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Abstract. We study the parameterized complexity of the directed variant of the classical
Steiner Tree problem on various classes of directed sparse graphs. While the parameterized
complexity of Steiner Tree parameterized by the number of terminals is well understood,
not much is known about the parameterization by the number of non-terminals in the solution
tree. All that is known for this parameterization is that both the directed and the undirected
versions are W[2]-hard on general graphs, and hence unlikely to be fixed parameter tractable
(FPT). The undirected Steiner Tree problem becomes FPT when restricted to sparse classes
of graphs such as planar graphs, but the techniques used to show this result break down on
directed planar graphs.
In this article we precisely chart the tractability border for Directed Steiner Tree (DST) on
sparse graphs parameterized by the number of non-terminals in the solution tree. Specifically,
we show that the problem is fixed parameter tractable on graphs excluding a topological minor,
but becomes W[2]-hard on graphs of degeneracy 2. On the other hand we show that if the
subgraph induced by the terminals is required to be acyclic then the problem becomes FPT on
graphs of bounded degeneracy.
We further show that our algorithm achieves the best possible running time dependence on the
solution size and degeneracy of the input graph, under standard complexity theoretic assump-
tions. Using the ideas developed for DST, we also obtain improved algorithms for Dominating
Set on sparse undirected graphs. These algorithms are asymptotically optimal.

1 Introduction

In the Steiner Tree problem we are given as input a n-vertex graph G = (V,E) and a set
T ⊆ V of terminals. The objective is to find a subtree ST of G spanning T that minimizes
the number of vertices in ST . Steiner Tree is one of the most intensively studied graph
problems in Computer Science. Steiner trees are important in various applications such as
VLSI routings [28], phylogenetic tree reconstruction [26] and network routing [31]. We refer
to the book of Prömel and Steger [38] for an overview of the results on, and applications
of the Steiner Tree problem. The Steiner Tree problem is known to be NP-hard [20],
and remains hard even on planar graphs [19]. The minimum number of non-terminals can
be approximated to within O(log n), but cannot be approximated to o(log t), where t is the
number of terminals, unless P ⊆ DTIME[npolylog n] (see [29]). Furthermore the weighted
variant of Steiner Tree remains APX-complete, even when the graph is complete and all
edge costs are either 1 or 2 (see [3]).

In this paper we study a natural generalization of Steiner Tree to directed graphs, from
the perspective of parameterized complexity. The goal of parameterized complexity is to find



ways of solving NP-hard problems more efficiently than by brute force. The aim is to restrict
the combinatorial explosion in the running time to a parameter that is much smaller than
the input size for many input instances occurring in practice. Formally, a parameterization
of a problem is the assignment of an integer k to each input instance and we say that a
parameterized problem is fixed-parameter tractable (FPT) if there is an algorithm that solves
the problem in time f(k) · |I|O(1), where |I| is the size of the input instance and f is an
arbitrary computable function depending only on the parameter k. Above FPT, there exists
a hierarchy of complexity classes, known as the W-hierarchy. Just as NP-hardness is used
as an evidence that a problem is probably not polynomial time solvable, showing that a
parameterized problem is hard for one of these classes gives evidence that the problem is
unlikely to be fixed-parameter tractable. The main classes in this hierarchy are:

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆W[P] ⊆ XP

The principal analogue of the classical intractability class NP is W[1]. In particular, this
means that an FPT algorithm for any W[1]-hard problem would yield a O(f(k)nc) time
algorithm for every problem in the class W[1]. XP is the class of all problems that are solvable
in time O(ng(k)). Here, g is some (usually computable) function. For more background on
parameterized complexity the reader is referred to the monographs [13, 16, 36]. We consider
the following directed variant of Steiner Tree.

Directed Steiner Tree (DST) Parameter: k
Input: A directed graph D = (V,A), a root vertex r ∈ V , a set T ⊆ V \ {r} of terminals
and an integer k ∈ N.
Question: Is there a set S ⊆ V \ (T ∪ {r}) of at most k vertices such that the digraph
D[S ∪ T ∪ {r}] contains a directed path from r to every terminal t ∈ T?

The DST problem is well studied in approximation algorithms, as the problem gener-
alizes several important connectivity and domination problems on undirected as well as di-
rected graphs [6, 12, 23, 25, 39, 40]. These include Group Steiner Tree, Node Weighted
Steiner Tree, TSP and Connected Dominating Set. However, this problem has so far
largely been ignored in the realm of parameterized complexity. The aim of this paper is to
fill this gap.

It follows from the reduction presented in [34] that DST is W[2]-hard on general digraphs.
Hence we do not expect FPT algorithms to exist for these problems, and so we turn our
attention to classes of sparse digraphs. Our results give a nearly complete picture of the
parameterized complexity of DST on sparse digraphs. Specifically, we prove the following
results. We use the O∗ notation to suppress factors polynomial in the input size.

1. There is a O∗(2O(hk))-time algorithm for DST on digraphs excluding Kh as a minor1.
Here Kh is a clique on h vertices.

2. There is a O∗(f(h)k)-time algorithm for DST on digraphs excluding Kh as a topological
minor.

3. There is a O∗(2O(hk))-time algorithm for DST on digraphs excluding Kh as a topological
minor if the graph induced on terminals is acyclic.

4. DST is W[2]-hard on 2-degenerate digraphs if the graph induced on terminals is allowed
to contain directed cycles.

5. There is a O∗(2O(dk))-time algorithm for DST on d-degenerate graphs if the graph in-
duced on terminals is acyclic, implying that DST is FPT parameterized by k on o(log n)-

1 When we say that a digraph excludes a fixed (undirected) graph as a minor or a topological minor, or that
the digraph has degeneracy d we mean that the statement is true for the underlying undirected graph.
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Fig. 1. A summary of the main results in the paper

degenerate graph classes. This yields the first FPT algorithm for Steiner Tree on
undirected d-degenerate graphs.

6. For any constant c > 0, there is no f(k)n
o( k

log k
)
-time algorithm on graphs of degeneracy

c log n even if the graph induced on terminals is acyclic, unless the Exponential Time
Hypothesis [27] (ETH) fails.

Our algorithms for DST hinge on a novel branching which exploits the domination-like
nature of the DST problem. The branching is based on a new measure which seems useful
for various connectivity and domination problems on both directed and undirected graphs of
bounded degeneracy. We demonstrate the versatility of the new branching by applying it to
the Dominating Set problem on graphs excluding a topological minor and more generally,
graphs of bounded degeneracy. The well-known Dominating Set problem is defined as
follows.

Dominating Set Parameter: k
Input: An undirected graph G = (V,E), and an integer k ∈ N.
Question: Is there a set S ⊆ V of at most k vertices such that every vertex in G is either
in S or adjacent to a vertex in S?

Our O∗(2O(dk))-time algorithm for Dominating Set on d-degenerate graphs improves over
the O∗(kO(dk)) time algorithm by Alon and Gutner [2]. It turns out that our algorithm is
essentially optimal – we show that assuming the ETH, the running time dependence of our
algorithm on the degeneracy of the input graph and solution size k can not be significantly
improved. Using these ideas we also obtain a polynomial time O(d2) factor approximation
algorithm for Dominating Set on d-degenerate graphs. We give survey of existing literature
on Dominating Set and the results for it in Section 4. We believe that our new branching
and corresponding measure will turn out to be useful for several other problems on sparse
(di)graphs.

Related Results. Though the parameterized complexity of DST has so far been largely
ignored, it has not been left completely unexplored. In particular the classical dynamic pro-
gramming algorithm by Dreyfus and Wagner [14] from 1972 solves Steiner Tree in time
O∗(3t) where t is the number of terminals in the input graph. The algorithm can also be used
to solve DST within the same running time, and may be viewed as a FPT algorithm for
Steiner Tree and DST if the number of terminals in the instance is the parameter. Fuchs
et al. [18] improved the algorithm of Dreyfus and Wagner and obtained an algorithm with
running time O∗((2+ ε)t), for any constant ε > 0. More recently, Björklund, Husfeldt, Kaski,
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and Koivisto [4] obtained an O∗(2t) time algorithm for the cardinality version of Steiner
Tree. Finally, Nederlof [35] obtained an algorithm running in O∗(2t) and polynomial space.
All of these algorithms can also be modified to work for DST.

For most hard problems, the most frequently studied parameter in parameterized com-
plexity is the size or quality of the solution. For Steiner Tree and DST, however, this is
not the case. The non-standard parameterization of the problem by the number of termi-
nals is well-studied, while the standard parameterization by the number of non-terminals in
the solution tree has been left unexplored, aside from the simple W[2]-hardness proofs [34].
Steiner-type problems in directed graphs from parameterized perspective were studied in [24]
in arc-weighted setting, but the paper focuses more on problems in which the required con-
nectivity among the terminals is more complicated than just a tree.

For Steiner Tree parameterized by the solution size k, there is a simple (folklore) FPT
algorithm on planar graphs. The algorithm is based on the fact that planar graphs have the
diameter-treewidth property [15], the fact that Steiner Tree can be solved in polynomial
time on graphs of bounded treewidth [9] along with a simple preprocessing step. In this step,
one contracts adjacent terminals to single vertices and removes all vertices at distance at
least k+1 from any terminal. For DST, however, this preprocessing step breaks down. Thus,
previous to this work, nothing is known about the standard parameterization of DST aside
from the W[2]-hardness result on general graphs.

2 Preliminaries

Given a digraph D = (V,A), for each vertex v ∈ V , we define N+(v) = {w ∈ V |(v, w) ∈ A}
and N−(v) = {w ∈ H|(w, v) ∈ A}. In other words, the sets N+(v) and N−(v) are the set of
out-neighbors and in-neighbors of v, respectively.

Degeneracy of an undirected graph G = (V,E) is defined as the least number d such that
every subgraph of G contains a vertex of degree at most d. Degeneracy of a digraph is defined
to be the degeneracy of the underlying undirected graph. We say that a class of (di)graphs C
is o(log n)-degenerate if there is a function f(n) = o(log n) such that every (di)graph G ∈ C
is f(|V (G)|)-degenerate.

In a directed graph, we say that a vertex u dominates a vertex v if there is an arc (u, v)
and in an undirected graph, we say that a vertex u dominates a vertex v if there is an edge
(u, v) in the graph.

Given a vertex v in a directed graph D, we define the operation of short-circuiting across
v as follows. We add an arc from every vertex in N−(v) to every vertex in N+(v) and delete v.

For a set of vertices X ⊆ V (G) such that G[X] is connected we denote by G/X the graph
obtained by contracting edges of a spanning tree of G[X] in G.

Given an instance (D, r, T, k) of DST, we say that a set S ⊆ V \ (T ∪ {r}) of at most k
vertices is a solution to this instance if in the digraph D[S ∪T ∪{r}] there is a directed path
from r to every terminal t ∈ T .
Minors and Topological Minors. For a graph G = (V,E), a graph H is a minor of G if
H can be obtained from G by deleting vertices, deleting edges, and contracting edges. We
denote that H is a minor of G by H � G. A mapping ϕ : V (H)→ 2V (G) is a model of H in
G if for every u, v ∈ V (H) with u 6= v we have ϕ(u) ∩ ϕ(v) = ∅, G[ϕ(u)] is connected, and,
if {u, v} is an edge of H, then there are u′ ∈ ϕ(u) and v′ ∈ ϕ(v) such that {u′, v′} ∈ E(G).
It is known, that H � G iff H has a model in G.

A subdivision of a graph H is obtained by replacing each edge of H by a non-trivial path.
We say that H is a topological minor of G if some subgraph of G is isomorphic to a subdivision
of H and denote it by H �T G. In this paper, whenever we make a statement about a directed
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graph having (or being) a minor of another graph, we mean the underlying undirected graph.
A graph G excludes graph H as a (topological) minor if H is not a (topological) minor of
G. We say that a class of graphs C excludes o(log n)-sized (topological) minors if there is a
function f(n) = o(log n) such that for every graph G ∈ C we have that Kf(|V (G)|) is not a
(topological) minor of G.
Tree Decompositions. A tree decomposition of a graph G = (V,E) is a pair (M,β) where
M is a rooted tree and β : V (M)→ 2V , such that :

1.
⋃
t∈V (M) β(t) = V .

2. For each edge (u, v) ∈ E, there is a t ∈ V (M) such that both u and v belong to β(t).
3. For each v ∈ V , the nodes in the set {t ∈ V (M) | v ∈ β(t)} form a connected subtree of
M .

The following notations are the same as that in [22]. Given a tree decomposition of graph
G = (V,E), we define mappings σ, γ, α : V (M)→ 2V by letting for all t ∈ V (M),

σ(t) =

{
∅ if t is the root of M

β(t) ∩ β(s) if s is the parent of t in M

γ(t) =
⋃
u is a descendant of t β(u)

α(t) = γ(t) \ σ(t).

Let (M,β) be a tree decomposition of a graph G. The width of (M,β) is min{|β(t)| − 1 | t ∈
V (M)}, and the adhesion of the tree decomposition is max{|σ(t)| | t ∈ V (M)}. For every
node t ∈ V (M), the torso at t is the graph

τ(t) := G[β(t)] ∪ E(K[σ(t)]) ∪
⋃
u child of tE(K[σ(u)]).

Again, by a tree decomposition of a directed graph, we mean a tree decomposition for
the underlying undirected graph.

3 DST on sparse graphs

In this section, we introduce our main idea and use it to design algorithms for the Directed
Steiner Tree problem on classes of sparse graphs. We begin by giving a O∗(2O(hk)) algo-
rithm for DST on Kh-minor free graphs. Following that, we give a O∗(f(h)k) algorithm for
DST on Kh-topological minor free graphs for some f . Then, we show that in general, even in
2 degenerate graphs, we cannot expect to have an FPT algorithm for DST parameterized by
the solution size. Finally, we show that when the graph induced on the terminals is acyclic,
then our ideas are applicable and we can give a O∗(2O(hk)) algorithm on Kh-topological
minor free graphs and a O∗(2O(dk)) algorithm on d-degenerate graphs.

3.1 DST on minor free graphs

We begin with a polynomial time preprocessing which will allow us to identify a special
subset of the terminals with the property that it is enough for us to find an arborescence
from the root to these terminals.
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Rule 1 Given an instance (D, r, T, k) of DST, let C be a strongly connected component with
at least 2 vertices in the graph D[T ]. Then, contract C to a single vertex c, to obtain the
graph D′ and return the instance (D′, r, T ′ = (T \ C) ∪ {c}, k).

Lemma 1. Rule 1 is sound, i.e., the instance (D′, r, T ′, k) produced by the rule is a yes-
instance of DST if and only if (D, r, T, k) is a yes-instance of DST.

Proof. Suppose S is a solution to (D, r, T, k). Then there is a directed path from r to every
terminal t ∈ T in the digraph D[S ∪T ∪{r}]. Contracting the vertices of C will preserve this
path. Hence, S is also a solution for (D′, r, T ′, k).

Conversely, suppose S is a solution for (D′, r, T ′, k). If the path P from r to some t ∈ T ′\C
in D′[S ∪ T ′ ∪ {r}] contains c, then there must be a path from r to some vertex x of C and
a path (possibly trivial) from some vertex y ∈ C to t in D[S ∪ T ∪ {r}]. As there is a path
between any x and y in D[C], concatenating these three paths results in a path from r to t
in D[S ∪ T ∪ {r}]. Hence, S is also a solution to (D, r, T, k).

Proposition 1. Given an undirected graph G = (V,E) which excludes Kh as a minor for
some h, and a vertex subset X ⊆ V inducing a connected subgraph of G, the graph G/X also
excludes Kh as a minor.

We call an instance reduced if Rule 1 cannot be applied to it. Given an instance (D, r, T, k),
we first apply Rule 1 exhaustively to obtain a reduced instance. Since the resulting graph still
excludes Kh as a minor (by Proposition 1), we have not changed the problem and hence, for
ease of presentation, we denote the reduced instance also by (D, r, T, k). We call a terminal
vertex t ∈ T a source-terminal if it has no in-neighbors in D[T ]. We use T0 to denote the set
of all source-terminals. Since for every terminal, the graph D[T ] contains a path from some
source terminal to this terminal, we have the following observation.

Observation 1 Let (D, r, T, k) be a reduced instance and let S ⊆ V . Then the digraph
D[S ∪ T ∪ {r}] contains a directed path from r to every terminal t ∈ T if and only if it
contains a directed path from r to every source-terminal t ∈ T0.

The following is an important subroutine of our algorithm.

Lemma 2. Let D be a digraph, r ∈ V (D), T ⊆ V (D) \ {r} and T0 ⊆ T . There is an
algorithm which can find a minimum size set S ⊆ V (D) such that there is path from r to
every t ∈ T0 in D[T ∪ {r} ∪ S] in time O∗(2|T0|).

Proof. Nederlof [35] gave an algorithm to solve the Steiner Tree problem on undirected
graphs in time O∗(2t) where t is the number of terminals. Misra et al. [33] observed that
the same algorithm can be easily modified to solve the DST problem in time O∗(2t) with t
being the number of terminals. In our case, we create an instance of the DST problem by
taking the same graph, defining the set of terminals as T0 and for every vertex t ∈ T \ T0,
short-circuiting across this vertex. Clearly, a k-sized solution to this instance gives a k-sized
solution to the original problem. To actually find the set of minimum size, we can first find
its size by a binary search and then delete one by one the non-terminals, if their deletion
does not increase the size of the minimum solution.

We call the algorithm from Lemma 2, Nederlof(D, r, T, T0).

We also need the following structural claim regarding the existence of low degree vertices in
graphs excluding Kh as a topological minor.
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Lemma 3. Let G = (V,E) be an undirected graph excluding Kh as a topological minor2 and
let X,Y ⊆ V be two disjoint vertex sets. If every vertex in X has at least h− 1 neighbors in
Y , then there is a vertex in Y with at most ch4 neighbors in X ∪ Y for some constant c.

Proof. It was proved in [5, 30], that there is a constant a such that any graph that does
not contain Kh as a topological minor is d = ah2-degenerate. Consider the graph H0 =
G[X ∪ Y ] \ E(X). We construct a sequence of graphs H0, . . . ,Hl, starting from H0 and
repeating an operation which ensures that any graph in the sequence excludes Kh as a
topological minor. The operation is defined as follows. In graph Hi, pick a vertex x ∈ X.
As it has degree at least h − 1 in Y and there is no Kh topological minor in Hi, it has
two neighbors y1 and y2 in Y , which are non-adjacent. Remove x from H and add the edge
(y1, y2) to obtain the graph Hi+1. By repeating this operation, we finally obtain a graph Hl

where the set X is empty. As the graph Hl still excludes Kh as a topological minor, it is
d-degenerate, and hence it has at most d|Y | edges. In the sequence of operations, every time
we remove a vertex from X, we added an edge between two vertices of Y . Hence, the number
of vertices in X in H0 is bounded by the number of edges within Y in Hl, which is at most
d|Y |. As H0 is also d-degenerate, it has at most d(|X|+ |Y |) = d(d+ 1)|Y | edges. Therefore,
there is a vertex in Y incident on at most 2d(d + 1) = 2ah2(ah2 + 1) ≤ ch4 edges where
c = 4a2. This concludes the proof of the lemma.

Let (D, r, T, k) be a reduced instance of DST, Y ⊆ V \ T be a set of non-terminals
representing a partial solution and db be some fixed positive integer. We define the following
sets of vertices (see Fig. 2).

– T1 = T1(Y ) is the set of source terminals dominated by Y .
– Bh = Bh(Y, db) is the set of non-terminals not in Y which dominate at least db + 1

terminals in T0 \ T1.
– Bl = Bl(Y, db) is the set of non-terminals not in Y which dominate at most db terminals

in T0 \ T1.
– Wh = Wh(Y, db) is the set of terminals in T0 \ T1 which are dominated by Bh.
– Wl = Wl(Y, db) = T0 \ (T1 ∪Wh) is the set of source terminals which are not dominated

by Y or Bh.

Note that the sets Y, T1, Bh, Bl,Wh,Wl are pairwise disjoint. The constant db is introduced
to describe the algorithm in a more general way so that we can use it in further sections of
the paper. Throughout this section, we will have db = h− 2.

Lemma 4. Let (D, r, T, k) be a reduced instance of DST, Y ⊆ V \ T , db ∈ N, and T1, Bh,
Bl, Wh, and Wl as defined above. If |Wl| > db(k − |Y |), then the given instance does not
admit a solution containing Y .

Proof. This follows from the fact that any non-terminal from V \ (Bh ∪ Y ) in the solution,
which dominates a vertex in Wl can dominate at most db of these vertices. Since the solution
contains at most k − |Y | such non-terminals, at most db(k − |Y |) of these vertices can be
dominated. This completes the proof.

Lemma 5. Let (D, r, T, k) be a reduced instance of DST, Y ⊆ V \ T , db ∈ N, and T1, Bh,
Bl, Wh, and Wl as defined above. If Bh is empty, then there is an algorithm which can test
if this instance has a solution containing Y in time O∗(2db(k−|Y |)+|Y |).

2 As a graph G which exludes Kh as a minor, also excludes Kh as a topological minor, the lemma also applies
in the former case. While a stronger bound can be given for this case, stating the lemma this way allows
us to use it in further sections and does not hurt the asymptotic running time.
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Input : An instance (D, r, T, k) of DST, degree bound db, set Y
Output: A smallest solution of size at most k and containing Y for the instance (D, r, T, k) if it exists

and S∞ otherwise
1 Compute the sets Bh, Bl, Y , Wh, Wl

2 if |Wl| > db(k − |Y |) then return S∞
3 else if Bh = ∅ then
4 S ← Nederlof(D, r, T ∪ Y,Wl ∪ Y ) ∪ Y .
5 if |S| > k then S ← S∞
6 return S

7 end
8 else
9 S ← S∞

10 Find vertex v ∈Wh with the least in-neighbors in Bh.
11 for u ∈ Bh ∩N−(v) do
12 Y ′ ← Y ∪ {u},
13 S′ ← DST-solve((D, r, T, k), db, Y

′).
14 if |S′| < |S| then S ← S′

15 end
16 D′ ← D \ (Bh ∩N−(v))
17 S′ ← DST-solve((D′, r, T, k), db, Y ).
18 if |S′| < |S| then S ← S′

19 return S

20 end

Algorithm 3.1: Algorithm DST-solve for DST on graphs excluding Kh as a minor

Proof. We use Lemma 2 and test whether |Nederlof(D, r, T∪Y ,Y ∪(T0\T1))| ≤ k−|Y |. We
know that |Y | ≤ k and, by Lemma 4, we can assume that |T0 \ T1| ≤ db(k− |Y |). Therefore,
the size of Y ∪ (T0 \T1) is bounded by |Y |+db(k−|Y |), implying that we can solve the DST
problem on this instance in time O∗(2db(k−|Y |)+|Y |). This completes the proof of the lemma.

We now proceed to the main algorithm of this subsection.

Theorem 2. DST can be solved in time O∗(3hk+o(hk)) on graphs excluding Kh as a minor.

Proof. Let T0 be the set of source terminals of this instance. The algorithm we describe takes
as input a reduced instance (D, r, T, k), a vertex set Y and a positive integer db and returns
a smallest solution for the instance which contains Y if such a solution exists. If there is
no solution, then the algorithm returns a dummy symbol S∞. To simplify the description,
we assume that |S∞| = ∞. The algorithm is a recursive algorithm and at any stage of the
recursion, the corresponding recursive step returns the smallest set found in the recursions
initiated in this step. We start with Y being the empty set.

By Lemma 4, if |Wl| > db(k − |Y |), then there is no solution containing Y and hence
we return S∞ (see Algorithm 3.1). If Bh is empty, then we apply Lemma 5 to solve the
problem in time O∗(2dbk). If Bh is non-empty, then we find a vertex v ∈ Wh with the least
in-neighbors in Bh. Suppose it has dw of them.

We then branch into dw + 1 branches described as follows. In the first dw branches, we
move a vertex u of Bh which is an in-neighbor of v, to the set Y . Each of these branches is
equivalent to picking one of the in-neighbors of v from Bh in the solution. We then recurse
on the resulting instance. In the last of the dw + 1 branches, we delete from the instance
non-terminals in Bh which dominate v and recurse on the resulting instance. Note that in
the resulting instance of this branch, we have v in Wl(Y ).

8



Fig. 2. An illustration of the sets defined in Theorem 2

Correctness. At each node of the recursion tree, we define a measure µ(I) = db(k − |Y |)−
|Wl|. We prove the correctness of the algorithm by induction on this measure. In the base
case, when db(k − |Y |) − |Wl| < 0, then the algorithm is correct (by Lemma 4). Now, we
assume as induction hypothesis that the algorithm is correct on instances with measure less
than some µ ≥ 0. Consider an instance I such that µ(I) = µ. Since the branching is exhaus-
tive, it is sufficient to show that the algorithm is correct on each of the child instances. To
show this, it is sufficient to show that for each child instance I ′, µ(I ′) < µ(I). In the first dw
branches, the size of the set Y increases by 1, and the size of the set Wl does not decrease.
Hence, in each of these branches, µ(I ′) ≤ µ(I) − db. In the final branch, though the size of
the set Y remains the same, the size of the set Wl increases by at least 1. Hence, in this
branch, µ(I ′) ≤ µ(I)−1. Thus, we have shown that in each branch, the measure drops, hence
completing the proof of correctness of the algorithm.

Analysis. Since D exludes Kh as a minor, Lemma 3, combined with the fact that we set
db = h − 2, implies that dmax

w = ch4, for some c, is an upper bound on the maximum dw
which can appear during the execution of the algorithm. We first bound the number of leaves

of the recursion tree as follows. The number of leaves is bounded by
∑dbk

i=0

(
dbk
i

)
(dmax
w )

k− i
db .

To see this, observe that each branch of the recursion tree can be described by a length-dbk
vector as shown in the correctness paragraph. We then select i positions of this vector on
which the last branch was taken. Finally for k − i

db
of the remaining positions, we describe

which of the first at most dmax
w branches was taken. Any of the first dmaxw branches can be

taken at most k − i
db

times if the last branch is taken i times.

The time taken along each root to leaf path in the recursion tree is polynomial, while the

time taken at a leaf for which the last branch was taken i times is O∗(2
db(k−(k− i

db
))+k− i

db ) =
O∗(2i+k) (see Lemmata 4 and 5). Hence, the running time of the algorithm is

O∗

(
dbk∑
i=0

(
dbk

i

)
(dmax
w )

k− i
db · 2i+k

)
= O∗

(
(2dmax

w )k ·
dbk∑
i=0

(
dbk

i

)
· 2i
)

= O∗
(

(2dmax
w )k · 3dbk

)
.

For db = h−2 and dmax
w = ch4 this is O∗(3hk+o(hk)). This completes the proof of the theorem.

Lemma 6. For every function g(n) = o(log n), there is a function f(k) such that for every
k and n we have 2g(n)k ≤ f(k) · n.
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Proof. We know that there is a function f ′(k) such that for every n > f ′(k) we have g(n) <
(log n)/k. Now let f(k) be the function defined as f(k) = max1≤n≤f ′(k){2g(n)k}. Then, for

every k if n ≤ f ′(k) then 2g(n)k ≤ max1≤n≤f ′(k){2g(n)k} = f(k) while for n > f ′(k) we have

2g(n)k ≤ 2(logn/k)·k = 2logn = n. Hence, indeed, 2g(n)k ≤ f(k) · n for every n and k.

Theorem 2 along with Lemma 6 has the following corollary.

Corollary 1. If C is a class of digraphs excluding o(log n)-sized minors, then DST param-
eterized by k is FPT on C.

3.2 DST on graphs excluding topological minors

We begin by observing that on graphs excluding Kh as a topological minor, we cannot apply
Rule 1 since contractions may create new topological minors. Hence, we do not have the
notion of a source terminal, which was crucial in designing the algorithm for this problem
on graphs excluding minors. However, we will use a decomposition theorem of Grohe and
Marx ([22], Theorem 4.1) to obtain a number of subproblems where we will be able to apply
all the ideas developed in the previous subsection, and finally use a dynamic programming
approach over this decomposition to combine the solutions to the subproblems.

Theorem 3. (Global Structure Theorem, [22]) For every h ∈ N, there exists constants a(h),
b(h), c(h), d(h), e(h), such that the following holds. Let H be a graph on h vertices. Then,
for every graph G with H 6�T G, there is a tree decomposition (M,β) of adhesion at most
a(h) such that for all t ∈ V (M), one of the following three conditions is satisfied:

1. |β(t)| ≤ b(h).
2. τ(t) has at most c(h) vertices of degree larger than d(h).
3. Ke(h) 6� τ(t).

Furthermore, there is an algorithm that, given graphs G, H of sizes n, h, respectively, in time
f(h)nO(1) for some computable function f , computes either such a decomposition (M,β) or
a subdivision of H in G.

Let (M,β) a tree decomposition given by the above theorem. Without loss of generality we
assume, that for every t ∈ V (M) we have r ∈ β(t). This might increase a(h), b(h), c(h), and
e(h) by at most one. For the rest of this subsection we work with this tree decomposition.

Theorem 4. DST can be solved in time O∗(f(h)k) on graphs excluding Kh as a topological
minor.

Proof. Our algorithm is based on dynamic programming over the tree decomposition (M,β).
For t ∈ V (M) let Tσ(t) = (T ∪ {r}) ∩ σ(t) and Tγ(t) = (T ∪ {r}) ∩ γ(t). For every t ∈ V (M)
we have one table Tabt indexed by (R,F ), where Tσ(t) ⊆ R ⊆ σ(t) and F is a set of arcs
on R. The index of a table represents the way a possible solution tree can cross the cut-set
σ(t). More precisely, we look for a set S ⊆ α(t) such that in the digraph D[Tγ(t) ∪R∪S]∪F
there is a directed path from r to every t′ ∈ Tγ(t) ∪ R. In such a case we say that S is good
for t, R, F .

For each index R,F we store in Tabt(R,F ) one good set S of minimum size. If no such set
exists, or |S| > k for any such set, we set |Tabt(R,F )| =∞ and use the dummy symbol S∞ in
place of the set. Naturally, S∞∪S = S∞ for any set S. Furthermore, if Tabt(R,F ) = S 6= S∞
we let κt(R,F ) be the set of arcs on R such that (u, v) ∈ κt(R,F ) iff there is a directed path
from u to v in D[Tγ(t) ∪ R ∪ Tabt(R,F )]. Note also, that if |Tabt(R,F )| = 0 then κt(R,F )
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only depends on R, not on F . As σ of the root node of M is ∅, the only entry of Tab for root
is an optimal Steiner tree in D. Let us denote by g(h) the maximum number of entries of
the table Tabt over t ∈ V (M). It is easy to see that g(h) ≤ 2a(h)+a(h)

2
.

The algorithm to fill the tables proceeds bottom-up along the tree decomposition and
we assume that by the time we start filling the table for t, the tables for all its proper
descendants have already been already filled. We now describe the algorithm to fill the table
for t, distinguishing three cases, based on the type of node t (see Theorem 3).

Case 1: τ (t) has at most c(h) vertices of degree larger than d(h). In this case
we use Algorithm 3.2. For each R and F it first removes the irrelevant parts of the graph
and then branches on the non-terminal vertices of high degree. Following that, it invokes
Algorithm 3.3. Note that, since t can have an unbounded number of children in M we cannot
afford to guess the solution for each of them. Hence SatisfyChildrenSD only branches
on the solution which is taken from the children which need at least one private vertex of
the solution. After a solution is selected for all such children, it uses Rule 1 and unless the
number of obtained source terminals is too big, in which case there is no solution for the
branch, it uses the modified algorithm of Nederlof as described in Lemma 5.

For the proof of the correctness of the algorithm, we need several observations and lem-
mas.

1 foreach R with Tσ(t) ⊆ R ⊆ σ(t) do
2 foreach F ⊆ R2 do
3 D′ ← D[α(t) ∪R] ∪ F .
4 S ← S∞.
5 B ← {v | v ∈ (β(t) ∩ V (D′)) \ (T ∪R)& degτ(t)(v) > d(h)}.
6 foreach Y ⊆ B with |Y | ≤ k do
7 D′′ ← D′ \ (B \ Y ).
8 M ′ ← subtree of M rooted at t.

9 Let β′ : V (M ′)→ 2V (D′′) be such that β′(s) = β(s) ∩ V (D′′) for every s in V (M ′).
10 S′ ← SatifyChildrenSD(D′′, r, T ∪ Y ∪R \ {r}, k − |Y |,M ′, β′) ∪ Y .
11 if |S′| < |S| then S ← S′

12 end
13 Tabt(R,F )← S.

14 end

Algorithm 3.2: Algorithm SmallDeg to fill Tabt if all but few vertices of the bag
have small degrees.

Observation 5 Let (D, r, T, k) be an instance of DST. For every x in V \ (T ∪{r}) we have
that S is a solution for (D, r, T ∪{x}, k−1) if and only if S∪{x} is a solution for (D, r, T, k)
and x is reachable from r in D[T ∪S ∪{r, x}]. In particular, if S ∪{x} is a minimal solution
for (D, r, T, k), then S is a minimal solution for (D, r, T ∪ {x}, k − 1).

Lemma 7. Let (D′, r, T ′, k) be an instance of DST and M,β be a tree decomposition for D
rooted at t. Let s be a child of t for which the condition on line 2 of Algorithm 3.3 is satisfied.
Let (D′′, r, T ′′, k′) be the instance as formed by lines 7–10 of the algortihm on s for some R′

and F ′. If S is a solution for (D′′, r, T ′′, k′) then S′ = S ∪ Tabs(R
′, F ′) ∪ (R′ \ T ′σ(s)) is a

solution for (D′, r, T ′, k).
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Input : An instance (D′, r, T ′, k) of DST, a tree decomposition (M,β) rooted at t
Output: A smallest solution to the instance or S∞ if all solutions are larger than k

1 if k < 0 then return S∞
2 if ∃s child of t such that |Tabs(T ′σ(s), {r} × (T ′ ∩ σ(s))| > 0 then

3 S ← S∞.
4 foreach R′ s.t. T ′σ(s) ⊆ R′ ⊆ σ(s) do

5 foreach F ′ ⊆ (R′)2 do
6 if |Tabs(R′, F ′) ∪ (R′ \ T ′σ(s))| ≤ k then

7 D̂ ← D′ \ (γ(s) \R′).
8 D′′ ← D̂ ∪ κs(R′, F ′).
9 T ′′ ← (T ′ ∩ V (D′′)) ∪ (R′ \ T ′σ(s)).

10 k′ ← k − |Tabs(R′, F ′)| − |R′ \ T ′σ(s)|.
11 M ′ ←M with the subtree rooted at s removed.

12 Let β′ : V (M ′)→ 2V (D′′) be such that β′(s) = β(s) ∩ V (D′′) for every s in V (M ′).
13 S′ ← SatisfyChildrenSD (D′′, r, T ′′, k′,M ′, β′, Y ′) ∪ Tabs(R

′, F ′) ∪ (R′ \ T ′σ(s)).
14 if |S′| < |S| then S ← S′

15 end

16 else
17 Apply Rule 1 exhaustively to (D′, r, T ′, k) to obtain (D′′, r, T ′′, k).
18 Denote by T0 the source terminals in (D′′, r, T ′′, k).
19 if |T0| > k ·max{d(h), a(h)} then S ← S∞
20 else S ← Nederlof (D′′, r, T ′′, T0).

21 end
22 if |S| > k then S ← S∞
23 return S

Algorithm 3.3: Function SatisfyChildrenSD (D′, r, T ′, k,M, β) doing the main
part of the work of Algortihm 3.2.

Proof. Obviously |S′| ≤ k. We have to show that every vertex t′ in T ′ is reachable from r in
D′[T ′∪{r}∪S′]. For a vertex t′ in T ′′ there is a path from r to t′ in D′′. If this path contains
an arc (u, v) in κ(R′, F ′), then there is a path from u to v in D[T ′γ(s) ∪ R

′ ∪ Tabs(R
′, F ′)],

and we can replace the arc (u, v) with this path, obtaining (possibly after shortcutting) a
path in D′[T ′ ∪ {r} ∪ S′]. For a vertex t′ in T ′ ∩ γ(s) there is a path P from r to t′ in
D[T ′γ(s) ∪R

′ ∪ Tabs(R
′, F ′)] ∪ F ′ as the Tabs was filled correctly. Let r′ be the last vertex of

R′ on P . Replacing the part of P from r to r′ by a path in D′[T ′ ∪ {r} ∪ S′] obtained in the
previous step, we get (possibly after shortcutting) a path from r to t′ in D′[T ′ ∪ {r} ∪ S′] as
required.

Observation 6 If s is a child of t and there are some R′ and F ′ such that |Tabs(R′, F ′)| = 0
then every vertex in T ′ ∩ γ(s) is reachable from some vertex in R′ in D′[R′ ∪ T ′γ(s)]. Further-

more, if there is an F ′ such that |Tabs(R′, F ′)| = 0, then |Tabs(R′, {r}× (R′ \ {r})| = 0, and
also |Tabs(R′′, {r} × (R′′ \ {r})| = 0 for every R′ ⊆ R′′ ⊆ σ(s).

Proof. The first statement follows from the definition of Tabs, as F ′ is a set of arcs on R′.
The second part is a direct consequence of the first.

Observation 7 Suppose the condition on line 2 of Algorithm 3.3 is not satisfied, (D′′, r, T ′′, k)
is obtained from (D′, r, T ′, k) by exhaustive application of Rule 1 and T0 is the set of source
terminals. Let t0 ∈ T0 be obtained by contracting a strongly connected component C of D′[T ′].
If there is a vertex u ∈ C ∩ γ(s) for some child s of t, then there is a vertex v ∈ C ∩ σ(s).
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Proof. Since the condition is not satisfied, it follows from Observation 6 that there is a path
from some v ∈ σ(s) to u in D′[T ′ ∪ {r}]. Since t0 is a source terminal, this path has to be
fully contained in C.

Lemma 8. Suppose the condition on line 2 of Algorithm 3.3 is not satisfied, (D′′, r, T ′′, k)
is obtained from (D′, r, T ′, k) by exhaustive application of Rule 1 and T0 is the set of source
terminals. A vertex x in α(s) \ (T ′ ∪ {r}) for some child s of t can dominate at most a(h)
vertices of T0. A vertex x in β(t) \ (T ′ ∪ {r}) can dominate at most degτ(t)(x) vertices of T0.

Proof. If x ∈ V (D′) \ T ′ dominates a vertex t0 ∈ T0, then t0 was obtained by contracting
some strongly connected component C of D′[T ′] and there is an y ∈ C ∩ N+

D′(x). If x is in
α(s), then N+

D′(x) ⊆ γ(s), C contains a vertex of σ(s) due to Observation 7, and, hence,
there can be at most a(h) such t0’s. If x is in β(t), then either y is also in β(t), in which case
the edge xy is in τ(t), or y is in α(s) for some child s of t. In this case x is in σ(s), C contains
a vertex y′ of σ(s) due to Observation 7, and we can account t0 to the edge xy′ of τ(t).

Lemma 9. Let (D′, r, T ′, k) be an instance of DST and (M,β) be a tree decomposition for
D′ rooted at t. Let s be a child of t for which the condition on line 2 of Algorithm 3.3 is
satisfied. Let S be a solution for (D′, r, T ′, k), R′ = (T ′ ∪S ∪ {r})∩ σ(s) and F ′ be the set of
arcs (uv) on R such that v is reachable from u in D′[(T ′ ∪S ∪{r}) \α(s)]. Let (D′′, r, T ′′, k′)
be the instance as formed by lines 7–10 on s for R′ and F ′. Then S \ α(s) \ (R′ \ T ′σ(s)) is a

solution for (D′′, r, T ′′, k′), while (S ∩ α(s)) is good for s,R′, F ′.

Proof. We first show that every vertex of (T ′ ∪ S) \ α(s) is reachable from r in D′′ =
D′[(T ′ ∪ S ∪ {r}) \ α(s)] ∪ κ(R′, F ′). For every vertex t′ ∈ R′ there is a path from r to t′ in
D′[T ′γ(s)∪R

′∪Tabs(R′, F ′)]∪F ′ since Tabs is correctly filled. Replacing the parts of this path

in α(s) by arcs of κ(R′, F ′) and arcs of F ′ by paths in D′[(T ′ ∪ S ∪ {r}) \ α(s)] one obtains
a path in D′′ to every vertex of R′. Now for every vertex t′ in (T ′ ∪ S) \ α(s) there is a path
P from r to t in D′[T ′ ∪ S ∪ {r}]. Let r′ be the last vertex of P in R′. Then concatenating
the path from r to r′ obtained in the previous step with the part of P between r′ and t′ we
get a path from r to t′ in D′′.

We have shown, that S \α(s) is a solution for (D′′, r, T ′, k−|Tabs(R′, F ′)|). It remains to
use Observation 5 to show that S\α(s)\(R′\T ′σ(s)) is a solution for (D′′, r, T ′′, k′).The second

claim follows from that there is a path from r to every t′ ∈ (T ′ ∪ S)∩ γ(s) ⊇ T ′γ(s) ∪R
′ \ {r}

in D′[T ′ ∪ S ∪ {r}] and the parts of it outside γ(s) can be replaced by arcs of F ′.

Lemma 10. Let (D′, r, T ′, k) be an instance of DST and let (M,β) be a tree decomposition
for D′. If there is a solution S of size at most k for (D′, r, T ′, k), then the invocation
SatisfyChildrenSD(D′, r, T ′, k,M, β) returns a set S′ not larger than S.

Proof. We prove the claim by induction on the depth of the recursion. Note that the depth is
bounded by the number of children of t in M . Suppose first that the condition on line 2
is not satisfied and |T0| > k · max{d(h), a(h)}. As no vertex can dominate more than
max{d(h), a(h)} vertices of T0 by Lemma 8, there is a vertex of T0 not dominated by S,
which is a contradiction. If |T0| ≤ k ·max{d(h), a(h)}, it follows from the optimality of the
modified Nederlof’s algorithm (see Lemma 2) and Observation 1 that |S′| ≤ |S|.

Now suppose that the condition on line 2 is satisfied for some s. LetR′, F ′ and (D′′, r, T ′′, k′)
be as in Lemma 9. Then S \ α(s) \ (R′ \ T ′σ(s)) is a solution for (D′′, r, T ′′, k′), while S ∩ α(s)

is good for s,R′, F ′. Therefore |S ∩ α(s)| ≤ |Tabs(R′, F ′)| as Tabs is filled correctly by
assumption. Moreover SatisfyChildrenSD(D′′, r, T ′′, k′,M, β) will return a set S′ with
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|S′| ≤ |S \ α(s) \ (R′ \ T ′σ(s))| due to the induction hypothesis. Together we get that |S′ ∪
Tabs(R

′, F ′)∪(R′ \T ′σ(s))| ≤ |S| and therefore also the set returned by SatisfyChildrenSD
is not larger than S.

Now we are ready to prove the correctness of the algorithm. We first show that if the
algorithm stores a set S 6= S∞ in Tabt(R,F ), then S ⊆ α(t) and in the digraph D[Tγ(t)∪R∪
S]∪F there is a directed path from r to every t′ ∈ Tγ(t)∪R. This will follow from Observation 5
if we prove that SatisfyChildrenSD(D′, r, T ′, k,M, β) returning a set S 6= S∞ implies that
S is a solution for (D′, r, T ′, k). We prove this claim by induction on the depth of the recursion.
If the condition on line 2 is not satisfied (and hence there is no recursion) the claim follows
from the correctness of the modified version of Nederlof’s algorithm (see Lemma 2) and
Observation 1. If the condition is satisfied, then the claim follows from Lemma 7 and the
induction hypothesis.

In order to prove that the set stored is minimal, assume that there is a set S ⊆ α(t) of size
at most k which is good for t, R, F . Let B = {v | v ∈ (β(t) ∩ V (D′)) \ (T ∪R)& degτ(t)(v) >
d(h)}, Y = S ∩ B and D′′ = D′ \ (B \ Y ). Without loss of generality we can assume that
S is minimal and, therefore, S \ Y is a solution for (D′′, r, T ∪ Y ∪ R \ {r}, k − |Y |) by
Observation 5. Hence SatifyChildrenSD(D′′, r, T ∪Y ∪R\{r}, k−|Y |,M ′, β′)∪Y returns
a set S′ not larger than S \Y due to Lemma 10 and the set stored in Tabt(R,F ) is not larger
than |S′ ∪ Y | = |S| finishing the proof of correctness.

As for the time complexity, observe first, that the bottleneck of the running time of
Algorithm 3.2 is the at most 2c(h) calls of Algorithm 3.3. Therefore, we focus our attention on
the running time of Algorithm 3.3. Note that in each recursive call of SatisfyChildrenSD,
by Observation 6, as the condition on line 2 is satisfied, either |Tabs(R′, F ′)| > 0 or |R′ \
T ′σ(s)| > 0 and thus, k′ < k. There are at most g(h) recursive calls for one call of the
function. The time spent by SatisfyChildrenSD on instance with parameter k is at most
the maximum of g(h) times the time spent on instances with parameter k − 1 and the time
spend by the modified algorithm of Nederlof on an instance with at most k ·max{d(h), a(h)}
source terminals. As the time spent for k < 0 is constant, we conclude that the running time
in Case 1 can be bounded by O∗((max{g(h), 2max{d(h),a(h)}})k).

Case 2: Ke(h) 6� τ (t). The overall strategy in this case is similar to that in the previous
case. Basically all the work is done by Algorithm 3.4( SatisfyChildrenMF()), which is a
slight modification of the function SatisfyChildrenSD. The modification is limited to the
else branch of the condition on line 2, that is, to lines 17–20, where Algorithm 3.1 (developed
in Section 3.1) is used instead of the modified version of Nederlof’s algorithm. For every R
and F we now simply store in |Tabt(R,F )| the result of SatisfyChildrenMF(D′, r, T ∪
R \ {r}, k,M ′, β′), where D′ = D[α(t) ∪ R] ∪ F , M ′ is the subtree of M rooted at t and
β′ : V (M ′)→ 2V (D′) is such that β′(s) = β(s) ∩ V (D′) for every s in V (M ′).

For the analysis, we need most of the lemmata proved for Case 1. To prove a running
time upper bound we also need the following lemma.

Lemma 11. Suppose the condition on line 2 of Algorithm 3.4 is not satisfied, (D′′, r, T ′′, k)
is obtained from (D′, r, T ′, k) by exhaustive application of Rule 1, T0 is the set of source
terminals and Bh and Wh are defined as on lines 19–21. Then D′′[Bh ∪Wh] � τ(t).

Proof. As proven in Lemma 8, the non-terminals in γ(t) \ β(t) can only dominate at most
a(h) vertices in T0. Therefore Bh ⊆ β(t). By Lemma 7, each vertex t′ in T0 was obtained by
contracting a strongly connected component C(t′) which contains at least one vertex of β(t).
Finally, if b ∈ Bh dominates w ∈Wh, but there is no edge between b and β(t) ∩C(w) in D′,
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16 else
17 Apply Rule 1 exhaustively to (D′, r, T ′, k) to obtain (D′′, r, T ′′, k).
18 Denote by T0 the source terminals in (D′′, r, T ′′, k).
19 Bh ← non-terminals with degree at least max{e(h)− 1, a(h) + 1} in T0.
20 Bl ← non-terminals with degree at most max{e(h)− 2, a(h)} in T0.
21 Wh ← source terminals with an in-neighbor in Bh.
22 S ← DST-solve((D′′, r, T ′′, k),max{e(h)− 2, a(h)}, Bh, Bl, ∅,Wh, T0 \Wh).

23 end
24 return S

Algorithm 3.4: Part of the function SatisfyChildrenMF (D′, r, T ′, k,M, β) which
differs from the appropriate part of the function SatisfyChildrenSD.

then there is a child s of t such that b ∈ σ(s), C(w)∩α(s) 6= ∅, thus there is y ∈ C(w)∩σ(s)
and by is an edge of τ(t) as σ(s) is a clique in τ(t). By the same argument C(w) ∩ τ(t) is
connected for every w ∈Wh and D′′[Bh ∪Wh] has a model in τ(t).

The proof of correctness of the algorithm is similar to that in Case 1. By Observation 5, it
is enough to prove that if SatisfyChildrenMF(D′, r, T ′, k,M, β) returns a set S 6= S∞ then
S is a smallest solution for (D′, r, T ′, k). We prove this claim again by induction on the depth
of the recursion. If the condition on line 2 is not satisfied (and hence there is no recursion)
the claim follows from the correctness of the algorithm DST-solve proved in Section 3.1. If
the condition is satisfied, it follows from Lemma 7 and the induction hypothesis that the set
returned is indeed a solution. The minimality in this case is proved exactly the same way as
in Lemma 10.

As for the time complexity, let us first find a bound dmax
w for DST-solve in the case

the condition on line 2 is not satisfied. Lemma 11 implies that Ke(h) 6� D′′[Bh ∪Wh] in this
case. Using Lemma 3, we can derive an upper bound dmax

w ≤ c · e(h)4 for some constant c.
It follows then from the proof in Section 3.1 that DST-solve runs in O∗((2O(db) · dmax

w )k)
time and, as db = max{e(h)− 2, a(h)}, there is a constant g′(h), such that the running time
of DST-solve can be bounded by O∗((g′(h))k). From this, similarly as in Case 1, it is easy
to conclude, that the running time of the overall algorithm for Case 2 can be bounded by
O∗((max{g(h), g′(h)})k).

Case 3: |β(t)| ≤ b(h). If |β(t)| ≤ b(h), then no vertex in τ(t) has degree larger than
b(h)− 1, and Kb(h)+1 6� τ(t). Therefore, in this case, either of the two approaches described
above can be used. This completes the proof of Theorem 4.

3.3 DST on d-degenerate graphs

Since DST has a O∗(f(k, h)) algorithm on graphs excluding minors and topological minors,
a natural question is if DST has a O∗(f(k, d)) algorithm on d-degenerate graphs. However,
we show that in general, we cannot expect an algorithm of this form even for an arbitrary
2-degenerate graph.

Theorem 8. DST parameterized by k is W[2]-hard on 2-degenerate graphs.

Proof. The proof is by a parameterized reduction from Set Cover. Given an instance
(U ,F = {F1, . . . , Fm}, k) of Set Cover, we construct an instance of DST as follows. Cor-
responding to each set Fi, we have a vertex fi and corresponding to each element u ∈ U , we
add a directed cycle Cu of length lu where lu is the number of sets in F which contain u (see
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Fig. 3. A instance of Set Cover reduced to an instance of DST. The red vertices are the terminals and the
green vertices are the non-terminals.

Fig. 3). For each cycle Cu, we add an arc from each of the sets containing u, to a unique
vertex of Cu. Since Cu has lu vertices, this is possible. Finally, we add another directed cycle
C of length m + 1 and for each vertex fi, we add an arc from a unique vertex of C to fi.
Again, since C has length m + 1, this is possible. Finally, we set as the root r, the only
remaining vertex of C which does not have an arc to some fi and we set as terminals all
the vertices involved in a directed cycle Cu for some u and all the vertices in the cycle C
except the root r. It is easy to see that the resulting digraph has degeneracy 3. Finally, we
subdivide every edge which lies in a cycle Cu for some u, or on the cycle C and add the new
vertices to the terminal set. This results in a digraph D of degeneracy 2. Let T be the set
of terminals as defined above. This completes the construction. We claim that (U ,F , k) is a
Yes instance of Set Cover iff (D, r, T, k) is a Yes instance of DST.

Suppose that (U ,F , k) is a Yes instance and let F ⊆ F be a solution. Consider the set
Fv = {fi|Fi ∈ F}. Clearly, |F | ≤ k and F is a solution for the instance (D, r, T, k) as all the
terminals are reachable from r in D[F ∪ T ∪ {r}].

Conversely, suppose that Fv is a solution for (D, r, T, k). Since the only non-terminals
are the vertices corresponding to the sets in F , we define a set F ⊆ F as F = {Fi|fi ∈ Fv}.
Clearly |F | ≤ k. We claim that F is a solution for the Set Cover instance (U ,F , k). Since
there are no edges between the cycles Cu or C in the instance of DST, for every u, it must
be the case that Fv contains some vertex fi which has an arc to a vertex in the cycle Cu. But
the corresponding set Fi will cover the element u and we have defined F such that Fi ∈ F .
Hence, F is indeed a solution for the instance (U ,F , k). This completes the proof.

In the instance of DST obtained in the above reduction, it seems that the presence of directed
cycles in the subgraph induced by the terminals plays a major role in the hardness of this
instance. We formally show that this is indeed the case by presenting an FPT algorithm for
DST for the case the digraph induced by the terminals is acyclic.

Theorem 9. DST can be solved in time O∗(2O(dk)) on d-degenerate graphs if the digraph
induced by the terminals is acyclic.

Proof. As the digraph induced by terminals is acyclic, Rule 1 does not apply and the instance
is reduced. Therefore we can directly execute the algorithm DST-solve on it. We set the
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degree bound to db = d. Note that if the set Bh and Wh created by the algorithm fulfill the
invariants, then, as the digraph induced by Wh ∪Bh is d-degenerate and the degree of every
vertex in Bh is at least db + 1 = d + 1, there must be a vertex v ∈ Wh with at most d (in-
)neighbors in Bh. Therefore we have dmax

w = d and according to the analysis from Section 3.1,
the algorithm runs in O∗((2O(db) · dmax

w )k) = O∗(2O(d)k) time.

Theorem 9 combined with Lemma 6 results in the following corollary.

Corollary 2. If C is an o(log n)-degenerate class of digraphs, then DST parameterized by k
is FPT on C if the digraph induced by terminals is acyclic.

Before concluding this section, we also observe that analogous to the algorithms in Theorems
2 and 9, we can show that in the case when the digraph induced by terminals is acyclic, the
DST problem admits an algorithm running in time O∗(2O(hk)) on graphs excluding Kh as a
topological minor.

Theorem 10. DST can be solved in time O∗(2O(hk)) on graphs excluding Kh as a topological
minor if the digraph induced by terminals is acyclic.

Combined with Lemma 6, Theorem 10 has the following corollary.

Corollary 3. If C is a class of digraphs excluding o(log n)-sized topological minors, then
DST parameterized by k is FPT on C if the digraph induced by terminals is acyclic.

3.4 Hardness of DST

In this section, we show that the algorithm given in Theorem 9 is essentially the best possible
with respect to the dependency on the degeneracy of the graph and the solution size. We
begin by proving a lower bound on the time required by any algorithm for DST on graphs
of degeneracy O(log n).
Our starting point is the known result for the following problem.

Partitioned Subgraph Isomorphism (PSI)
Input: Undirected graphs H = (VH , EH) and G = (VG = {g1, . . . , gl}, EG) and

a coloring function col : VH → [l].
Question: Is there an injection φ : VG → VH such that for every i ∈ [l], col(φ(gi)) =

i and for every (gi, gj) ∈ EG, (φ(gi), φ(gj)) ∈ EH?

We need the following lemma by Marx [32].

Lemma 12. (Corollary 6.3, [32]) Partitioned Subgraph Isomorphism cannot be solved

in time f(k)n
o( k

log k
)

where f is an arbitrary function and k = |EG| is the number of edges in
the smaller graph G unless ETH fails.

Using the above lemma, we will first prove a similar kind of hardness for a restricted version
of Set Cover (Lemma 13). Following that, we will reduce this problem to an instance of
DST to prove the hardness of the problem on graphs of degeneracy O(log n).

Lemma 13. There is a constant γ such that Set Cover with size of each set bounded by

γ logm cannot be solved in time f(k)m
o( k

log k
)
, unless ETH fails, where k is the size of the

solution and m is the size of the family of sets.
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Fig. 4. An illustration of the sets in the reduced instance, corresponding to the graph G (on the left). The blue
sets at position (i, i) correspond to vertices of H with color i and the green sets at position (i, j) correspond
to edges of H between color classes i and j.

Proof. Let (H = (VH , EH), G = (VG, EG), col) be an instance of Partitioned Subgraph
Isomorphism where |VG| = l and the function col : VH → [l] is a coloring (not necessarily
proper) of the vertices of H with colors from [l]. We call the set of vertices of H which have
the same color, a color class. We assume without loss of generality that there are no isolated
vertices in G. Let n be the number of vertices of H. For each vertex of color i in H, we
assign a log n-sized subset of 2 log n. Since

(
2 logn
logn

)
≥ n, this is possible. Let this assignment

be represented by the function id : VH → 2[2 logn].

Recall that the vertices of G are numbered g1, . . . , gl and we are looking for a colorful
subgraph of H isomorphic to G such that the vertex from color class i is mapped to the
vertex gi.

We will list the sets of the Set Cover instance and then we will define the set of elements
contained in each set. For each pair (i, j) such that there is an edge between gi and gj , and
for every edge between vertices u and v in VH such that col(u) = i, col(v) = j, we have a set
F ijuv. For each i ∈ [l], for each v ∈ VH such that col(v) = i, we have a set F iivv. The notation
is chosen is such way that we can think of the sets as placed on a l × l grid, where the sets
F ijuv for a fixed i and j are placed at the position (i, j) (see Fig. 4). Observe that many sets
can be placed at a position and it may also be the case that some positions of the grid do
not have a set placed on them. Let F be the family of sets defined as above.

A position (i, j) which has a set placed on it is called non-empty and empty otherwise.
Without loss of generality, we assume that if there are i 6= j such that there is an edge
between gi and gj in G, then the position (i, j) is non-empty. Two non-empty positions (i, j)
and (i′, j) are said to be consecutive if there is no non-empty position (i′′, j) where i < i′′ < i′.
Similarly, two non-empty positions (i, j) and (i, j′) are said to be consecutive if there is no
non-empty position (i, j′′) where j < j′′ < j′. Note that consecutive positions are only defined
along the same row or column.

We now define the universe U as follows. For every non-empty position (i, j), we have
an element s(i,j). For every (i1, j1) and (i2, j2) such that they are consecutive, we have a set

U (i1,j1)(i2,j2) of 2 log n elements {u(i1,j1)(i2,j2)1 . . . , u
(i1,j1)(i2,j2)
2 logn }. An element u

(i1,j1)(i2,j2)
a is said

to correspond to id(u) for some vertex u if a ∈ id(u).

We will now define the elements contained within each set. For each non-empty position
(i, j), add the element s(i,j) to every F ijuv for all (possible) u, v. Now, fix 1 ≤ i ≤ l. Let (i, j1)
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and (i, j2) be consecutive positions where j1 < j2. For each set F ij1uv , we add the elements

{u(i,j1)(i,j2)a |a /∈ id(u)} and for each set F ij2uv , we add the the elements {u(i,j1)(i,j2)a |a ∈ id(u)}.
Similarly, fix 1 ≤ j ≤ l. Let (i1, j) and (i2, j) be consecutive positions where that i1 < i2.

For each set F i1juv , we add the elements {u(i1,j)(i2,j)a |a /∈ id(u)} and for each set F i2juv , we add

the the elements {u(i1,j)(i2,j)a |a ∈ id(u)}.
This completes the construction of the Set Cover instance. We first prove the following

lemma regarding the constructed instance, which we will then use to show the correctness of
the reduction.

Lemma 14. Suppose (i, j1) and (i, j2) are two consecutive positions where j1 < j2 and (i1, j)
and (i2, j) are two consecutive positions where i1 < i2.

1. The elements in U (i,j1)(i,j2) can be covered by precisely one set from (i, j1) and one set
from (i, j2) iff the two sets are of the form F ij1uv and F ij2uv′.

2. The elements in U (i1,j)(i2,j) can be covered by precisely one set from (i1, j) and one set
from (i2, j) iff the two sets are of the form F i1juv and F i2ju′v .

Proof. We prove the first statement. The proof of the second is analogous. Observe that, by
the construction, the only sets which can cover elements in U (i,j1)(i,j2) are sets from (i, j1)
and (i, j2).

Suppose that the elements in U (i,j1)(i,j2) are covered by precisely one set from (i, j1)
and one from (i, j2) and the two sets are of the form F ij1uv and F ij2u′v′ where u 6= u′. By

the construction, the set F ij1uv covers the elements of U (i,j1)(i,j2) which do not correspond to
id(u) and the set F ij2u′v′ covers the elements of U (i,j1)(i,j2) which correspond to id(u′). Since
col(u) = col(u′) (implied by the construction), id(u) 6= id(u′). Since |id(u)| = |id(u′)|, it must
be the case that there is an element of [2 log n], say x, which is in id(u) but not in id(u′).

But then, it must be the case that the element u
(i,j1)(i,j2)
x is left uncovered by both F ij1uv and

F ij2u′v′ , a contradiction.

Conversely, consider two sets of the form F ij1uv and F ij2uv′ . We claim that these two sets

together cover the elements in U (i,j1)(i,j2). But this is true since F ij1uv covers the elements of
U (i,j1)(i,j2) which do not correspond to id(u) and F ij2uv′ covers the elements of U (i,j1)(i,j2) which
do correspond to id(u). This completes the proof of the lemma.

We claim the instance (H,G, col) is a Yes instance of PSI iff the instance (U ,F , k′) is a Yes
instance of Set Cover, where k′ = 2|EG|+ |VG|. Suppose that (H,G, col) is a Yes instance,
φ is its solution, and let vi = φ(gi). We claim that the sets F ijvivj , where (i, j) is a non-empty
position, form a solution for the Set Cover instance. Since we have picked a set from every
non-empty position (i, j), the elements s(i,j) are all covered. But since the sets we picked
from any two consecutive positions match premise of Lemma 14, the elements corresponding
to the consecutive positions are also covered.

Conversely, suppose that the Set Cover instance is a Yes instance and let F ′ be a
solution. Since we must pick at least one set from each non-empty position (we have to cover
the vertices s(i,j)), and the number of non-empty positions equals k′, we must have picked
exactly one set from each non-empty position. Let vi be the vertex corresponding to the set
picked at position (i, i). We define the function φ as φ(gi) = vi. Clearly, φ is an injection with
col(φ(gi)) = i. It remains to show that for every gi, gj , if (gi, gj) ∈ EG, then there is an edge
between vi and vj . To show this, we need to show that the set picked from position (i, j) has

to be exactly F ijvivj . By Lemma 14, the sets picked from row i are of the form F ijvi,v, for any

j and v and the sets picked from column j are of the form F ijv,vj , for any i and v. Hence, the
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set picked from position (i, j) can only be F ijvivj . Thus, there is an edge between vi and vj
in H and φ is indeed a homomorphism. This completes the proof of equivalence of the two
instances.

Since G contains no isolated vertex, we have l = O(k) and, thus, k′ = Θ(k). Observe that the
number of sets m in the Set Cover instance is |VH |+2|EH |, that is, n ≤ m and m = O(n2).
Observe that each set contains at most 4 log n+ 1 elements, one of the form s(i,j) and log n
for each of the at most four consecutive positions the set can be a part of. Since the number
of sets m is at least n, there is a constant γ such that the number of elements in each set
is bounded by γ logm. Finally, since m = O(n2), an algorithm for Set Cover of the form

f(k)m
o( k

log k
)

implies an algorithm of the form f(k)n
o( k

log k
)

for PSI. This completes the proof
of the lemma.

Now we are ready to prove the main theorem of this section.

Theorem 11. DST cannot be solved in time f(k)n
o( k

log k
)

on c log n-degenerate graphs for
any constant c > 0 even if the digraph induced by terminals is acyclic, where k is the solution
size and f is an arbitrary function, unless ETH fails.

Proof. The proof is by a reduction from the restricted version of Set Cover shown to be
hard in Lemma 13. Fix a constant c > 0 and let (U = {u1, . . . , un},F = {F1, . . . , Fm}, k) be
an instance of Set Cover, where the size of any set is at most γ logm, for some constant
γ. For each set Fi, we have a vertex fi. For each element ui, we have a vertex xi. If an
element ui is contained in set Fj , then we add an arc (fj , xi). Further, we add another vertex
r and add arcs (r, fi) for every i. Finally, we add m2γ/c isolated vertices. This completes the
construction of the digraph D. We set T = {x1, . . . , xn} ∪ {r} as the set of terminals and r
as the root.

We claim that (U ,F , k) is a Yes instance of Set Cover iff (D, r, T, k) is a Yes instance
of DST. Suppose that {F1, . . . , Fk} is a set cover for the given instance. It is easy to see that
the vertices {f1, . . . , fk} form a solution for the DST instance.

Conversely, suppose that {f1, . . . , fk} is a solution for the DST instance. Since the only
way that r can reach a vertex xi is through some fj , and the construction implies that
ui ∈ Fj , the sets {F1, . . . , Fk} form a set cover for (U ,F , k). This concludes the proof of
equivalence of the two instances.

We claim that the degeneracy of the graph D is c log n1 + 1. First, we show that the
degeneracy of the graph D is bounded by γ logm + 1. This follows from that each vertex
fi has total degree at most γ logm + 1 and if a subgraph contains none of these vertices,
then it contains no edges. Now, n1 is at least m2γ/c. Hence, log n1 ≥ (2γ/c) logm and the
degeneracy of the graph is at most γ logm + 1 ≤ c · (2γ/c) logm ≤ c log n1. Finally, since
each vertex fi is adjacent to at most γ logm + 1 vertices, n1 = O(m logm + m2γ/c) and,

thus, it is polynomial in m. Hence, an algorithm for DST of the form f(k)n
o( k

log k
)

1 implies an

algorithm of the form f(k)m
o( k

log k
)

for the Set Cover instance. This concludes the proof of
Theorem 11.

Combining the Theorem 11 with Lemma 6 we get the following corollary.

Corollary 4. There are no two functions f and g such that g(d) = o(d) and there is an
algorithm for DST running in time O∗(2g(d)f(k)) unless ETH fails.

To examine the dependency on the solution size we utilize the following theorem.
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Theorem 12. ([27]) There is a constant c such that Dominating Set does not have an
algorithm running in time O∗(2o(n)) on graphs of maximum degree ≤ c unless ETH fails.

From Theorem 12, we can infer the following corollary.

Corollary 5. There are no two functions f and g such that f(k) = o(k) and there is an
algorithm for DST running in time O∗(2g(d)f(k)), unless ETH fails.

Proof. We use the following standard reduction from Dominating Set to DST. Let (G =
(V,E), k) be an instance of Dominating Set with the maximum degree of G bounded by
some constant c. We can assume that the number of vertices n of the graph G is at most
ck + k, since otherwise, it is a trivial No instance. Let D = (V ′, A) be the digraph defined
as follows. We set V ′ = V × {1, 2} ∪ {r}. There is an arc in A from (u, 1) to (v, 2) if either
u = v or there is an edge between u and v in E. Finally, there is an arc from r to (v, 1) for
every v ∈ V . We let T = {(v, 2) | v ∈ V }.

It is easy to check that S ⊆ V is a solution to the instance (G, k) of Dominating Set
if and only if S × {1} is a solution to the instance (D, r, T, k) of DST. As the vertices
(v, 2) have degree at most c + 1, D is c + 1-degenerate. Since the reduction is polynomial
time, preserves k and k = Θ(n), an algorithm for DST running in time O∗(2g(d)f(k)) for
some f(k) = o(k) would solve Dominating Set on graphs of maximum degree ≤ c in time
O∗(2g(c+1)f(k)) = O∗(2o(n)), and, hence, ETH fails by Theorem 12.

4 Applications to Dominating Set

In this section, we adapt the ideas used in the algorithms for DST to design improved algo-
rithms for the Dominating Set problem and some variants of it in subclasses of degenerate
graphs.

4.1 Introduction for Dominating Set

On general graphs Dominating Set is W[2]-complete [13]. However, there are many in-
teresting graph classes where FPT-algorithms exist for Dominating Set. The project of
expanding the horizon where FPT algorithms exist for Dominating Set has produced a
number of cutting-edge techniques of parameterized algorithm design. This has made Dom-
inating Set a cornerstone problem in parameterized complexity. For an example the initial
study of parameterized subexponential algorithms for Dominating Set, on planar graphs
[1, 17] resulted in the development of bidimensionality theory characterizing a broad range
of graph problems that admit efficient approximation schemes, subexponential time FPT al-
gorithms and efficient polynomial time pre-processing (called kernelization) on minor closed
graph classes [10, 11]. Alon and Gutner [2] and Philip, Raman, and Sikdar [37] showed that
Dominating Set problem is FPT on graphs of bounded degeneracy and on Ki,j-free graphs,
respectively.

Numerous papers also concerned the approximability of Dominating Set. It follows
from [7] that Dominating Set on general graphs can approximated to within roughly
ln(∆(G) + 1), where ∆(G) is the maximum degree in the graph G. On the other hand,
it is NP-hard to approximate Dominating Set in bipartite graphs of degree at most B
within a factor of (lnB − c ln lnB), for some absolute constant c [8]. Note that a graph of
degree at most B excludes KB+2 as a topological minor, and, hence, the hardness also ap-
plies to graphs excluding Kh as a topological minor. While a polynomial time approximation
scheme (PTAS) is known for Kh-minor-free graphs [21], we are not aware of any constant
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factor approximation for Dominating Set on graphs excluding Kh as a topological minor
or d-degenerate graphs.

Based on the ideas from previous sections, we develop an algorithm for Dominating Set.
Our algorithm for Dominating Set on d-degenerate graphs improves over the O∗(kO(dk))
time algorithm by Alon and Gutner [2]. In fact, it turns out that our algorithm is essentially
optimal – we show that, assuming the ETH, the running time dependence of our algorithm
on the degeneracy of the input graph and solution size k cannot be significantly improved.
Furthermore, we also give a factor O(d2) approximation algorithm for Dominating Set on
d-degenerate graphs. A list of our results for Dominating Set is given below.

1. There is a O∗(3hk+o(hk))-time algorithm for Dominating Set on graphs excluding Kh

as a topological minor.
2. There is a O∗(3dk+o(dk))-time algorithm for Dominating Set on d-degenerate graphs.

This implies that Dominating Set is FPT on o(log n)-degenerate classes of graphs.

3. For any constant c > 0, there is no f(k)n
o( k

log k
)
-time algorithm on graphs of degeneracy

c log n unless ETH fails.
4. There are no two functions f and g such that g(d) = o(d) and there is an algorithm for

Dominating Set running in time O∗(2g(d)f(k)), unless ETH fails.
5. There are no two functions f and g such that f(k) = o(k) and there is an algorithm for

Dominating Set running in time O∗(2g(d)f(k)), unless ETH fails.
6. There is a O(dn log n) time factor O(d2) approximation algorithm for Dominating Set

on d-degenerate graphs.

4.2 Dominating Set on graphs of bounded degeneracy

We begin by giving an algorithm for Dominating Set running in time O∗(3hk+o(hk)) in
graphs excluding Kh as a topological minor. This improves over the O∗(2O(kh log h)) algorithm
of [2]. Though the algorithm we give here is mainly built on the ideas developed for the
algorithm for DST, the algorithm has to be modified slightly in certain places in order to
fit this problem. We also stress this an example of how these ideas, with some modifications,
can be made to fit problems other than DST. We begin by proving lemmata required for the
correctness of the base cases of our algorithm.

Lemma 15. Let (G, k) be an instance of Dominating Set. Let Y ⊆ V be a set of vertices
and let B be the set of vertices (other than Y ) dominated by Y . Let W be the set of vertices of
G not dominated by Y , Bh be the set of vertices of B which dominate at least d+1 terminals
in W for some constant d, Bl be the rest of the vertices of B, Wh be the vertices of W which
have neighbors in Bh ∪W . If |W \Wh| > d(k− |Y |), then the given instance does not admit
a solution which contains Y .

Proof. Let W \Wh = Wl. Since any vertex in Wl does not have neighbors in Bh ∪W ∪ Y ,
G[Wl] is an independent set, and the only vertices which can dominate a vertex in Wl are
either itself, or a vertex of Bl. Any vertex of Wl can only dominate itself (vertices of Bl are
already dominated by Y ) and any vertex of Bl can dominate at most d vertices of W . Hence,
if |Wl| > d(k−|Y |), Wl cannot be dominated by adding k−|Y | vertices to Y . This completes
the proof.

Lemma 16. Let (D, k) be an instance of Dominating Set. Let Y ⊆ V be a set of vertices
and let B be the set of vertices (other than Y ) dominated by Y . Let W be the set of vertices of
G not dominated by Y , Bh be the set of vertices of B which dominate at least d+1 terminals

22



Fig. 5. An illustration of the sets defined in Theorem 13

in W for some constant d, Bl be the rest of the vertices of B, Wh be the vertices of W which
have neighbors in Bh ∪W .

If Bh ∪ Wh is empty, then there is an algorithm which can test if this instance has a
solution containing Y in time O∗(2d(k−|Y |)).

Proof. The premises of the lemma imply that the only potentially non-empty sets are Y , Bl
and W = Wl. If W is empty, we are done. Suppose W is non-empty. We know that |Y | ≤ k
and, by Lemma 15, we can assume that |W | ≤ d(k − |Y |). Since W is an independent set,
the only vertices the vertices of W can dominate (except for vertices dominated by Y ), are
themselves. Thus it is never worse to take a neighbor of them in the solution if they have
one. The isolated vertices from W can be simply moved to Y , as we have to take them into
the solution. Now, it remains to find a set of vertices of Bl of the appropriate size such that
they dominate the remaining vertices of W . But in this case, we can reduce it to an instance
of DST and apply the algorithm from Lemma 2. The reduction is as follows. Consider the
graph G[Bl ∪W ]. Remove all edges between vertices in Bl. Let this graph be Gdst. Simply
add a new vertex r and add directed edges from r to every vertex in Bl. Also orient all edges
between Bl and W , from Bl to W . Now, W is set as the terminal set. Now, since |W | ≤ dk, it
is easy to see that the algorithm Nederlof(Gdst, r,W,W ) runs in time O∗(2d(k−|Y |)). This
completes the proof of the lemma.

Theorem 13. Dominating Set can be solved in time O∗(3hk+o(hk)) on graphs excluding
Kh as a topological minor.

Proof. The algorithm we describe takes as input an instance (G, k), and vertex sets B,W,Bh,
Bl, Wh, Wl and Y and returns a smallest solution for the instance, which contains Y if such
a solution exists. If there is no such solution, then the algorithm returns a dummy symbol
S∞. To simplify the description, we assume that |S∞| = ∞. The algorithm is a recursive
algorithm and at any stage of recursion, the corresponding recursive step returns the smallest
set found in the recursions initiated in this step. For the purpose of this proof, we will always
have db = h− 2. Initially, all the sets mentioned above are empty.
At any point, while updating these sets, we will maintain the following invariants (see Fig. 5).

– The sets Bh, Bl, Wh, Wl and Y are pairwise disjoint.
– The set Y has size at most k.
– B is the set of vertices dominated by Y .
– W is the set of vertices not dominated by Y .
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– Bh is the set of vertices of B which dominate at least db + 1 vertices of W .

– Bl is the set of vertices of B which dominate at most db vertices of W .

– Wh is the set of vertices of W which have a neighbor in Bh ∪W .

– Wl are the remaining vertices of W .

Observe that the sets Bl, Wh and Wl correspond to the sets Bl, Wh and W \Wh defined
in the statement of Lemma 15. Hence, by Lemma 15, if |Wl| > db(k − |Y |), then there is no
solution containing Y and hence we return S∞ (see Algorithm 4.1). If Bh∪Wh is empty, then
we apply Lemma 16 to solve the problem in time O∗(2db(k−|Y |)). If Bh ∪Wh is non-empty,
then we find a vertex v ∈Wh with the least neighbors in Bh ∪Wh. Let N be the set of these
neighbors and let |N | = dw.

We then branch into dw + 2 branches described as follows. In the first dw + 1 branches,
we move a vertex u of N ∪ {v}, to the set Y , and perform the following updates. We move
the vertices of W which are adjacent to u, to B, and update the remaining sets in a way that
maintains the invariants mentioned above. More precisely, set Bh as the set of vertices of B
which dominate at least db + 1 vertices of W , Bl as the set of vertices of B which dominate
at most db vertices of W , Wh as the set of vertices of W which have a neighbor in Bh ∪W ,
and Wl as the rest of the vertices of W . Finally, we recurse on the resulting instance.

In the last of the dw +2 branches, that is, the branch where we have guessed that none of
the vertices of N are in the dominating set, we move the vertex v to Wl, delete the vertices of
N ∩Bh and the edges from v to N ∩Wh, to obtain the graph G′. Starting from here, we then
update all the sets in a way that the invariants are maintained. More precisely, set B as the set
of vertices dominated by Y , W as the set of vertices not dominated by Y , set Bh as the set of
vertices of B which dominate at least db+1 vertices of W , Bl as the set of vertices of B which
dominate at most db vertices of W , Wh as the set of vertices of W which have a neighbor in
Bh∪W , and Wl as the rest of the vertices of W . Finally, we recurse on the resulting instance.

Correctness. At each node of the recursion tree, we define a measure µ(I) = db(k − |Y |)−
|Wl|. We prove the correctness of the algorithm by induction on this measure. In the base
case, when db(k − |Y |) − |Wl| < 0, then the algorithm is correct (by Lemma 15). Now, we
assume as induction hypothesis that the algorithm is correct on instances with measure less
than some µ ≥ 0. Consider an instance I such that µ(I) = µ. Since the branching is exhaus-
tive, it is sufficient to show that the algorithm is correct on each of the child instances. To
show this, it is sufficient to show that for each child instance I ′, µ(I ′) < µ(I). In the first
dw + 1 branches, the size of the set Y increases by 1, and the size of the set Wl does not de-
crease (Wl has no neighbors in Bh∪Wl). Hence, in each of these branches, µ(I ′) ≤ µ(I)−db.
In the final branch, though the size of the set Y remains the same, the size of the set Wl

increases by at least 1. Hence, in this branch, µ(I ′) ≤ µ(I) − 1. Thus, we have shown that
in each branch, the measure drops, hence completing the proof of correctness of the algorithm.

Analysis. Since D exludes Kh as a topological minor, Lemma 3, combined with the fact that
we set db = h−2, implies that dmax

w = ch4, for some c, is an upper bound on the maximum dw
which can appear during the execution of the algorithm. We first bound the number of leaves

of the recursion tree as follows. The number of leaves is bounded by
∑dbk

i=0

(
dbk
i

)
(dmax
w +1)

k− i
db .

To see this, observe that each branch of the recursion tree can be described by a length-dbk
vector as shown in the correctness paragraph. We then select i positions of this vector on
which the last branch was taken. Finally for k − i

db
of the remaining positions, we describe

which of the first at most (dmax
w + 1) branches was taken. Any of the first dmaxw + 1 branches

can be taken at most k − i
db

times if the last branch is taken i times.
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Input : An instance (G, k) of Dominating Set, degree bound db, sets Bh, Bl, Y , Wh, Wl

Output: A smallest solution of size at most k and containing Y for the instance (D, k) if it exists and
S∞ otherwise

1 if |Wl| > db(k − |Y |) then return S∞
2 else if Bh = ∅ then
3 S ← Nederlof(Gdst, r,W,W ).
4 if |S| > k then S ← S∞
5 return S

6 end
7 else
8 S ← S∞
9 Find vertex v ∈Wh with the least neighbors in Bh ∪Wh.

10 for u ∈ ((Bh ∪Wh) ∩N [v]) do
11 Y = Y ∪ {u}, perform updates to get B′h, B′l, W

′
h, W ′l .

12 S′ ← DS-solve((G, k), db, B
′
h, B

′
l, Y,W

′
h,W

′
l ).

13 if |S′| < |S| then S ← S′

14 end
15 Wl ←Wl ∪ {v}, perform updates to get new graph G′ and sets B′h, B′l, W

′
h,W ′l .

16 S′ ← DS-solve((G′, k), db, B
′
h, B

′
l, Y,W

′
h,Wl).

17 if |S′| < |S| then S ← S′

18 return S

19 end

Algorithm 4.1: Algorithm DS-solve for Dominating Set

The time taken along each root to leaf path in the recursion tree is polynomial, while

the time taken at a leaf for which the last branch was taken i times is O∗(2
db(k−(k− i

db
))

) =
O∗(2i+k) (see Lemmata 15 and 16). Hence, the running time of the algorithm is

O∗

(
dbk∑
i=0

(
dbk

i

)
(dmax
w + 1)

k− i
db · 2i+k

)
= O∗

(
(2dmax

w + 2)k ·
dbk∑
i=0

(
dbk

i

)
· 2i
)

= O∗
(

(2dmax
w + 2)k · 3dbk

)
.

For db = h−2 and dmax
w = ch4 this is O∗(3hk+o(hk)). This completes the proof of the theorem.

Observe that, when Algorithm 4.1 is run on a graph of degeneracy d, setting db = d, combined
with the simple fact that dmaxw ≤ d gives us the following theorem.

Theorem 14. Dominating Set can be solved in time O∗(3dk+o(dk)) on graphs of degeneracy
d.

From the above two theorems and Lemma 6, we have the following corollary.

Corollary 6. If C is a class of graphs excluding o(log n)-sized topological minors or an
o(log n)-degenerate class of graphs, then Dominating Set parameterized by k is FPT on
C.

4.3 Hardness

Theorem 15. Dominating Set cannot be solved in time f(k)n
o( k

log k
)

on c log n-degenerate
graphs for any constant c > 0, where k is the solution size and f is an arbitrary function,
unless ETH fails.

Proof. The proof is by a reduction from the restricted version of Set Cover shown to be
hard in Lemma 13. Fix a constant c > 0 and let (U = {u1, . . . , un},F = {F1, . . . , Fm}, k) be
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an instance of Set Cover, where the size of any set is at most γ logm for some constant γ.
For each set Fi, we have a vertex fi. For each element ui, we have a vertex xi. If an element
ui is contained in the set Fj , then we add an edge (fj , xi). Further, we add two vertices r
and p and add edges (r, fi) for every i and an edge (r, p). Finally, we add star of size m2γ/c

centered in q disjoint from the rest of the graph. This completes the construction of the graph
G.

We claim that (U ,F , k) is a Yes instance of Set Cover iff (G, k+2) is a Yes instance of
Dominating Set. Suppose that {F1, . . . , Fk} is a set cover for the given instance. It is easy
to see that the vertices q, r, f1, . . . , fk form a solution for the Dominating Set instance.

In the converse direction, since one of p and r and at least one vertex of the star must
be in any dominating set, we assume without loss of generality that r and q are contained
in the minimum dominating set. Also, since r dominates any vertex fi, we may also assume
that the solution is disjoint from the xi’s. This is because, if xi was in the solution, we can
replace it with an adjacent fj to get another solution of the same size. Hence, we suppose
that {q, r, f1, . . . , fk} is a solution for the Dominating Set instance. Since the only way that
some vertex xi can be dominated is by some fj , and the construction implies that ui ∈ Fj ,
the sets {F1, . . . , Fk} form a set cover for (U ,F , k). This concludes the proof of equivalence
of the two instances.

We claim that the degeneracy of the graph G is bounded by c log n1, where n1 is the
number of vertices in the graph G. First, we claim that the degeneracy of the graph G
is bounded by γ logm + 1. This follows from that each vertex fi has total degree at most
γ logm+1, each leaf of the star has degree 1 and if a subgraph contains none of these vertices,
then it contains no edges. Now, n1 is at least m2γ/c. Hence, log n1 ≥ (2γ/c) logm and the
degeneracy of the graph is at most γ logm + 1 ≤ c · (2γ/c) logm ≤ c log n1. Finally, since
each vertex fi is incident to at most γ logm+ 1 vertices, n1 = O(m logm+m2γ/c) and, thus,

it is polynomial in m. Hence, an algorithm for Dominating Set of the form f(k)n
o( k

log k
)

1

implies an algorithm of the form f(k)m
o( k

log k
)

for the Set Cover instance. This concludes
the proof of the theorem.

As a corollary of Theorem 15, and Lemma 6, we have the following corollary.

Corollary 7. There are no two functions f and g such that g(d) = o(d) and there is an
algorithm for Dominating Set running in time O∗(2g(d)f(k)) unless ETH fails.

From Theorem 12, we can infer the following corollary.

Corollary 8. There are no two functions f and g such that f(k) = o(k) and there is an
algorithm for Dominating Set running in time O∗(2g(d)f(k)), unless ETH fails.

Proof. Suppose that there were an algorithm for Dominating Set running in timeO∗(2g(d)f(k)),
where f(k) = o(k). Consider an instance (G, k) of Dominating Set where G is a graph with
maximum degree c. We can assume that the number of vertices of the graph is at most ck+k,
since otherwise, it is a trivial No instance. Hence, k = Θ(n) and thus, an algorithm running
in time O∗(2g(d)f(k)) will run in time O∗(2g(c)f(k)) = O∗(2o(n)), and, by Theorem 12, ETH
fails.

Thus, Corollaries 7 and 8 together show that, unless ETH fails, our algorithm for Dominat-
ing Set has the best possible dependence on both the degeneracy and the solution size.
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Input : An Undirected graph G = (V,E) without isolated vertices
Output: A dominating set for G of size at most O(d2) times the size of a minimum dominating set

1 Y ← ∅
2 Wh ← V
3 while Wh 6= ∅ do
4 Find vertex v ∈Wh with the least neighbors in Bh ∪Wh.
5 Y ← Y ∪ ((Bh ∪Wh) ∩N(v))
6 B ← vertices in V \ Y with a neighbor in Y
7 W ← V \ (Y ∪B)
8 Bh ← vertices in B with at least d+ 1 neighbors in W
9 Bl ← B \Bh

10 Wh ← vertices in W with a neighbor in Bh or W
11 Wl ←W \Wh

12 end
13 Y ← Y ∪Wl

14 return Y

Algorithm 4.2: Algorithm DS-approx for Dominating Set

4.4 Approximating Dominating Set on graphs of bounded degeneracy

In this section, we adapt the ideas developed in the previous subsections, to design a polynomial-
time O(d2)-approximation algorithm for the Dominating Set problem on d-degenerate
graphs.

Theorem 16. There is a O(dn log n)-time d2- approximation algorithm for the Dominat-
ing Set problem on d-degenerate graphs.

Proof. The approximation algorithm is based on our FPT algorithm, but whenever the
branching algorithm would branch, we take all candidates into the solution and cycle in-
stead of recursing. During the execution of the algorithm the partial solution is kept in the
set Y and vertex sets B,W,Bh, Bl, Wh, and Wl are updated with the same meaning as in
the branching algorithm. In the base case, all vertices of Wl are taken into the solution. This
last step could be replaced by searching a dominating set for the vertices in Wl by some ap-
proximation algorithm for Set Cover. While this would probably improve the performance
of the algorithm in practice, it does not improve the theoretical worst case bound.
Correctness. It is easy to see that the set Y output by the algorithm is a dominating set
for G. Now let Q be an optimal dominating set for G. We want to show that |Y | is at most
d2 times |Q|. In particular, we want to account every vertex of Y to some vertex of Q, which
“should have been chosen instead to get the optimal set.” Before we do that let us first
observe, how the vertices can move around the sets during the execution of the algorithm.
Once a vertex is added to Y it is never removed. Hence, once a vertex is moved from W to
B, it is never moved back. But then the vertices in B are only losing neighbors in W , and
once they get to Bl they are never moved anywhere else. Thus, vertices in Wl can never get
a new neighbor in W or Bh and they also stay in Wl until Step 13. The vertices of Bh can
get to Y or Bl and the vertices of Wh can get to any other set during the execution of the
algorithm.

Now let v be the vertex found in Step 4 of Algorithm 4.2 and w be the vertex dominating
it in Q. As in the branching algorithm, we know that |(Bh ∪ Wh) ∩ N(v)| ≤ d since the
subgraph of G induced by (Bh ∪Wh) is d-degenerate. Hence at most d vertices are added to
Y in Step 5 of the algorithm. We charge the vertex w for these at most d vertices and make
the vertex v responsible for that. Finally, in Step 13 let v ∈ Wl and w be a vertex which
dominates it in Q. We charge w for adding v to Y and make v responsible for it. Obviously,
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for each vertex added to Y , some vertex is responsible and some vertex of Q is charged. It
remains to count for how many vertices can be a vertex of Q charged.

Observe that whenever a vertex is responsible for adding some vertices to Y , it is W and
after adding these vertices it becomes dominated and, hence, moved to B. Therefore, each
vertex becomes responsible for adding vertices only once and, thus, each vertex is responsible
for adding at most d vertices to Y . Now let us distinguish in which set a vertex w of Q is,
when it is first charged. If w is first charged in Step 5 of the algorithm, then a vertex v ∈Wh

is responsible for that and w has to be either in Wh, Bh, or Bl, as vertices in Wh do not have
neighbors elsewhere. In the first two cases, if w 6= v, then it is moved to Y and hence has no
neighbors in W anymore. If v = w, then it is moved to Bl, and it has no neighbors in W , as
all of them are moved to Y . Thus, in these cases, after the step is done, w has no neighbors
in W and, hence, is never charged again. If w is in Bl, then it has at most d neighbors in W
and, as each of them is responsible for adding at most d vertices to Y , w is charged for at
most d2 vertices. If a vertex w is first charged in Step 13, then it is Bl or Wl, has at most
d neighbors in Wl, each of them being responsible for addition of exactly one vertex, so it is
charged for addition of at most d vertices. It follows, that every vertex of Q is charged for
addition of at most d2 to Y and, therefore, |Y | is at most d2 times |Q|.
Running time analysis. To see the running time, observe first that by the above argument,
every vertex is added to each of the sets at most once. Also a vertex is moved from one set
to another only if some of its neighbors is moved to some other set or it is selected in Step 4.
Hence, we might think of a vertex sending a signal to all its neighbor, once it is moved
to another set. There are only constantly many signals and each of them is sent at most
once over each edge in each direction. Hence, all the updations of the sets can be done in
O(m) = O(dn)-time, as the graph is d-degenerate. Also each vertex in Wh can keep its
number of neighbors in Wh ∪ Bh and update it whenever it receives a signal from some of
its neighbors about being moved out of Wh ∪Bh. We can keep a heap of the vertices in Wh

sorted by a degree in Wh ∪ Bh and update it in O(log n) time whenever the degree of some
of the vertices change. This means O(dn log n) time to keep the heap through the algorithm.
Using the heap, the vertex v in Step 4 can be found in O(log n)-time in each iteration. As in
each iteration at least one vertex is added to Y , there are at most n iterations and the total
running time is O(dn log n).

This algorithm can be also used for Kh-minor-free and Kh-topological-minor free graphs,
yielding O(h2 · log h)-approximation and O(h4)-approximation, as these graphs are O(h ·√

log h) and O(h2)-degenerate, respectively. As far as we know, this is also the first constant
factor approximation for dominating set inKh-topological-minor free graphs. Although PTAS
is known for Kh-minor-free graphs [21], our algorithm can be still of interest due to its
simplicity and competitive running time.

5 Conclusions

We gave the first FPT algorithms for the Steiner Tree problem on directed graphs exclud-
ing a fixed graph as a (topological) minor, and then extended the results to directed graphs
of bounded degeneracy. We mention that the same approach also gives us FPT algorithms for
Dominating Set and some of its variants, for instance Connected Dominating Set and
Total Dominating Set. Finally, in the process of showing the optimality of our algorithm,
we showed that for any constant c, DST is not expected to have an algorithm of the form

f(k)n
o( k

log k
)

on o(log n)-degenerate graphs. It would be interesting to either improve this
lower bound, or prove the tightness of this bound by giving an algorithm with a matching
running time.

28



References

1. J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed parameter algorithms for
dominating set and related problems on planar graphs. Algorithmica, 33(4):461–493, 2002.

2. N. Alon and S. Gutner. Linear time algorithms for finding a dominating set of fixed size in degenerated
graphs. Algorithmica, 54(4):544–556, 2009.

3. M. W. Bern and P. E. Plassmann. The Steiner problem with edge lengths 1 and 2. Inf. Process. Lett.,
32(4):171–176, 1989.

4. A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbius: fast subset convolution. In
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