
Saving Space by Algebraization∗

Daniel Lokshtanov
University of Bergen

PB 7803, N-5020
Bergen, Norway

daniello@ii.uib.no

Jesper Nederlof
University of Bergen

PB 7803, N-5020
Bergen, Norway

jesper.nederlof@ii.uib.no

ABSTRACT
The Subset Sum and Knapsack problems are fundamen-
tal NP-complete problems and the pseudo-polynomial time
dynamic programming algorithms for them appear in ev-
ery algorithms textbook. The algorithms require pseudo-
polynomial time and space. Since we do not expect poly-
nomial time algorithms for Subset Sum and Knapsack to
exist, a very natural question is whether they can be solved
in pseudo-polynomial time and polynomial space. In this
paper we answer this question affirmatively, and give the
first pseudo-polynomial time, polynomial space algorithms
for these problems.

Our approach is based on algebraic methods and turns
out to be useful for several other problems as well. Then we
show how the framework yields polynomial space exact algo-
rithms for the classical Traveling Salesman, Weighted
Set Cover and Weighted Steiner Tree problems as
well. Our algorithms match the time bound of the best
known pseudo-polynomial space algorithms for these prob-
lems.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems; F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumer-
ical Algorithms and Problems; G.2.1 [Discrete Mathe-
matics]: Combinatorics; G.2.2 [Discrete Mathematics]:
Graph Theory

General Terms
Algorithms, Theory

Keywords
Dynamic Programming, Space Efficient, Fourier, Möbius

∗Supported by the Norwegian Research Council

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’10, June 5–8, 2010, Cambridge, Massachusetts, USA.
Copyright 2010 ACM 978-1-4503-0050-6/10/06 ...$10.00.

1. INTRODUCTION
In the 1950’s, Richard Bellman published his book ”Bot-

tleneck Problems and Dynamic Programming” [1], initiating
the systematic study of Dynamic Programming (DP). Nowa-
days, DP is considered to be one of the most prominent
techniques for designing algorithms, and many algorithmic
results obtained by DP are not known to be obtainable by
any other technique. Conceptually, a DP algorithm can be
seen as a combination of a table and an algorithm comput-
ing table entries, usually formalized as a recurrence. An
inherent property of DP algorithms is that they require a
relatively big amount of working memory. This is because
often, many previously computed table entries are required
for efficient computation of new entries. For an elementary
introduction to DP, see for example [7].

In this paper we identify sufficient conditions for being
able to turn DP algorithms into algorithms with roughly the
same running time and significantly lower space usage. In
particular, we show that if a DP algorithm can be formalized
as an expression using specific operators, then one can use
algebraic transforms to evaluate the expression in a space-
efficient manner.

Two of the canonical applications of DP are the Subset
Sum and Knapsack problems. In the Subset Sum problem
one is given a set of integers S = {w1, . . . , wn} and an inte-
ger w. The question is whether there exist of subset S′ ⊆ S
such that

∑
wi∈S′ wi = w. In the Knapsack problem one

is given an additional set of values v1, . . . , vn and an integer
v. Here the objective is to find a subset S′ of items whose
total weight is at most w and total value is at least v. The
Subset Sum problem is the special case of Knapsack where
w = v and all items have weight equal to value. The clas-
sical O(nw) time1 for Subset Sum of Bellman [2] uses O(w)
space. Hence, the algorithm uses pseudo-polynomial time
and space. A natural and fundamental question is whether
it is possible to have a pseudo-polynomial time algorithm for
Subset Sum using only polynomial space. We answer this
question affirmatively by showing that Bellman’s DP algo-
rithm can be encoded as an expression with a restricted set
of operators. In particular, we obtain an algorithm with run-
ning time Õ(n3t log t) time and Õ(n2) space. For the more
general Knapsack problem we give an algorithm running in
Õ(n4 log2(vw)vw) time and Õ(n2 log(vw)) space.

Our methodolody enables us to make many exponential-
time and space DP algorithms run in polynomial space in-

1We make use of the O, Õ and O∗ notation which suppress
factors constant, polylogarithmic in instance size, and poly-
nomial in instance size respectively.

stead. This is useful because algorithms using both expo-
nential time and space tend to run out of space long be-
fore they run out of time. Notable results in the direction
of polynomial space exponential-time algorithms for NP-
hard problems include Karp’s O∗(2n) time algorithm [16]
for Hamiltonian Path, Björklund, Husfeldt and Koivisto’s
Set Cover2 algorithm [4] running in time O∗(2n) and Ned-
erlof’s O∗(2k) time algorithm for Unweighted Steiner
Tree [19]. Our method unifies these resukls, and gives im-
proved algorithms for the weighted variants of these prob-
lems. An important open problem is whether Traveling
Salesman can be solved in O∗(2n) time and polynomial
space [21]. We make progress towards resolving this prob-
lem by giving a polynomial space algorithm for Traveling
Salesman running in O∗(2nw) time. For the two other
problems, Weighted Set Cover and Weighted Steiner
Tree we make similar improvements. In particular our al-
gorithms match the time bound of the best known pseudo-
polynomial space algorithms for these problems.

The paper is organized as follows: In Section 2 we intro-
duce the necessary notation. Then we briefly explain our
approach in Section 3. In 4 we give sufficient conditions to
be able to save space for DP on tables indexed by integers.
In 5 we give sufficient conditions to be able to save space for
DP on tables indexed by subsets. Finally, in Section 6 we
combine the results from the two previous sections. All the
latter three sections will be concluded by a few applications.

2. PRELIMINARIES AND NOTATION
We denote the naturals, the integers and the complex

numbers by N, Z and C respectively. For an integer i de-
note Ni for the set of integers {0, . . . , i− 1}, and Zi for the
ring of integers modulo i. For sets A and B, the set A[B]
is the set of all functions f : B → A. One can think of
A[B] as a table with elements of B as keys and elements
of A as values. Thus vectors of d integers are elements of
Z[Nd]. For v ∈ A[B] we will use boldface for v if we think
of v as a vector or table, and for i ∈ B, v[i] is the element
of A associated with i - the i’th entry of v. If we think of
f ∈ A[B] as a function we will not use boldface for f and
use f(x) for f evaluated at x ∈ B. For a vector v ∈ Nd, the
set Nv = Nv[0] × Nv[1] . . . × Nv[d] where × is the cartesian

product. For a set S, 2S is the set of all subsets of S and
|S| is the cardinality of S.

We will instantiate vectors using 〈 and 〉, that is, 〈3, 2〉 is
a vector with two entries whose first entry is 3 and second
is 2. The =, ≤ and < relations for vectors are pointwise
so u ≤ v means u[i] ≤ v[i] for all i. The absolute value of
a (complex) number a and the length of a vector v will be
denoted by ‖a‖ and ‖v‖ respectively.

We will be working with rings, semi-rings and generally
sets that come with some operations on the elements. We let
+ denote addition and · denote multiplication. For vectors,
· means the dot product. We will often use the shorthand
ab for a · b. When working with elements of A[B] where A
comes with addition (+) and a multiplication (·) operator,
we define the pointwise addition operator ⊕ and the point-
wise multiplication operator � as follows. For x,y ∈ A[B]
and every b ∈ B,

(x⊕ y)[b] = x[b] + y[b] (x� y)[b] = x[b] · y[b].

2with a polynomial number of sets

We will employ Iverson’s bracket notation which works as
follows. For a predicate b, [b] = 1 if b is true and 0 otherwise.
When Iverson bracket notation is used in the context of a
(semi-) ring R, 1 will be R’s identity element under multi-
plication and 0 will be R’s identity under addition. We will
sometimes use Iverson bracket notation to define functions.
In that case x, x or X is implicitely assumed to be the pa-
rameter of the function. That is, for a fixed subset Y of a
ground set V , [X = Y]10 is a function from 2V to N which
is 0 whenever X 6= Y and 10 if X = Y . For sets A and B
such that A has a 0 element, a singleton is an element f of
A[B] such that there is a b ∈ B with f [x] = 0 unless x = b.

For a set S and binary operators O1, O2 on S, a circuit C
over (S;O1, O2) is a directed acyclic graph D = (N,A) with
parallel arcs, such that every node of D is either a constant
gate, O1 gate or O2 gate. Every node of D has indegree 0
or 2, the indegree 0 nodes are constants, and are labelled
with elements of S. The indegree 2 nodes are either O1 or
O2 gates. For an indegree 2 node, its two in-neighbours are
its children. The output of a constant gate is the element
it is labeled with. The output of an Oi gate is the result
of performing Oi on the output of its two children. One
gate c of C is additionally marked as the output gate. The
output of C is the output of c. The depth ∆(C) of C is the
size of the longest path, and the size of C is the size of the
underlying graph. In this paper we will abuse notation, and
refer by the same symbol both to a gate of C and to the
output of that gate.

3. METHODOLOGY
A typical dynamic programming algorithm computes some

basic tables, and then combines them using some operations
in order to get an output table. Often we are only interested
in a single element of the output table. In this paper we will
formalize a dynamic programming algorithm as circuit C
over a ring (R[S];⊕, O2), where O2 is a “complicated” con-
volution operator. Since S is very big, we are not allowed
to store a single table. Thus, we cannot explicitely store the
constants - the inputs to our circuit. Instead we will require
the constants of our circuits to be singletons, and represent
them implicitely - as the only key whose value is non-zero,
together with the value associated to that key.

The main idea is to apply a linear transform on the circuit,
such that the “complicated” operator O2 is transformed into
the much simpler �. This allows us to use C over (R,+, ·)
to compute an entry of the transformed output table fast.
Now we can obtain an entry of the original output of C by
applying the inverse transformation.

4. SAVING SPACE BY THE DFT

4.1 The Discrete Fourier Transform
We recap Discrete Fourier Transform (DFT) and a few ba-

sic results about it. For every N ∈ Nd, the Discrete Fourier
Transform is a linear transform F : C[NN]→ C[NN]. Given
N we let t ∈ Cd so that t[j] = 2πι/N[j], and N = Πd−1

i=0 N.
For a matrix a ∈ C[NN] the DFT of a, F(a) is defined as
follows.

(F(a))[x] =
∑
j∈NN

e(x�t)·ja[j]

The inverse fourier transform F−1(a) of a is defined as fol-

lows.

(F−1(a))[x] =
1

N

∑
j∈NN

e−(x�t)·ja[j]

The definitions of F and F−1 show that they both are linear
transforms. That F−1 indeed is the inverse of F is stated
in the next theorem.

Theorem 4.1 ([7]). For a ∈ C[NN], F−1(F(a)) = a.

We now define the convolution operator which is central to
our results. The convolution operator ⊗ takes two matrices
a and b in Z[NN] and produces a matrix a ⊗ b in Z[NN],
such that for any x

(a⊗ b)[x] =
∑

0≤j≤x

a[j]b[x− j].

For a and b ∈ Z[NN] we say that the convolution (a ⊗ b
overflows if there are vectors x, y ∈ NN such that a[x] 6= 0,
b[y] 6= 0 and x + y ≮ N. If the elements of Z[NN] are in-
terpreted as d-variate polynomials with integer coefficients,
convolution is equivalent to polynomial multiplication in co-
efficient form. From that viewpoint an overflow happens
when the multiplication of two polynomials creates mono-
mials of too high degree. It should be noted that the ⊗
operator generalizes to infinite tables like Z[N] and to tables
containing complex numbers like C[NN] in the natural way.
The next theorem is the reason why the DFT is useful for
our purposes. The theorem states that the DFT translates
the “complicated” ⊗ operator into � which is much easier
to work with. This comes in handy, as the dynamic pro-
gramming algorithms for Subset Sum and Knapsack can
be encoded using the ⊕ and the ⊗ operators.

Theorem 4.2 (Convolution Theorem [7]). For a, b
in C[NN] such that a ⊗ b does not overflow, F(a ⊗ b) =
F(a)�F(b).

4.2 Numeric DP Without Tables
In this section we set up a general framework for turning

pseudo-polynomial time and space algorithms that do a cer-
tain kind of dynamic programming on large d-dimensional
tables into pseudo-polynomial time and space algorithms.
We then show how our framework applies to the well-known
algorithms for Subset Sum and Knapsack.

Theorem 4.3. Let N ∈ Nd, N = |NN| and C be a circuit
over (Z[NN];⊕,⊗) with only singleton constants. Suppose
that for any gate c ∈ C and any x ∈ NN that |c[x]| ≤ m
and that no convolution gate overflows. Let f be the output
of C. Then, given N, m, and g ∈ NN we can compute f [g]

in time Õ((|C|N log(N)) log(Nm)∆(C)) and space O((|C|+
log(N)) log(Nm)∆(C)).

Proof. Since integers are also complex numbers, we can
reinterpret the circuit C as a circuit over (C[NN];⊕,⊗).
From the circuit C we construct another circuit C1 over
C[NN] with the same directed graph as C, but with different
gates. In particular, every constant gate a ∈ C is replaced
with the constant gate a1 = F(a). Every convolution gate
(⊗) is replaced by a pointwise multiplication gate (�).

We prove that for any gate a ∈ C and its corresponding
gate a1, we have a1 = F(a). The proof is by induction
along a topological ordering of C. For the base case, if a is

a constant gate the equality holds by construction. For the
inductive step, let a be a gate with children b and c, and
let a1, b1 and c1 be the corresponding gates of C1. By the
inductive hypothesis b1 = F(b) and c1 = F(c). If a is an
addition gate then a1 = F(b) ⊕ F(c) = F(b ⊕ c) = F(a).
Finally, if a is a convolution gate then Theorem 4.2 implies
that a1 = F(b)�F(c) = F(b⊗ c) = F(a).

We will use C1 together with the fact that f = F−1(F(f))
in order to compute f [g]. Writing out the definition of F−1

in f = F−1(F(f)) we obtain the following equation for f [g].

f [g] =
1

N

∑
j∈NN

e−(g�t)·j · (F(f))[j] (1)

The algorithm computes f [g] using Equation 1, using the
circuit C1 to compute the value of (F(f))[j] for each j. We
will now explain in detail how Equation 1 is used to compute
f [g]. Before evaluating the sum in Equation 1 we compute

et[i] and obtain e−t[i] for every i < d by taking complex
conjugates.

The sum in Equation 1 is computed in the natural way -
with d nested loops over the coordinates of j. In each iter-
ation we compute e−(g�t)·j using Claim 1 below by noting
that e−(g�t)·j =

∏
i∈Nd

(e−t[i])g[i]·j[i]. Thus, for each j we can

compute e−(g�t)·j by a circuit of size O(
∑
i∈Nd

log(N[i])) =

O(log(N)).

Claim 1. Given a ∈ C and b ∈ N as input, we can
construct a circuit C∗ over (C; +, ·) computing ab of size
O(log b) in O(log b) time.

Proof. If b is even then ab = ab/2 · ab/2 while if b is odd
then ab = a · a(b−1)/2 · a(b−1)/2. Turning these recurrences
into a circuit of size O(log b) with a as its only constant is
routine.

Now we turn our attention to computing (F(f))[j] using
the circuit C1. Given C1 and j, define C1

j to be a circuit

over (C,+, ·) with the same directed graph as C1. For every
constant gate F(a) of C1 the corresponding gate of C1

j is

(F(a))[j]. Pointwise addition (⊕) gates of C1 are replaced
with + gates and pointwise multiplication (�) gates of C1

are replaced with · gates in C1
j . It follows directly from the

construction of C1
j that it outputs (F(f))[j] using |C1| = |C|

arithmetic operations, given that the constants of C1
j are

provided. Observe that for any singleton a = [x = p]v we
have that

(F(a))[x] =
∑
j∈NN

e(x�t)·j · [j = p]v (2)

= v
∏
i∈Nd

(et[i])p[i]·x[i]

For a constant a = [x = p]v of C we compute the cor-
responding constant (F(a))[j] of C1

j using Equation 2. By
Claim 1 this can be done with a circuit of size O(log(N)).

To summarize the algorithm - we compute f [g] using Equa-
tion 1, using the circuit C1

j to compute the value of (F(f))[j]

for each j. The constants of C1
j are computed using Equa-

tion 2. If we were able to store and manipulate complex
numbers exactly, correctness would follow immediately from
Equations 1 and 2. Of course, the algorithm cannot store
and work with complex numbers. Instead, it will work with a
binary representation of the numbers, both the real and the

imaginary part, truncated ` bits after the decimal point for a
properly chosen `. It can easily be verified that the absolute
value of any number in an intermediate step is bounded from
above by N2 ·m. Thus an estimation of each used number
in C will be stored using O(log(N) + log(m) + `) bits.

The way the algorithm handles `-bit precision is that some
base numbers, the integers given in the input and et[i] for
every i < d are stored with estimation error 2−`, where es-
timation error is the distance in the complex plane between
the number represented by the bitstring, and the number
the bitstring is supposed to represent. Computing et[i] with
estimation error 2−` can be done in O(`3) time and O(`)
space using the Taylor series for sin and cos and a reasonable
series expansion for π, such as the one provided by Chud-
novsky and Chudnovsky [6]. All other numbers are obtained
by performing addition and multiplication on the base num-
bers, truncating intermediate results ` bits after the decimal
point. As more and more operations are required to obtain
a number, the estimation error for that number increases.
Since we know that f [g] is an integer, the algorithm sim-
ply rounds the estimation of f [g] to the nearest integer and
outputs that as the answer. This answer is correct if the
estimation error of f [g] is less than 1/2. What remains is to
show that chosing ` = O(|C| + log(N) + log(m)∆(C)) will
yield estimation error less than 1/2 for f [g]. Let a′ and b′ be
estimations of a and b respectively, let c′1 = a′+b′ truncated
` bits after the decimal point and c1 = a+ b. Then, we have
that

‖c′1 − c1‖ ≤ ‖a′ − a‖+ ‖b′ − b‖+ 2−`. (3)

Here, the 2−` term comes from truncating c′ ` bits after
the decimal point. Now, suppose c′2 = a′ · b′ truncated `
bits after the decimal point and c2 = a · b. This yields the
following error bound:

‖c′2 − c2‖ ≤ ‖a′ − a‖ · ‖b‖+ ‖b′ − b‖ · ‖a‖ (4)

+ ‖a′ − a‖ · ‖b′ − b‖+ 2−`

Equipped with Equations 3 and 4 we are ready to bound
the error of the output of a circuit over (C,+, ·). The proof
lends ideas from Knuth’s analysis of the Schönhage-Strassen
algorithm for integer multiplication[17].

Claim 2. Let Ĉ be a circuit over (C; +, ·), and m and `

be positive integers such that for any gate v ∈ Ĉ, ‖v‖ ≤
m. Suppose estimations of the constants of Ĉ are given
with error at most ε for each constant, such that 2−` ≤
ε · (4m)∆(Ĉ) ≤ 1. Let c be the output of Ĉ and let c′ be

the estimate of c obtained by evaluating Ĉ on the estima-
tions of its constants, truncating intermediate results ` bits

after the decimal point. Then ‖c′ − c‖ ≤ ε · (4m)∆(Ĉ).

Proof. We prove the statement by induction on ∆(Ĉ).

For the base case, if ∆(Ĉ) = 0 then v is a constant and
the statement of the claim holds. Otherwise, suppose the
statement holds for all circuits of depth at most k − 1 and
let Ĉ have depth k. Let u and v be the children of the
output gate c and let Ĉu and Ĉv be the subcircuits of Ĉ
rooted at u and v respectively. Let u′ and v′ be estimations
of u and v obtained by evaluating Ĉu and Ĉv respectively on
the estimations of their constants, truncating intermediate
results ` bits after the decimal point. As ∆(Ĉu) ≤ k − 1

and ∆(Ĉv) ≤ k − 1, by the induction hypothesis we have

‖u′ − u‖ ≤ ε · (4m)∆(Ĉ)−1 and ‖v′ − v‖ ≤ ε · (4m)∆(Ĉ)−1. If
c is an addition gate, Equation 3 yields

‖c′ − c‖ ≤ ε · 2(4m)∆(Ĉ)−1 + 2−`

which is at most ε · (4m)∆(Ĉ). On the other hand, if c is a
multiplication gate, Equation 4 yields

‖c′ − c‖ ≤ ε · 2m(4m)∆(Ĉ)−1 + (ε · (4m)∆(Ĉ)−1)2 + 2−`

which is at most ε · (2m+ 2)(4m)∆(Ĉ)−1 since

(ε · (4m)∆(Ĉ)−1)2 ≤ ε · (4m)∆(Ĉ)−1

and 2−` ≤ ε. Since m ≥ 1 this concludes the proof of the
claim.

For a fixed ` the estimation error of et[i] and e−t[i] is
2−` for every i < d. For every j, e−(g�t)·j is computed
by a circuit of size O(log(N)) and absolute value 1 in every

step. Hence, by Claim 2 the estimation error of e−(g�t)·j is
2−`4O(log(N)). Similarly, for every j the constants of C1

j are
computed by circuits of size O(log(N)) and absolute value
1 in every step, the multiplication by v can be performed
at the very end of the computation of Equation 2. Thus
by Claim 2 the estimation error of the constants of C1

j is
bounded from above by

2−`4O(log(N))4v ≤ 2−`+O(log(N)+log(m)).

Since C1 computes F(a) for every gate a of C, and each
of the N entries of a have absolute value at most m, the
absolute value of the number computed by any gate of C1

j is
bounded by m · N . Hence by Claim 2 the estimation error
of (F(f))[j] is

2−`+O(log(N)+log(m))(4Nm)∆(C) ≤ 2−`+O(log(Nm)∆(C)).

By Equation 3 the estimation error of e−(g�t)·j · (F(f))[j]

is 2−`+O(log(Nm)∆(C)). Since the sum in Equation 1 runs
over N elements and at the end we divide by N , the total
estimation error becomes 2−`+O(log(Nm)∆(C)). Choosing ` =
O(log(Nm)∆(C)) yields estimation error less than 1/2 for
f [g].

Finally, we analyze the running time of the algorithm and
bound the space used. The outer loop has N iterations, in
each we evaluate at most |C| circuits of size O(log(N)) to
compute the constants of C1

j . Evaluating C1
j takes |C| arith-

metic operations. Thus, the total number of arithmetic oper-
ations is O(|C|N log(N)) while the total number of comlpex
numbers stored at any time is O(|C|+log(N)). The number
of bits used to store each number is O(log(Nm)∆(C)). Thus
the space used by the algorithm is O((|C|+log(N)) log(Nm)

∆(C)). The time required to add two numbers is Õ(log(Nm)
∆(C)) using a fast integer multiplication algorithm (see [11,

20]). Thus, the total running time becomes Õ((|C|N log(N)
log(Nm)∆(C)), completing the proof of the theorem.

It is worth mentioning that a result similar to Theorem 4.3
can be obtained using modular arithmetic instead of com-
plex numbers. Due to space constraints, details are deferred
to the full version of the paper.

4.3 Applications

Subset Sum
We now show how to use Theorem 4.3 to give a pseudo-
polynomial time, polynomial space algorithm for the Subset
Sum problem, defined below.

Subset Sum
Instance: Set S of positive integers w1, . . . , wn,

an integer w.
Question: Does there exist a subset S′ ⊆ S such

that
∑
wi∈S′ wi = w?

Notice that Subset Sum can trivially be solved in O(2n)
time and polynomial space. This has been improved to
O∗(2n/2) time and space by [14] and recently to O∗(20.311n)
time and O∗(20.256n) space [15]. Since a wi > w cannot
participate in any solution we will assume that wi ≤ w for
every i. Also, if w > 2n then the trivial O(2n) time algo-
rithm runs in O(w) time and polynomial space. For every
1 ≤ i ≤ n and x ≤ nw let si[x] be the number of subsets
S′ ⊆ {1, . . . , i} such that

∑
j∈S′ wj = x. The well-known

O(nw) time, O(w) space dynamic programming algorithm
by Bellman (see [8]) can be reformulated as the following
recurrence.

s1 = [x = 0]⊕ [x = w0] (5)

si = si−1 ⊕ (si−1 ⊗ [x = wi]) for i > 1.

We are interested to know whether sn[w] 6= 0. Equation 5
can easily be translated into a circuit C over (Z[Nnw+1];⊕,⊗)
with size and depth O(n) and the entries of any table com-
puted by C can be bounded by 2n since each entry of si
counts subsets of {1, . . . , i}. Thus, applying Theorem 4.3
would already yield a pseudo-polynomial time, polynomial
space algorithm for Subset Sum. However, rearranging the
recurrence before applying Theorem 4.3 gives a slightly bet-
ter running time for the algorithm. The recurrence in Equa-
tion 5 can be rearranged as follows.

si = si−1 ⊗ ([x = 0]⊕ [x = wi]) for i > 1.

Expanding this equation for sn yields

sn = ([x = 0]⊕ [x = w1])⊗ ([x = 0]⊕ [x = w2]) (6)

. . .⊗ ([x = 0]⊕ [x = wn])

Since the ⊗ operator is commutative Equation 6 can be
turned into a circuit C over (Z[Nnw+1];⊕,⊗) of size O(n)
and depth O(log(n)), with maximum table entry bounded
by 2n. Applying Theorem 4.3 on C yields the following the-
orem.

Theorem 4.4. The Subset Sum problem can be solved
in Õ(n3t log t) time and Õ(n2) space.

Knapsack
Now we show that essentially the same approach as in the
previous section can be taken to solve the Knapsack prob-
lem in pseudo-polynomial time using polynomial space. In
Knapsack we are given a set of n items, each with a weight
and a value. We have to select a set of items with total
weight at most w and total value at least v. A formal defi-
nition of the problem is given below.

Knapsack
Instance: Set S of n pairs of positive integers

(v1, w1), . . . , (vn, wn), two positive in-
tegers, v and w.

Question: Is there a subset S′ ⊆ Nn such that∑
i∈S′ vi ≥ v and

∑
i∈S′ wi ≤ w?

Similarly to the Subset Sum problem, there is a trivial
brute force algorithm running in O(2n) time and polynomial
space. Also, any item with weight more than w can not
participate in the solution, and any item with weight at
most w and value at least v constitutes a solution by itself.
Hence we will assume that logw ≤ n, log v ≤ n and that
wi ≤ w and vi ≤ v for every i. For every 1 ≤ i ≤ n
define si ∈ Z[N〈2nv+1,2nw+1〉], where si[〈x, y〉] is the number
of subsets S′ ⊆ {1, . . . , i} such that x+

∑
j∈S′ vj = v · i and∑

j∈S′ wj = y. That is, for every i ≥ 1, si[〈x, y〉] counts
the number of subsets of the first i items with total value
(v · i)−x and total weight y. Then, the following recurrence
holds for si, 1 ≤ i ≤ n.

s1 = [x = 〈v, 0〉]⊕ [x = 〈v − v1, w1〉]
si = si−1 ⊕ (si−1 ⊗ [x = 〈v − vi, wi〉]) for i > 1.

Just as for Subset Sum, this recurrence can be rearranged
to yield the following formula for sn.

sn = ([x = 0⊕ [x = 〈v − v1, w1〉])
⊗ ([x = 0⊕ [x = 〈v − v2, w2〉]) (7)

. . .⊗ ([x = 0⊕ [x = 〈v − vn, wn〉])

>From Equation 7 we construct a circuit C of size O(n) and
depth O(logn) computing sn. We are interested in whether
there exists an x ≤ 〈nv − v, w〉 such that sn[x] 6= 0. We
could have used Theorem 4.3 and to find sn[x] 6= 0 for each
x ≤ 〈nv − v, w〉, but that creates an unnecessary overhead
of O(vw) in the running time. Instead we will compute

(sn ⊗ [x ≤ 〈nv − v, w〉])[〈nv − v, w〉] (8)

since (sn ⊗ [x ≤ 〈nv − v, w〉])[〈nv − v, w〉] is non-zero if and
only if there is a x ≤ 〈nv − v, w〉 such that sn[x] 6= 0. We

need a circuit Ĉ to compute [x ≤ 〈nv − v, w〉]. For that we
will use the following observation.

Observation 4.1. For every integer p and p < q there is
a circuit Ĉ of size O(log(p)) over (Z[Nq];⊕,⊗) computing
[x ≤ p].

Proof. If p is even then [x ≤ p] = [x ≤ p]⊕ [x ≤ p/2]⊗
[x ≤ p/2]. If p is odd then

[x ≤ p] = [x ≤ p]⊕ ([x ≤ bp/2c]⊗ [x ≤ bp/2c])⊕ [x = p].

Transforming this recurrence into a circuit of size O(log(p))
is routine.

Of course, Observation 4.1 can also be used for circuits
over (Z[N〈2nv+1,2nw+1〉];⊕,⊗) in order to to make a circuit
of size O(log(nv)) that computes [x ≤ 〈nv − v, 0〉] and an-
other of size O(log(w)) that computes [x ≤ 〈0, w〉]. Now,

[x ≤ 〈nv − v, w〉] = [x ≤ 〈nv − v, 0〉]⊗ [x ≤ 〈0, w〉].

Hence we have a circuit Ĉ of size O(n + log v + logw) and
depth O(log(n) + log v+ logw) computing (sn⊗ [x ≤ 〈nv−
v, w〉])[〈nv − v, w〉]. Also for this circuit, the table entries
are bounded by 2n since they count subsets of n-sized sets.
Applying Theorem 4.3 on Ĉ yields the following result.

Theorem 4.5. The Knapsack problem can be solved in
Õ(n4 log2(cw)vw) time and Õ(n2 log(vw)) space.

5. SAVING SPACE BY MÖBIUS INVERSION
In this section we will prove a general theorem that iden-

tifies sufficient conditions for turning exponential space dy-
namic programming algorithms over the subset lattice into
polynomial space algorithms based on Möbius Inversion.
While our theorem does not yield any new polynomial space
algorithms, it unifies and generalizes several well-known re-
sults, such as the Hamiltonian Path algorithm by Karp [16],
the Unweighted Set Cover algorithm by Björklund et
al [4] and the Unweighted Steiner Tree algorithm by
Nederlof [19].

5.1 Möbius Inversion
Let V be a set and let R be a ring. We will consider

circuits over (R[2V];⊕, �u), where �u is the union product
operator [3], defined below:

(a �u b)(Y) =
∑

A∪B=Y

a(A)b(B)

For f ∈ R[2V], the zeta-transform ζf and the Möbius-
transform µf are defined as:

ζf [Y] =
∑
X⊆Y

f [Y] µf [Y] =
∑
X⊆Y

(−1)|Y \X|f [X]

Now the principle of Möbius Inversion can be summarized
as the following theorem:

Lemma 5.1 ([5]). For any function f ∈ R[2V] and Y ⊆
V , it holds that µ(ζf)[Y] = f [Y].

Recall that � denotes pointwise multiplication. Similarly
to the DFT, Möbius Inversion is particularly useful because
it transforms the ”hard”to compute operator �u into �. The
following lemma follows from the discussion in [3]. We give
a proof here for completeness.

Lemma 5.2 ([3]). For any function f, g ∈ R[2V] and
Y ⊆ V , ζ(f �u g)[Y] = (ζf)� (ζg).

Proof. We have to prove that for each Y ⊆ V∑
X⊆Y

∑
A∪B=X

f [A]g[B] =
(∑
A⊆Y

f [A]
)(∑

B⊆Y

f [B]
)

To see that this equation holds, notice that for each A,B ⊆
Y , there exists exactly one X ⊆ Y such that A ∪ B = X,
hence we can sum over each combination of two subsets A
and B of Y .

5.2 DP Over Subsets Without Tables

Lemma 5.3. Let C be a circuit over (R[2V];⊕, �u) and
output s. Then, there is a polynomial time algorithm that,
given Y ⊆ V , creates a circuit CY over (R; +, ·) with the
same underlying graph as C, such that for every gate a ∈ C
the corresponding gate in CY outputs (ζs)[Y].

Proof. >From C we construct a circuit C′ over (R[2V];⊕,�),
by relabelling all �u gates with �, and replacing every con-
stant gate a ∈ C with the constant gate a′ = ζa. We
prove that for every gate a ∈ C and corresponding gate
a′ ∈ C′, a′ = ζa by induction along a topological ordering

of C. If a is a constant gate, equality follows by construc-
tion. Otherwise let b and c be the children of a and b′ and
c′ be the corresponding gates in C′. If a is a ⊕ gate then
a′ = b′ ⊕ c′ = ζb ⊕ ζc = ζ(b ⊕ c) = ζa since ζ is a lin-
ear transform. On the other hand, if a is a �u gate then
a′ = b′ � c′ = ζb� ζc = b �u c = ζa, since Lemma 5.2 yields
ζb� ζc = b �u c.

Since C′ only uses pointwise addition and pointwise mul-
tiplication, it can be viewed as 2|V | disjoint circuits over
(R,+, ·), one circuit CY with output (ζs)(Y) for each sub-
set Y of V . For a fixed Y and constant gate a = [X = Sa]va
of C, the corresponfing constant gate aY ∈ CY should be
(ζa)(Y) which is va if Sa ⊆ Y and 0 otherwise. Given C
and Y it is easy to construct CY in polynomial time.

The idea is that the value s[V] in which one is typically

interested can be obtained by
∑
X⊆V (−1)|V \X|ζs[V], where

(ζs)[V] can computed fast using the circuit obtained by the
above lemma. However, in the next subsection another op-
erator is introduced that turns out to be more useful for
our applications, and there Lemma 5.3 will be used as an
intermediate result.

5.3 Subset Convolution
Let V be a ground set. In this section we will study cir-

cuits over (R[2V],⊕, ∗R), where ∗R is the subset convolution
operator over R. We proceed to formally define ∗R.

Definition 5.1 ([3]). Let V be a set, R be a ring and
let f, g ∈ R[2V]. The operator subset convolution ∗R over
R is defined as follows: for each Y ⊆ V

(f ∗R g)[Y] =
∑
X⊆Y

f [X]g[Y \X] (9)

where addition and multiplication are in the ring R.

We consider circuits over (R[2V],⊕, ∗R). We first embed
subset convolution into the union product using the notion
of relaxations, defined below.

Definition 5.2. A relaxation of a function f : R[2V] is
a sequence of functions {fi : fi ∈ R[2V]}, for 0 ≤ i ≤ |V |,
such that for every 0 ≤ i ≤ |V |, Y ⊆ V :

fi[Y] =

{
f [Y] if i = |Y |
0 if i < |Y |

We will denote the most common special case of subset con-
volution, being ∗Z, by ∗. Recall that f ∈ Z[2V] is a singleton
if f = [X = Sf]vf for some set Sf and integer vf . The fol-
lowing theorem applies to circuits over Z[2V] with pointwise
addition and subset convolution.

Theorem 5.1. Let V be a set, and let C be a circuit over
(Z[2V],⊕, ∗). Suppose C outputs s, all its constants are sin-
gletons, and m is an integer such that s[V] ≤ m. Then,

given C and m, s[V] can be computed using O∗(2|V |) time
and O(|V ||C| logm) space.

Before we prove this theorem, we first prove the following
Lemma, which is also used in Section 6.

Lemma 5.4. Let V be a set and let C be a circuit over
(R[2V];⊕, ∗R). Suppose C outputs s and all its constants
are singletons. Then there exists a relaxation {si} of s and a
circuit C′ over (R[2V];⊕, �u) outputting s|V |[V] with |C′| =
|C||V |, that can be constructed in polynomial time.

Proof. Let |V | = n. We construct C′ by replacing every
gate of a ∈ C by n gates a1, . . . , an ∈ C′. For every constant
gate a = [X = Sa]va, we set ai = 0 if i < |S| and ai = a
otherwise. Notice that this means that all constant gates of
C′ are singletons. If a is not a constant gate, let b and c be
the children of a in C. If a = b ⊕ c, then for every i we set
ai = bi⊕ci. Finally, if a = b∗Rc we set ai =

∑i
j=0(bi�uci−j).

Clearly, the above procedure can be executed in polynomial
time.

We prove that for every gate a, {ai} is a relaxation of a by
induction along a topological order of C. If a is a constant
gate this follows by construction. Otherwise, let b and c be
the children of a. Then {bi} and {ci} are relaxations of b
and c respectively by the induction hypothesis. If a is an
addition gate (a = b⊕ c), then {ai} is a relaxation of a since

• for i = |X|, ai[X] = bi[X] + ci[X] = b[X] + c[X] since
bi[X] = b[X] and ci[X] = c[X] by the induction hy-
pothesis.

• for i < |X|, ai[X] = bi[X] + ci[X] = b[X] + c[X] =
0 since both bi[X] and ci[X] are 0 by the induction
hypothesis.

On the other hand if a is a subset convolution gate (a =
b ∗R c), We have that for each 0 ≤ i ≤ n,

ai[X] =
i∑

j=0

∑
Y ∪Z=X

bj [Y]ci−j [Z).

Consider a summand bj [Y]ci−j [Z]. There are two cases:

• (|X| > i) Since Y ∪ Z = X we have that |Y | + |Z| ≥
|X| > i. Now either |Y | > j and bj [Y] = 0, or |Z| >
i− j and ci−j [Z] = 0, because {bi} and {ci} both are
relaxations of b and c respectively. Then we have that
ai[X] = 0.

• (|X| = i) If |Y |+ |Z| > i, either |Y | > j or |Z| > i− j
and aj [A]bi−j [B] = 0 analogously to the first case.
If |Y | + |Z| = i then Y and Z are disjoint. Since
only these pairs Y,Z will contribute to the sum, we
match the definition of subset convolution and hence
ai[X] = a[X].

Thus {ai} is a relaxation of a for all gates a, concluding the
proof.

Proof of Theorem 5.1. Note that C can as well be
considered as a circuit over the ring Zm+1 since s[V] ≤ m+1.
Combining Lemma 5.4 and 5.3 there is a relaxation {si} of
s such that for every Y ⊆ V we can construct a circuit CY
over (Zm+1; +, ·) of size |V ||C| outputting (ζsn)[Y]. Möbius
Inversion states that

sn[V] =
∑
Y⊆V

(−1)|V \Y |(ζsn)[Y]

and now the theorem follows, since for every Y ⊆ V , we can
evaluate CY in order to compute sn[Y] in |C| operations
in Zm+1 and O(|V ||C| logm) space. Using a fast integer
multiplication algorithm (for example [11]), multiplication in
Zm+1 takes O(logm log logm log∗m) time, which is O∗(1).
This completes the proof of the theorem.

5.4 An Application of Theorem 5.1
Now we will give an application of Theorem 5.1. In partic-

ular we will show that with our framework, the polynomial
space algorithm of Nederlof [19] for Unweighted Steiner
Tree follows directly from the Dreyfus-Wagner [9] recur-
rence. Unweighted Steiner Tree is defined as follows.

Unweighted Steiner Tree
Instance: A graphG = (V,E), T ⊆ V with |T | =

k and an integer t ≤ |V |.
Question: Does there exist a subtree (V ′, E′) of

G such that V ′ ≤ t and T ⊆ V ′?

A dynamic programming algorithm for this problem was
given already in 1972 by Dreyfus and Wagner [9]. This algo-
rithm uses O∗(3k) time and O∗(2k) space. In 2007, Björk-
lund et al. [3] gave an improved algorithm using O∗(2k) time
and space. Finally, in 2009, Nederlof [19] gave a O∗(2k) time
and polynomial space algorithm. We show how the last re-
sult can be obtained from the first result using Theorem 5.1.
Slightly reformulated, the dynamic programming of [9] can
be summarized as follows. For every 1 ≤ i ≤ n and v ∈ V
define fvi ∈ Z[2T] as

f1
v = [X = ∅] for v /∈ T
f1
v = [X = {v}] + [X = ∅] for v ∈ T (10)

f iv =

i−1∑
j=1

∑
w∈N(v)

f jw ∗ f i−jv for i > 1

The crux is that for every i, f iv[X] > 0 if and only if
there exists a subtree (V ′, E′) of G such that |V ′| ≤ i and
X ∪ {v} ⊆ V ′. This can be proved by induction on i: For
i = 1 there exists such a subtree if and only if X ⊆ {v}
and v ∈ T or X = ∅. For i > 1, note that there is a subtree
(V ′, E′) of the graphG such that |V ′| ≤ i andX∪{v} ⊆ V ′ if
and only if there are two subtrees (A∪{v}, E1), (B∪{w}, E2)
such that A∪B∪{v, w} = V ′, |V1|+|V2| ≤ i and (v, w) ∈ E′.

The instance of Unweighted Steiner Tree problem is a
yes-instance if and only if f tv[T] > 0, where v ∈ T . Now
we can apply Theorem 5.1 to compute f tv[T]. It is easy to
see that the above recurrence implies a circuit with single-
ton constants, pairwise addition and convolution operators.
Moreover, it can be easily be proved with induction on i
that f iv[X] ≤ |V |3i2|V |i for every X ⊆ T and v ∈ V , hence

f tv[T] ≤ |V |3t2|V |t. Thus, using m = |V |3t2|V |r we obtain:

Theorem 5.2 ([19]). The Unweighted Steiner Tree prob-
lem can be solved in O∗(2k) time and polynomial space.

6. COMBINING DFT AND MÖBIUS TO SAVE
SPACE

In this section we will combine the tools introduced in
the previous two sections to obtain new polynomial space
algorithms for several minimization problems. We obtain
an analogue of Theorem 5.1 in the case where R is the min
sum semi-ringM consisting of the set N∪∞ with operators
min and +. Notice that the identity of min is ∞ and the
identity of + is 0.

Evidently, Möbius Inversion is not applicable in this case
since the addition operator of M, minimization, does not
have the inverse which is required for Möbius inversion. A
commonly used solution to this is to embed M in the ring

Z[N] with ⊕ and ⊗ as operators. Recall that ⊕ is pairwise
addition ⊗ is convolution. We represent a ∈M by a′ ∈ Z[N]
such that a[i] > 0 for i = a and a[i] = 0 for i < a. Let b′

represent b in a similar manner. Then we have that if

min{a, b} = c a+ b = d a′ ⊕ b′ = c′ a′ ⊗ b′ = d′

then c and d are exactly the minimum i such that c′[i] > 0
and the minimum j such that d′[j] > 0, respectively.

6.1 Minimization DP Without Tables
For dynamic programming algorithms, the special case of

subset convolution ∗R where R =M is particularly useful.
We refer to this special case as min sum subset convolution.
Recalling Definition 5.1, ∗M is defined as

(f ∗M g)[X] = min
W⊆X

f [W] + g[X \W]

For f , g ∈ N[2V], the pointwise minimization operator min
is defined as (f min g)[X] = min(f [X],g[X]). The point-
wise maximization operator max is defined similarly, that
is, (f max g)[X] = max(f [X],g[X]).

Theorem 6.1. Let V be a set and w be an integer. Let C
be a circuit over (N[2V],min, ∗M). Let Ĉ be obtained from
C by replacing min with max gates, ∗M with ⊕ gates and all
constants with a table containing w + 1 in all entries. Sup-
pose all constants of C are singletons, and C and Ĉ output s
and ŝ respectively. Then it can be decided whether s[V] ≤ w
using O∗(2|V |u) time and polynomial space, where ŝ[Y] ≤ u
for every Y ⊆ V .

Before proving Theorem 6.1 let us remark that there is an
algorithm deciding whether ŝ[V] ≤ w in O∗(3n) time and
O∗(2n) space, by storing the elements ofM for each subset
and each gate and using Dynamic Programming, similarly
to for example, [2, 9].

Proof of Theorem 6.1. If u ≤ w we can return yes im-
mediately because s[V] ≤ ŝ[V] ≤ u ≤ w. Thus we assume
that w < u. Also, we can assume |V | ≥ 2 since otherwise
we can decide whether u ≥ ŝ[Y] in polynomial time using
straight-forward dynamic programming techniques as men-
tioned above.

Let P be the ring (Z[N] with addition operator ⊕ and
multiplication ⊗. Embed the min sum semi-ringM into P.
Specifically, we construct a circuit C0 over (P[2V];⊕, ∗P)
from C by replacing all min gates by ⊕ gates, ⊗ gates by
∗P , and replacing the constant gates of C with different
constant gates in the following manner. For a constant gate
a ∈ C, labeled with z[X = S] with z ∈ N ∪∞ and S ⊆ V ,
the corresponding gate a′ ∈ C0 is labeled with e[X = S],
where e ∈ P is defined as the vector such that

1. e[w + 1] = 1 and e[f] = 0 for f ≤ w if z =∞.

2. e[z] = 1 and e[f] = 0 for f 6= z, otherwise.

Let Y ⊆ V , a ∈ C, a′ ∈ C′ be the gate corresponding to
a, and i be the minimum integer such that (a′[Y])[i] > 0.
By induction on n(c) combined with the discussion of the
previous subsection, it follows directly that a[Y] ≥ w if i =
w and a[Y] < w otherwise.

Let leqw be a circuit over (P;⊕, ∗P) outputting d, where
(d[S])[i] = 1 if S = ∅ and i ≤ t and 0 otherwise. Using the
circuit with the same underlying graph as in Observation

4.1 (and relabeling constants of labeled with [x = p] with
[x = p][X = ∅]), we can make sure that |leqw| is O(logw).
We construct the circuit C1 from C0 as follows: add the
circuit leqw to C0, and let the output of C1 be the gate
t = d ∗P s. Now observe that (t[V])[w]] > 0 if and only if
s[V] ≤ w.

By Lemma 5.4 there exists a relaxation {ti} of t, such
that for every Y we can in polynomial time construct a cir-
cuit C2 over (P[2V],⊕, ∗u) with |C2| = |C1||V |, outputting

(ζen)[Y]. This particular circuit C2 will be related to Ĉ
in the following claim. For this claim we need to introduce
some notation.

For p ∈ P, denote α(p) for the largest i such that p[i] > 0.
Also, let β(p) be the maximum value p[i] among all integers
i. Finally for a ∈ C, denote n(a) for the number of gates
b ∈ C such that there is a path from b to a in C.

Claim 3. Suppose |V | ≥ 2. For every gate a ∈ C with

corresponding gates ai ∈ C2 and â ∈ Ĉ, it holds that for
every Y ⊆ V , (i) α(ai) ≤ ã and (ii) β(ai) ≤ (|V |ã)n(a),
where ã = maxX⊆V (â)[X].

Proof. We prove the claim by induction on n(a). In
particular, we let b, c ∈ C be the in-neighbors of a and
bi, ci ∈ C2 and b̂, ĉ ∈ Ĉ be corresponding gates of b and
c in C2 and Ĉ respectively. We also refer to the integers
b̃ = maxX⊆V (b̂)[X] and c̃ = maxX⊆V (ĉ)[X].

Suppose a is a constant gate (n(a) = 1), that is a = [X =
Y]e where e ∈ N. Then (ai[Y])[k] = [Y = S][|Y | ≥ i][k = e].
Both equations (i) and (ii) are trivially true since ã = e.

Suppose a is a min gate, then ai is a ⊕ gate and (i) follows
from the fact that

α(ai) = max{α(bi), α(ci)} ≤ max{b̃, c̃} ≤ ã

where the inequality is due to the induction hypothesis and
the latter equality is due to fact that â is a max gate. For
(ii), notice that

β(ai) ≤ β(bi) + β(ci) ≤ (|V |b̃)n(b) + (|V |c̃)n(c) ≤ (|V |ã)n(a)

where the second inequality follows from the induction hy-
pothesis and the third inequality follows from the fact that
b̃ and c̃ are smaller than ã, |V | ≥ 2 and n(b) + n(c) = n(a).

If a is a ∗M gate, we have for every α(ai) = α(bi) +
α(ci) ≤ ã by the induction hypothesis and (i) follows. Also,
(ii) holds since β(ai) is at most

|V |ãβ(bi)β(ci) ≤ |V |ã(|V |b̃)n(b)(|V |c̃)n(c) ≤ (|V |ã)n(a)

for the first inequality, recall that each table entry is the
result of a sum of at most |V |ã products of table entries of
bj and ci−j for some j ≤ i. The second inequality is then
due to the induction hypothesis, and the third inequality
follows from b̃, c̃ ≤ ã and n(b) + n(c) + 1 = n(a).

Now Claim 3 implies that for all gates a ∈ C and 0 ≤
i ≤ n, α(ai) ≤ ã and β(ai) ≤ (nã)n. For the gates a in C2

coming from the added circuit leqw, we have that α(a) ≤ w
and β(a) = 1. For every 0 ≤ i ≤ n, ti = d3si, and it it
follows that α(ti) ≤ ã+ w and β(ei) ≤ (nã)nã.

Now use Lemma 5.3 to obtain the circuit CY over the ring
(Z[N];⊕,⊗) such that for each ai ∈ C2, the corresponding
gate aYi ∈ Z[N] outputs (ζai)[Y].

Since aYi =
∑
X⊆Y ai[Y], it follows that aYi [j] = 0 for

j > α(ai) and aYi ≤ 2nβ(ai). Now Theorem 4.3 can be used

on CY to compute ((ζtn)[Y])[T]. It is easily seen that CY

only has singleton constants, and that ∆(CY) is polynomial
in |C|. Moreover, since for all gates g ∈ CY , α(g) ≤ ã+w ≤
2u and β(g) ≤ 2nβ(ai) ≤ (nã)nã ≤ (nu)n+1, we can apply
the theorem with N being the singleton vector 〈2W 〉 and m
being nun+1. Hence for any Y ⊆ V , ((ζt)n[Y])[T] can be
computed in O∗(W) time and polynomial space.

Finally we use Möbius inversion to obtain (tn[V])[w] from
all values ((ζtn)[Y])[w] for every Y ⊆ V . Recall (tn[V])[w] >
0 if and only if s[V] ≤ w, hence we can decide whether
s[V] ≤ w in the claimed time and space bound.

6.2 Applications
We will now give a few applications of Theorem 6.1. We

consider circuits using pointwise addition and the min-sum
subset convolution ∗M. In the context of the min sum semi-
ring, Iverson’s bracket notation works as follows; [b] = 0 if
b = true and [b] = ∞ otherwise. Thus, a constant [X =
S]v is v if X = S and [X = S]v is ∞ otherwise. For a
constant e we will shorthand f ∗M [X = ∅]e as f + e, since
min-sum subset convolution by [X = ∅]e just adds e to all
entries of f . Finally, we will denote by 〈〈x〉〉 a table where all
elements are x. We will only consider decision variants, but
it should be noted that using binary search and standard
self-reduction it is possible to extend these algorithms to
construct an optimal solution, at the cost of a polynomial
factor in the running time.

Traveling Salesman Problem
A Hamiltonian path of a graph is a path visiting all ver-
tices exactly once. We study the following generalization of
Hamiltonian path:

Traveling Salesman Problem (TSP)
Instance: A graph G = (V,E), a vertex s and a

function φ : V × V → {1, . . . , d} and
an integer t ≤ |V |d.

Question: Is there a Hamiltonian path E′ ∈ E of
weight at most t?

Denote n = |V |. Early O∗(2n) time and space DP al-
gorithms are given in [2, 13]. Later, an algorithm running
in time O∗(2nd) using O∗(d) space was given by Karp [16].
TSP can also be solved in O∗(4n) time and polynomial space
[12]. Recently, [18] proposed a combination of these two ap-
proaches to obtain a space-time trade off. It is an interesting
open problem ([22]) whether TSP can be solved in O(2n)
time and polynomial space.

For v ∈ V andX ⊆ V \{s, v}, define fv[X] as the minimum
weight of a Hamiltonian path in G[X ∪ {s, v}] starting in s
and ending in v. The Bellman-Held-Karp recurrence [2, 13]
is:

fv[∅] = w(s, v)

fv[X] = min
u∈N(v)∩X

fu[X \ {v}] + w(u, v) (11)

To see that the above equation holds, note that there only is
one Hamiltonian path to consider if X = ∅ and its weight is
w(s, v). If X is not empty, any Hamiltonian path of G[X ∪
{s, v}] starting in s and ending in v consists of a Hamiltonian
path of G[X ∪ {s, u}] starting in s and ending in u, and
the edge (u, v). Hence, we can minimize over all the last
edges a Hamiltonian path can have, and find the minimum

weight such a Hamiltonian path can have using previously
computed values and the value w(u, v).

In order to turn the recurrence 11 into a circuit, we for-
mulate it using min sum subset convolution

fv[∅] = w(s, v)

fv[X] = min
u∈N(v)

(fu ∗M [X = {u}])[X] + w(u, v)

but the second case of this recurrence is cyclic, hence it can
not be translated into a circuit. However, it is easy to see
we can instead use the following recurrence:

f0
v = [X = ∅] ∗M w(s, v)

f iv = min
u∈N(v)

(f i−1
u ∗M [X = {v}]) + w(u, v) for 0 < i

since fnv [V] = fv[V] for every v ∈ V \{s}. Now we can apply
Theorem 6.1. To this end, we have to construct the circuit
C′, which can be formulated as the following recurrence:

g0
v = 〈〈t+ 1〉〉 ⊕ 〈〈t+ 1〉〉

giv = max
u∈N(v)

gi−1
u ⊕ 〈〈t+ 1〉〉 ⊕ 〈〈t+ 1〉〉 for 0 < i

and it is easy to see that for every X ⊆ V , giv[X] ≤ 3(i +
1)(t+ 1). Then Theorem 6.1 implies

Theorem 6.2. The Traveling Salesman problem can be
solved in O∗(2nd) time and polynomial space.

Weighted Steiner Tree
In this section, we will extend the example of Subsection 5.4
to a weighted version of the Steiner Tree problem, which is
the following:

Weighted Steiner Tree (WST)
Instance: A graph G = (V,E) with weight func-

tion w : E → {1, . . . , d}, terminals
T ⊆ V and an integer t such that
d ≤ t ≤ |V |d.

Question: Does there exist a subtree (V ′, E′) of
G such that

∑
e∈E′ w(e) ≤ t and T ⊆

V ′?

The current fastest algorithm for this problem is due to
[10], and uses O((2 + ε)knh(ε)) time and space. It is an
interesting question, whether there is a O∗(ck) time, poly-
nomial space algorithm for this problem. We again consider
the algorithm of Dreyfus and Wagner [9], but now for the
weighted case:

f1
v = [X = ∅] for v /∈ T
f1
v = [X = {v}] min[X = ∅] for v ∈ T (12)

f iv =
i−1

min
j=1

min
w∈N(v)

f jw ∗M f i−jv + w(vw) for i > 1

Now fnv [T] ≤ t if and only if there exists a subtree (V ′, E′) of
G such that

∑
e∈E′ w(e) ≤ t with T ⊆ V ′, analogously to the

recurrence of subsection 5.4. We apply Theorem 6.1. To this
end, we construct the circuit C′, which can be formulated
as the following recurrence:

g1
v = 〈〈t+ 1〉〉

giv =
i−1
max
j=1

max
w∈N(v)

gjw ⊕ gi−jv ⊕ 〈〈t+ 1〉〉 for i > 1

Hence giv[X] ≤ 3(t+1)(i+1), yielding the following theorem.

Theorem 6.3. The Weighted Steiner Tree problem can
be solved in O∗(2|T |d) time and polynomial space.

Weighted Set Cover
Our last application is for the following problem:

Weighted Set Cover
Instance: A set V , a family of subsets

S1, . . . , Sm, a weight function w :
{1, . . . , l} → {1, . . . , d} and an integer
t ≥ d.

Question: Does there exist a C ⊆ {1, . . . , l} such
that

⋃
i∈C Si = V and

∑
i∈C w(i) ≤ t?

The current fastest algorithm for Weighted Set Cover
due to [4] uses O∗(2|V |d) time and O∗(d) space. In this vari-
ant of the problem, the sets are given explicitely and hence
the number m is polynomial in input size. The standard
dynamic programming algorithm for our the problem uses
the following recurrence. For ease of notation, let S0 = ∅,
w(0) = 0 an for each 0 ≤ i ≤ n, define fi[X] as the minimum
over all subsets C of {0, . . . , i} such that ∪j∈CSj ⊇ X. Then

f0 = [X = ∅]

f i = f i−1 ∗M sSi

where s is defined as

s{e1,...el} =([X = {e1}] + [X = ∅])∗M
. . . ∗M([X = {el}] + [X = ∅])

Note that sW is 1 if W ⊆ X and ∞ otherwise. Again, in
order to apply Theorem 6.1 we have to consider the circuit
Ĉ obtained by replacing min by max and ∗M by ⊕:

g0 = 〈〈t+ 1〉〉

gi = gi−1 ⊕ rSi

(r{e1,...el}] =

l∑
i=1

〈〈t+ 1〉〉max〈〈t+ 1〉〉

And hence for every X gi[X] ≤ t+ 1 +m|V |(t+ 1). Hence
Theorem 6.1 yields the following result.

Theorem 6.4. The Weighted Set Cover problem can be
solved in O∗(2|V |d) time and polynomial space.

Acknowledgements
We thank Fedor Fomin, Pinar Heggernes, Neeldhara Misra
and Saket Saurabh for some useful discussions and help to
improve the presentation of the paper.

7. REFERENCES
[1] R. Bellman. Bottleneck problems and dynamic

programming. Proceedings of the National Academy of
Sciences of the United States of America, 39(9):947,
1953.

[2] R. Bellman. Dynamic programming treatment of the
travelling salesman problem. J. ACM, 9(1):61–63,
1962.

[3] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto.
Fourier meets möbius: Fast subset convolution. In
STOC, pages 67–74, 2007.

[4] A. Bjorklund, T. Husfeldt, and M. Koivisto. Set
partitioning via inclusion-exclusion. SIAM Journal on
Computing, 39(2):546–563, 2009.

[5] P. J. Cameron. Combinatorics. Cambridge University
Press, 1998.

[6] D. V. Chudnovsky and G. V. Chudnovsky.
Approximations and complex multiplication according
to ramanujan. Ramanujan Revisited, pages 375–396
and 468–472, 1988.

[7] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to algorithms, 2001.

[8] S. Dasgupta, C. H. Papadimitriou, and U. Vazirani.
Algorithms. McGraw-Hill, 2006.

[9] S. Dreyfus and R. Wagner. The Steiner problem in
graphs. Networks, 1:195–207, 1972.

[10] B. Fuchs, W. Kern, D. Mölle, S. Richter,
P. Rossmanith, and X. Wang. Dynamic programming
for minimum steiner trees. Theory Comput. Syst.,
41(3):493–500, 2007.

[11] M. Fürer. Faster integer multiplication. In STOC,
pages 57–66, 2007.

[12] Y. Gurevich and S. Shelah. Expected computation
time for hamiltonian path problem. SIAM J. Comput.,
16(3):486–502, 1987.

[13] M. Held and R. M. Karp. A dynamic programming
approach to sequencing problems. Journal of the
Society for Industrial and Applied Mathematics,
10(1):196–210, 1962.

[14] E. Horowitz and S. Sahni. Computing partitions with
applications to the knapsack problem. J. ACM,
21(2):277–292, 1974.

[15] N. Howgrave-Graham and A. Joux. A new generic
algorithm for hard knapsacks (to appear in eurocrypt
2010).

[16] R. M. Karp. Dynamic programming meets the
principle of inclusion and exclusion. Oper. Res. Lett.,
1:49–51, 1982.

[17] D. E. Knuth. The Art of Computer Programming,
Volume II: Seminumerical Algorithms.
Addison-Wesley, 1969.

[18] M. Koivisto and P. Parviainen. A Space–Time
Tradeoff for Permutation Problems.

[19] J. Nederlof. Fast polynomial-space algorithms using
möbius inversion: Improving on steiner tree and
related problems. In ICALP ’09, pages 713–725.
Springer-Verlag, 2009.

[20] A. Schönhage and V. Strassen. Schnelle multiplikation
grosser zahlen. Computing, 7:281–292, 1971.

[21] G. J. Woeginger. Space and time complexity of exact
algorithms: Some open problems (invited talk). In
IWPEC, pages 281–290, 2004.

[22] G. J. Woeginger. Space and time complexity of exact
algorithms: Some open problems (invited talk). In
R. G. Downey, M. R. Fellows, and F. K. H. A. Dehne,
editors, IWPEC, volume 3162 of Lecture Notes in
Computer Science, pages 281–290. Springer, 2004.

