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Abstract. We study the classical Bandwidth problem from the viewpoint of parameterized
algorithms. In the Bandwidth problem we are given a graph G = (V,E) together with a
positive integer k, and asked whether there is an bijective function β : {1, . . . , n} → V such
that for every edge uv ∈ E, |β−1(u) − β−1(v)| ≤ k. The problem is notoriously hard, and
it is known to be NP-complete even on very restricted subclasses of trees. The best known
algorithm for Bandwidth for small values of k is the celebrated algorithm by Saxe [SIAM
Journal on Algebraic and Discrete Methods, 1980 ], which runs in time 2O(k)nk+1. In a
seminal paper, Bodlaender, Fellows and Hallet [STOC 1994 ] ruled out the existence of an
algorithm with running time of the form f(k)nO(1) for any function f even for trees, unless
the entire W-hierarchy collapses.

We initiate the search for classes of graphs where Bandwidth is fixed parameter tractable
(FPT), that is, solvable in time f(k)nO(1) for some function f . In this paper we present an
algorithm with running time 2O(k log k)n2 for Bandwidth on AT-free graphs, a well-studied
graph class that contains interval, permutation, and cocomparability graphs. Our result is
the first non-trivial FPT algorithm for Bandwidth on a graph class where the problem
remains NP-complete.

1 Introduction

The bandwidth of a graph G is the smallest integer b such that there is an bijective function
β : {1, . . . , n} → V , also called a layout for G, such that for every edge uv ∈ E, |β−1(u)−
β−1(v)| ≤ b. Given a graph G and an integer k, Bandwidth asks whether the bandwidth
of G is at most k. The problem arises in sparse matrix computations, where given an n×n
matrix A and an integer k, the goal is to decide whether there is a permutation matrix P
such that PAP T is a matrix whose all non-zero entries lie within the k diagonals on either
side of the main diagonal. Standard matrix operations like inversion and multiplication as
well as Gaussian elimination can be sped up considerably if the input matrix A can be
transformed into a matrix PAP T of small bandwidth [10].

Bandwidth is one of the most well-known and extensively studied graph layout prob-
lems [9]. The Bandwidth problem is NP-complete [21] and remains NP-complete even on
very restricted subclasses of trees, like caterpillars of hair length at most 3 [18]. Further-
more, the bandwidth of a graph is NP-hard to approximate within a constant factor for
trees [2]. Polynomial-time algorithms for the exact computation of bandwidth are known
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for a few graph classes including caterpillars with hair length at most 2 [1], cographs
[23], interval graphs [14] and bipartite permutation graphs [12]. A classical algorithm by
Saxe [22] solves Bandwidth in time 2O(k)nk+1, which is polynomial when k is a con-
stant. However, as the value of k grows, the exponent of the polynomial grows with it. A
natural question is whether Bandwidth can be solved in time f(k)nc where c is a con-
stant independent of k. This amounts to asking whether Bandwidth is fixed parameter
tractable.

Parameterized complexity is a two-dimensional generalization of “P vs. NP” where, in
addition to the overall input size n, one studies how a secondary measurement that cap-
tures additional relevant information affects the computational complexity of the problem
in question. Parameterized decision problems are defined by specifying the input, the pa-
rameter and the question to be answered. The two-dimensional analogue of P is solvability
within a time bound of f(k)nc, where n is the total input size, k is the parameter, f is
some computable function, and c is a constant that does not depend on k or n. A pa-
rameterized problem that can be solved in such time is termed fixed-parameter tractable
(FPT). There is a hierarchy of intractable parameterized problem classes above FPT, the
main ones being:

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[P ] ⊆ XP .

The principal analogue of the classical intractability class NP is W[1], which is a strong
analogue, because a fundamental problem complete for W[1] is the k-Step Halting
Problem for Nondeterministic Turing Machines with unlimited nondeterminism
and alphabet size — this completeness result provides an analogue of Cook’s Theorem in
classical complexity. Thus a parameterized problem that is hard for W[1] is unlikely to
be fixed parameter tractable. For general background on the theory see the textbooks by
Downey and Fellows [7], Flum and Grohe [11] and Niedermeier [19].

In a seminal paper, Bodlaender, Fellows and Hallet showed that Bandwidth is hard for
W[t] for every t ≥ 1, even for trees [3]. This rules out the existence of an FPT algorithm for
Bandwidth unless the entire W-hierarchy collapses. The hardness result in [3] indicates
that the tractable cases for Bandwidth seem to be few and far between. Here, we initiate
the search for classes of graphs where Bandwidth is fixed parameter tractable.

For the graph classes for which polynomial time algorithms are known, it has been
proved that Bandwidth becomes NP-complete (or its complexity remains unknown) on
slightly larger graph classes. Therefore it is natural to investigate the parameterized com-
plexity of Bandwidth on these larger classes of graphs. In this paper we present an
algorithm with running time 2O(k log k)n2 for Bandwidth on AT-free graphs. A graph is
AT-free if for every triple of pairwise non-adjacent vertices, the neighborhood of one of
them separates the two others. The class of AT-free graphs contains various well-known
graph classes, like interval, permutation, trapezoid, and cocomparability graphs [4]. While
Bandwidth is polynomial-time solvable on interval graphs [14] and well-studied sub-
classes of permutation graphs [23, 12] it is NP-complete on cocomparability graphs and
hence on AT-free graphs [16]. For permutation graphs, the complexity of Bandwidth is
a well-known open problem. Most natural superclasses of AT-free graphs contain trees,
and thus the hardness result in [3] rules out an FPT algorithm for Bandwidth on these
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Fig. 1. A graph class inclusion diagram with the classical complexity of Bandwidth on these graph classes.

classes. Thus our FPT algorithm on AT-free graphs essentially settles the parameterized
complexity of Bandwidth on the chain of natural graph classes above the polynomial
cases (Figure 1).

Our algorithm is based on structural properties of AT-free graphs and their relation to
interval graphs. The principal idea is to combine layouts for small subgraphs of the input
graph to a layout for the whole graph. This approach can be described as sweeping a small
window over a layout. For arbitrary graphs, there is no information about the relationship
between the vertices in the window. For AT-free graphs, however, we are able to show that
we can restrict to windows of vertices that have small distance to a common vertex in the
input AT-free graph. This enables us to restrict the number of considered windows and to
establish the claimed FPT running time of our algorithm.

2 Definitions and notation

In this paper, we mainly consider simple finite undirected graphs. However, as an auxiliary
structure, we also define a directed graph. By “graph”, we always mean undirected graph,
and by “digraph”, we mean a directed graph.

For a graph G = (V,E), we denote the vertex and edge set of G by respectively
V = V (G) and E = E(G), with n = |V |. Edges of a graph are denoted as uv, and if
uv is an edge of G, we call u and v adjacent. The neighborhood of a vertex u is the set
of vertices that are adjacent to u and is denoted as NG(u). For two vertices u, v ∈ V ,
a u, v-path of G of length r is a sequence (u0, . . . , ur) of distinct vertices where u0 = u,
ur = v and uiui+1 ∈ E for 0 ≤ i < r. The distance of u and v in G, denoted by dG(u, v),
is the smallest length of a u, v-path in G. For a vertex u of G and an integer ` ≥ 1, the ball
around u of radius `, BG(u, `), is the set of vertices different from u that are at distance at
most ` to u in G. Formally, BG(u, `) = {x 6= u : dG(u, x) ≤ `}. A graph G is connected if
there is a u, v-path in G for every vertex pair u, v. A set of vertices is a clique if its vertices
are pairwise adjacent. The square of G is G2 = (V, {uv : 1 ≤ dG(u, v) ≤ 2}).

For a set S ⊆ V , the subgraph of G induced by S, denoted by G[S], has vertex set S
and all edges of G that have both their endpoints in S. By G \ S, we denote G[V \ S].
A graph G is a subgraph (not necessarily induced) of a graph H if V (G) ⊆ V (H) and
E(G) ⊆ E(H). In this case, we write G ⊆ H. A connected component of G is a maximal
connected induced subgraph of G.
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For a graph G, a layout β (or vertex ordering) is a bijective function from {1, . . . , n} to
V . We also write β as 〈β(1), . . . , β(n)〉. For a vertex pair u, v of G, the distance between u
and v in β is dβ(u, v) = |β−1(u)−β−1(v)|. We write u 4β v if β−1(u) ≤ β−1(v) and u ≺β v
if β−1(u) < β−1(v). The leftmost and rightmost vertex in β are respectively β(1) and β(n).
For an integer k ≥ 1, we call β a k-layout for G if for every edge uv of G, dβ(u, v) ≤ k.

The bandwidth of G, bw(G), is the smallest integer b such that G has a b-layout. A
minimum bandwidth layout for G is a k-layout for G with k = bw(G). Observe that for
any two graphs G and H with G ⊆ H, bw(G) ≤ bw(H).

If β is a layout for G and ` is between 1 and n, then every i between 1 and n− `+ 1
defines an `-window of β: 〈β(i), . . . , β(i + ` − 1)〉. Informally, an `-window is a portion
of β containing exactly ` consecutive vertices. Vertices β(i) and β(i + ` − 1) are called
respectively left and right vertex of the `-window.

Layouts of sets of vertices are defined analogously to layouts for graphs. Let U,U ′ ⊆ V
and let β and β′ be layouts of respectively U and U ′. Let U ∩U ′ 6= ∅ and let 1 ≤ t ≤ |U | be
smallest with β(t) ∈ U ′. If β(t+ i) = β′(i+1) for all 0 ≤ i ≤ |U |−t then β •β′ is the layout
〈β(1), . . . , β(|U |), β′(|U ′|− t+2), . . . , β′(|U ′|)〉; otherwise, if the condition is violated, β •β′
is not defined. Informally, β • β′ is the concatenation of β and β′ by overlapping in the
common part. Note that the • operator satisfies the associativity law.

In this paper, we study AT-free graphs and subclasses of AT-free graphs. A set {u, v, w}
of three pairwise non-adjacent vertices of a graph is called asteroidal triple, AT for short,
if for any pair of the vertices there is a path between these two vertices avoiding the
neighborhood of the third vertex. A graph that has no asteroidal triple is called AT-free.
For more information on structural properties of AT-free graphs we refer to [4, 5].

Finally, a cycle in a digraph G is a sequence (u1, . . . , ur) of distinct vertices where
(ur, u1) and (u1, u2), . . . , (ur−1, ur) are arcs of G. A digraph without cycles is called acyclic.

3 Preliminary and auxiliary results on bandwidth

The following observation will be important for the running time of our algorithm. The
result is easy to establish from the fact that a graph of bandwidth at most k cannot have
a vertex of degree more than 2k.

Lemma 1. For an arbitrary graph G = (V,E), |E| ≤ bw(G) · |V |.

A graph H is an interval graph if its vertices can be assigned closed intervals of the
real line such that two vertices of H are adjacent if and only if the assigned intervals
have a non-empty intersection. For an arbitrary graph G, an interval completion of G
is an interval graph H on vertex set V (G) with E(G) ⊆ E(H). If there is no interval
completion H ′ of G with E(H ′) ⊂ E(H) then H is a minimal interval completion of G.

An interval graph is a proper interval graph if there is an interval representation of
it where no interval completely contains another interval. For an arbitrary graph G, a
proper interval completion of G is a proper interval graph H on vertex set V (G) with
E(G) ⊆ E(H).
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Lemma 2 ([13]). For any integer k ≥ 0, a graph G has a proper interval completion H
of maximum clique size at most k + 1 if and only if bw(G) ≤ k.

From Lemma 2 it follows that any minimum bandwidth layout β for G defines a proper
interval completion of it in the following way. For every edge uv of G, make the set of
vertices between (including) u and v in β into a clique by adding the necessary missing
edges.

Lemma 3. For every graph G, there is a minimal interval completion H of G with
bw(G) = bw(H).

Proof. Let β be a minimum bandwidth layout for G. Then, β defines a proper interval
completion H ′ of G, where bw(G) = bw(H ′). Since H ′ is an interval graph, there is a
minimal interval completion H of G with G ⊆ H ⊆ H ′ and bw(H) = bw(G).

An alternative characterization of interval graphs is that a graph G is an interval graph
if and only if G has a vertex ordering σ such that for all vertex triples u, v, w of G with
u ≺σ v ≺σ w, uw ∈ E(G) implies vw ∈ E(G) [20]. Such a vertex ordering is called an
interval ordering.

Theorem 1 ([8]). Let H be an interval graph with interval ordering σ. There is a mini-
mum bandwidth layout β for H such that for every pair u, v of non-adjacent vertices of
H, u ≺σ v implies u ≺β v.

Lemma 4. Let H be an interval graph. There is a minimum bandwidth layout β for H
with the property: for every vertex pair u, v of H, dβ(u, v) ≥ dH(u, v)− 2.

Proof. Let σ be an interval ordering for H. Let β be a minimum bandwidth layout for H
with the property of Theorem 1 with respect to σ. We show that β satisfies the lemma.
Let u, v be a vertex pair of H. If dH(u, v) ≤ 3, the lemma trivially holds. Let dH(u, v) ≥ 4.
Without loss of generality, we can assume u ≺σ v. Let (x0, . . . , xr) be a shortest u, v-
path of H, where x0 = u and xr = v. If there is 1 ≤ i ≤ r − 2 with xi−1 ≺σ v ≺σ xi
then v is adjacent to xi by the properties of interval orderings, contradicting the choice
of the shortest path. If there is 1 ≤ i ≤ r − 1 with xi ≺σ u ≺σ xi+1 then u and xi+1 are
adjacent, which again gives a contradiction. Thus, u ≺σ xi ≺σ v for all 1 ≤ i ≤ r−2. Since
x2, . . . , xr−2 are non-adjacent to u and v, Theorem 1 for β implies that u ≺β xi ≺β v for
all 2 ≤ i ≤ r − 2. Hence, dβ(u, v) ≥ r − 2 = dH(u, v)− 2.

Lemma 5. Let G be a connected graph and β a k-layout for G, where k ≥ 1. Let U be
the vertices of a (k + 2)-window of β with a and b the respectively left and right vertex.
Then, G \U has at most 2k connected components, and for every connected component C
of G \ U , the vertices of C are either all to the left of a or all to the right of b in β.

Proof. Since there is no edge uv of G with u ≺β a ≺β b ≺β v by β being a k-layout and
dβ(a, b) = k+ 1, no connected component of G \U has vertices to the left of a and to the
right of b in β. Since G is a connected graph, every connected component of G \ U has a
vertex with a neighbor in U . Thus, every connected component of G \ U has a vertex to
the left of a at distance (with respect to β) at most k to a or to the right of b at distance
at most k to b in β. Hence there can be at most 2k connected components in G \ U .
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Lemma 6. Let G be a graph and let β be a k-layout for G, where k ≥ 1. For every vertex a
of G and every integer ` ≥ 1, |BG(a, `)| ≤ 2` · k.

Proof. Let c and d be the respectively leftmost and rightmost vertex from BG(a, `) in β.
Since dβ(c, a) ≤ ` · k and dβ(a, d) ≤ ` · k it follows that dβ(c, d) ≤ 2` · k. Since all vertices
from BG(a, `) are between c and d in β, the bound of the lemma follows. Note that by
definition a /∈ BG(a, `).

4 Bandwidth of AT-free graphs

Combining the results of [16] and [17], we obtain the following:

Theorem 2 ([16, 17]). Let G be an AT-free graph. For every minimal interval completion
H of G, H ⊆ G2.

We use this fact to restrict the number of (k + 2)-windows to be considered by our
algorithm.

Lemma 7. For a connected AT-free graph G with bw(G) ≤ k, there is a k-layout β that
satisfies the following. Let U be the vertices of a (k + 2)-window of β with left vertex a.
For every vertex x ∈ U , dG(a, x) ≤ 2k + 6.

Proof. Let H be a minimal interval completion of G with bw(H) = bw(G); H exists due
to Lemma 3. By Theorem 2 dH(u, v) ≥ 1

2 · dG(u, v) for every vertex pair u, v of G. Let β
be a minimum bandwidth layout for H with the property of Lemma 4. Then, for every
vertex pair u, v of G, dβ(u, v) + 2 ≥ dH(u, v) ≥ 1

2dG(u, v), i.e., dβ(u, v) ≥ 1
2dG(u, v) − 2.

Let U be the vertices of a (k + 2)-window of β with left vertex a. Since dβ(a, x) ≤ k + 1
for every x ∈ U , it follows that dG(a, x) ≤ 2k + 6.

We construct a digraph to encode all feasible k-layouts. Let k ≥ 1 and let G = (V,E)
be a connected AT-free graph on n ≥ k + 3 vertices. Note that every graph on at most
k+ 1 vertices has bandwidth at most k, and every graph on k+ 2 vertices has bandwidth
at most k if and only if the graph has a pair of non-adjacent vertices. For a vertex u of G,
we say that u has few close neighbors if |BG(u, 2k + 6)| ≤ 2k · (2k + 6). Let a be a vertex
of G that has few close neighbors. An a-bag is a tuple (C1, γ, C2) where C1, C2 ⊆ V such
that U = V \ (C1 ∪ C2) and C1, C2, γ have the following properties:

– {a} ⊆ U ⊆ BG(a, 2k + 6) ∪ {a} and |U | = k + 2;
– γ is a layout of U where a is the leftmost vertex;
– let b be the rightmost vertex in γ, a has no neighbor in C2∪{b}, and b has no neighbor

in C1 ∪ {a};
– G \ U has at most 2k connected components, and

for every connected component C of G \ U , either V (C) ⊆ C1 or V (C) ⊆ C2 .

Lemma 8. For every vertex a of G where a has few close neighbors, the number of a-bags
is at most

(2k·(2k+6)
k+1

)
· (k + 1)! · 22k ≤ 2O(k log k).
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Proof. Let a be a vertex of G with few close neighbors. Since |BG(a, 2k+6)| ≤ 2k ·(2k+6),
there are at most

(2k·(2k+6)
k+1

)
subsets of BG(a, 2k + 6) of size k + 1. Let U be such a

subset. There are (k + 1)! possible layouts of U . And since G \ (U ∪ {a}) has at most
2k connected components according to the definition of an a-bag, there are at most 22k

different partitions of the connected components of G \ (U ∪ {a}) into a left and a right
set.

The auxiliary digraph that we will define has a vertex for every bag and arcs between
bags representing the fact that one bag can follow another bag in a minimum bandwidth
layout. We now describe the construction of the auxiliary digraph aux(G, k). The digraph
aux(G, k) has a vertex for every a-bag where a ∈ V has few close neighbors, a source
vertex S and a sink vertex T . The vertices of aux(G, k) corresponding to a-bags are labeled
with these a-bags. For two vertices u and u′ of aux(G, k) such that u 6= u′ and u, u′ 6∈ {S, T}
with u labeled with an a-bag (C1, γ, C2) and u′ labeled with an a′-bag (C′1, γ′, C′2), with
U = V \ (C1 ∪ C2) and U ′ = V \ (C′1 ∪ C′2), the digraph contains the arc (u, u′) if and only
if the bags satisfy one of the following two conditions:

1) C1 ⊂ C′1 ⊂ (C1 ∪ U) and C′2 = ∅ and γ • γ′ is k-layout for G[U ∪ U ′]
2) |U ∩ U ′| = 1 and C′1 = C1 ∪ (U \ U ′) and γ • γ′ is k-layout for G[U ∪ U ′] .

Note that, by the definition of the • operator for layouts, the end of layout γ is equal to
the beginning of layout γ′. For condition 2, this means that the rightmost vertex in γ is
equal to the leftmost vertex in γ′. To complete the definition of aux(G, k), add all arcs
(S, u) with u labeled with a bag of the type (∅, γ, C2) and all arcs (u′, T ) with u′ labeled
with a bag of the type (C′1, γ′, ∅).

Lemma 9. The auxiliary digraph aux(G, k) is acyclic.

Proof. Suppose that aux(G, k) contains a cycle (u(1), . . . , u(r)). Let (C(i)
1 , γ(i), C(i)

2 ) be the
bag that u(i) is labeled with, for 1 ≤ i ≤ r. According to the definition of aux(G, k), it
holds that C(1)

1 ⊂ · · · ⊂ C(r)
1 ⊂ C(1)

1 . This yields a contradiction.

Lemma 10. The auxiliary digraph aux(G, k) has an S, T -path if and only if bw(G) ≤ k.
Furthermore, every S, T -path of aux(G, k) defines a k-layout for G.

Proof. We show the two implications of the statement separately. We first show that every
S, T -path of aux(G, k) defines a k-layout for G. Let (u(0), u(1), . . . , u(r+1)) be an S, T -path
of aux(G, k). Note that u(0) = S and u(r+1) = T . For every 1 ≤ i ≤ r, let (C(i)

1 , γ(i), C(i)
2 )

be the bag that u(i) is labeled with. We show that β = γ(1) • · · · • γ(r) is a k-layout
for G. First, we show that β is a layout for G, i.e., every vertex of G appears exactly
once in β. For every 1 ≤ i ≤ r, let U (i) = V \ (C(i)

1 ∪ C
(i)
2 ). According to the definition

of aux(G, k), C(1)
1 = C(r)

2 = ∅ and C(i+1)
1 ⊆ C(i)

1 ∪ U (i) for all 1 ≤ i ≤ r − 1. It follows
that V \ (U (1) ∪ · · · ∪ U (r−2)) ⊆ U (r−1) ∪ U (r). Thus, for every vertex x of G, there is
1 ≤ i ≤ r with x ∈ U (i) and γ(i) places x. If there are x ∈ V and 1 ≤ i < j ≤ r such
that x ∈ U (i) ∩ U (j) then the definition of arcs of aux(G, k) ensures that j = i+ 1. Then,
γ(i) • γ(i+1) being a layout for G[U (i) ∪ U (i+1)] guarantees that x appears exactly once.
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Hence, β is a layout for G. Now, let uv be an edge of G. If there is 1 ≤ i ≤ r such that
u, v ∈ U (i) then dβ(u, v) = dγ(i)(u, v) ≤ k due to the definition of a bag (leftmost and
rightmost vertex in γ(i) are non-adjacent). Now, assume that there is no such Ui. Then,
without loss of generality, there are 1 ≤ i < j ≤ r such that u ∈ U (i) and v ∈ U (j). With
regard to overlapping of consecutive partial layouts, we choose i largest possible and j

smallest possible. Suppose that j > i+ 1. It follows that u ∈ C(i+1)
1 and v ∈ C(i+1)

2 . Since
u and v are adjacent, there is a connected component of G \U (i+1) with vertices in C(i+1)

1

and C(i+1)
2 , thus contradicting the definition of a bag. Hence, j = i+1, and uv is an edge of

G[U (i)∪U (i+1)]. Since γ(i)•γ(i+1) is a k-layout forG[U (i)∪U (i+1)] according to the definition
of aux(G, k) and the existence of arc (u(i), u(i+1)), dβ(u, v) = dγ(i)•γ(i+1)(u, v) ≤ k. Thus,
β is a k-layout for G. In particular, if aux(G, k) has an S, T -path then bw(G) ≤ k.

For the converse, let bw(G) ≤ k. Let β be a minimum bandwidth layout for G with the
property of Lemma 7. Then, β is also a k-layout for G. We partition β into sublayouts. Let
r = dn−1

k+1e. Let a(i) = β((i−1)(k+1)+1) for all 1 ≤ i ≤ r and let a(r+1) = β(n−k−1) and
a(r+2) = β(n). Let U (i) be the set of vertices x of G with a(i) 4β x 4β a

(i+1) for all 1 ≤ i ≤
r+1 where i 6= r. Finally, for all 1 ≤ i ≤ r+1 where i 6= r, let γ(i) be the (k+2)-window of β
with left vertex a(i). Note that γ(i) is a layout of U (i). It holds that U (i)∩U (i+1) = {a(i+1)}
for 1 ≤ i ≤ r − 2 and U (r−1) ∩ U (r+1) 6= ∅. Furthermore, β = γ(1) • · · · • γ(r−1) • γ(r+1).
Since β is a k-layout for G and by the definition of a(1), . . . , a(r+2), a(i)a(i+1) 6∈ E for all
1 ≤ i ≤ r + 1 where i 6= r. We show that C(i) = ({x : x ≺β a(i)}, γ(i), {x : a(i+1) ≺β x})
is an a(i)-bag for 1 ≤ i ≤ r + 1 where i 6= r. By the definition, |U (i)| = k + 2 and γ(i)

is a layout of U (i) with a(i) the leftmost vertex. And with β being a k-layout for G, a(i)

has no neighbor in {x : a(i+1) ≺β x}) and a(i+1) has no neighbor in {x : x ≺β a(i)}. The
connected components condition directly follows from Lemma 5. It remains to verify that
a(i) has few close neighbors and that U (i) ⊆ BG(a(i), 2k + 6) ∪ {a(i)}. By Lemma 7, the
latter condition holds, and by Lemma 6, a(i) has indeed few close neighbors. Hence, C(i)

is an a(i)-bag, and there is a vertex u(i) of aux(G, k) that is labeled with C(i). With our
definitions and the fact that γ(i) • γ(i+1) for every 1 ≤ i ≤ r + 1 where i 6= r is a k-layout
for G[U (i) ∪ U (i+1)], it follows that (u(i), u(i+1)) is an arc of aux(G, k). Since (S, u(1)) and
(u(r+1), T ) are also arcs of aux(G, k), we conclude that (S, u(1), . . . , u(r−1), u(r+1), T ) is an
S, T -path of aux(G, k). Hence, aux(S, T ) contains an S, T -path, and this completes the
proof of the lemma.

For the algorithm in the proof of the following theorem, we assume the input graph to
be given in adjacency list representation.

Theorem 3. For given an AT-free graph G and an integer k ≥ 1, it can be decided in
2O(k log k)n2 time whether bw(G) ≤ k.

Proof. Let k ≥ 1. Let G = (V,E) be an AT-free graph. Since bw(G) ≤ k if and only if
bw(C) ≤ k for every connected component C of G, the algorithm to be described below
is to run on every connected component of G. By these considerations, we can assume
that the input graph G to our algorithm is connected. The algorithm is: if |E| > k · |V |
or if a vertex has more than 2k neighbors then reject, otherwise, compute aux(G, k), with
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the distinguished source and sink vertices S and T , and accept if and only if aux(G, k)
contains an S, T -path. Correctness follows from Lemmata 1, 6, and 10.

The running time of the algorithm is mainly determined by the generation of aux(G, k).
Let a be a vertex of G. Since every vertex of G has at most 2k neighbors, it can be checked
in time O(k3) whether vertex a has few neighbors and, if so, to compute BG(a, 2k+ 6). In
time 2O(k log k)n, all a-bags can be listed due to Lemma 8. Determining the left side and
right side connected components of a single bag takes time O(kn), and writing down a
single a-bag takes time O(n). In total, the vertices of aux(G, k) together with the labels
can be listed in 2O(k log k)n2 time. Note that aux(G, k) has 2O(k log k)n vertices. Let u be
a vertex of aux(G, k) labeled with an a-bag (C1, γ, C2). If C2 6= ∅, then all arcs from u go
to vertices x that are labeled with a b-bag, where b is the rightmost vertex in γ in case
|C2| ≥ k + 1 or is uniquely determined in γ from the size of C2. Hence, for every vertex of
aux(G, k) there are at most 2O(k log k) vertices to check, and each check takes O(n) time
because of the left and right side connected components. Hence, in overall 2O(k log k)n2

time, aux(G, k) can be generated, and it has 2O(k log k)n vertices and arcs. Since verifying
the existence of an S, T -path in aux(G, k) takes 2O(k log k)n time, this concludes the running
time analysis for our algorithm.

5 Concluding remarks

Our algorithm guesses layouts of small sets of vertices and concatenates them to create a
layout for the whole graph. The running time of the algorithm relies on the fact that the
considered sets of vertices are of special type, namely that it suffices to consider vertices
that are at small distance to a common vertex. Correctness of this restriction follows
from the result that distances in minimal interval completions of AT-free graphs provide
a constant-factor approximation of the distances in the graph. Thus, we can generalize
our algorithm to graph classes with the same property. Which other graph class C has
this property: there is constant c such that for every graph G from C and every minimal
interval completion H of G, dG(u, v) ≤ c · dH(u, v) for all vertex pairs u, v of G?

Classes of graphs of bounded diameter certainly have this property. These are classes
of dense graphs. For such classes of dense graphs, the problem becomes trivial, as we show
in the following. For a graph G, the diameter of G, denoted by diam(G), is the maximum
distance between a vertex pair of G.

Lemma 11. For an arbitrary connected graph G = (V,E), |V | ≤ 1 + diam(G) · bw(G).

Proof. Let β be a minimum bandwidth layout for G. Let a and b be the respectively
leftmost and rightmost vertex in β. Then, |V | − 1 = dβ(a, b) ≤ diam(G) · bw(G).

In other words, for a class of graphs of bounded diameter, there is only a finite number
of graphs of bounded bandwidth. Thus, for such graph classes, deciding whether bw(G) ≤ k
for given graph G is trivial when k is fixed. If k is part of the input, we can apply the
currently best known exact algorithm for computing bandwidth by Cygan and Pilipczuk,
with running time O(4.473n) [6], and obtain a O(4.473dk)-time algorithm for deciding
whether bw(G) ≤ k for a given (connected) graph G with diam(G) ≤ d and integer k.
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Examples of such graphs are Pd+1-free graphs, in particular split graphs and cobipartite
graphs, which are well-studied classes of P5-free graphs. The bandwidth problem is NP-
complete when restricted to split and cobipartite graphs [15, 16].

We conclude the paper with a few concrete open problems.

– Does there exist an FPT algorithm for Bandwidth on AT-free graphs running in
time 2O(k)nO(1)? An algorithm with this running time would be interesting even for
cocomparability graphs.

– Can bandwidth be FPT-approximated on trees? That is, is there an algorithm that
given a tree T and integer k, runs in time f(k)nO(1) and either correctly answers that
bw(T ) > k or outputs a g(k)-layout for T for some function g.

– What is the parameterized complexity of Bandwidth on caterpillars with hairlength c,
for fixed constant c ≥ 3?
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