, the set of dominated vertices (byA′) isW (A′) = N(A′)\A.
We say that vertex v ∈ V (G) \A is fully dominated by A′ if N [v] \A ⊆W (A′). A vertex w ∈ V (G) \A
is irrelevant with respect to A′ if w /∈ R, w /∈ S, and w is fully dominated by A′. Now we are ready to
state the irrelevant vertex rule.

Irrelevant Vertex Rule: If a vertex w is irrelevant with respect to every feasible A′ ⊆ A, then delete w
from G.

In the proof of correctness of the Irrelevant Vertex Rule, we will in fact prove that some stronger
properties of the reduced graph hold than just that the reduced instance is equivalent to the instance we
start from. The reason we do this is due to the recursive fashion in which the rule will be applied. To this
end we need the following definition.

Definition 2. Let G be a graph and S be a dominating set of G, G′ be an induced subgraph of G, and
S′ ⊆ V (G′) be a dominating set of G′ such that S ⊆ S′. We say that (G′, S′) simulates (G,S) if
the following two conditions are satisfied. (i) For every set Z in G of size at most |S| that dominates
V (G)\S, there is a set Z ′ of size at most |Z| in G′ such that Z ∩S ⊆ Z ′ and Z ′ dominates all the vertices
of NG[Z]∩V (G′); (ii) for every set Z ′ in G′ that dominates all but S′, there is a set Z in G of size at most
|Z ′| such that Z ′ ∩ S′ ⊆ Z and Z dominates NG[Z ′] ∪ (V (G) \ V (G′)) in G.

To get some intuition about the definition above, observe that if (G′, S′) simulates (G,S) then for
every p ≤ |S|, G has a dominating set of size p if and only if G′ has a dominating set of size p. Given a
dominating set of size p, say Z, of G, we know that there exists a set Z ′ of the same size that dominates
all the vertices of N [Z] present in G′. Since G′ is an induced subgraph of G and Z is a dominating set,
we have that N [Z] ∩ V (G′) = V (G′) and hence Z ′ is a dominating set of size at most p for G′. Similarly
given a dominating set Z ′ of G′ of size at most p, we know that there exists a set Z in G of size at most p
that dominates N [Z ′] ∪ (V (G) \ V (G′)) = V (G).

There are two simple properties of simulation that we will frequently use. The first is that if S ⊂ S′

then (G,S′) simulates (G,S). The second is transitivity: if (G′′, S′′) simulates (G′, S′) and (G′, S′)
simulates (G,S), then (G′′, S′′) simulates (G,S). We are now ready to prove a lemma which will be
crucial to arguing correctness of our kernelization algorithm.

Lemma 1. Let S be a dominating set inG, and G′ be the graph obtained by applying the Irrelevant Vertex
Rule on G, where w was the deleted vertex. Then (G′, S) simulates (G,S).

Proof. We start with property (i) of simulation. Let Z ⊂ V (G) such that |Z| ≤ |S| and Z dominates
everything but S. Let A′ = Z ∩ A, and observe that A′ is feasible because Z dominates all but S. If
w /∈ Z, then Z ′ = Z satisfies condition (i), as S ∩ Z ′ = S ∩ Z, |N(Z ′)| = |N(Z)|, and |Z ′| = |Z|. So
assume w ∈ Z. Since w is irrelevant with respect to all feasible subsets of A and A′ is feasible, we have
that w is irrelevant with respect to A′. Hence NG(w) \NG(Z \w) ⊆ A. There is a representative w′ ∈ R,
w′ 6= w (since w /∈ R), such that NG(w) ∩ A ⊆ NG(w′) ∩ A. Hence Z ′ = (Z ∪ {w′}) \ {w} satisfies
condition (i) of simulation.

Now, let Z ′ ⊆ V (G′) be such that |Z ′| ≤ |S| and Z ′ dominates everything but S in G′. We show
that Z ′ also dominates w in G. Specifically Z ′ ∪ {w} is a dominating set of all but S in G of size at most
|S| + 1 so Z ′ ∩ A is feasible. Since {w} is irrelevant with respect to Z ′ ∩ A, we have w ∈ NG(Z ′ ∩ A).
This concludes the proof.

Reducing treewidth. For a graph G and its dominating set S, we apply the Irrelevant Vertex Rule ex-
haustively on all torsos of G, obtaining an induced subgraph G′ of G. By Lemma 1 and transitivity of
simulation, (G′, S) simulates (G,S). We now prove that a graph G which can not be reduced by the
irrelevant vertex rule has low treewidth. The way we do this, is by proving that each torso of G has low
treewidth.

Lemma 2. Let G be a graph which is irreducible by the Irrelevant Vertex Rule and S be a dominating set
of G. For every torso Lt of G, tw(Lt) = O(

√
|S|).
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Proof. Let L∗t = Lt \ A, where A are the apices of Lt. We will obtain a 2-dominating set of size O(|S|)
in L∗t . Towards this end, consider the following set, Q =

⋃
A′⊆A,A′is feasible D(A′) ∪ R ∪ S \ A. The

number of representative vertices R and the number of feasible subsets A′ is at most 2|A| ≤ 2h, where
h is a constant depending only on H . The size of D(A′) is at most 2|S| + 2 for every A′. Thus |Q| ≤
2h(2|S|+2)+2h+ |S| = O(|S|). We prove thatQ is a 2-dominating set of V (G)\A. Let w ∈ V (G)\A.
If w ∈ R or w ∈ S then Q dominates S. So suppose w /∈ R ∪ S. Then, since w is not irrelevant, we
have that there is a feasible subset A′ of A such that w is relevant with respect to A′. Hence w is not fully
dominated by A′ and so w has a neighbour w′ ∈ V (G) \N [A′]. But w′ is dominated by D(A′) ⊆ Q, and
thus w is 2-dominated by Q in G \A. Hence G \A has a 2-dominating set of size O(|S|).

The graph L∗t can be obtained from G\A by contracting all edges in E(G\A)\E(L∗t ) and adding all
edges in E(L∗t ) \E(G \A). Since contracting and adding edges does not increase the size of a minimum
2-dominating set of a graph, L∗t has a 2-dominating set of size O(|S|).

To conclude, L∗t excludes an apex graph as a minor (see discussions after Theorem 1) and it has a
2-dominating set of size O(|S|). By the bidimensionality of 2-dominating set, we have that tw(L∗t ) =
O(
√
|S|) [16, 27]. Now we add all the apices ofA to all the bags of the tree decomposition of L∗t to obtain

a tree decomposition for L′t of width O(
√
|S|) + h = O(

√
|S|).

Let us remark that Irrelevant Vertex Rule is based on the performance of a polynomial time approx-
imation algorithm. Thus by Lemmata 1 and 2, and the fact that the treewidth of a graph is at most the
maximum treewidth of its torsos, see e.g.[16], we obtain the following lemma.

Lemma 3. There is a polynomial time algorithm that for a given graph G and a dominating set S of G,
outputs an induced subgraph G′ of G such that(G′, S) simulates (G,S) and tw(G′) = O(

√
|S|).

Before we proceed further, we show the power of Lemma 3 by deriving a simple subexponential time
algorithm for DS on H-minor free graphs. This is one of the cornerstone results in [16] and is based on a
non-trivial two-layer dynamic programming over clique-sum decomposition tree of aH-minor free graphs.
Lemma 3 can be used to obtain much simpler algorithm. Given a graph G and a positive integer k we first
apply a factor 2-approximation algorithm given in [17, 28] for DS on G and obtain a set S. If the size
of S is more than 2k then we return that G does not have a dominating set of size at most k. Otherwise,
we apply Lemma 3 and obtain an equivalent graph G′ such that tw(G′) = O(

√
k). Now applying a

constant factor approximation algorithm developed in [16] for computing the treewidth onG′ we get a tree
decomposition of width O(

√
k). It is well known that checking whether a graph with treewidth t has a

dominating set of size at most k can be done in timeO(3tnO(1)) [44]. This together with the above bound
on the treewidth, gives us an alternative proof of the following theorem.

Theorem 2 ([17]). Given an n-vertex graph G excluding a fixed graph H as a minor, one can check
whether G has a dominating set of size at most k in time 2O(

√
k)nO(1).

Finding an equivalent graph with a treewidth deletion set of size O(k). Now we apply Lemma 3 recursively
to obtain an O(k)-sized treewidth deletion set. That is, given a graph G excluding a fixed graph H as a
minor and a positive integer k, in polynomial time we output a graph G′ such that (a) G has a dominating
set of size at most k if and only if G′ has a dominating set of size at most k; and (b) it is possible to remove
O(k) vertices from G′ such that the resulting graph is of constant treewidth. We need the following well
known lemma, see e.g. [6], on separators in graphs of bounded treewidth.

Lemma 4. Let G be a graph given with a tree-decomposition of width at most t and w : V (G) → {0, 1}
be a weight function. Then in polynomial time we can find a bag X of the given tree-decomposition such
that for every connected component G[C] of G \ X , w(C) ≤ w(V (G))/2. Furthermore, the connected
components C1, . . . , C` of G \X can be grouped into two sets V1 and V2 such that w(V (G))−w(X)

3 ≤ Vi ≤
2(w(V (G))−w(X))

3 , for i ∈ {1, 2}.

We proceed as follows. Given a graphG and a positive integer k, we first apply a factor 2-approximation
algorithm from [17, 28] for DS on G and obtain a set S. If the size of S is more than 2k then we return
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that G does not have a dominating set of size at most k. If |S| ≤ 2k we will run a recursive procedure
that will compute a new graph G∗ and vertex sets S∗ and D∗ in G∗ such that (G∗, S∗) simulates (G,S)
and tw(G∗ \D∗) = O(1). The set S will be passed down in recursive steps, so the recursive steps do not
recalculate S. In particular we prove the following lemma.

Lemma 5. Let G be an H-minor free graph and S be a dominating set of G. There is a polynomial time
algorithm that computes an induced subgraph G∗ of G, a dominating set S∗ of G∗, and a set D∗ such that
(G∗, S∗) simulates (G,S), tw(G∗ \D∗) = O(1) and |D| = O(|S|).

Proof. By Lemma 3, we may assume that tw(G) = O(
√
|S|). Hence, if |S| = O(1) we are done, as

we can return (G,S) with D∗ = ∅. Otherwise, using a constant factor approximation of treewidth on H-
minor-free graphs [25], we compute a tree-decomposition ofG of width d

√
k. Now, by applying Lemma 4

on this decomposition, we find a partitioning of V (G) into V1, V2 and X such that there are no edges from
V1 to V2, |X| ≤ d

√
k+ 1, and |Vi ∩S| ≤ 2|S|/3 for i ∈ {1, 2}. Let S′ = S ∪X , and observe that (G,S′)

simulates (G,S).
We now apply the algorithm recursively on (G[V1∪X], S′∩(V1∪X)) and (G[V2∪X], S′∩(V2∪X))

and obtain graphs G1, G2 and sets S1, S2, D1, D2 such that for i ∈ {1, 2}

• (Gi, Si) simulates (G[Vi ∪X], S′ ∩ (Vi ∪X));
• tw(Gi \Di) = O(1).

Since X ⊆ S′, we have that S′ ∩ (Vi ∪X) is a dominating set of G[Vi ∪X] and hence we actually can run
the algorithm recursively on the two subcases. The algorithm will return G∗ = G[V (G1) ∪ V (G2)] and
the sets S∗ = S1 ∪S2 and D∗ = D1 ∪D2 ∪X . Clearly tw(G∗ \D∗) = O(1), and we only need to prove
that (G∗, S∗) simulates (G,S′) and that |D∗| = O(|S|).

For (i) Let Z dominate all but S′ in G, and |Z| ≤ 3|S′|. For i ∈ {1, 2} set Zi = Z ∩ (Vi ∪ X).
We also assume that |Zi| ≤ 3|S′ ∩ (Vi ∪ X)|. This need not be true in general, and in the case when
|Zi| > 3|S′ ∩ (Vi ∪X)|, we will take Zi = S′ ∩ (Vi ∪X). Now we prove for the case when it holds than
|Zi| ≤ 3|S′ ∩ (Vi ∪X)| for i ∈ {1, 2}, other cases are analogous.

Claim 1. (G∗, S∗) simulates (G,S′)

Proof. It follows directly from the construction that S′ ⊆ S∗, so it suffices to prove conditions (i) and
(ii) of simulation. For (i), let Z dominate all but S′ in G, and |Z| ≤ |S′|. We set Zi = Z ∩ (Vi ∪ X),
i ∈ {1, 2}. We also assume that |Zi| ≤ |S′ ∩ (Vi ∪X)|. This need not be true in general, and in the case
when |Zi| > |S′ ∩ (Vi ∪X)|, we will take Zi = S′ ∩ (Vi ∪X). Now we prove for the case when it holds
than |Zi| ≤ |S′ ∩ (Vi ∪X)| for i ∈ {1, 2}, other cases are analogous.

Since (Gi, Si) simulates (G[Vi∪X], S′∩ (Vi∪X)), it follows that there exist sets Z ′1 and Z ′2 such that
for i ∈ {1, 2}, Z ′i dominates NG[Zi]∩ V (Gi) in Gi, |Z ′i| ≤ |Zi|, and Zi ∩S′ ⊆ Z ′i. We set Z ′ = Z ′1 ∪Z ′2,
then

(Z ∩ S) = (Z1 ∩ S) ∪ (Z2 ∩ S) ⊆ (Z1 ∩ S1) ∪ (Z2 ∩ S2) ⊆ Z ′1 ∪ Z ′2 ⊆ Z ′.

Furthermore,Z ′ dominatesNG[Z]∩(V (G1)∪V (G2)) = NG[Z]∩V (G∗) becauseN [Z] = N [Z1]∪N [Z2],
Z ′1 dominates N [Z1] and Z ′2 dominates N [Z2]. Finally, |Z ′| ≤ |Z| for the reason that

|Z ′| = |Z ′1 ∪ Z ′2| = |Z ′1|+ |Z ′2| − |Z ′1 ∩ Z ′2|
≤ |Z1|+ |Z2| − |Z ′1 ∩ Z ′2|
= |Z1 ∪ Z2|+ |Z1 ∩ Z2| − |Z ′1 ∩ Z ′2|
= |Z1 ∪ Z2|+ |Z ∩X| − |Z ′1 ∩ Z ′2|
≤ |Z1 ∪ Z2| = |Z|.

Now we prove that condition (ii) of simulation holds. We show that for every set Z ′ in G∗ that
dominates everything but S∗, there exists Z in G of size at most |Z ′|, containing Z ′ ∩ S∗, and dominating
N [Z ′] and the set of vertices in V (G) \ V (G∗). For i ∈ {1, 2}, let Z ′i = Z ′ ∩ Vi. Since (Gi, Si) simulates
(G[Vi ∪X], S′ ∩ (Vi ∪X)), there is a set Zi ⊆ Vi ∪X of size at most |Z ′i| that dominates N [Z ′i] and all of
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Vi \ V (Gi), and satisfies Z ′i ∩ Si ⊆ Zi. Set Z = Z1 ∪ Z2. By arguments identical to those in the forward
direction, it follows that Z dominates NG∗ [Z ′] and V (G) \ V (G∗), that Z ′ ∩ S∗ ⊆ Z and that |Z| ≤ |Z ′|.
This concludes the proof of the claim.

Finally, we upper bound |D∗| by the following recursive formula.

|D∗| ≤ max
1/3≤α≤2/3

{
µ
(
α|S|+ d

√
|S|
)

+ µ
(

(1− α)|S|+ d
√
|S|
)

+ d
√
|S|
}
.

Using simple induction one can show that the above solves to O(|S|). See for an example [28, Lemma 2].
Hence we conclude that |D| = O(|S|) = O(k). This completes the proof of the lemma.

Lemma 5 establishes that the output graph G∗ and set S∗ simulates (G,S). Since simulation implies
that for every p ≤ |S|, G∗ has a dominating set of size p if and only if G does, and the set S was obtained
by running a 2-approximation on G, we get the following lemma.

Lemma 6. Let G be an H-minor free graph and S be a dominating set of G. There is a polynomial time
algorithm that computes an induced subgraphG∗ and a setD∗ of sizeO(k) such that tw(G∗\D∗) = O(1)
and G∗ has a dominating set of size k if and only if G does.

Final Kernel. Now we proceed to the proof of our main result for DS on graphs excluding a fixed graph H
as a minor. We need the following lemmata.

Lemma 7 ([29, Lemma 3.4]). For every fixed graph H and constant t there are constants ζ and r that
satisfy the following. For any n-vertex graph G which excludes H as a minor and has a vertex set D∗ of
size k′ such that tw(G \D∗) ≤ t, then G has an r-protrusion of size at least ζn/k′.

DS has finite integer index, and the following lemma is a special case of [29, Lemma 4.1], see also [8].

Lemma 8 ([8, 29]). Let GH be a class of graphs excluding a fixed graph H as a minor. Then there
exists a constant cr and an algorithm that given a graph G ∈ GH , an integer k and an r-protrusion X
in G with |X| > cr, runs in time O(|X|) and returns a graph G∗ ∈ GH and an integer k∗ such that
|V (G∗)| < |V (G)|, k∗ ≤ k, and G∗ has a dominating set of size at most k∗ if and only if G has a
dominating set of size at most k.

Theorem 3. Let GH be the class of graphs excluding a fixed graph H as a minor. Then DS has a linear
kernel on GH .

Proof. Given a graph G and a positive integer k, we apply Lemma 6 on G and S and obtain a graph G′

such that G has a dominating set of size at most k if and only if G′ has a dominating set of size at most
k. We also obtain a treewidth deletion set D of size at most O(k), that is tw(G′ \D) ≤ t for some fixed
constant t.

By Lemma 7, G′ contains an r-protrusion of size at least ζ|V (G′)|/tk. The reduction algorithm
exhaustively applies Lemma 8. Since an irreducible instance contains no r-protrusion of size at least cr,
it follows that an irreducible instance (G′, k′) of DS must satisfy ζ|V (G′)|/tk′ < cr. Thus |V (G′)| is at
most k′ · tcr/ζ = O(k).

The kernelization procedure runs in polynomial time because we can find a protrusion by guessing
the boundary, which has constant size. Once given a protrusion X , we can replace it with an equivalent
instance in O(|X|) time using the Lemma 8. This concludes the proof.

The algorithm of Demaine et al. [17] computing a dominating set of size k in an n-vertex H-minor
free graph uses exponential (in k) space 2O(

√
k)nO(1). Theorem 3 implies almost directly the following

refinement of Theorem 2.

Theorem 4. Given an n-vertex graph G excluding a fixed graph H as a minor, one can check whether G
has a dominating set of size at most k in time 2O(

√
k) + nO(1) and space (nk)O(1).
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Proof. Our algorithm first applies Theorem 3 to obtain a graph with O(k) vertices. Now we are assuming
that the number of vertices in G is n = O(k). We solve a slightly more general version of domination,
where we are given a subset S and the requirement is to find a set D of size at most k such that for
every v ∈ V (G) \ S, N [v] ∩ D 6= ∅. When S = ∅, the set D is a dominating set of size k. By the
separator theorem of Alon et al. [4] for H-minor free graphs, one can find in polynomial time a partition
of V (G) into V1, V2 and X such that |X| ≤ O(

√
n), there are no edges from V1 to V2 and |Vi| ≤ 2n/3 for

i ∈ {1, 2}. The algorithm finds such a partition and guesses how D interacts with X .
In particular, first the algorithm correctly guesses D′ = D ∩X (by looping over all subsets of X). For

each guess, it puts N(D′) into S and removes D′ and S ∩X from G (these vertices are already dominated
and will not be used in the future to dominate even more vertices). For every remaining vertex v in X , the
algorithm guesses whether it will be dominated by a vertex in V1, in which case the algorithm deletes all
edges from v to vertices in V2, or by a vertex in V2, in which case the algorithm deletes all edges from v
to vertices in V1. Let V ′i be Vi plus all the vertices in X \ S that we guessed were dominated from Vi. At
this point V ′1 and V ′2 are distinct components of the instance and can be solved independently. The running
time is governed by the following recurrence.

T (n) = nO(1) · 2O(
√
n) · 2 · T (2n/3) = 2O(

√
n)

The space used is clearly polynomial. This concludes the proof.

4 Kernel for CONNECTED DOMINATING SET

In this section we give a linear kernel for CONNECTED DOMINATING SET (CDS). Just as in the kerneliza-
tion algorithm for DS, the kernelization for CDS is a recursive procedure. However the correctness proof
of Irrelevant Vertex Rule is more complicated and requires more care. As for DS, we will apply this reduc-
tion rule in a divide and conquer manner to obtain a treewidth deletion set of sizeO(k). Then, by applying
the “protrusion rule” together with the fact that CDS has finite integer index, we obtain the desired linear
kernel for CDS.

Reducing the treewidth of a torso. As with DS, we are reducing the treewidth of a torso not only in the
beginning of the procedure but also when we apply a recursive procedure to obtain O(k) sized treewidth
deletion set. Let G be an H-minor free graph, S be a dominating set of G (not necessarily connected), Lt
be one of its torsos, andA, |A| ≤ h, be the set of apices of Lt, where h is some constant depending only on
H . We will define a reduction rule that essentially “preserves” all dominating sets of size at most 3|S|+ 3
with “good enough” connectivity properties, without introducing new such sets. Just as for DS we will say
that a subset A′ of A is feasible if the factor 2-approximation for DS on H-minor free graphs concludes
that there exists a set D of size at most 6|S|+ 6 which dominates all but S, such that S ∩A = A′. If such
a set exists and A′ is feasible we denote this set by D(A′).

Recall, that for DS we had the notion of a representative element for every subset A′ ⊆ A. The
representative vertex was crucially used in establishing Lemma 1, where we used it to simulate all the
domination properties of the deleted vertex “w”. We need a similar notion of representatives for CDS,
however here the representatives will be vertex subsets rather than single vertices. With vertex subsets
we would be able to simulate not only domination properties, but also the connectivity properties of an
irrelevant vertex. More precisely, for every subset A′ ⊆ A, we compute a minimum size vertex set
T ⊆ V (G) \ A such that G[T ] is connected and A′ ⊆ N [T ]. If the size of such a minimum set is at most
4h, then we say that T = T (A′) is a representative of A′, and add all the vertices in T to the set R. Note
that |R| ≤ 4h · 2h. For each A′ we can test whether a representative exists in time 2|A

′|nO(1) = 2hnO(1)

by making a modification of the algorithm for the Steiner tree problem from [5]. Alternatively we can test
it in time n4h+O(1) by brute force. The set of vertices covered by A′ is W (A′) = N [A′] \ (A ∪ S). Note
that a vertex in S is never covered by a set A′. The definition of an irrelevant vertex with respect to A
is different than for DS. A vertex w is called irrelevant with respect to A′, if N4h

G\A[w] ⊆ W (A′). Here
N4h
G\A[w] is the set of vertices at distance at most 4h from w in the graph G \A (not in G). The irrelevant

vertex rule for CDS is exactly the same as in Section 3 for DS but the corretness proof and analysis is more
complicated.
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Irrelevant Vertex Rule: If a vertex w is irrelevant with respect to every feasible A′ ⊆ A then delete w
from G.

Just as for DS we will apply the irrelevant vertex rule in a recursive manner, and because of this it is not
sufficient to prove that the rule is just solution preserving. In fact we need to prove that the rule preserves
all sets that are “close enough” to being feasible solutions (and does not introduce new ones). We will
again define what it means for a pair (G′, S′) to simulate (G,S). This definition is a bit lengthy and we
split it in two parts.

Definition 3. Let G be a graph, G′ be an induced subgraph of G, S be a dominating set of G and
S ⊆ S′ ⊆ V (G′)

• A set Z in G is called interesting if |Z| ≤ 3|S|, Z dominates everything but S and every connected
component of G[Z] contains at least one vertex of S. Similarly, a set Z ′ in G′ is called interesting if
|Z ′| ≤ 3|S′|, Z ′ dominates everything but S′, and every connected component of G[Z ′] contains at
least one vertex of S′.
• A set Z ′ in G′ is called a companion to a set Z in G if |Z ′| ≤ |Z|, Z ′ dominates all the vertices

of NG[Z] ∩ V (G′), (Z ∩ S) ⊆ Z ′, and for every connected component C ′ of G′[Z ′] there exists a
connected component C in G[Z] such that C ∩ S ⊆ C ′ ∩ S.
• A set Z in G is called companion to a set Z ′ in G′, if |Z| ≤ |Z ′|, it dominates all the vertices of
N [Z ′]∪ (V (G)\V (G′)) inG, (Z ′∩S) ⊆ Z and every connected component C ofG[Z] there exists
a connected component C ′ in G′[Z ′] such that C ′ ∩ S ⊆ C ∩ S.

Definition 4. Let G be a graph, G′ be an induced subgraph of G, S be a dominating set of G and
S ⊆ S′ ⊆ V (G) and S ⊆ V (G)∩V (G′). We say that (G′, S′) simulates (G,S) if (i) for every interesting
Z ⊆ V (G), there is a companion Z ′ ⊆ V (G′), and (ii) for every interesting Z ′ ⊆ V (G′), there is a
companion Z ⊆ V (G).

Just as for DS, it holds that for S′ ⊇ S we have that (G,S′) simulates (G,S), and again we have
transitivity of simulation. In particular it is easy to verify that if (G′′, S′′) simulates (G′, S′) and (G′, S′)
simulates (G,S) then (G′′, S′′) simulates (G,S).

Let us also remark that if (G′, S′) simulates (G,S), then for every p ≤ 3|S|, G has a connected
dominating set Z of size at most p if and only if G′ does. In particular consider a connected dominating
set Z of G of size at most p ≤ 3|S|. Set Z is interesting and so it has a companion Z ′ in G′. Set Z ′ clearly
dominates G′ and it remains to prove that Z ′ is connected. Suppose G[Z] has two distinct components C1

and C2. However, Z ∩ S ⊆ C1 and Z ∩ S ⊆ C2, hence C1 and C2 have a non-empty intersection, which
is a contradiction. If G′ has a connected dominating set Z ′, then we can obtain Z from Z ′ in a similar
fashion. Here we cheated a little bit, because we assumed that Z ∩S 6= ∅. This can be easily overcome by
adding for some vertex v, its closed neighbourhoodN [v] to S. EveryH-minor free graph is h-degenerated
for some constant h depending only on H , and there is a vertex of degree h. Thus adding N [v] to S does
not affect the size of S much. We now prove correctness of the irrelevant vertex rule.

Lemma 9. Let S be a dominating set in G, and G′ = G \ {w} be a graph obtained by applying the
Irrelevant Vertex Rule on G. Then (G′, S) simulates (G,S).

Proof. We prove that every interesting Z in G has a companion in G′. Let Z ⊆ V (G) be such that
|Z| ≤ 3|S|, Z dominates everything but S in G and every component of G[Z] contains a vertex from S.
Let A′ = Z ∩ A, and observe that A′ is feasible since Z dominates all but S. If w /∈ Z, then Z ′ = Z is
a companion of Z in G′ and we are done. So assume w ∈ Z. Since w is irrelevant with respect to A′ we
have that N4h

G\A[w] ⊆W (A′).
Let X be the vertex set of the connected component of G[Z ∩N4h

G\A[w]] that contains w, and let C be
the component of G[Z] that contains w. If |X| < 4h then there is a subset X ′ = T (N(X) ∩ A) such that
X ′ ⊂ R, |X ′| ≤ |X|, G[X ′] is connected and N(X ′) ∩ A ⊇ N(X) ∩ A. Consider Z ′ = (Z \X) ∪X ′
and let C ′ be the component of Z ′ that contains X ′. Since X ⊆W (A′), we have that C ∩S ⊆ C ′ ∩S and
N(C) ⊆ N(C ′). Furthermore sinceX ′ ⊆ R, Z ′ avoids w and so Z ′ is a companion to Z inG′ = G\{w}.
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Now suppose that |X| ≥ 4h. Let A∗ = N(X) ∩ A. The vertex set A∗ is a dominating set of size at
most h in the graph G[A∗ ∪X] and so G[A∗ ∪X] has a connected dominating set X∗ that contains A∗ of
size at most 3h. Let P be the connected component of G[X∗] \ A that contains w. Notice that |P | ≤ 2h
and so there is a connected set P ′ ⊆ R such that |P ′| ≤ |P | andN(P )∩A ⊆ N(P ′)∩A. Finally, let Y be
the set of vertices in X that are at distance exactly 4h from w in G \A. Note that X \Y ≥ 4h− 1 and that
N [Y ] ∩A ⊆ A∗. Set X ′ = X∗ \ P ∪ P ′, and Z ′ = (Z \ (X \ Y )) ∪X ′. We have that |X ′| ≤ |X∗| ≤ 3h
while |X \ Y | ≥ 4h − 1 ≥ 3h. Hence Z ′ ≤ Z. Let C ′ be the component of Z ′ that contains X ′. Since
X ⊆ W (A′) it follows that C ∩ S ⊆ C ′ ∩ S and N(C) ⊆ N(C ′). Furthermore because P ′ ⊆ R, Z ′

avoids w and so Z ′ is a companion to Z in G′ = G \ {w}.
For the second condition of simulation, let Z ′ ⊆ V (G′) such that |Z ′| ≤ 3|S|, Z ′ dominates everything

but S in G′ and each component of G[Z ′] contains a vertex in S. We show that Z ′ also dominates w in G.
Specifically Z ′ ∪ {w} is a dominating set of all but S in G of size at most |S| + 1 so Z ′ ∩ A is feasible.
Since {w} is irrelevant with respect to Z ′ ∩A we have w ∈ NG(Z ′ ∩A). This concludes the proof.

Just as for DS, it is possible to prove that after removing all irrelevant vertices, the treewidth of each
torso in the reduced graph is O(

√
|S|). The most important difference is that instead of 2-dominating set

we construct a (4h+ 1)-dominating set in the proof.

Lemma 10. Let G be a graph which is irreducible by the Irrelevant Vertex Rule and S be a dominating
set of G. For every torso Lt of G, tw(Lt) = O(

√
|S|).

Proof. Let L∗t = Lt \ A, where A are the apices of Lt. We will obtain a (4h + 1)-dominating set of size
O(|S|) in L∗t . Towards this end, consider the following set, Q =

⋃
A′⊆A,A′is feasible D(A′)∪R∪S \A. The

size of the set of representative vertices, R, is at most 4h · 2|A| ≤ 4h · 2h. The number of feasible subsets
A′ is at most 2h, where h is a constant depending only on H . The size of D(A′) is at most 6|S| + 6 for
every A′. Thus |Q| ≤ 2h(6|S|+ 6) + 4h · 2h + |S| = O(|S|). We prove that Q is a (4h+ 1)-dominating
set of V (G) \ A. Let w ∈ V (G) \ A. If w ∈ R or w ∈ S then Q dominates S. So suppose w /∈ R ∪ S.
Then, since w is not irrelevant there is a feasible subset A′ of A such that w is relevant with respect to A′.
Hence there exists a vertex w′ in N4

G\Ah[w] which is not in W (A′). If w′ ∈ S then w is 4h-dominated by
w′ ∈ Q in G \ A. Otherwise w′ is dominated by some w′′ in D(A′) and hence w is 4h+ 1-dominated by
w′′ ∈ Q in G \A. Hence G \A has a (4h+ 1)-dominating set of size O(|S|).

The graph L∗t can be obtained from G\A by contracting all edges in E(G\A)\E(L∗t ) and adding all
edges in E(L∗t ) \ E(G \ A). Since contracting and adding edges can not increase the size of a minimum
(4h+ 1)-dominating set of a graph, L∗t has a (4h+ 1)-dominating set of size O(|S|).

To conclude, L∗t excludes an apex graph as a minor (see discussions after Theorem 1) and it has a
(4h+ 1)-dominating set of sizeO(|S|). By the bidimensionality of (4h+ 1)-dominating set, we have that
tw(L∗t ) = O(

√
|S|) [16, 27]. Now we add all the apices of A to all the bags of the tree decomposition of

L∗t to obtain a tree decomposition for L′t. Thus tw(L′t) ≤ O(
√
|S|) + h = O(

√
|S|).

Applying the irrelevant vertex rule exhaustively on all torsos, and bounding treewidth using Lemma 10,
we arrive at the following lemma.

Lemma 11. There is a polynomial time algorithm that for a given graph G and a dominating set S of G,
outputs an induced subgraph G′ of G such that(G′, S) simulates (G,S) and tw(G′) = O(

√
|S|).

We proceed as follows. Given a connected graph G and a positive integer k, we first apply factor
2-approximation algorithm given in [17, 28] for DS on G and obtain a dominating set S. If the size of S
is more than 2k then we return that G does not have a connected dominating set of size at most k. If the
size of S is at most 2k, we proceed further. To prove Lemma 13, we need an additional property of S,
namely that every dominating set contains at least one vertex from S. To ensure that S has this property,
we choose a vertex v of minimum degree and add N [v] to S. Since G excludes a fixed graph H as a minor
there exists a constant c such that G is p = c|V (H)|

√
log |V (H)| degenerate [20]. This implies that the

degree of v in G is at most p and hence |S| ≤ 2k + p+ 1 = O(k).
The recursive procedure to obtain a treewidth deletion set of sizeO(k) is almost identical to the one for

DS. The main difference is that it is slightly more complicated to ensure proper simulation when splitting
the graph into two independent subproblems.
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Lemma 12. Let G be an H-minor free graph and S be a dominating set of G. There is a polynomial time
algorithm that computes an induced subgraph G∗ of G, a dominating set S∗ of G∗ and a set D∗ such that
(G∗, S∗) simulates (G,S) and tw(G∗ \D∗) = O(1) and |D| = O(|S|).

Proof. By Lemma 11 we may assume that tw(G) = O(
√
|S|). Hence, if |S| = O(1) we are done, as

we can return (G,S) with D∗ = ∅. Otherwise, using a constant factor approximation of treewidth on H-
minor-free graphs [25], we compute a tree-decomposition ofG of width d

√
k. Now, by applying Lemma 4

on this decomposition we find a partitioning of V (G) into V1, V2 and X such that there are no edges from
V1 to V2, |X| ≤ d

√
k + 1 and |Vi ∩ S| ≤ 2|S|/3 for i ∈ {1, 2}. Let S′ = S ∪X , and observe that (G,S′)

simulates (G,S).
We now apply the algorithm recursively on (G[V1∪X], S′∩(V1∪X)) and (G[V2∪X], S′∩(V2∪X))

and obtain graphs G1, G2 and sets S1, S2, D1, D2 such that for i ∈ {1, 2}

• (Gi, Si) simulates (G[Vi ∪X], S′ ∩ (Vi ∪X))
• tw(Gi \Di) = O(1).

Observe that since X ⊆ S′ we have that S′ ∩ (Vi ∪ X) is indeed a dominating set of G[Vi ∪ X] and
hence we actually can run the algorithm recursively on the two subcases. The algorithm will return G∗ =
G[V (G1) ∪ V (G2)] and the sets S∗ = S1 ∪ S2 and D∗ = D1 ∪D2 ∪X . Clearly tw(G∗ \D∗) = O(1)
so we need to prove that (G∗, S∗) simulates (G,S′) and that |D∗| = O(|S|).

Claim 2. (G∗, S∗) simulates (G,S′)

Proof. It follows directly from the construction that S′ ⊆ S∗ so it suffices to prove conditions (i) and (ii) of
simulation. For (i), let Z dominate all but S′ in G, and |Z| ≤ 3|S′|. For i ∈ {1, 2} set Zi = Z ∩ (Vi ∪X).
We also assume that |Zi| ≤ 3|S′ ∩ (Vi ∪ X)|. This need not be true in general, and in the case when
|Zi| > 3|S′ ∩ (Vi ∪X)|, we will take Zi = S′ ∩ (Vi ∪X). Now we prove for the case when it holds than
|Zi| ≤ 3|S′ ∩ (Vi ∪X)| for i ∈ {1, 2}, other cases are analogous.

Since (Gi, Si) simulates (G[Vi ∪X], S′ ∩ (Vi ∪X)) it follows that there are sets Z ′1 and Z ′2 such that
for i ∈ {1, 2}, Z ′i dominates NG[Zi]∩ V (Gi) in Gi, |Z ′i| ≤ |Zi| and Zi ∩S′ ⊆ Z ′i. Set Z ′ = Z ′1 ∪Z ′2. We
have that

(Z ∩ S) = (Z1 ∩ S) ∪ (Z2 ∩ S) ⊆ (Z1 ∩ S1) ∪ (Z2 ∩ S2) ⊆ Z ′1 ∪ Z ′2 ⊆ Z ′.

Furthermore, Z ′ dominatesNG[Z]∩(V (G1)∪V (G2)) = NG[Z]∩V (G∗). The set Z ′ dominatesNG[Z]∩
V (G∗) in G∗ because N [Z] = N [Z1] ∪ N [Z2] and Z ′1 dominates N [Z1] and Z ′2 dominates N [Z2]. We
have that |Z ′| ≤ |Z| because

|Z ′| = |Z ′1 ∪ Z ′2| = |Z ′1|+ |Z ′2| − |Z ′1 ∩ Z ′2|
≤ |Z1|+ |Z2| − |Z ′1 ∩ Z ′2|
= |Z1 ∪ Z2|+ |Z1 ∩ Z2| − |Z ′1 ∩ Z ′2|
= |Z1 ∪ Z2|+ |Z ∩X| − |Z ′1 ∩ Z ′2|
≤ |Z1 ∪ Z2| = |Z|.

Finally, we show that for every connected component C ′ ofG∗[Z ′] there exists a connected component
C in G[Z] such that C ∩ S′ ⊆ C ′ ∩ S′. Let CZ1 , . . . , C

Z
` be the connected components of G[Z]. Now

given a connected component Ci we call it a broken component if CZi ∩ X 6= ∅. In other words, these
are components of G[Z] intersecting both Z1 and Z2. Else, we call a component non-broken. Now let
C ′ be a connected component of G∗[Z ′]. Let F(C ′) = {E1, E2, . . . , E`} be the connected components
of C ′ in G1[Z ′1] and G2[Z ′2]. That is, we look at the restriction of C ′ in G1[Z ′1] and G2[Z ′2] and F(C ′)
is the set of connected components in any of them. Thus, each of Ei is a connected component of one
of Gj [Z ′j ], j ∈ {1, 2}. Let us fix a connected component Ei, say it is in G1[Z ′1]. Now, by induction
hypothesis we know that there exists a connected component Fi in G[Z1] such that Fi∩ (S′∩ (V1∪X)) ⊆
Ei ∩ (S′ ∩ (V1 ∪X)). If for any Ei we have Fi such that Fi is a non-broken component of G[Z] then we
associate Fi to C ′. Clearly, we have that Fi ∩ (S′ ∩ (V1 ∪X)) = Fi ∩S′ ⊆ C ′ ∩S′. Thus, we assume that
each of Fi is a broken component.
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For a given a connected component CZj , we define the set F(CZj ) as the set of all the connected com-
ponents we get out of CZj when we restrict either to G[Z1] or G[Z2]. We call the connected components in
F(CZj ) as broken pieces. Observe that every broken piece contains a vertex of X . In fact, for every vertex
v ∈ X , such that there is some component AL in G[Z1] containing v, there is another component BL in
G[Z2] containing v. Furthermore, v ∈ X is in exactly two connected components in F(CZj ). Observe that
we could make similar remarks about the components in F(C ′). Combing back to the proof, we have that
each of Fi is a broken piece. This implies that for all i, we have that (Fi∩X) 6= ∅ and since (Fi∩X) ⊆ S′
we have that (Fi ∩X) ⊆ Ei. Let CZj be the connected component whose one of the broken piece is F1.
Now with C ′ we associate CZj . Now the only thing remaining to show is that CZj ∩ S′ ⊆ C ′ ∩ S′.

Consider the following auxiliary bipartite graph B with parts M and N = CZj ∩ X . In M we have
a vertex for every connected component in F(CZj ). We gave an edge between a component vertex and a
vertex in N if that vertex is part of the corresponding component. Clearly, B is connected, since CZj is a
connected component. Also notice that every vertex in N has degree 2. Let T be a breadth first search
(BFS) tree of B rooted at the vertex corresponding to F1. Recall that we have E1 associated with F1.
Notice that every leaf of this tree is a vertex corresponding to a connected component and every alternate
layer starting from the root has only degree 2 vertices. We will show using a traversal of T , that for every
connected component P in F(CZj ) there exists a component Q in F(C ′) such that (P ∩ S′) ⊆ Q ∩ S′.
This in turn implies that CZj ∩ S′ ⊆ C ′ ∩ S′.

We traverse the tree T top down and to each of the vertices in T , we will associate a component from
F(C ′). The root has been associated with E1. Consider the root and its children, by our construction we
know that these vertices are in both F1 and E1. Consider the children of the root. These are degree two
vertices. Recall, that every vertex is part of exactly 2 components in F(C ′), thus we assign to this degree
two vertex a component that has not been assigned before. Now if we have a vertex in tree corresponding
to a component vertex then we just associate with it the component of its parent, which happens to be a
degree 2 vertex. We recursively assign components to each of the vertices in the tree. This gives an unique
assignment starting from the root. Now we only need to show that if a component Fj (some non-root
component) has been assigned some Ep then (Fj ∩ S′) ⊆ Ep ∩ S′. Let u ∈ X be the parent of Fj in the
tree. Notice that by our construction we have that if Fj is contained in G[Vi ∪X] then Ep is contained in
Gi. However, by induction hypothesis we know that there is some connected component C∗ in G[Zi] such
that C∗ ∩ S′ ⊆ Ep ∩ S′. Notice that in G[Zi] there is a unique component that contains u and we also
know that Zi ∩ S′ ⊆ Z ′i, thus this implies that the component C∗ has to be Fj . This completes the proof
in one direction.

By arguments identical to those in the forward direction, we can prove that condition (ii) of simulation
holds. This concludes the proof of the claim.

Finally, we upper bound |D∗| by the following recursive formula.

|D∗| ≤ max
1/3≤α≤2/3

{
µ
(
α|S|+ d

√
|S|
)

+ µ
(

(1− α)|S|+ d
√
|S|
)

+ d
√
|S|
}
.

Using simple induction one can show that the above solves to O(|S|). See for an example [28, Lemma 2].
Hence we conclude that |D| = O(|S|) = O(k). This completes the proof of the lemma.

Lemma 12 establishes that the output graph G∗ and set S∗ simulates (G,S). Since simulation implies
that for every p ≤ 3|S|+ 3, G∗ has a dominating set of size p if and only if G does, the set S was obtained
by running a 2-approximation for dominating on G, and the size of a minimum connected dominating set
in a connected graph is at most thrice the size of the minimum dominating set, we get the following lemma.

Lemma 13. Let G be an H-minor free graph and S be a dominating set of G. There is a polynomial time
algorithm that computes an induced subgraph G∗ and a set D∗ of size O(|k|) such that tw(G∗ \D∗) =
O(1) and G∗ has a connected dominating set of size k if and only if G does.

Finally, CDS has finite integer index [8] and the statement similar to Lemma 8 for CDS is a special
case of [29, Lemma 4.1]. Now using Lemmata 7 and 13, we can show the following theorem along the
lines of Theorem 3.
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Theorem 5. Let GH be the class of graphs excluding a fixed graph H as a minor then CONNECTED
DOMINATING SET has linear kernel on GH .

Let us observe, that Theorem 5 combined with the standard dynamic programing on graphs of bounded
treewidth implies that CDS on H-minor free graphs is solvable in time 2O(

√
k log k) + nO(1). Recently,

Cygan et al. [10] gave a Monte Carlo algorithm solving CDS on graphs of treewidth t in time 3tnO(1).
Combined with linear kernel, it results in the running time 2O(

√
k) + nO(1). To our knowledge, these are

the first subexponential parameterized algorithm for CDS on H-minor free graphs.

5 Conclusions

We conclude with several open questions. It is tempting to ask if the kernelization framework on apex-
minor free graphs developed in [29] for contraction bidimensional problems with separation properties can
be extended to minor free graphs. This question remains open even for r-domination with r > 1. Another
natural question is if the linear kernel for DS can be obtained for more general classes. H-minor free
graphs form a general class of sparse graph but DS is known to be FPT even on more general classes of
sparse graphs like graphs locally excluding some graph as a minor, degenerated graphs, graphs of bounded
expansions, and nowhere dense classes of graphs [12, 13, 24, 39]. A word of caution is appropriate here:
there are classes of sparse graphs where existence of a linear kernel for DS is highly unexpected. For
example, an easy reduction from the result of Dell and van Melkebeek from [14] that d-HITTING SET has
no kernel of size kd−ε for any ε > 0 unless coNP is in NP/poly, shows that DS has no kernel of size kd−ε

on d-degenerate graphs. For CDS the situation is even worse, by the recent result of Cygan et al. [11], the
problem does not have a polynomial kernel on d-degenerated graphs unless coNP is in NP/poly.
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