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Abstract

Let F be a finite set of graphs. In the F-Deletion problem, we are given an n-vertex
graph G and an integer k as input, and asked whether at most k vertices can be deleted
from G such that the resulting graph does not contain a graph from F as a minor. F-
Deletion is a generic problem and by selecting different sets of forbidden minors F , one
can obtain various fundamental problems such as Vertex Cover, Feedback Vertex
Set or Treewidth η-Deletion.

In this paper we obtain a number of generic algorithmic results about F-Deletion,
when F contains at least one planar graph. The highlights of our work are

• A constant factor approximation algorithm for the optimization version of F-Deletion;

• A linear time and single exponential parameterized algorithm, that is, an algorithm
running in time O(2O(k)n), for the parameterized version of F-Deletion where all
graphs in F are connected;

• A polynomial kernel for parameterized F-Deletion.

These algorithms unify, generalize, and improve a multitude of results in the literature.
Our main results have several direct applications, but also the methods we develop on
the way have applicability beyond the scope of this paper. Our results – constant factor
approximation, polynomial kernelization and FPT algorithms – are stringed together by a
common theme of polynomial time preprocessing.
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1 Introduction

Let G be the set of all finite undirected graphs and let L be the family of all finite subsets of
G . Thus every element F ∈ L is a finite set of graphs and throughout the paper we assume
that F is explicitly given. In this paper we study the following p-F-Deletion problem.

p-F-Deletion Parameter: k
Input: A graph G and a non-negative integer k.
Question: Does there exist S ⊆ V (G), |S| ≤ k, such that G \ S contains no graph from F
as a minor?

The p-F-Deletion problem defines a wide subclass of node (or vertex) removal problems stud-
ied from the 1970s. By the classical theorem of Lewis and Yannakakis [63], deciding if removing
at most k vertices results with a subgraph with property π is NP-complete for every non-trivial
property π. By a celebrated result of Robertson and Seymour, every p-F-Deletion problem
is non-uniformly fixed-parameter tractable (FPT). That is, for every k there is an algorithm
solving the problem in time O(f(k) · n3) [73]. The importance of the result comes from the
fact that it simultaneously gives FPT algorithms for a variety of important problems such as
Vertex Cover, Feedback Vertex Set, Vertex Planarization, etc. It is conceivable
that meta theorems for vertex deletion problems might be formulated by addressing problems
that are expressible in logics such as first order and monadic second order. However, since these
capture problems that are known to be intractable, for example Independent Set or Domi-
nating Set, we do not expect to have a theorem that guarantees tractability for vertex deletion
problems through this route. Therefore, the systematic study of the p-F-Deletion problems
is the more promising way forward to obtain meta-theorems for vertex removal problems on
general undirected graphs.

In this paper we show that when F ∈ L contains at least one planar graph, it is possible
to obtain a number of generic results advancing known tractability borders of p-F-Deletion.
The case when F contains a planar graph, while being considerably more restricted than the
general case, already encompasses a number of the well-studied instances of p-F-Deletion.
For example, when F = {K2}, a complete graph on two vertices, this is the Vertex Cover
problem. When F = {C3}, a cycle on three vertices, this is the Feedback Vertex Set prob-
lem. Another fundamental problem, which is a special case of p-F-Deletion, is Treewidth
η-Deletion or η-Transversal which is to delete at most k vertices to obtain a graph of
treewidth at most η. Since any graph of treewidth η excludes a (η + 1) × (η + 1) grid as a
minor, we have that the set F of forbidden minors of treewidth η graphs contains a planar
graph. Treewidth η-Deletion plays important role in generic efficient polynomial time ap-
proximation schemes based on Bidimensionality Theory [48, 49]. Among other examples of
p-F-Deletion that can be found in the literature on approximation and parameterized algo-
rithms, are the cases of F being {K2,3,K4}, {K4}, {θc}, and {K3, T2}, which correspond to
removing vertices to obtain an outerplanar graph, a series-parallel graph, a diamond graph, and
a graph of pathwidth one, respectively.

The main algorithmic contributions of our work is the following set of results for p-F-
Deletion for the case when F contains a planar graph:

• A constant factor approximation algorithm for an optimization version of p-F-Deletion;
• A linear time and single exponential parameterized algorithm for p-F-Deletion when

all graphs in F are connected, that is, an algorithm running in time O(2O(k)n), where n
is the input size;
• A polynomial kernel for p-F-Deletion.

We use F to denote the subclass of L such that every F ∈ F contains a planar graph.
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Figure 1: General view of our approach

Methodology. All our results – constant factor approximation, polynomial kernelization and
FPT algorithms for p-F-Deletion – have a common theme of polynomial time preprocessing.
Preprocessing as a strategy for coping with hard problems is universally applied in practice
and the notion of kernelization in parameterized complexity provides a mathematical frame-
work for analyzing the quality of preprocessing strategies. In parameterized complexity each
problem instance comes with a parameter k and a central notion in parameterized complexity
is fixed parameter tractability (FPT). This means, for a given instance (x, k), solvability in time
f(k) · p(|x|), where f is an arbitrary function of k and p is a polynomial in the input size.
The parameterized problem is said to admit a polynomial kernel if there is a polynomial time
algorithm (the degree of polynomial is independent of k), called a kernelization algorithm, that
reduces the input instance down to an instance with size bounded by a polynomial p(k) in k,
while preserving the answer.

Thus the goal of kernelization is to apply reduction rules such that the size of the reduced
instance can be upper bounded by a function of the parameter. However, if we want to use
preprocessing for approximation or FPT algorithms, it is not necessary that the size of the
reduced instance has to be upper bounded. What we need is a preprocessing procedure that
allows us to navigate the solution search space efficiently. Our first contribution is a notion of
preprocessing that is geared towards approximation and FPT algorithms. This notion relaxes
the demands of kernelization and thus it is possible that a larger set of problems may admit
this simplification procedure, when compared to kernelization. For approximation and FPT
algorithms, we use the notion of α-cover as a measure of good preprocessing. For 0 < α ≤ 1,
we say that a vertex subset S ⊆ V (G) is an α-cover, if the sum of vertex degrees

∑
v∈S d(v) is

at least 2α|E(G)|. For example, every vertex cover of a graph is also a 1-cover. The defining
property of this preprocessing is that the equivalent simplified instance of the problem admits
some optimal solution which is also an α-cover. If we succeed with this goal, then for an edge
selected uniformly at random, with a constant probability at least one of its endpoints belong
to some optimal solution. Using this as a basic step, we can construct approximation and FPT
algorithms. But how to achieve this kind of preprocessing?

To achieve our goals we use the idea of graph replacement dating back to Fellows and
Langston [42]. Precisely, what we use is the modern notion of “protrusion reduction” that has
been recently employed in [16, 50] for obtaining meta-kernelization theorems for problems on
sparse graphs like planar graphs, graphs of bounded genus [17], graphs excluding a fixed graph
as a minor or induced subgraph [50, 47], or graphs excluding a fixed graph as a topological
minor [62]. In this method, we find a large protrusion – a graph of small treewidth and small
boundary – and then the preprocessing rule replaces this protrusion by a protrusion of constant
size. One repeatedly applies this until no longer possible. Finally, by using combinatorial argu-
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ments one upper bounds the size of the reduced induced (a graph without large protrusion). The
FPT algorithms use the replacement technique developed in [17, 47], while for approximation
algorithm we need another type of protrusion reduction. The reason why the normal protrusion
replacement does not work for approximation algorithms is the same as why the NP-hardness
reduction is not always an approximation preserving reduction. While the normal protrusion
replacement works fine for preserving exact solutions, we needed a notion of protrusion reduc-
tion that also preserves approximate solutions. To this end, we develop a new notion of lossless
protrusion reduction, and show that several problems do admit lossless protrusion reductions.
We exemplify the usefulness of the new concept by obtaining constant factor approximation al-
gorithms for F-Deletion. These FPT and approximation algorithms are obtained by showing
that solutions to the instances of the problem that do not contain protrusion form an α-cover
for some fixed constant α.

Our final result is about kernelization for p-F-Deletion. While protrusion replacements
work well for constant factor approximation and optimal FPT algorithms, we do not know
how to use this technique for kernelization algorithms for p-F-Deletion. The technique was
developed and used successfully for kernelization algorithms on sparse graphs [17, 50] but there
are several limitations of this techniques which do not allow to use it on general graphs. Even
for a sufficiently simple case of p-F-Deletion, namely when F is a graph with two vertices
and constant number of parallel edges, to apply protrusion replacements we have to do a lot of
additional work to reduce large vertex degrees in a graph [47]. We do not know how to push these
techniques for more complicated families families F and therefore, employ a different strategy.
The new conceptual contribution here is the notion of a near-protrusion. Loosely speaking,
a near-protrusion is a subgraph which can become a protrusion in the future, after removing
some vertices of some optimal solution. The usefulness of near-protrusions is that they allow
to find an irrelevant edge, i.e., an edge which removal does not change the problem. However,
finding an irrelevant edge is highly non-trivial, and it requires the usage of well-quasi-ordering
for graphs of bounded treewdith and bounded boundary as a subroutine.

As far as we are equipped with new tools and concepts: α-cover, lossless protrusion reduction
and pseudo-protrusions, we are able to proceed with algorithms for p-F-Deletion. These
algorithms unify and generalize a multitude of results in the literature. In what follows we
survey earlier results in each direction and discuss our results.

Approximation. In the optimization version of p-F-Deletion, we want to compute the min-
imum set S, which removal leaves input graph G F-minor-free. We denote this optimization
problem by F-Deletion. Characterising graph properties for which the corresponding vertex
deletion problem can be approximated within a constant factor is a long standing open problem
in approximation algorithms [77]. In spite of long history of research, we are still far from a com-
plete understanding. Constant factor approximation algorithms for Vertex Cover are known
since 1970s [66, 6]. Lund and Yannakakis observed that the vertex deletion problem for any
hereditary property with a finite number of minimal forbidden subgraphs can be approximated
with a constant ratio [64]. They also conjectured that for every nontrivial, hereditary property
with an infinite number of minimal forbidden subgraphs, the vertex deletion problem cannot be
approximated with constant ratio. However, it appeared later that Feedback Vertex Set
admits a constant factor approximation [7, 5] and thus the dividing line of approximability lies
somewhere else. On a related matter, Yannakakis [76] showed that approximating the number
of vertices to delete in order to obtain connected graph with some property π within factor n1−ε

is NP-hard, see [76] for the definition of the property π. This result holds for very wide class
of properties, in particular for properties being acyclic and outerplanar. There was no much
progress on approximability/non-approximability of vertex deletion problems until recent work
of Fiorini et al. [45] who gave a constant factor approximation algorithm for p-F-Deletion for
the case when F is a diamond graph, i.e., a graph with two vertices and three parallel edges.
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Our first contribution is the theorem stating that every graph property π expressible by a
finite set of forbidden minors containing at least one planar graph, the vertex deletion problem
for property π admits a constant factor approximation algorithm. In other words, we prove the
following theorem

Theorem 1. For every set F ∈ F , F-Deletion admits a randomized constant ratio approxi-
mation algorithm.

Let us remark that for all known constant factor approximation algorithms of vertex deletion
to a hereditary property π, property π is either characterized by an finite number of minimal
forbidden subgraphs or by finite number of forbidden minors, one of which is planar. Theorem 1
together with the result of Lund and Yannakakis, not only encompass all known vertex deletion
problems with constant factor approximation ratio but significantly extends known tractability
borders for such types of problems.

Kernelization. The study of kernelization is a major research frontier of Parameterized Com-
plexity and many important recent advances in the area are on kernelization. These include
general results showing that certain classes of parameterized problems have polynomial ker-
nels [3, 16, 50, 60]. The recent development of a framework for ruling out polynomial kernels
under certain complexity-theoretic assumptions [15, 35, 51] has added a new dimension to the
field and strengthened its connections to classical complexity. For overviews of kernelization we
refer to surveys [13, 53] and to the corresponding chapters in books on Parameterized Complex-
ity [46, 67].

While the initial interest in kernelization was driven mainly by practical applications, the
notion of kernelization turned out to be very important in theory as well. It is well known, see
e.g. [39], that a parameterized problem is fixed parameter tractable, or belongs to the class
FPT, if and only if it has a (not necessarily polynomial) kernel. Kernelization enables us to
classify problems within the class FPT further, based on the sizes of the problem kernels. One
of the fundamental challenges in the area is the possibility of characterising general classes of
parameterized problems possessing kernels of polynomial sizes.

Polynomial kernels for several special cases of p-F-Deletion were studied in the literature.
Different kernelization techniques were invented for Vertex Cover, eventually resulting in
a 2k-sized vertex kernel [1, 26, 34, 55]. For the kernelization of Feedback Vertex Set,
there has been a sequence of dramatic improvements starting from an O(k11) vertex kernel
by Buragge et al. [22], improved to O(k3) by Bodlaender [12], and then finally to O(k2) by
Thomassé [75]. A polynomial kernel for p-F-Deletion for class F consisting of a graph with
two vertices and several parallel edges is given in [47]. Philip et al. [68] and Cygan et al. [31]
obtained polynomial kernels for Pathwidth 1-Deletion. Our next theorem generalizes all
these kernelization results.

Theorem 2. For every set F ∈ F , p-F-Deletion admits a polynomial kernel.

In fact, we prove more general result—the kernelization algorithm of Theorem 3 always out-
puts a minor of the input graph. This has interesting combinatorial consequences. By Robertson
and Seymour theory every non-trivial minor-closed class of graphs can be characterized by a
finite set of forbidden minors or obstructions. While Graph Minors Theory insures that many
interesting graph properties have finite obstructions sets, these seem to be disappointingly huge
in many cases. There are a number of results that bound the size of the obstructions for specific
minor closed families of graphs. Fellows and Langston [43, 44] suggested a systematic method of
computing the obstructions sets for many natural properties, see also the recent work of Adler
et al. [2]. Bodendiek and Wagner gave bounds on sizes of obstructions of genus at most k [9],
later improved by Djidjev and Reif [38]. Gupta and Impagliazzo studied bounds on the size of
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a planar intertwine of two given planar graphs [54]. Lagergren [61] showed that the number of
edges in every obstruction to a graph of treewidth k is at most double exponential in O(k5).
Dvořák et al. [40] provide similar bound on obstructions to graphs of tree-depth at most k.
Dinneen and Xiong have shown that the number of vertices in connected obstruction for graphs
with vertex cover at most k is at most 2k+1 [37]. Obstructions for graphs with feedback vertex
set of size at most k is discussed in the work of Dinneen et al. [36].

For a finite set of graphs F , let GF ,k be a class of graphs such that for every G ∈ GF ,k there
is a subset of vertices S of size at most k such that G \ S has no minor from F . As a corollary
of kernelization algorithm, we obtain the following combinatorial result.

Theorem 3. For every set F ∈ F , every minimal obstruction for GF ,k is of size polynomial in
k.

Fast FPT Algorithms. The study of parameterized problems proceeds in several steps.
The first step is to establish if the problem on hands is fixed parameter tractable or not. If the
problem is in FPT, then the next steps are to identify if the problem admits a polynomial kernel
and to find the fastest possible FPT algorithm solving the problem. The running time of every
FPT algorithm is O(f(k)nc), that is, the product of a super-polynomial function f(k) depending
only on the parameter k and polynomial nc, where n is the input size and c is some constant.
Both steps, minimizing super-polynomial function f(k) and minimizing the exponent c of the
polynomial part, are important parts in the design and analysis of parameterized algorithms.

The p-F-Deletion problem was introduced by Fellows and Langston [41], who gave a
non-constructive algorithm running in time O(f(k) · n2) for some function f(k) [41, Theorem
6]. This result was improved by Bodlaender [10] to O(f(k) · n), for f(k) = 22O(k log k)

. There
is a substantial amount of work on improving the exponential function f(k) for special cases
of p-F-Deletion. For the Vertex Cover problem the existence of single-exponential algo-
rithms is well-known since almost the beginnings of the field of Parameterized Complexity, the
current best algorithm being by Chen et al. [27]. Randomized parameterized single exponential
algorithm for Feedback Vertex Set was given by Becker et al. [8] but existence of deter-
ministic single-exponential algorithms for Feedback Vertex Set was open for a while and
it took some time and discovery of iterative compression [71] to reduce the running time to
2O(k)nO(1) [23, 25, 30, 33, 52, 70]. The current champion for Feedback Vertex Set are the
deterministic algorithm of Cao et al. [23] with running time O(3.83kkn2) and the randomized
of Cygan et al. with running time time 3knO(1) [30]. Recently, Joret et al. [57] showed that
p-F-Deletion for F = {θc}, where θc is the graph with two vertices and c parallel edges, can
be solved in time 2O(k)nO(1) for every fixed c. Philip et al. [69] studied Pathwidth 1-Deletion
and obtained an algorithm with running time O(7kn2) that was later improved to O(4.65knO(1))
in [31]. Kim et al. [58] gave a single exponential algorithm for F = {K4}. Unless Exponen-
tial Time Hypothesis (ETH) fails [24, 56], single exponential dependence on the parameter k
is asymptotically the best bound one can obtain for p-F-Deletion, and thus our next theo-
rem provides asymptotically optimal bounds on the exponential function of the parameter and
polynomial contribution of the input.

We call a family F ∈ F connected if every graph in F is connected.

Theorem 4. For every connected set F ∈ F containing a planar graph, there is a randomized
algorithm solving p-F-Deletion in time O(ckn) for some constant c > 1.

We finally give a deterministic algorithm for p-F-Deletion. Surprisingly, our algorithm
does not use iterative compression but is based on branching on degree sequences.

Theorem 5. For every connected set F ∈ F containing a planar graph, p-F-Deletion is
solvable in time O(ckn log2 n) for some constant c > 1.
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2 Preliminaries

In this section we give various definitions which we use in the paper. We use V (G) to denote
the vertex set of a graph G, and E(G) to denote the edge set. The degree of a vertex v in G
is the number of edges incident on v, and is denoted by d(v). A graph G′ is a subgraph of G
if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). The subgraph G′ is called an induced subgraph of G if
E(G′) = {{u, v} ∈ E(G) | u, v ∈ V (G′)}. Given a subset S ⊆ V (G) the subgraph induced by
S is denoted by G[S]. The subgraph induced by V (G) \ S is denoted by G \ S. We denote by
NG(S) the open neighborhood of S, i.e. the set of vertices in V (G)\S adjacent to S. Whenever
the graph G is clear from the context, we omit the subscript in NG(S) and denote it only by
N(S). By N [S] we denote N(S)∪S. Let F be a finite set of graphs. A vertex subset S ⊆ V (G)
of a graph G is said to be a F-deletion set if G \S does not contain any graphs in the family F
as a minor.

2.1 Parameterized algorithms and kernels.

A parameterized problem Π is a subset of Γ∗ × N for some finite alphabet Γ. An instance
of a parameterized problem consists of (x, k), where k is called the parameter. We assume
that k is given in unary and hence k ≤ |x|. A central notion in parameterized complexity is
fixed parameter tractability (FPT) which means, for a given instance (x, k), solvability in time
f(k) · p(|x|), where f is an arbitrary function of k and p is a polynomial in the input size. The
notion of kernelization is formally defined as follows.

Definition 1. [Kernelization] Let Π ⊆ Γ∗ × N be a parameterized problem and g be a com-
putable function. We say that Π admits a kernel of size g if there exists an algorithm K, called
kernelization algorithm, or, in short, a kernelization, that given (x, k) ∈ Γ∗ × N, outputs, in
time polynomial in |x|+ k, a pair (x′, k′) ∈ Γ∗ × N such that

(a) (x, k) ∈ Π if and only if (x′, k′) ∈ Π, and

(b) max{|x′|, k′} ≤ g(k).

When g(k) = kO(1) or g(k) = O(k) then we say that Π admits a polynomial or linear kernel
respectively. If additionally k′ ≤ k we say that the kernel is strict.

2.2 Treewidth.

Let G be a graph. A tree decomposition of G is a pair T,X = {Xt}t∈V (T )) where T is a tree
and X is a collection of subsets of V (G) such that:

• ∀e = uv ∈ E(G),∃t ∈ V (T ) : {u, v} ⊆ Xt and

• ∀v ∈ V (G), T [{t | v ∈ Xt}] is a non-empty connected subtree of T .

We call the vertices of T nodes and the sets in X bags of the tree decomposition (T,X ). The
width of (T,X ) is equal to max{|Xt| − 1 | t ∈ V (T )} and the treewidth of G is the minimum
width over all tree decompositions of G.

A nice tree decomposition is a pair (T,X ) where (T,X ) is a tree decomposition such that T
is a rooted tree and the following conditions are satisfied:

• Every node of the tree T has at most two children;

• if a node t has two children t1 and t2, then Xt = Xt1 = Xt2 ; and
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• if a node t has one child t1, then either |Xt| = |Xt1 |+ 1 and Xt1 ⊂ Xt (in this case we call
t1 insert node) or |Xt| = |Xt1 | − 1 and Xt ⊂ Xt1 (in this case we call t1 insert node).

It is possible to transform a given tree decomposition (T,X ) into a nice tree decomposition
(T ′,X ′) in time O(|V |+ |E|) [11].

2.3 Minors

Given an edge e = xy of a graph G, the graph G/e is obtained from G by contracting the
edge e, that is, the endpoints x and y are replaced by a new vertex vxy which is adjacent to
the old neighbors of x and y (except from x and y). A graph H obtained by a sequence of
edge-contractions is said to be a contraction of G. We denote it by H ≤c G. A graph H is a
minor of a graph G if H is the contraction of some subgraph of G and we denote it by H ≤m G.
We say that a graph G is H-minor-free when it does not contain H as a minor. We also say
that a graph class G is H-minor-free (or, excludes H as a minor) when all its members are
H-minor-free. It is well-known [72] that if H ≤m G then tw(H) ≤ tw(G). We will also use the
following fact about excluding planar graphs as minors.

Proposition 1. There is a constant c such that for every planar H and graph G with tw(G) ≥
2c|V (H)|3, H is a minor of G.

2.4 t-Boundaried graphs and Gluing.

A t-boundaried graph is a graph G and a set B ⊂ V (G) of size at most t with each vertex
v ∈ B having a label `G(v) ∈ {1, . . . , t}. Each vertex in B has a unique label. We refer to
B as the boundary of G. For a t-boundaried G the function δ(G) returns the boundary of G.
Two t-boundaried graphs G and H are isomprphic if there is a bijection f from V (G) to V (H)
such that uv ∈ E(G) ⇐⇒ f(u)f(v) ∈ E(H), for every v ∈ δ(G) we have f(v) ∈ δ(H) and
`G(v) = `H(f(v)). Specifically f is an isomorphism between G and H in the normal graph
sense, but additionally f respects the labels of the border vertices. Observe that a t-boundaried
graph may have no boundary at all. A graph G is isomorphic to a t-boundaried graph H of
there is an isomorphism between G and H.

Two t-boundaried graphs G1 and G2 can be glued together to form a graph G = G1 ⊕ G2.
The gluing operation takes the disjoint union of G1 and G2 and identifies the vertices of δ(G1)
and δ(G2) with the same label. If there are vertices u1, v1 ∈ δ(G1) and u2, v2 ∈ δ(G2) such
that `G1(u1) = `G2(u2) and `G1(v1) = `G2(v2) then G has vertices u formed by unifying u1 and
u2 and v formed by unifying v1 and v2. The new vertices u and v are adjacent if u1v1 ∈ E(G1)
or u2v2 ∈ E(G2).

The boundaried gluing operation ⊕δ is similar to the normal gluing operation, but results
in a t-boundaried graph rather than a graph. Specifically G1 ⊕δ G2 results in a t-boundaried
graph where the graph is G = G1 ⊕ G2 and a vertex is in the boundary of G if it was in the
boundary of G1 or G2. Vertices in the boundary of G keep their label from G1 or G2. Both for
gluing and boundaried gluing we will refer to G1 ⊕ G2 or G1 ⊕δ G2 as the sum of G1 and G2,
and G1 and G2 are the terms of the sum.

For a t-boundaried graph G and boundary vertex v ∈ δ(G), forgetting v results in a t-
boundaried graph identical to G, except that v is no longer a boundary vertex. All other bound-
ary vertices keep their labels. Forgetting a non-boundary vertex leaves the graph unchanged, as
does forgetting a vertex that is not in the vertex set of G. Forgetting a set S ⊆ δ(G) of vertices
means forgetting all vertices in the set. The function forget(G,S) returns the t-boundaried
graph resulting from forgetting S in G.

We will frequently need to construct t-boundaried graphs from subgraphs of a graph G. For
a graph G and two disjoint vertex sets P and B we define GBP to be the t-boundaried graph
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G[P ∪ B] with boundary B. The labelling of the border B is chosen in a manner independent
of P - such that if P1, P2 and B are disjoint then GBP1

⊕δ GBP2
= GBP1∪P2

.

2.5 Monadic Second Order Logic (MSO)

The syntax of MSO on graphs includes the logical connectives ∨, ∧, ¬, ⇔, ⇒, variables for
vertices, edges, sets of vertices and sets of edges, the quantifiers ∀, ∃ that can be applied to
these variables, and the following five binary relations:

1. u ∈ U where u is a vertex variable and U is a vertex set variable;

2. d ∈ D where d is an edge variable and D is an edge set variable;

3. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation is that
the edge d is incident on the vertex u;

4. adj(u, v), where u and v are vertex variables u, and the interpretation is that u and v are
adjacent;

5. equality of variables representing vertices, edges, set of vertices and set of edges.

Many common graph-theoretic notions such as vertex degree, connectivity, planarity, being
acyclic, and so on, can be expressed in MSO, as can be seen from introductory expositions [20,
28].

H minor-models. Recall that a t-boundaried graph H is a minor of a t-boundaried graph G
if (a t-boundaried graph isomorphic to) H can be obtained from G by deleting vertices or edges
or contracting edges, but never contracting edges with both endpoints being boundary vertices.
Let V (H) = {h1, . . . , hc}, and let BG := {bG1 , . . . bGt } and BH := {bH1 , . . . bHt } denote δ(G) and
δ(H) respectively. Then, the formulation that H ≤m G is given by φ(G,H,BG, BG):

φ(G,H,BG, BH) ≡ ∃X1, . . . , Xc ⊆ V (G)[∧
i 6=j

(Xi ∩Xj = ∅) ∧
∧

1≤i≤c
Conn(G,Xi)∧∧

(hi,hj)∈E(H)

∃x ∈ Xi ∧ y ∈ Xj [(x, y) ∈ E(G)]∧

∧
(bHi ∈BH)

∃x ∈ Xi[x = bGi ]

] (1)

2.6 Finite Integer Index and Protrusions

For a parameterized problem Π and two t-boundaried graphs G1, G2 ∈ G, we say that G1 ≡Π G2

if there exists a constant c such that for every t-boundaried graph G and for every integer k,
(G1⊕G, k) ∈ Π if and only if (G2⊕G, k+ c) ∈ Π. For every t, the relation ≡Π on t-boundaried
graphs is an equivalence relation, and we call ≡Π the canonical equivalence relation of Π. We
say that a problem Π has Finite Integer Index if for every t, ≡Π has finite index on t-boundaried
graphs. Thus, if Π has finite integer index then for every t there is a finite set S of t-boundaried
graphs for every t-boundaried graph G1 there exists G2 ∈ S such that G2 ≡Π G1. Such a
set S is called a set of representatives for (Π, t). We will repeatedly make use of the following
proposition.

Proposition 2 ([17]). For every connected F ∈ F , F-Deletion has finite integer index.
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Protrusions and Protrusion Replacement For a graph G and S ⊆ V (G), we define ∂G(S)
as the set of vertices in S that have a neighbor in V (G)\S. For a set S ⊆ V (G) the neighbourhood
of S is NG(S) = ∂G(V (G) \ S). When it is clear from the context, we omit the subscripts. A
r-protrusion in a graph G is a set X ⊆ V such that |∂(X)| ≤ r and tw(G[X]) ≤ r. If G is a
graph containing a r-protrusion X and X ′ is a r-boundaried graph, the act of replacing X by
X ′ means replacing G by G∂(X)

V (G)\X ⊕X
′.

A protrusion replacer for a parameterized graph problem Π is a family of algorithms, with
one algorithm for every constant r. The r’th algorithm has the following specifications. There
exists a constant r′ (which depends on r) such that given an instance (G, k) and an r-protrusion
X in G of size at least r′, the algorithm runs in time O(|X|) and outputs an instance (G′, k′)
such that (G′, k′) ∈ Π if and only if (G, k) ∈ Π, k′ ≤ k and G′ is obtained from G by replacing
X by a r-boundaried graph X ′ with less than r′ vertices. Observe that since X has at least
r′ vertices and X ′ has less than r′ vertices this implies that |V (G′)| < |V (G)|. The following
proposition is the driving force of [17] and the starting point for our algorithms.

Proposition 3 ([32, 17]). Every parameterized problem with finite integer index has a protrusion
replacer.

Together, Propositions 2 and 3 imply that for every connected F ∈ F , F-Deletion has a
protrusion replacer.

Bodlaender et al. [16] were first to use protrusion techniques (or rather graph reduction
techniques) to obtain kernels, but the idea of graph replacement for algorithms dates back to
Fellows and Langston [42]. Arnborg et al. [4] essentially showed that protrusion replacement
is possible and useful for many problems on graphs of bounded treewidth, and gave safe ways
of reducing graphs. Using this, Arnborg et al. [4] obtained a linear time algorithm for MSO
expressible problems on graphs of bounded treewidth. Bodlaender and Fluiter [14, 19, 32]
generalized these ideas in several ways — in particular, they lifted graph reduction techniques
to optimization problems and proved Proposition 3. It is also important to mention the work
of Bodlaender and Hagerup [18], who used the concept of graph reduction to obtain parallel
algorithms for MSO expressible problems on bounded treewidth graphs.

2.6.1 Least Common Ancestor-Closure of Sets in Trees.

For a rooted tree T and vertex set M in V (T ) the least common ancestor-closure (LCA-closure)
LCA-closure(M) is obtained by the following process. Initially, set M ′ = M . Then, as long
as there are vertices x and y in M ′ whose least common ancestor w is not in M ′, add w to
M ′. When the process terminates, output M ′ as the LCA-closure of M . The following folklore
lemma summarizes two basic properties of LCA closures.

Lemma 1. Let T be a tree, M ⊆ V (T ) and M ′ = LCA-closure(M). Then |M ′| ≤ 2|M | and
for every connected component C of T \M ′, |N(C)| ≤ 2.

Proof. To prove that |M ′| ≤ 2|M | make a tree T ′ with vertex set M ′, and for every vertex
v ∈ M ′ adding an edge to the lowermost ancestor of v in M ′ in the tree T . Observe that in
T ′ all leaves are from M , since every vertex in M ′ \M is the least common ancestor of two
vertices below it in T . Furthermore, for the same reason every vertex in M ′ \M has at least two
decendants in T ′. A standard counting argument for trees shows that the number of vertices
with at least two decendants is at most the number of leaves. Hence |M ′ \M | ≤ |M | and so
|M ′| ≤ 2|M |.

We now prove that |N(C)| ≤ 2. Suppose not, and let r be the root of P . At most one of C’s
neighbours is the parent of r and hence at least two of C’s neighbours, say u and v are children
of vertices in C. The vertices u and v are both in M ′, and they are both descendents of r. But
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then the least common ancestor of u and v must lie in C and hence is not in M ′, contradicting
the construction of M ′. So we conclude that |N(P )| ≤ 2.

3 A Randomized Algorithm for “connected” p-F-Deletion

In this section we give a randomized algorithm for p-F-Deletion when every graph in F ∈ F
is connected. Recall that we call a family F connected if all the graphs in F is connected. We
will show that for every connected F the algorithm runs in polynomial time, with the exponent
of the polynomial depending on the family F . If the input graph has a F-deletion set of size
at most k, the algorithm will detect a F-deletion set of size at most k with probability at least
1
ck

. Here the constant c depends on F . The algorithm has no false positives - we show that if
it reports that a F-deletion set of size at most k exists then G indeed has such a set.

In the following sections we will progressively improve the algorithm; first we give an im-
plementation of the algorithm with expected running time O(n ·OPT ). Then we show how to
modify the (sped up) algorithm so that it not only decides whether G has a F-deletion set of
size at most k, but also outputs a solution. We show that if G has a F-deletion set of size at
most k, the algorithm will output a solution of size k with probability at least 1

ck
. We then

proceed to show that this algorithm in fact outputs constant factor approximate solutions with
constant probability, yielding a constant factor approximation for p-F-Deletion for connected
F in expected O(n · OPT ) time. The main structure of the improved algorithm remains the
same as the one described here.

The first building block of our algorithm is a simple algorithm to reduce the input instance
to an equivalent instance that does not contain any large protrusions with small border.

Lemma 2. For every F ∈ F and constants r and r′ such that p-F-Deletion has a protrusion
replacer that reduces r-protrusions of size r′, there is an algorithm that takes as input an instance
(G, k) of p-F-Deletion, runs in nO(r′) time and outputs an equivalent instance (G′, k′) such
that |V (G′)| ≤ V (G), k′ ≤ k and G′ has no r-protrusion of size at least r′.

Proof. It is sufficient to give a nO(r′) time algorithm to find a r-protrusion X in G of size at
least r′, if such a protrusion exists. If we had such an algorithm to find a protrusion we could
keep looking for r-protrusions X in G of size at least r′, and if one is found replacing them
using the protrusion replacer. Since each replacement decreases the number of vertices by one
we converge to an instance (G′, k′) with the desired properties after at most n iterations.

To find an r-protrusion of size at least r′ observe that if such a protrusion exists, then
there must be at least one such protrusion X such that G[X \ ∂(X)] has at most r′ connected
components. Indeed, if G[X \ ∂(X)] has more than r′ connected components then let X ′ be
∂(X) plus the union of any r′ components of G[X \ ∂(X)]. Now X ′ is an r-protrusion of size at
least r′ and G[X ′ \∂(X ′)] has at most r′ components. To find a r-protrusion X of size at least r′

on at most r′ components, guess ∂(X) and then guess which components of G \ ∂(X) are in X.
The size of the search space is bounded by nr ·nr′ and for each candidate X we can test whether
it is a protrusion in linear time using Bodlaender’s linear time treewidth algorithm [11].

The second building block of our algorithm is a lemma whose proof we postpone until the
end of this section. The lemma states that for any F ∈ F , if G contains no large protrusions
with small border then any feasible solution to p-F-Deletion is incident to a linear fraction of
the edges of G. Recall that an α-cover in G is a set S such that

∑
v∈S d(v) ≥ α ·

∑
v∈V (G) d(v) =

2α ·m.

Lemma 3. For every F ∈ F there exist constants r and α such that if a graph G has no
r-protrusion of size at least r′, then every F-deletion set S of G is a α

r′ -cover of G.
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We now combine Lemmata 2 and 3 to give a randomized algorithm for p-F-Deletion for
all F ∈ F such that each graph in F is connected.

Randomized-FPT-beta((G,k))
Set Gcurrent := G and kcurrent := k.
While (Gcurrent is not F-free) do as follows:

1. If kcurrent ≤ 0 return that G does not have a k-sized F-deletion set .

2. Apply Lemma 2 on (Gcurrent, kcurrent) and obtain an equivalent instance (G′, k′).

3. Pick a vertex u ∈ V (G) at random with probability d(u)
2m . Set Gcurrent := G′ \ {u}

and kcurrent := k′ − 1

Return that G has a k-sized F-deletion set .

Figure 2: In Algorithm Randomized-FPT-beta, let r be the constant as guaranteed by
Lemma 3 and let r′ be the smallest integer such that the protusion replacer for F-Deletion
reduces r-protrusions of size r′.

Lemma 4. Algorithm 2 runs in polynomial time, if (G, k) is a “no” instance it outputs “no”
and if (G, k) is a “yes” instance it outputs “yes” with probability at least 1

ck
where c is a constant

depending only on F .

Proof. Since each iteration runs in polynomial time and reduces the number of vertices in
Gcurrent by at least one, Algorithm 2 runs in polynomial time. Furthermore, Step 2 reduces
the instance to an equivalent instance with k′ ≤ kcurrent and Step 3 only decreases kcurrent
when it puts a vertex into the solution. Hence when the algorithm outputs “yes” then a k-sized
F-deletion set exists. It remains to show the last part of the statement.

We say that an iteration of Step 3 is successful if there exists a F-deletion set S of G′ with
|S| ≤ k′ such that the vertex u selected in this step is in S. If the step is successfull then
S \ {u} is a F-deletion set of G′ of size at most k′− 1. Thus, if the input graph G has a k-sized
F-deletion set and all the iterations of Step 3 are successful then the algorithm maintains the
invariant that Gcurrent has a F-deletion set of size at most kcurrent, and thus after at most k
iterations it terminates and outputs that (G, k) is a “yes” instance. When Step 3 is executed
the graph G′ has no r-protrusions of size at least r′. Thus by Lemma 3 every F-deletion set set
of G′ is an α

r′ -cover for a constant α depending only on F . Hence the probability that u is in
a minimum size F-deletion set of G′ is at least α

r′ . We conclude that the probability that the
first k executions of Step 3 are successful is at least ( αr′ )

k concluding the proof.

Repeating the algorithm presented in Figure 2 O(ck) times yields a O(2O(k)nO(1)) time
algorithm for p-F-Deletion for all connected F ∈ F . However we are not entirely done with
the proof of Lemma 4, as it remains to prove Lemma 3. In order to complete the proof we need
to define protrusion decompositions.

3.1 Protrusion Decompositions and Proof of Lemma 3

We recall the notion of a protrusion decomposition defined in [17] and show that if a graph
G has a set X such that tw(G \ X) ≤ d, then it admits a protrusion decomposition for an
appropriate value of the parameters. We then use this result to prove Lemma 3.

Definition 1. [Protrusion Decomposition][[17]] A graph G has an (α, β)-protrusion de-
composition if V (G) has a partition P = {R0, R1, . . . , Rt} where
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• max{t, |R0|} ≤ α,

• each NG[Ri], i ∈ {1, . . . , t} is a β-protrusion of G, and

• for all i > 1, N [Ri] ⊆ R0.

We call the sets R+
i = NG[Ri], i ∈ {1, . . . , t} protrusions of P.

We now show that for every F ∈ F every graph with an F-deletion set X has an (α, β)-
protrusion decomposition where β is constant and α = O(|N [X]|).

Lemma 5 (Protrusion Decomposition Lemma). If a n-vertex graph G has a vertex subset X
such that tw(G\X) ≤ b, then G admits a ((4|N [X]|)(b+1), 2(b+1))-protrusion decomposition.
Furthermore, if we are given the set X then this protrusion decomposition can be computed in
linear time. Here b is a constant.

Proof. We give a proof for the case when X is explicitly given to us. The proof will automatically
imply the existence of a (4(b + 1)|N(X)|, 2b + 2)-protrusion decomposition of G for the case
when we are just guaranteed the existence of X. The algorithm starts by computing a nice tree
decomposition (T,B) of G \X with width at most b. Notice that since b is a constant this can
be done in linear time [11].

For every v ∈ N(X) add a node u in T such that v ∈ Bu to a set M ′. We have that
M ′ ≤ |N(X)|. Let M ′ be the set of marked nodes and set M = LCA-closure(M ′). By
Lemma 1, M ≤ 2|M ′| ≤ 2|N(X)|. Let Q1, Q2 . . . Qt be the connected components of T \ Q.
Since T is a binary tree T \M has at most 2|M |+ 1 connected components, so t ≤ 4|N(X)|+ 1.
By Lemma 1 we have that for every i ≤ t, |NT (Qi)| ≤ 2.

Define R0 =X∪
⋃
u∈M Bu and for each 1 ≤ i ≤ t set Ri =

⋃
u∈Qi Bu \ R0. Since every

vertex of G \ X appears in a bag of the tree-decomposition, R0, . . . Rt forms a partition of
V (G). By construction we have that for every i ≥ 1, N(Ri) ⊆ R0 and tw(G[N [Ri]]) ≤ b.
Furthermore, since |NT (Qi)| ≤ 2 we have |N(Ri)| ≤ 2(b + 1). Thus R0 . . . Rt form a (α, β)-
protrusion decomposition of G where β ≤ 2(b+ 1) and α ≤ max(|R0|, t) ≤ (4|N [X]|)(b+ 1). It
is easy to implement a procedure that computes R0 . . . Rt in this way in linear time.

We are now in a position to prove Lemma 3

Proof of Lemma 3. We need to prove that for every F ∈ F there exist constants r and α
such that if a graph G has no r-protrusion of size at least r′, then every minimal F-deletion
set S of G is a α

r′ -cover of G. By Proposition 1 there exists a constant η depending only on
F such that tw(G \ S) ≤ η. By Lemma 5, G has a ((4|N [S]|)(η + 1), 2(η + 1))-protrusion
decomposition R0 . . . Rt. Set r = 2(η + 1) and suppose G has no r-protrusions of size at least
r′. Then t ≤ (4|N [S]|)(η + 1), |R0| ≤ (4|N [S]|)(η + 1) and so |V (G)| = |R0| +

∑
i |Ri| ≤

(4|N [S]|)(η + 1)(r′ + 1) ≤ (8|N [S]|)(η + 1)r′. Since tw(G \ S) ≤ η + 1 it follows that G \ S is
(η + 1)-degenerate and so

∑
v∈V (G)\S d(v) ≤ (8|N [S]|)(η + 1)2r′. Set α = 1

18(η+1)2
and observe

that ∑
v∈V (G)

d(v) ≤
∑
v∈S

d(v) +
∑

v∈V (G)\S

d(v) ≤
∑
v∈S

d(v) + (8|N [S]|)(η + 1)2r′ ≤ r

α
·
∑
v∈S

d(v).

The last inequality follows from the fact that there are no isolated vertex in S.
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4 Fast Protrusion Replacement

What makes the polynomial factor of Algorithm 2 large is the algorithm of Lemma 2 to remove
all large enough protrusions with small border size. In this section we give much faster algorithms
that reduce “almost all” large protrusions with small border. We then show that reducing almost
all protrusions instead of all protrusions is sufficient to obtain the conclusion of Lemma 3. The
“fast protrusion reduction” algorithms we design in this section are applicable to any problem
that uses protrusion reducer, and hence they are useful well beyond the scope of this paper.
We give two algorithms for fast protrusion replacement, a randomized algorithm and a slightly
slower deterministic algorithm.

The Randomized Fast Protrusion Replacer. We now describe an algorithm that we
call the Randomized Fast Protrusion Replacer (RFPR). The algorithm works for parameterized
graph problems Π that have a protrusion replacer, takes as input an instance (G, k) and outputs
another instance (G′, k′). Just as a normal protrusion replacer, the RFPR is actually a family
of algorithms with one algorithm for each value of the integer r. We describe how the algorithm
proceeds for a fixed value of r. Let r′ be the smallest integer such that the protrusion replacer
for Π replaces r-protrusions of size at least r′.

The RFPR proceeds as follows. We select a random partition of V (G) into r + 1 sets
X1, X2, . . . Xr+1. For every i ≤ r + 1 we compute the connected components of G[Xi] and add
these components to a collection C′. This results in a partition of V (G) into C′ = C ′1, C

′
2, . . . C

′
t′ .

Now, discard every component C ′i such that N(C ′i) > r and every component Ci such that
tw(G[N [Ci]]) > r. Discarding all of these components can be done in linear time - the only
computationally hard step is to check whether the treewidth of the components is at most r,
this can be done in linear time using Bodlaenders’s algorithm [11]. Let C∗ = C∗1 , . . . , C

∗
t∗ be the

remaining components.
For every C∗i ∈ C∗, N [C∗i ] is a r-protrusion in G. However some, if not all of the components

in C∗ could have less than r′ vertices and so the protrusion replacer can’t reduce them. However
it could be possible to group some components in C∗ with the same neighbourhood together such
that their union is a protrusion that is large enough to be reduced. From C∗ we will compute a
collection R of disjoint vertex sets such that for every R ∈ R, N [R] is an r-protrusion in G of
size at least r′. Our aim is to compute such a set with |R| being large. For every component
C∗i ∈ C∗ of size at least r′ we add C∗i to R and remove C∗i from C∗. Let C = C1 . . . Ct be the
remaining components. All components in C have size at most r′. Set Rbig to be the number of
components C∗i ∈ C∗ on at least r′ vertices that are added to R.

Now we partition C into groups according to the neighbourhood of the components. Specif-
ically we compute a partition of C into Z1, . . .Zq such that for every pair Ci ∈ C, Ci′ ∈ C such
that N(Ci) = N(Ci′), Ci and Ci′ are in the same Zj , while for every pair Ci ∈ C, Ci′ ∈ C such
that N(Ci) 6= N(Ci′) we have Ci ∈ Zj → Ci′ /∈ Zj . Such a partition can be computed in time
O(nr) because every component in C has at most r neighbours; First we sort the neighbor lists of
each component according to some ordering of the vertex set, for example an arbitrary labelling
of the vertices from 1 to n. Then we do r stable bucket sorts on C sorting the components first
on their first neighbour, then their second neighbor, etc.

Having computed the partitioning Z1, . . .Zq we now compute R as follows. As long as there
is a Zi such that

∑
Cj∈Zi |Cj | ≥ r

′ select a minimal collection Z ⊆ Zi such that
∑

Cj∈Z |Cj | ≥ r
′.

Add
⋃
Cj∈Z Cj to R and remove the components of Z from Zi. This procedure can easily be

implemented in linear time. This concludes the construction of R.
Given R we proceed as follows, for a set R ∈ R we run the protrusion replacer for Π on

(G, k) with protrusion N [R]. The protrusion replacer outputs an equivalent instance (G∗, k∗)
with |V (G∗)| < |V (G)|. Here G∗ is a graph where R has been replaced by a smaller protrusion
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R′. Since all the sets in R are disjoint, the other sets in R are now r-protrusions in G∗ of
size at least r′. Thus we can run the protrusion replacer on all the sets in R. This takes
time

∑
R∈RO(|R|) = O(n). Let (G′, k′) be the instance obtained after running the protrusion

replacer on all the sets in R. The RFPR outputs the instance (G′, k′). We collect a few simple
facts about the RFPR in the following lemma.

Lemma 6. Given an instance (G, k), the RFPR runs in time O(n+m), computes a collection R
of protrusions and and outputs an equivalent instance (G′, k′), such that |V (G′)| ≤ |V (G)|−|R|.

Furthermore R ≥ Rbig +
⌈∑

i≤q

P
C∈Zi

|C|−(r′−1)

2(r′−1)

⌉
.

Proof. The instances (G, k) and (G′, k′) are equivalent because (G′, k′) is obtained from (G, k)
by repetitive applications of a protrusion replacer. In the description of the algorithm we made
sure that each individual stage of the algorithm runs in linear time. Finally, each application of
the protrusion replacer reduces the size of the graph by at least one. We apply the protrusion
replacer |R| times. Hence |V (G′)| ≤ |V (G)| − |R|.

Finally, when the RFPR selects a minimal collection Z ⊆ Zi such that
∑

Cj∈Z |Cj | ≥ r′,
since each Cj ∈ Zi has size at most r′ it follows that

∑
Cj∈Z |Cj | ≤ 2(r′ − 1). Thus every time

we add a set to R,
∑

C∈Zi |C| decreases by at most 2(r′ − 1). At the end when we can not
add more sets to R we have that for every i,

∑
C∈Zi |C| ≤ r′. This proves the last part of the

statement of the lemma.

Analyzing the Randomized Fast Protrusion Replacer. We now analyze how many
vertices the Fast Protrusion Replacer reduces the instance by. To that end we need to define
the notion protrusion covers.

Definition 2. An (a, b, r)-protrusion cover in a graph G is a collection Z = Z1, . . . , Zt of sets
such that for every i, N [Zi] is a r-protrusion in G and a ≤ |Zi| ≤ b, and for every i 6= j,
Zi ∩ Zj = ∅ and there are no edges from Zi to Zj. The size of Z is |Z|.

Lemma 7. Let Π be a problem that has a protrusion replacer which replaces r-protrusions of
size at least r′, and let s ≥ r′ · 2r. If G is a graph with a (s, 6s, r)-protrusion cover X , then if

the RFPR is run on (G, k), with probabilty at least 1 − e−
|X|

8(r+1)6s the output instance (G′, k′)
satisfies |V (G)| − |V (G′)| ≥ |X |

4(r+1)6s
.

Proof. By Lemma 6 the RFPR computes a set R of protrusions and |V (G)| − |V (G′)| ≥ |R|.
Thus it is sufficient to show that with high probablility, R ≥ |X |

4(r+1)6s
. Define X = V (G) \⋃

X∈X X. Since no edge goes between different sets in X we have that for every X ∈ X ,
N(X) ⊆ X. The only randomized step of the RFPR is the initial partitioning of V (G) into sets
X1, . . . Xr+1. We may think of this partitioning step as selecting a random coloring of V (G)
with colors from {1, . . . , r + 1}.

We say that a set X in X succeeds if all vertices in X are colored with the same color, and
no vertex of N(X) is colored with that color. Since every set X ∈ X has at most r neighbours
we have that the probability that X succeeds given any coloring of X is at least 1

(r+1)|X|
. Hence

the expected number of sets X ∈ X that succeed is at least |X |
(r+1)6s

. Suppose t sets succeed. We
prove that the set R constructed by the Randomized Fast Protrusion Replacer has size at least
t/2.

For each set X that succeeds, the connected components of X are added to C′, and since they
all have treewidth at most r and have at most r neighbors, none of them are discarded. Hence
the connected components of X are all added to C∗. Since |Z| ≥ r′ ·2r, if we group the connected
components of Z by their neighbourhood, at least one group has combined size at least r′. If
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this group contains a connected component on at least r′ vertices then this component is added
to R directly and X contributes one to Rbig. If this group does not contain any components of
size at least r′ then the group is added in its entirety to some set Zi. In this case the group

contributes at least r′ to
∑

C∈Zi |C|. By Lemma 6, R ≥ Rbig +
⌈∑

i≤q

P
C∈Zi

|C|−(r′−1)

2(r′−1)

⌉
. Hence

the total number of sets added to R is at least t/2.
Since the neighbourhoods of different sets in X may overlap there are dependencies between

which sets succeed. However, given any coloring of X the success of different sets in X is
independent, since whether X succeeds or not depends only on the color of vertices in X and
the color of vertices in N(X) ⊆ X. Thus for every coloring of X the number of sets that succeed
is a sum of independent 0-1 variables taking value 1 with probability at least 1

(r+1)|X|
. Standard

Chernoff bounds for the binomial distribution show that if T is a sum of n independent 0-1
variables taking value 1 with probabily p, then P [X ≤ np/2] < e−

np
8 . Plugging this in for the

number of sets in X that succeed yields that the probability that |R| ≤ |X |
4(r+1)6s

is at most

e
− |X|

8(r+1)6s .

The Deterministic Fast Protrusion Replacer We prove that the RFPR can be made
deterministic at the cost of a log n factor in the running time. The only randomized step of the
RFPR is the initial step where the vertices of G are partitioned into r + 1 sets X1, . . . Xr+1.
We may think of this partitioning step as selecting a random coloring of V (G) with colors
from {1, . . . , r + 1}. The main difference between the randomized and the deterministic Fast
Protrusion Replacer is how this coloring is chosen. The Deterministic Fast Protusion Replacer
only partitions V (G) in two sets X1 and X2 - this corresponds to coloring the vertices with
colors 1 and 2. To describe the colorings the Deterministic Fast Protrusion Replacer (DFPR)
uses we use the notion of universal sets.

Definition 2 ([65]). A (n, t)-universal set P of a ground set U on n elements is a collection P
of subsets of U such that for every set S ⊆ U and set S′ ⊆ S there is a set P ∈ P such that
P ∩ S = S′.

Theorem 6 ([65]). There is a deterministic algorithm with running time O(2t+o(t)n log n) that
constructs an (n, t)-universal set P such that |P| = 2t+o(t) log n.

The DFPR has two parameters, r and s, instead of just one parameter r. It constructs a
(n, 6s+ r)-universal set P in time O(26s+r+o(6s+r)n log n) = O(220sn log n) and selects the first
set P ∈ P. It sets X1 = P , X2 = V (G) \ P and then it proceeds just as the RFPR would.
For a fixed set P ∈ P this takes linear time and will reduce (G, k) to an equivalent instance
(G′, k′). Choosing different sets P ∈ P results in different output instances (G′, k′). The DFPR
tries all possible choices for P ∈ P and then finally outputs the instance (G′, k′) that maximizes
|V (G)| − |V (G′)|. The total time taken by the DFPR is O((220sn log n) + |P| · O(n + m) =
O((220s(n+m) log n). This proves the following lemma.

Lemma 8. Given an instance (G, k), the DFPR runs in time O((220s(n+m) log n), computes
a collection R of protrusions and outputs an equivalent instance (G′, k′), such that |V (G′)| ≤
|V (G)| − |R|.

We now give a lemma analogous to Lemma 7 for the DFPR.

Lemma 9. Let Π be a problem that has a protrusion replacer which replaces r-protrusions of
size at least r′, and let s ≥ r′ · 2r. If G is a graph with a (s, 6s, r)-protrusion cover X , then if
the RFPR is run on (G, k), the output instance (G′, k′) satisfies |V (G)| − |V (G′)| ≥ |X |

220s logn
.
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Proof. In the proof of Lemma 7 we showed that |V (G)|−|V (G′)| is lower bounded by the number
of sets that succeeds. Since each set X ∈ X has size at most 6s and |N [X]| ≤ 6s + r ≤ 7s it
follows that for every X ∈ X there is some coloring set P ∈ P that makes X succeed. Hence
there is a coloring P ∈ P that makes at least |X ||P| ≥

|X |
2r+6s+o(r+6s) logn

sets succed. In the proof of
Lemma 7 we showed that |V (G)| − |V (G′)| is at least half the number of succeeding sets. Since
2 · 2r+6s+o(r+6s) log n ≤ 220s we have |V (G)| − |V (G′)| ≥ |X |

220s logn
.

We now proceed to prove that if G has a protrusion decomposition such that a linear fraction
of the vertices appear in large enough r-protrusions then with high probability the Randomized
Fast Protrusion Replacer will reduce G by a linear fraction of its vertices. To that end we need to
have a closer look at the relationship between protrusion decompositions and protrusion covers.

Protrusion Covers from Protrusion Decompositions. First we prove that in a graph of
small treewidth we can always find protrusion covers with large size.

Lemma 10. There exists a constant c such that for any integers n ≥ s > b ≥ 2 and n-vertex
graph G of treewidth b, G has a (s, 6s, 2(b+ 1)) cover of size at least n

122s .

Proof. Let (T,B) be a nice tree-decomposition of G of width b. For a subset Q ⊆ V (T ) by
P (Q) we denote ∪q∈QBq. For a rooted tree T , and a vertex v ∈ T , a component C of T \ {v} is
said to be below v if all vertices of C are descendants of v in T . We start by constructing a set
S ⊆ V (T ) and a collection Q1, . . . , Q|S| of connected components of T \ S using the following
greedy procedure.

Let r be the root of T . In the beginning S = ∅ and T r = T . We maintain a loop invariant
that T r is the connected component of T \ S that contains r. Now, at step i of the greedy
procedure we pick a lowermost vertex vi in V (T r) such that there is a connected component
Qi of T r \ {vi} below vi such that |P (Qi)| ≥ 3s+ 7(b+ 1). Now we add vi to S and update T r

accordingly. The procedure terminates when no vertex v in T r has this property. In particular,
if for any v ∈ T r, every component Q of T r \ {v} below v, |P (Q)| < 3s+ 7(b+ 1), the procedure
terminates. Since (T,B) is a nice tree decomposition, we have that for any vertex v ∈ Tr and
parent u of v, if Cv and Cu are the components of T r \ {v} and T r \ {u} maximizing |P (Cv)|
and |P (Cu)| respectively, then |P (Cu)| ≤ 2|P (Cv)|. Hence we know that for every component
Q of T \S, |P (Q)| < 6s+ 14(b+ 1) ≤ 20s. This bound holds both for the components included
in the collection Q1, . . . , Q|S| and the ones that do not.

Having constructed S and Q1, . . . , Q|S| we let S′ = LCA-closure(S). By Lemma 1 we have
|S′| ≤ 2|S|. Let S∗ = S′ \ S. Since |S∗| ≤ |S|, at most |S|2 of the components Q1, . . . , Q|S|

contain at least two vertices of S∗. This implies that at least |S|2 of the components Q1, . . . , Q|S|
contain at most one vertex of S∗. Without loss of generality, let Q1, . . . , Q|S|/2 contain at most
one vertex of S∗ each. For every i ≤ |S|/2, if Qi contains no vertex of S∗ then Q′i = Qi is a
component of Q \ S′ with |P (Q′i)| ≥ 3s+ 7(b+ 1) ≥ s+ 2(b+ 1). If Qi contains one vertex v of
S∗, since v has degree at most 3 and |P (Qi)| ≥ 3s+ b, Qi \ {v} has at least one component Q′i
with |P (Q′i)| ≥ s+ 2(b+ 1). Thus we have constructed a set S′ and a collection of components
Q′1, . . . , Q

′
|S|/2 of T \ S′ of size at least s + 2(b + 1). By Lemma 1 every Q′i has at most two

neighbors in T .
We make a collection Z as follows. For every i ≤ |S|/2 let Zi = P (Q′i) \ P (S′). Since

Q′i has at most two neighbors in T it follows that N [Zi] is a 2(b + 1)-protrusion and that
|Zi| ≥ s + 2(b + 1) − 2(b + 1) = s. We have already shown that |Q′i| ≤ 20s so |Zi| ≤ 20s as
well. Hence Z is in fact a (s, 6s, 2(b + 1))-protrusion cover of G. It remains to lower bound
|Z|. We have that |Z| = |S|/2. Furthermore we have that S, together with the connected
components of T \ S cover T . Since every bag has size at most (b + 1) ≤ s, T \ S has at most
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2|S| + 1 ≤ 3|S| connected components and for every component Q of T \ S, |P (Q)| ≤ 20s we
have that |S|(b+ 1) + 3|S| · 20s ≥ n. Since s ≥ b+ 1 this implies that |S| ≥ n

122s .

Lemma 11. If G has an (α, β)-protrusion decomposition, then for every s > β, G has a
(s, 6s, 3(β + 1))-protrusion cover of size at least n

122s − α.

Proof. Let R0, . . . Rt be an (α, β)-protrusion decomposition of G. At most α vertices are in R0,
and at most α · s vertices are in sets Ri for i ≥ 1 such that |Ri| < s. For each i ≥ 1 such that
|Ri| ≥ s we apply Lemma 10 and obtain a (s, 6s, 2(β + 1))-protrusion cover Zi in G[Ri]. We
let Z be the union of all the Zi’s constructed in this manner. For every Z ∈ Zi, NG[Ri][Zi] is
a 2(β + 1)-protrusion in G[Ri]. However Z might have neighbors also in R0. The number of
neighbors of Z in R0 is at most β and hence N [Z] is a 3(β+1)-protrusion in G. We conclude that
Z is a (s, 6s, 3(β + 1))-protrusion cover in G. The size of Z is at least n−α−α·s

122s ≥ n
122s − α.

The Fast Protrusion Replacer Theorems We are now ready to prove our main results on
Fast Protrusion Replacement.

Theorem 7 (Randomized Fast Protrusion Replacer Theorem). Let Π be a problem that has a
protrusion replacer that replaces r protrusions of size at least r′, and let s and β be constants
such that r ≥ 3(β + 1) and s ≥ 2r · r′. Given an instance (G, k) as input, the RFPR will run in
time O(n+m) and produce an equivalent instance (G′, k′) with |V (G′)| ≤ |V (G)| and k′ ≤ k. If
additionally G has a (α, β)-protrusion decomposition such that α ≤ n

244s , then with probability

at least 1− e−
n

2000s(r+1)6s we have |V (G)| − |V (G′)| ≥ n
1000(r+1)6s

.

Proof. The first part of the statement follows directly from Lemma 6. If G has a (α, β)-
protrusion decomposition such that α ≤ n

244s , then by Lemma 11, G has a (s, 6s, 3(β + 1))-
protrusion cover X of size at least n

122s − α ≥
n

244s . Plugging X into Lemma 7 yields that with

probability at least 1 − e−
|X|

8s(r+1)6s ≥ 1 − e−
n

2000s(r+1)6s we have |V (G)| − |V (G′)| ≥ |X |
4(r+1)6s

≥
n

1000(r+1)6s
.

Theorem 8 (Deterministic Fast Protrusion Replacer Theorem). Let Π be a problem that has
a protrusion replacer that replaces r protrusions of size at least r′, and let s and β be constants
such that r ≥ 3(β + 1) and s ≥ 2r · r′. Given an instance (G, k) as input, the DFPR will run in
time O(220s · (n + m) log n) and produce an equivalent instance (G′, k′) with |V (G′)| ≤ |V (G)|
and k′ ≤ k. If additionally G has a (α, β)-protrusion decomposition such that α ≤ n

244s then we
have |V (G)| − |V (G′)| ≥ n

244·220s logn
.

Proof. The first part of the statement follows directly from Lemma 8. If G has a (α, β)-
protrusion decomposition such that α ≤ n

244s , then by Lemma 11, G has a (s, 6s, 3(β + 1))-
protrusion cover X of size at least n

122s − α ≥ n
244s . Plugging X into Lemma 9 yields that

|V (G)| − |V (G′)| ≥ |X |
220s logn

≥ n
244·220s logn

.

It can be shown that Theorem 7 could replace the simple protrusion reduction algorithm of
Lemma 2 and make thus Algorithm 2 run in linear time. However we are first going to refine
Algorithm 2 even further so that it becomes simultaneously single exponential parameterized
algorithm and an approximation algorithm for F-Deletion for all connected F ∈ F . To that
end we develop the notion of lossless protrusion replacement.
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5 Lossless Protrusion Replacement

In this section we develop the notion of lossless protrusion replacement. We consider CMSO
vertex subset problems. In a min-CMSO vertex subset problem, Π, we are given a graph G
as input. The objective is to find a set S ⊆ V (G) minimizing |S| such that such that the
CMSO-expressible predicate PΠ(G,S) is satisfied. Similarly, in a max-CMSO vertex subset
problem, Π, we are given a graph G as input. The objective is to find a set S ⊆ V (G)
maximizing |S| such that the CMSO-expressible predicate PΠ(G,S) is satisfied. Given a min-
CMSO (max-CMSO) vertex subset problem, Π and an input graph G to Π, by OPT (G)
we denote the size of the smallest (largest) set S such that the CMSO-expressible predicate
PΠ(G,S) is satisfied. Next we define the notion of a lossless protrusion replacer. A lossless
protrusion replacer is essentially a protrusion replacer that reduces protrusions in such a way
that any feasible solution to the reduced instance can be changed into a feasible solution of the
original instance without changing the gap between the feasible solution and the optimum. The
notion of lossless protrusion replacement is central in our approximation algorithms.

Definition 3 (Lossless Protrusion Replacer). A lossless protrusion replacer for min-CMSO
(max-CMSO) vertex subset problem Π is a family of algorithms, with one algorithm for every
constant r. The r’th algorithm has the following specifications. There exists a constant r′ (which
depends on r) such that given an instance G and an r-protrusion X in G of size at least r′, the
algorithm runs in time O(|X|) and outputs an instance G′ with the following properties.

• G′ is obtained from G by replacing X by a r-boundaried graph X ′ with less than r′ vertices
and thus |V (G′)| < |V (G)|.

• OPT (G′) ≤ OPT (G).

• There is an algorithm that runs in O(|X|) time and given a feasible solution S′ to G′

outputs a set X∗ ⊆ X such that S = (S′ \ X ′) ∪ X∗ is a feasible solution to G and
|S| ≤ |S′|+OPT (G)−OPT (G′).

We would like to give sufficient conditions for a problem to have a lossless protrusion replacer.
An ideal setting would be that every graph optimization problem that has finite integer index
when parameterized by the size of the optimal solution has a lossless protrusion replacaer.
Unfortunately such a theorem seems to be out of reach, and it is quite possible that this is not
true. However, in [17] a sufficient condition is given for a CMSO vertex subset problem to have
finite integer index. This condition is called strong monotonicity and it is proved that every
CMSO vertex subset problem that is stronly monotone has finite integer index and hence has a
protrusion replacer. It turns out that strong monotonicity is a sufficient condition for a CMSO
vertex subset problem to not only have a protrusion replacer, but also a lossless protrusion
replacer. We now prove this fact.

Let Π be a min-CMSO problem and Ft be the set of pairs (G,S) where G is a t-boundaried
graph and S ⊆ V (G). For a t-boundaried graph G we define the function ζG : Ft → N ∪ {∞}
as follows. For a pair (G′, S′) ∈ Ft, if there is no set S ⊆ V (G) such that PΠ(G ⊕ G′, S ∪ S′)
holds, then ζG((G′, S′)) =∞. Otherwise ζG((G′, S′)) is the size of the smallest S ⊆ V (G) such
that PΠ(G⊕G′, S ∪ S′) holds. If Π is a max-CMSO problem then we define ζG((G′, S′)) to be
the size of the largest S ⊆ V (G) such that PΠ(G⊕G′, S∪S′) holds. If there is no set S ⊆ V (G)
such that PΠ(G⊕G′, S ∪ S′) holds, then ζG((G′, S′)) =∞.

Definition 3 ([17]). A min-CMSO problem Π is said to be strongly monotone if there exists a
function f : N→ N such that the following condition is satisfied. For every t-boundaried graph
G, there is a subset S ⊆ V (G) such that for every (G′, S′) ∈ Ft such that ζG((G′, S′)) is finite,
PΠ(G⊕G′, S ∪ S′) holds and |S| ≤ ζG((G′, S′)) + f(t).
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Definition 4 ([17]). A max-CMSO problem Π is said to be strongly monotone if there exists a
function f : N→ N such that the following condition is satisfied. For every t-boundaried graph
G, there is a subset S ⊆ V (G) such that for every (G′, S′) ∈ Ft such that ζG((G′, S′)) is finite,
PΠ(G⊕G′, S ∪ S′) holds and |S| ≥ ζG((G′, S′))− f(t).

Theorem 9. Every min-CMSO or max-CMSO vertex subset problem Π, that is also strongly
monotone admits a lossless protrusion replacer.

Before proving the theorem we will need an auxiliary lemma.

Lemma 12. If a graph G contains an r-protrusion X where |X| > c > 0, then it also contains
a (2r + 1)-protrusion Y where c < |Y | ≤ 2c. Moreover, given X we can compute Y and a tree
decomposition of Y of width ≤ 2r in O(|X|) time.

Proof. Let (T,X ) be a nice tree decomposition of G[X] rooted at a node r. We can compute
(T,X ) from G[X] in time O(|X|) using Bodlaender’s algorithm [11]. If |X| ≤ 2c, we are done.
Given a vertex x of the rooted tree T , we denote by DT (x) the subset of V (T ) containing x
and all its descendants in T . Let BT be the set containing each vertex x of T with the property
that the vertices appearing in

⋃
y∈DT (x)Xy (i.e. the vertices of the nodes corresponding to x

and its descendants) are more than c. As |X| ≥ 2c, BT is a non-empty set. We choose b to
be a member of BT whose descendants do not belong in BT ′ . This choice of b ensures that
c < |

⋃
y∈D(b)Xy| ≤ 2c. We define Y = ∂GX ∪

⋃
y∈DT (b)Xy. As G[Y ] is an induced subgraph

of X it follows that tw(G[Y ]) ≤ r. Furthermore ∂G(Y ) ⊆ ∂GX ∪Xb, therefore Y is a (2r + 1)-
protrusion of G.

Proof of Theorem 9. We prove the theorem for min-CMSO problems; the proof for max-
CMSO problems is similar. Let Π be a monotone min-CMSO problem. We define a partial
order ≤Π on pairs (G,S) such that G is a t-boundaried graph and S ⊆ V (G). We say that
(G,S) ≤Π (G′, S′) if for every (G3, S3), PΠ(G ⊕ G3, S ∪ S3) → PΠ(G′ ⊕ G3, S

′ ∪ S3). We say
that that (G,S) ≡Π (G′, S′) if (G,S) ≤Π (G′, S′) and (G′, S′) ≤Π (G,S). Clearly ≡Π is an
equivalence relation and since PΠ is a CMSO-expressible predicate it follows from [21, 29] that
for every fixed t, ≡Π has finitely many equivalence classes. Thus there exists finite set S of pairs
(GR, SR) such that for every (G,S) there is a (GR, SR) ∈ S such that (G,S) ≡ (GR, SR). We
say that a pair (G,S) is bad if there is no (G′, S′) such that PΠ(G ⊕ G′, S ∪ S′) holds. A pair
that is not bad is called useful. Let U be the set of all useful pairs in S.

For a graph G and pair (GR, SR) ∈ U define γG(GR, SR) to be the size of the smallest
set S ⊆ V (G) such that (GR, SR) ≤Π (G,S). If no such set S exists, γG(GR, SR) = ∞. We
now prove that for any G, the maximum finite value of γG and the minimum (finite) value of
γG differs by at most f(t). Let S ⊆ V (G) be the set such for every (G′, S′) ∈ Ft such that
ζG((G′, S′)) is finite, PΠ(G⊕G′, S ∪ S′) holds and |S| ≤ ζG((G′, S′)) + f(t). Consider a useful
pair (GR, SR) ∈ U such that γG(GR, SR) is finite. Then there exists a set S′ ⊆ V (G) of size
γG(GR, SR) such that (GR, SR) ≤Π (G,S′). Since (G,S′) ≤Π (G,S) and S′ is the smallest set
such that (GR, SR) ≤Π (G,S′) it follows that |S′| ≤ |S|. On the other hand since (GR, SR) is
useful there exists some (G∗, S∗) such that PΠ(GR⊕G∗, SR∪S∗) holds. Then PΠ(G⊕G∗, S′∪S∗)
holds as well and hence ζG((G∗, S∗)) ≤ |S′|. Since ζG((G∗, S∗)) is finite it follows that |S| ≤
ζG((G∗, S∗)) + f(t) ≤ |S′| + f(t). But this means that |S| − f(t) ≤ γG(GR, SR) ≤ |S| and so
the finite values of γG differ by at least f(t). By the pigeon hole principle there exists a finite
collection R of t-boundaried graphs such that for any t-boundaried G there is a GR ∈ R and a
constant cR ≥ 0 such that for every useful pair (G′, S′), γG(G′, S′) = γGR(G′, S′) + cR. We call
R a set of representatives for (Π, t).

For every integer c we define a relation ≺c on t-boundaried graphs. We say that G1 ≺c G2

if for every useful pair (G,S), γG1(G,S) + c = γG2(G,S). Observe that if G1 ≺c G2 then
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G2 ≺−c G1. Also, we have just shown that for every G there is a GR ∈ R and constant cR ≥ 0
such that GR ≺cR G. We now show that if G ≺c G′ then for any t-boundaried graph G3 and
feasible solution S to Π on G⊕G3, there is a set X∗ ⊆ V (G′) depending only on S ∩ V (G) and
G such that S′ = X∗ ∪ S \ V (G) is also a feasible solution to Π on G′ ⊕G3 and |S′| ≤ |S|+ c.

Let G ≺c G′ and consider a t-boundaried G3 and a feasible solution S of Π on G⊕G3. Let
SG = S ∩ V (G) and S3 = S \ SG. (G,SG) is a useful pair and so there is a pair (GR, SR) ∈ U
such that (GR, SR) ≡Π (G,SG). Thus γG(GR, SR) ≤ |SG| and hence γG′(GR, SR) ≤ |SG| + c.
There is a set X∗ ⊆ V (G′) such that (GR, SR) ≤Π (G′, X∗) and |X∗| ≤ |SG| + c. The set
X∗ depends solely on (GR, SR) which depends solely on S ∩ V (G) and G. Furthermore, since
(GR, SR) ≤Π (G′, X∗) we have that S′ = X∗∪S3 is also also a feasible solution to Π on G′⊕G3

and |S′| ≤ |SG|+ c+ |S3| ≤ |S|+ c.
We can now describe the lossless protrusion replacer for the problem Π. For parameter r

consider the set R of representatives for (Π, 2(r + 1)). Let r′ be the size of the largest graph
in R plus one. The lossless protrusion replacer for Π will reduce r-protrusions of size at least
r′. Given an r-protrusion X of size at least r′ we find a 2(r + 1) protrusion Y ⊆ X such that
r′ ≤ |Y | ≤ 2r′. This can be done in O(|X|) time by Lemma 12. Consider now the 2(r + 1)-
boundaried graph GδYY \δ(Y ). There exists a 2(r + 1)-boundaried graph GR ∈ R and constant
cR ≥ 0 such that GR ≺cR GδYY \δ(Y ). Furthermore since |Y | ≥ r′ we have that |V (GR)| < |Y |.
The protrusion replacer outputs the graph G′ obtained by replacing Y by GR in G.

For every subset SR ⊆ V (GR) such that the pair (GR, SR) is useful, the protrusion replacer
stores a subset SY ⊂ Y such that (GR, SR) ≤Π (GδYY \δ(Y ), SY ). Since GR ≺cR GδYY \δ(Y ) there
is such a set SY of size at most |SR| + c. Now, for any feasible solution S in G′ let SR =
S ∪ V (GR). The pair (GR, SR) is useful and so the lossless protrusion replacer outputs the
set X∗ = SY which it has stored for SR. Now S′ = SY ∪ (S \ V (GR)) is a feasible solution
to G because (GR, SR) ≤Π (GδYY \δ(Y ), SY ). Furthermore, since |SY | ≤ |SR| + c we have that
|S′| ≤ |SY | + |S \ V (GR)| ≤ |SR| + c + |S \ V (GR)| ≤ |S| + c. Thus it remains to prove that
c ≤ OPT (G)−OPT (G′), or in other words that OPT (G′) ≤ OPT (G)− c.

HoweverGδYY \δ(Y ) ≺−cR GR, and hence for an optimal solution S ofG = GδYY \δ(Y )⊕G
δ
V (G)\Y (Y )

there is a feasible solution S′ in GR ⊕GδV (G)\Y (Y ) of size at most |S| − cR. Hence OPT (G′) ≤
OPT (G)− c and the theorem follows.

Inserting a lossless protrusion replacer instead of a normal protrusion replacer into the Fast
Protrusion Replacer algorithms directly yields the following theorems.

Theorem 10. Let Π be a minimization (maximization) problem that has a lossless protrusion
replacer that replaces r protrusions of size at least r′, and let s and β be constants such that r ≥
3(β+1) and s ≥ 2r ·r′. Given an instance G as input, the Randomized Fast Protrusion Replacer
will run in time O(n+m) and produce an instance G′ with |V (G′)| ≤ |V (G)|. Given any feasible
solution S′ to G′ a feasible solution S of G of size at most (at least) |S′|−OPT (G′)+OPT (G) can
be computed in O(n+m) time. If additionally G has a (α, β)-protrusion decomposition such that
α ≤ n

244s , then with probability at least 1− e−
n

2000s(r+1)6s we have |V (G)| − |V (G′)| ≥ n
1000(r+1)6s

.

Theorem 11. Let Π be a minimization (maximization) problem that has a lossless protrusion
replacer that replaces r protrusions of size at least r′, and let s and β be constants such that
r ≥ 3(β + 1) and s ≥ 2r · r′. Given an instance G as input, the Deterministic Fast Protrusion
Replacer will run in time O(220s · (n + m) log n) and produce an instance G′ with |V (G′)| ≤
|V (G)|. Given any feasible solution S′ to G′ a feasible solution S of G of size at most (at
least) |S′| − OPT (G′) + OPT (G) can be computed in O(n + m) time. If additionally G has a
(α, β)-protrusion decomposition such that α ≤ n

244s then we have |V (G)|−|V (G′)| ≥ n
244·220s logn

.
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6 Approximation and Fast Parameterized Algorithm for p-F-
Deletion

We are now ready to give the linear time, lossless variant of Lemma 2. Throughout this section
OPT (G) is the size of the smallest F-deletion set of G, for the set F currently under consid-
eration. First we give an auxiliary lemma analyzing an execution of the Lossless RFPR on a
graph with an F-deletion set S.

Lemma 13. For every connected F ∈ F , there exist constants ρ, r, s, c < 1 and γ > 0 such
that if we run the Lossless RFPR with parameters r, s on a graph G which has a F deletion set
S which is not a ρ-cover, then with probability at least 1− e−γn the output instance G′ satisfies
V (G′) ≤ |V (G)|(1− c).

Proof. If G has a F-deletion set S′ which is not an ρ-cover, it also has a inclusion minimal
F-deletion set S which is not an ρ-cover. Such a minimal S contains no isolated vertices and
hence satisfies N [S] ≤ 2

∑
v∈S d(v) ≤ 2ρm.

By Proposition 1, there exists a constant b such that tw(G \ S) ≤ b. By Lemma 5, G has a
(4(b+ 1)|N [S]|, 2(b+ 1))-protrusion decomposition. Set β = 2(b+ 1), r = 3(β + 1) and r′ to be
the smallest integer such that the lossless protrusion replacer will replace r-protrusions of size
at least r′. Set s = 2r · r′. The protrusion decomposition of G is a (4(b+ 1)|N [S]|, β)-protrusion
decomposition. By Theorem 10 there exist constants 0 < c < 1 and 0 < γ such that if we run
the Lossless RFPR on G and 4(b+ 1)|N [S]| ≤ n

244s then with probability at least 1− e−γn, the
output graph G′ satisfies |V (G)| − |V (G′)| ≥ c|V (G)|. We show that there is a constant ρ < 1

3
such that if S is not a ρ-cover, then |N [S]| ≤ n

1000(b+1)s .
Since tw(G \ S) ≤ b we have that G \ S is (b + 1)-degenerate. If S is not a ρ-cover then

m ≤ n(b+ 1) +
∑

v∈S d(v) ≤ n(b+ 1) + 2ρm. Rearranging yields that N [S] ≤ 2ρm ≤ n2ρ(b+1)
1−2ρ ≤

nρ6(b + 1). Choosing ρ = 6000(b + 1)2s yields that |N [S]| ≤ n
1000(b+1)s . Hence, if S is not a

ρ-cover then with probability at least 1 − e−γn the output instance G′ of the Lossless RFPR
satisfies V (G′) ≤ |V (G)|(1− c).

Lemma 14. For every connected F ∈ F there is an algorithm that given a graph G, takes
O(n + m) time and outputs a graph G′ such that V (G′) ≤ V (G) and OPT (G′) ≤ OPT (G).
Given a F-deletion set S′ of G′ the algorithm can compute an F-deletion set S of G of size
|S′| + OPT (G) − OPT (G′) in time O(n + m). Furthermore there exist a constant 0 < ρ < 1
such that with probability at least 1

2 , every F-deletion set S′ of G′ is a ρ-cover of G.

Proof. By Lemma 13 there exist constants ρ, r, s, c < 1 and γ > 0 such that if we run the Lossless
RFPR with parameters r, s on a graph G which has a F deletion S which is not a ρ-cover, then
with probability at least 1 − e−γn the output instance G′ satisfies V (G′) ≤ |V (G)|(1 − c). We
set these constants as guaranteed by Lemma 13.

The algorithm sets G1 := G, i = 1 and enters a loop that proceeds as follows. The algorithm
runs the Lossless RFPR on Gi with parameters r and s, let the output of the Lossless RFPR
be Gi+1. If |V (Gi+1)| > |V (Gi)|(1 − c) the algorithm halts and outputs Gi. Otherwise, the
algorithm increments i and returns to the beginning of the loop.

The total time spent by the algorithm is upper bounded by a geometric series, and so the
running time of the algorithm is O(n + m). Similarly, by repeatedly applying Theorem 10 we
can in linear time transform any F-deletion set Si of Gi back into a F-deletion set S of G of size
at most |S′| + OPT (G) − OPT (G′). It remains to prove that when the algorithm terminates,
with probability at least 1

2 we have that every F-deletion set S′ of G′ is an ρ-cover of G.
The algorithm makes t = O(log n) calls to the Lossless RFPR. For i ≤ t+1 let ni = |V (Gi)|.

In call i, by Lemma 13, if Gi has an F-deletion set S which is not a ρ-cover then the probability
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that V (Gi+1) > V (Gi)(1 − c) is at most e−γni . By the union bound the probability that this
occurs at some step i is

∑
i≤t e

−γni . The ni’s are a decreasing geometric series and so for a
sufficiently large (constant) N we have that if nt ≥ N then

∑
i≤t e

−γni ≤ 2e−γnt ≤ 1/2.
Finally, if nt ≤ N then any non-empty set S is a 1

N2 cover, and so if ρ > 1
N2 we can adjust

ρ to 1
N2 . This proves the lemma.

We are now ready to give the algorithm which is the main engine behind both our 2O(k)n
time algorithm and the quadratic approximation algorithm for F-Deletion for connected sets
F ∈ F .

Randomized-F-Deletion(G)
Set G1 := G and i := 1
While (Gi is not F-free) do as follows:

1. Apply Lemma 14 on Gi and obtain a new graph G′i

2. Pick a vertex ui ∈ V (G′i) at random with probability
dG′

i
(u)

2|E(G′i)|
. Set Gi+1 := G′i \ {ui}.

3. Increment i by 1.

Set Si = ∅
For j = i downto 2:

1. Set S′j−1 := Sj ∪ {uj−1}.
2. Apply Lemma 14 on G′j and S′j and obtain a set Sj .

Output S := S1.

Figure 3: Randomized Algorithm for F-Deletion for connected F ∈ F

We say that a round of Algorithm 3 is an iteration of the while-loop. Round x is the iteration
when the value of i is x. The algorithm suceeds in round i if OPT (G′i) = OPT (Gi+1) + 1 and
it fails in round i otherwise. The number of rounds of a run of Algorithm 3 is the maximum
value i takes. We make a series of observations about Algorithm 3. For every i we have that
|V (G′i)| ≤ |V (Gi)| and |V (Gi+1)| < |V (G′i)|. Hence we make the following observation.

Observation 1. Algorithm 3 terminates after at most n rounds.

The next observation follows directly from Lemma 14.

Observation 2. The time taken in each round and each iteration of the for loop is O(n+m).

Next we prove that the algorithm always outputs feasible solutions.

Observation 3. Algorithm 3 outputs an F-deletion set of G.

Proof. Let t be number of rounds. We have that Gt is F-free and so St = ∅ is a F-deletion set
of Gt. If Sj is a F-deletion set of Gj then S′j = Sj ∪ {uj−1} is a F-deletion set of G′j−1. Then,
by Lemma 14, Sj−1 is a F-deletion set of Gj−1. Hence, by downward induction on j, S1 is a
F-deletion set of G1 = G.

Next we upper bound the size of the output solution S.

Lemma 15. Let p be the number of rounds in which Algorithm 3 fails. Then the size of the
output solution S is |S| = OPT (G) + p.
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Proof. For every x, define fx to be the number of rounds i ≥ x such that the algorithm fails
in round i. Let t be the be number of rounds. We prove by downward induction on i that
|Si| = OPT (Gi) + fi. Since |St| = |ft| = |OPT (Gt)| = 0 this clearly holds for t. Consider now
some i < t such that the equation holds for i+ 1.

If the algorithm succeeded in round i we have that |S′i| = |Si+1| + 1, that OPT (G′i) =
OPT (Gi+1)+1 and that fi = fi+1 hence |S′i| = |Si+1|+1 = OPT (Gi+1)+fi+1+1 = OPT (G′i)+
fi. On the other hand if the algorithm fails in round i we have |S′i| = |Si+1|+1, that OPT (G′i) =
OPT (Gi+1) and that fi = fi+1 + 1. Then |S′i| = |Si+1| + 1 = OPT (Gi+1) + fi+1 + 1 =
OPT (G′i) + fi. Hence in both cases we have that |S′i| = OPT (G′i) + fi. By Lemma 14 we have
that |Si| = |S′i|+OPT (Gi)−OPT (G′i) = OPT (Gi) + fi. This concludes the proof.

Now we lower bound the success probability of any round i of Algorithm 3.

Lemma 16. There is a constant p > 0 such that the probability that Algorithm 3 succeeds in
any given round i is at least p.

Proof. By Lemma 14 there is a constant ρ such that with probability 1/2, every F-deletion set
of G′i is a ρ-cover. Let S∗ be an optimal F-deletion set of G′i. If ui ∈ S∗ then S∗ \ ui is an
optimal F-deletion set of G′i \ ui = Gi+1. So if ui ∈ S∗ then the algorithm succeds in round i.
If S∗ is a ρ-cover of G′i then the probability that ui ∈ S∗ is at least ρ. Hence the probability
that every F-deletion set of G′i is a ρ-cover and ui ∈ S∗ is at least p = ρ/2.

In each round Algorithm 3 succeeds probability at least p. In a round i where the algo-
rithm succeeds we have that OPT (Gi+1) < OPT (G). Since the algorithm terminates when
OPT (Gi) = 0 we get the following observation.

Observation 4. There exists a constant p > 0 such that the expected number of rounds of a
run of Algorithm 3 is at most 1

pOPT (G).

Since the number of rounds where Algorithm 3 fails is at most the total number of rounds it
follows form Lemma 15 that the expected size of the output solution |S| is at most OPT (G) +
1
pOPT (G). This proves the following lemma.

Lemma 17. For every connected F ∈ F , Algorithm 3 runs in time O(n + m), expected time
O((n+m)OPT (G)) and outputs an F solution S with E[|S|] = c · OPT (G) for some constant
c.

While Lemma 12 only gives constant factor approximation algorithms for F-Deletion for
connected F ∈ F , we can use this approximation algorithm to make an approximation algorithm
for all F ∈ F .

Theorem 12. For every F ∈ F , F-Deletion has a constant factor approximation running
in time O(nm) and expected time O((n + m)OPT (G)). It outputs a feasible solution S with
expected size c ·OPT (G) for a constant c.

Proof. By Proposition 1, for every F ∈ F there is a constant η such that for any F-deletion set
S of G we have tw(G \ S) ≤ η. Since Treewidth η-Deletion is a F-Deletion problem for
a connected F ′ ∈ F it follows from Lemma 12 has a constant factor approximation with the
desired running time. We run this algorithm and find a set S′ such that tw(G \ S′) ≤ η. We
have that E[|S′|] = O(OPT (G)), where OPT(G) refers to the size of the smallest F-deletion
set in G. Since tw(G \ S′) ≤ η we can solve F-Deletion on G \ S in linear time and find a
set S∗ of size OPT (G \ S′) ≤ OPT (G). We return S = S′ ∪ S∗, S is a F-deletion set of G with
expected size O(OPT (G)).
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Interestingly we can also use Algorithm 3 to give a fast randomized FPT algorithm for
p-F-Deletion.

Theorem 13. For every connected F ∈ F , p-F-Deletion has a randomized O(ckn) time
algorithm. Given a yes instance the algorithm finds a solution and outputs it with probability
1/2. If the algorithm outputs a solution, it is a feasible solution of size at most k.

Proof. We modify Algorithm 3 in the following way; if Gk+1 is not F-free then output “no” and
halt. If the size of the output solution is more than k then output “no” instead. The algorithm
runs for at most k+2 rounds so the total running time is at most O(nk). If it outputs a solution
S then S is an F deletion of size at most k. We prove that if G has an F deletion of size at
most k then the algorithm will output a solution with probability at least 1

ck+2 for a constant
c. Repeating this algorithm O((1/c)k) times and outputting a solution if either iteration does
then proves the theorem.

In each round, the probability that Algorithm 3 succeeds is at least p for some constant
p. Thus the probability that Algorithm 3 succeeds in all its rounds before it terminates (after
at most k + 2 rounds) is at least pk+2. If the algorithm succeeds in all rounds and outputs a
solution then this solution is optimal and hence has size at most k if (G, k) is a yes instance.
Finally, if the algorithm succeeds for k + 2 rounds then OPT (G1) > OPT (G2) . . . OPT (Gk+2)
and so OPT (G1) ≥ k + 1. Hence, if (G, k) is a “yes” instance and the Algorithm 3 succeeds
in all of its rounds then it will output a solution of size at most k before terminating. This
concludes the proof.

7 Parameterized Algorithms for p-F-Deletion

We now give a deterministic O(ckn log2 n) time FPT Algorithm for p-F-Deletion for all con-
nected F ∈ F .

Lemma 18. For every connected F ∈ F , there exist constants ρ, r, s, c < 1 such that if we
run the DFPR with parameters r, s on an instance (G, k) such that G has a F deletion S which
is not a ρ-cover, then the output instance (G′, k′) satisfies |V (G)| − |V (G′)| ≥ c|V (G)|

log |V (G)| .

Proof. If G has a F-deletion set S′ which is not an ρ-cover, it also has a inclusion minimal
F-deletion set S which is not an ρ-cover. Such a minimal S contains no isolated vertices and
hence satisfies N [S] ≤ 2

∑
v∈S d(v) ≤ 2ρm.

By Proposition 1, there exists a constant b such that tw(G \ S) ≤ b. By Lemma 5, G has a
(4(b+1)|N [S]|, 2(b+1))-protrusion decomposition. Set β = 2(b+1), r = 3(β+1) and r′ to be the
smallest integer such that the protrusion replacer will replace r-protrusions of size at least r′. Set
s = 2r ·r′. The protrusion decomposition of G is a (4(b+1)|N [S]|, β)-protrusion decomposition.
By Theorem 8 there exist constants 0 < c < 1 and 0 < γ such that if we run the DRFPR on
G and 4(b+ 1)|N [S]| ≤ n

244s then the output graph G′ satisfies |V (G)| − |V (G′)| ≥ c|V (G)|
logn . We

show that there is a constant ρ < 1
3 such that if S is not a ρ-cover, then |N [S]| ≤ n

1000(b+1)s .
Since tw(G \ S) ≤ b we have that G \ S is (b + 1)-degenerate. If S is not a ρ-cover then

m ≤ n(b+ 1) +
∑

v∈S d(v) ≤ n(b+ 1) + 2ρm. Rearranging yields that N [S] ≤ 2ρm ≤ n2ρ(b+1)
1−2ρ ≤

nρ6(b + 1). Choosing ρ = 6000(b + 1)2s yields that |N [S]| ≤ n
1000(b+1)s . Hence, if S is not a

ρ-cover then the output instance G′ of the RFPR satisfies |V (G)| − |V (G′)| ≥ c|V (G)|
logn .

Lemma 19. For every connected F ∈ F there is an algorithm that given an instance (G, k),
takes O((n+m) log2 n) time and outputs an equivalent instance graph (G′, k′) such that V (G′) ≤
V (G) and OPT (G′) ≤ OPT (G). Furthermore there exist a constant 0 < ρ < 1 such that every
F-deletion set S′ of G′ is a ρ-cover of G.
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Proof. By Lemma 18 there exist constants ρ, r, s, c < 1 such that if we run the DFPR with
parameters r, s on an instance (G, k) such that G has a F deletion S which is not a ρ-cover,
then the output instance (G′, k′) satisfies |V (G)| − |V (G′)| ≥ c|V (G)|

log |V (G)| . We set these constanst
as guaranteed by Lemma 18.

The algorithm sets (G1, k1) := (G, k), i = 1 and enters a loop that proceeds as follows. The
algorithm runs the DFPR on (Gi, ki) with parameters r and s, let the output of the DFPR be
(Gi+1, ki+1). If |V (Gi)| − |V (Gi+1)| < c|V (G)|

log |V (G)| the algorithm halts and outputs Gi. Otherwise,
the algorithm increments i and returns to the beginning of the loop.

One iteration of the loop takes time O((|V (Gi)|+ |E(Gi)|) log |V (Gi)|). Furthermore, every
log n consecutive iterations of the loop reduces the number of vertices by a linear fraction. Hence
the total running time us bounded by O(n log2 n). Let (G′, k′) be the instance we output. By
Lemma 18 we have that every F-deletion set S′ of G′ is an ρ-cover of G.

We will say that an instance (G, k) is irreducible if running the algorithm of Lemma 19 when
run on (G, k) just outputs (G, k) unchanged. Observe that if we run the algorithm of Lemma 19
when run on an instance (G, k), the instance (G′, k′) output by the algorithm is irreducible. A
direct consequence of Lemma 19 is that in an irreducible instance (G, k) every F-deletion set S
in G is a ρ-cover.

We now give a deterministic algorithm for p-F-Deletion. for connected F ∈ F . The
intuition behind this algorithm is that vertices of high degree seem more useful for a solution
than the vertices of low degree. Towards this we introduce the notion of buckets. We partition
the vertex set of G into sets that we refer to as buckets, in the following fashion. For every j ≥ 1
define

Bj =
{
v ∈ V (G)

∣∣∣ n
2j
< d(v) ≤ n

2j−1

}
.

We set constants η > 0 and d > 0 such that 4d+3η
2 < ρ. For the presentation of the algorithm

we fix a F-deletion set set X of size at most k. Next we define a notion of big and good for
buckets.

Definition 4. A bucket Bi is said to be big if |Bi| > iη and it is said to be good if |Bi ∩X| ≥
d|Bi|.

The next lemma says that if (G, k) is a irreducible yes instance to p-F-Deletion then it
has a bucket that is both big and good simulatenouly.

Lemma 20. For any connected F ∈ F , let (G, k) be a irreducible yes instance to p-F-
Deletion. Then G has a bucket that is both big and good.

Proof. Since (G, k) a irreducible yes instance to p-F-Deletion every optimal F-hitting set X
is a ρ-cover for G, that is,

∑
v∈V (G) d(v) ≤ ρ

∑
v∈X d(v). For a contradiction, assume that G

does not have a bucket that is both big and good.

∑
v∈X

d(v) =
logn∑
i=1

∑
v∈Bi∩X

d(v)

=
∑

{i|Biis not good}

∑
v∈Bi∩X

d(v) +
∑

{i|Biis not big}

∑
v∈Bi∩X

d(v)

≤ d · 4m+
∑

{i|Biis not big}
iη ·

( n
2i
)

≤ d · 4m+ 3ηn = 2m
4d+ 3η

2
< 2mρ

Which contradicts that X is a ρ-cover.

25



Algorithm-FPT-Det(G,k)

Step 1: Check whether G is F-free, if yes then return(true). Else if k ≤ 0 and G is not
F-free return that G does not have a k-sized F-hitting set.

Step 2: Apply Lemma 19 on (G, k) and obtain an equivalent irreducible instance (G∗, k∗).
Step 3: Let Bj , j ∈ {a, b, . . . , `}, be the good buckets for G∗. For every good bucket Bj ,

and for every subset S ⊆ Bj of size at least d|Bj | check whether
Algorithm-FPT-Det(G∗ \ {S},k − |S|) returns true. If any of these calls return
true then return(true) else return(false).

Figure 4: A 2O(k)n log2 n deterministic FPT algorithm for p-F-Deletion.

Theorem 14. Let F ∈ F be a connected obstruction set. There exists a determintistic algo-
rithm for p-F-Deletion running in time O(ckhn log2 n) on a n vertex graph. The constant ch
only depends on F .

Proof. The deterministic algorithm for p-F-Deletion is described in details in Figure 4. Given
a graph G, the algorithm essentially applies Lemma 19 to obtain G∗ and then recursively tries to
compute the solution to the problem by branching on all large subsets of all the good buckets.
The correctness follows directly from Lemma 20. Next we analyze the running time of the
algorithm. Suppose for the sake of analysis that all buckets are big, and let ai be the size of
bucket i. Then we have that

T (k) ≤
logn∑
i=1

(
ai
k

)
T (k − dai)

T (k) ≤
logn∑
i=1

2aiT (k − dai)

Assuming T (k) = xk, substitute recursively to get:

T (k) ≤
logn∑
i=1

2aix(k−dai)

T (k) ≤ xk
logn∑
i=1

(
2
xd

)ai
If 2

xd
< 1 then each term of the sum is maximized when the exponent is as small as possible.

We will choose x (based on d) such that 2
xd
< 1 holds. Since ai ≥ ηi for any big bucket we have

that

T (k) ≤ xk
logn∑
i=1

(
2
xd

)ηi
The sum above is a geometric series and converges to a value that is at most 1 for x = c, for a
suitably small choice of c depending only on d and η, which depended only on F . This bounds
the running time by ck. Further, if not all buckets are big the sum above should only be done
over the big buckets, yielding the same result.
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8 Kernelization for p-F-Deletion

In this section we give polynomial kernel for p-F-Deletion problem. We start with some
combinatorial results on folios and Well Quasi Ordering (WQO) of t-Boundaried Graphs and
then move to the kernelization steps of our algorithm.

8.1 Minors, Folios and Well Quasi Ordering of t-Boundaried Graphs

Minors and folios of t-boundaried graphs. We can define a minor relation for t-boundaried
graphs just as for normal graphs. We say that a t-boundaried graph H is a minor of a t-
boundaried graph G if (a t-boundaried graph isomorphic to) H can be obtained from G by
deleting vertices or edges or contracting edges, but never contracting edges with both endpoints
being boundary vertices. Here, when we contract an edge between a boundary vertex u and a
non-boundary vertex v the resulting vertex is a boundary vertex with label `G(u). If H is a
minor of G we say that H ≤m G.

For a t-boundaried graph G the folio of G is the set folio(G) = {H : H ≤m G}. The δ-folio
of G is the set δ-folio(G) = {H : |V (H)| ≤ δ and H ≤m G}. The following lemma states that
the δ-folio of a sum can be determined by examining the δ-folios of its terms.

Lemma 21. Let G1 and G2 be t-boundaried graphs and G = G1 ⊕δ G2. Then H ≤m G if and
only if there exist H1 ≤m G1 and H2 ≤m G2 such that H1 ⊕δ H2 = H.

Proof. For the reverse direction, observe that H ≤m H1⊕H2 ≤m G1⊕G2 = G and so H ≤m G.
It remains to prove the forward direction, so suppose H is a minor of G. Consider a model
(P1, P2, . . . P|V (H)|) of H in G. Notice that each Pi intersects δ(G) at most once. Furthermore,
every Pi that does not intersect δ(G) lies either entirely in G1 or entirely in G2. Now, consider
the collection M1 of sets Pi ∩ V (G1) such that Pi ∩ V (G1) 6= ∅ and the collection M2 of sets
Pi∩V (G2) such that Pi∩V (G2) 6= ∅. Each set inM1 andM2 induces a connected subgraph in
G1 and G2 respectively. All sets inM1 are pairwise disjoint, and the same holds forM2. Thus
M1 andM2 are models of graphs H1 ≤m G1 and H2 ≤m G2 respecitvely. Finally H1⊕δH2 = H
because for every i, j there is an edge between G[Pi] and G[Pj ] if and only if there is an edge
between G[Pi ∩ V (G1)] and G[Pj ∩ V (G1)] or between G[Pi ∩ V (G2)] and G[Pj ∩ V (G2)].

Lemma 22. Let G′ be a t-boudaried graph, S ⊆ δ(G′) and G = forget(G′, S). Let H be a
t-boundaried graph. Then H ≤m G if and only if there is a t-boundaried H ′ ≤M G′ such that
H ≤m forget(H ′, S) and |V (H ′)| ≤ |V (H)|+ |S|.

Proof. For the reverse direction observe that since H ′ ≤M G′ and G = forget(G′, S) we have
forget(H ′, S) ≤m forget(G′, S) = G. In the forward direction, consider a model (P1, P2, . . . P|V (H)|)
of H in G. Start from G′ and delete all vertices that are not in a set Pi. Then, as long as there is
an edge with both endpoints in the same set Pi and at least one endpoint is not boundary vertex
of G′ contract this edge. Modify the set Pi to contain the vertex resulting from the contraction,
rather than the two endpoints. The resulting t-boundaried graph H ′ is a minor of G′. Let
P ′i denote the vertices corresponding to Pi in H ′. Note that each P ′i is a single non-boundary
vertex and some subset of the boundary vertices. Since H ≤m G, notice that no P ′i contains
two boundary vertices from δ(G). Note that δ(G) = δ(G′)\S, so when we consider the set P ′i in
forget(H ′, S), it contains at most one boundary vertex. Thus, at this point, (P1, P2, . . . P|V (H)|)
is a model of H in H ′ so H ≤m H ′.

We now show that if |V (H ′)| > |V (H)|+ |S| then some Pi contains at least two vertices such
that at least one of them is not a border vertex. Suppose not, then every Pi contains at most
one vertex that is not a border vertex of G′. No Pi contains vertices from δ(G′) \ (δ(H) ∪ S)
since (P1, . . . , P|V (H)|) is a minor model of H in G and we can’t contract edges between border
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Figure 5: The above is a schematic for Lemma 22. The dotted lines represent minor operations,
and the solid arrows represent discardig labels. The lemma shows that a minor H obtained
after discarding some set S of labels from G′ can be realized by a minor H ′ of G′, whose size is
no more than |H|+ |S|. The graph H can be obtained as a minor of forget(H ′, S).

vertices of G. Then every Pi that contains at least one vertex from δ(G′) is a subset of δ(H)∪S.
At most |V (H)| − |δ(H)| Vi’s contain no vertex from δ(H) ⊆ δ(G′) and each of these Pi’s has
size 1. So the total size of the Pi’s is at most |δ(H)| + |S| + |V (H)| − |δ(H)| = |V (H)| + |S|.
But every vertex in H ′ is in some Pi, contradicting |V (H ′)| > |V (H)|+ |S|.

Suppose now that |V (H ′)| > |V (H)| + |S| and consider a Pi that contains at least two
vertices such that at least one of them is not a border vertex. Since H ′[Pi] is connected there
is at least one edge in H ′[Pi] that has at least one endpoint which is not on the border of
G′. This edge should have been contracted, contradicting the construction of H ′ this proves
|V (H ′)| ≤ |V (H)|+ |S|, concluding the proof.

The following lemma follows directly from Lemmata 21 and 22. It states that if a graph G
has a separator of size t, then we can determine whether G contains H as a minor by examining
the (t+ |V (H)|)-folios of the two sides of the separator.

Lemma 23. Let G1 and G2 be t-boundaried graphs and G = G1 ⊕G2. A graph H is a minor
of G if and only if there exist H1 ≤m G1 and H2 ≤m G2 such that |V (H1)| ≤ |V (H)| + t,
|V (H2)| ≤ |V (H)|+ t and H ≤m H1 ⊕H2.

Proof. The reverse direction follows since H ≤m H1 ⊕H2 ≤m G1 ⊕ G2 = G. For the forward
direction let G∗ = G1 ⊕δ G2. We have that G = forget(G∗, δ(G∗)) and so by Lemma 22
there exists an H∗ ≤m G∗ such that |V (H∗)| ≤ |V (H)| + t and H ≤m forget(H∗, δ(H∗)).
By Lemma 21 there exist H1 ≤m G1 and H2 ≤m G2 such that H1 ⊕δ H2 = H∗. But then
|V (H1)| ≤ |V (H∗)| ≤ |V (H)|+ t and identically |V (H2)| ≤ |V (H∗)| ≤ |V (H)|+ t. Finally, since
H1⊕δ H2 = H∗ we have H1⊕H2 = forget(H∗, δ(H∗)) and since H ≤m forget(H∗, δ(H∗)) the
proof follows.

Well-quasi-ordering t-boundaried graphs. A partial order of a (possibly infinite) set S
is a relation ≤ on S that is reflexive, transitive and antisymmetric. Two elements a and b of S
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Figure 6: A schematic representation of Lemma 23.

are comparable with respect to ≤ if a ≤ b or b ≤ a and incomparable otherwise. A subset S′ of
S is an antichain (of ≤) if no two distinct elements of S′ are comparable. A partial order ≤ is a
well-quasi-order of S if every antichain S′ ⊂ S is finite. The famous graph minor theorem states
that graphs are well-quasi-ordered by the minor relation [74]. We will need a weaker version of
this theorem translated to t-boundaried graphs.

Lemma 24. For every t and w the set of t-boundaried graphs with treewidth at most w is
well-quasi-ordered.

Proof. We prove the lemma by giving an injection f from the set of t-boundaried graphs of
treewidth at most w to graphs such that for any two uncomparable t-boundaried graphs H
and G of treewidth at most w, f(H) and f(G) are uncomparable as well. Hence an infinite
antichain of t-boundaried graphs of treewidth at most w would yield an infinite antichain of
graphs, contradicting the graph minor theorem.

For a t-boundaried graph G, let L(G) denote the set of labels used by the boundary vertices
of G, that is, L(G) := {l(v) | v ∈ δ(G)}. We begin by noticing that it suffices to show the
injection f from the set of t-boundaried graphs G for which L(G) = X for some arbitrary but
fixed set X ⊆ [t]. This is because there are only finitely many subsets of [t], and therefore any
infinite antichain of t-boundaried graphs of treewidth at most w contains an infinite antichain
of t-boundaried graphs whose boundary sets use the same set of labels.

Let G be a t-boundaried graph. The graph f(G) is obtained from G by adding some cliques
to the vertices of δ(G). In particular, let v ∈ δ(G) and let l(v) = lv. For every v ∈ δ(G), in
f(G) we introduce a clique Cv on w + lv + 1 vertices and make v adjacent to all vertices in Cv.
We use G∗ to denote f(G).

Recall that X is an arbitrary but fixed subset of [t]. Let H and G be two t-boundaried
graphs of treewidth at most w such that X is the set of labels used by the boundary vertices of
H and G. We claim that if H∗ ≤m G∗, then H ≤m G.
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Figure 7: A representation of the function f . The grey rectangles represent cliques.

Let H∗ ≤m G∗. Let (P1, . . . , PV (H∗))) be a model of H∗ in G∗. We abuse notation and use
Pv to denote the component of G∗ that the vertex v ∈ H∗ is mapped to by the model under
consideration. Now, let u ∈ δ(H) with label lu. Let ug be the vertex in δ(G) that has label lu.
Since H is a subgraph of H∗, u ∈ H∗, and similarly, ug ∈ G∗. Let C[u] and Cg[u] denote the
vertices of the clique attached to the vertices u and ug in H∗ and G∗ (respectively). Further,
let BG denote the set δ(G) in G∗, let VG denote the vertices of G \B in G∗, and let CG denote
the set of all vertices that participate in the cliques introduced in G∗ (by construction).

We first show that for every vertex z in C[u], Pz contains some vertex of Cg[u]. We prove this
by reverse induction on the set of labels X used in G. Let r denote |X|, and assume, without
loss of generality, that the labels used are from [r]. The base case is that lu = r. Consider some
z ∈ C[u], and suppose, for the sake of contradiction, that Pz ∩ Cg[u] = ∅. Note that Pz must
contain a vertex whose neighborhood in G∗ contains a clique on at least r+w+ 1 vertices. The
only such vertices in G∗ are Cg[u]∪{ug}. Given our assumption, this implies that ug ∈ Pz. But
now consider Pu, which must also contain a vertex whose neighborhood in G∗ contains a clique
on at least r+w+ 1 vertices, and whose degree is at least r+w+ 2 (since there are no isolated
boundary vertices in H). Since ug ∈ Pz, the only remaining candidates for Pu are vertices in
Cg[u], but all such vertices have degree exactly r+w+ 1, and therefore, there is no valid choice
for Pu. This is a contradiction.

The induction hypothesis states that if lu = s+ 1, for all z ∈ C[u], Pz contains some vertex
of Cg[u]. We now prove that when lu = s, for all z ∈ C[u], Pz contains some vertex of Cg[u]. It
is clear that Pz must contain a vertex whose neighborhood in G∗ contains a clique on at least
s+ w + 1 vertices. The vertices which satisfy this property include {Cg[v] ∪ {vg}} for all v for
which lv ≥ s. Notice that all vertices in ∪{v | lv>s}Cg[v] already belong to Pz for some z ∈ C[v].
Since the Pi’s are disjoint, the only remaining candidate vertices for Pz are {vg | lv ≥ s}∪Cg[u].
For reasons similar to the ones described in the proof of the base case, Pz cannot contain the
vertex vg for any v ∈ δ(G). Therefore, Pz must contain some vertex from Cg[u], as desired.
This proves the claim.

We now argue that for any u ∈ δ(H), we have that the corresponding vertex in H∗ is mapped
to a set that contains the boundary vertex with the same label as u in G∗. Formally, we claim
that ug ∈ Pu. It is clear that Pu must contain a vertex whose neighborhood in G∗ has a clique
on at least lu +w+ 1 vertices. Since the treewidth of G is at most w, we have that G∗[VG ∪BG]
does not contain any cliques of size w + 2. Notice also that all the vertices in CG are shown to
belong distinct sets Pz. This follows from the claim above and the fact that the set of labels of
H and G are identical — which implies that the sizes of the corresponding cliques introduced
in H∗ and G∗ are the same. Thus, it is clear that only the vertices from BG have sufficiently
large cliques in their neighborhood. It is easy to see that a reverse induction argument similar
to the one used in the claim above establishes that ug ∈ Pu.

Thus, we have that in any minor model of H∗ in G∗, the clique vertices introduced in H∗ are
mapped to the corresponding clique vertices in G∗, and the vertices of δ(H) in H∗ are mapped
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to the corresponding vertices in δ(G) in G∗. Now we simply consider the minor model of H∗ in
G∗ after disregarding the Pz’s that contain vertices from CG. This is evidently a minor model
of H in G, and therefore, we have that H ≤m G, as desired. This concludes the proof.

8.2 Decomposition into near-Protrusions

In this section we prove that any yes-instance G to F-Deletion has a set D of O(k3) vertices
such that every connected component C of G\D is a near-protrusion. Recall that a r-protrusion
C in a graph G is a vertex set such that |δ(C)| ≤ r and tw(G[C]) ≤ r. The components of G\D
will not necessarily be protrusions, however we will prove that there is a constant r such that if
(G, k) is a yes instance, then for any F-deletion set S of size at most k, C \ S is a r-protrusion
of G \S. The decomposition algorithm starts by finding a constant factor approximation of the
smallest F-deletion set of G with high probability. This is achieved by running the algorithm
given by Theorem 1 n times, so as to boost the probability of success to (1− 1/2n).

By Proposition 1 there exists a constant η such that every F-minor-free graph G has
treewidth at most η. Having computed a c-approximate F-deletion set X we check whether
|X| ≤ c(k + 1), and if not1, then the algorithm concludes that G has no F-deletion set of size
k. We now compute a set Y disjoint from X as follows. Initially Y = ∅. For a pair u and v of
distinct vertices in X, define Gu,v to be (G\ (X ∪Y \u, v))\uv. In other words Gu,v is obtained
from G by removing all vertices in X and Y except for u and v, and removing the edge uv if it
exists. We check using maximum flow whether there exists a pair of distinct vertices u, v ∈ X
such that the number of vertex disjoint paths from u to v in Gu,v is less than η + k + 3, but at
least one. If such a pair exists then by Menger’s theorem there is a set S ⊆ V (G) \ (X ∪ Y ) of
size at most η+ k+ 2 such that there are no paths from u to v in Gu,v. We add the set S to Y .
Observe that |Y | ≤ |X|2 · (η + k + 2) since we add a set of η + k + 2 vertices at most once for
each pair of vertices in X.

Figure 8: This figure demonstrates the construction of Y based on small separating sets for
pairs of vertices in X.

Furthermore, for every connected component C of G \ (X ∪ Y ) it holds that for any two
vertices u and v in N(C) ∩ X there are at least η + k + 3 vertex disjoint paths from u to v.

1The kernelization algorithm only requires to check if |X| ≤ ck, but we choose to use the bound c(k + 1) to
allow for a more general consequence.
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Indeed, if this was not the case then a vertex set separating u and v in Gu,v would have been
added to Y , contradicting the construction of Y .

Figure 9: After the construction of Y , for every component C outside (X ∪ Y ), every pair of
vertices in X in N(C) has a large flow through G \ (X ∪ Y )

We will now construct a set Z ⊇ Y from Y and X as follows (see Figure 10). The graph
G \ X is F-minor-free and so the treewidth of G \ X is at most η. We compute a nice tree-
decomposition (T,B = {B1, B2, . . . , B|V (T )|}) of G \X of width at most η in linear time using
Bodlaender’s algorithm [11]. For each vertex v ∈ Y we put one node t of T such that v ∈ Bt
into the set M ′. Let M be the LCA-closure of M ′. We refer to M as the set of marked nodes.
By Lemma 1 |M | ≤ 2|M ′| ≤ 2|Y |. Set Z =

⋃
t∈M Bt. Thus Y ⊆ Z, |Z| ≤ 2|Y |(η + 1) and Z

and X are disjoint.
We now prove that for any connected component C of G \ (X ∪ Z) only sees a constant

number of vertices in Z. For any connected component C of G \ (X ∪ Z) there is a component
P of T \M such that C ⊆ (

⋃
t∈P Bt) \ Z. By Lemma 1 we have that in T , |N(P )| ≤ 2. But

then N(C) ∩ Z ⊆
⋃
t∈N(P )Bt, and hence |N(C) ∩ Z| ≤ 2(η + 1). We can summarize the above

discussion in the following result.

Lemma 25. There is a randomized polynomial time algorithm that given an instance (G, k) of
F-Deletion, either returns that (G, k) is a no instance, or computes a vertex set X and a set
Z disjoint from X such that

• |X| = O(k) and |Z| = O(k3).

• X is an F-Deletion of G.

• For every connected component C of G \ (X ∪ Z), |N(C) ∩ Z| ≤ 2(η + 1).

• For every connected component C of G \ (X ∪Z), and u, v ∈ N(C)∩X there are at least
k + η + 3 vertex disjoint paths from u to v in G.

If (G, k) is a yes instance, the algorithm outputs (X,Z) with probability (1 − 1/2n), and a no
instance is rejected with probability 1.

In the remainder of the paper the sets X and Z will always refer to the sets X and Z as
guaranteed by Lemma 25. We now observe that the connected components of G \ (X ∪ Z) are
near-protrusions.
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Bags containing vertices from

Figure 10: This is a schematic for the construction of Z based on Y and a tree decomposition
of G \X.

Lemma 26. For any F-Deletion S of G of size at most k+ 1 and any connected component
C of G \ (X ∪ Z), |(N(C) ∩X) \ S| ≤ η + 1.

Proof. Let P = (N(C) ∩X) \ S. Let (T,B) be a tree-decomposition of G \ S of width at most
η. We prove that there is a bag of this tree decomposition that contains P , thereby proving
|P | ≤ η+ 1. Since tree-decompositions enjoy the Helly property, it is sufficient to show that for
every pair of vertices u and v in P there is a bag of the tree-decomposition that contains both
u and v [59]. The proof proceeds by contradiction.

Assume that no bag of T contains both u and v. Observe that for every pair of vertices u
and v in P , there are at least k + η + 3 disjoint paths from u to v in G and hence there are at
least η + 2 disjoint paths from u to v in G \ S. But since no bag of T contains both u and v
then G \ S has a u-v separator of size at most η, contradicting the existence of η + 2 disjoint
paths from u to v.

8.3 Reducing the size of near-Protrusions

We now consider the sets X and Z as guaranteed by Lemma 25, and a single component C of
G\ (X ∪Y ). The aim of this section is to prove that if C is “too large”, then it is “not doing its
job efficiently”. In particular we prove that there exists a constant α depending only on F such
that if |C| ≥ α · kα then there exists an edge e with at least one endpoint in C, an edge e′ with
both endpoints in C, or a vertex v ∈ C such that deleting e, contracting e′ or deleting v does
not change whether G has an F-deletion set of size at most k. Let G′ be the graph obtained
from G by doing this minor operation. If G does have an F-deletion set of size at most k then
G′ does as well, since minor operations can not increase the size of the minimum F-deletion
set . Thus it is sufficient to prove that if G does not have an F-deletion set of size at most k,
then neither does G′. We prove this by showing that for any set S on at most k vertices, if
G \ S contains a copy of a graph H in F as a minor, then one of the following two things must
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Figure 11: This figure shows, for a connected component C in G \ (Z ∪X), the bounds on the
set N(C) in G \ S. The neighborhood in Z is bounded based on the construction of Z. The
fact that the neighborhood in X \ S is bounded relies on the design of C, which ensured large
flows between pairs of vertices in X via G \ (Z ∪X) (see Lemma 25).

happen in G′. Either the treewidth of G′ \ S is more than η, or the model of H in G \ S can be
modified such that the minor operation used to obtain G′ from G does not destroy it. In both
cases this yields a proof that S is not a F-deletion set in G′. The reduction rule we give in this
section is designed so that the plan for the proof of correctness sketched above will go through.

We will focus our attention on a particular component C of G \ (X ∪ Y ). This component
has treewidth at most η, and so we can compute in linear time a nice tree decomposition (T,B)
of C of width at most η. For every vertex v ∈ C let Tv be the subtree of T corresponding to
bags that contain v. We will say that a set P of vertices in C is interesting if there exist a
subtree T ′ of T such that |N(T ′)| ≤ 2, and P = {v ∈ C : Tv ⊆ T ′}. There are at most O(n2)
interesting sets, and all interesting sets can be listed in polynomial time. Every interesting set
P satisfies that |N(P ) \X| ≤ 4(η + 1).

For a vertex set P in V (G) \ (X ∪ Y ), the border collection of P is the collection BP of all
sets B such that B \X ⊆ N(P ) \X and |B ∩X| ≤ η + 1. (See Figure 12.) The signature of a
vertex set P of G \ (X ∪Y ) is a function σP . The domain of σP is the set of pairs (B,Q) where
B ∈ BP while Q is a collection of t-boundaried graphs on at most |B|+ h vertices, and with B
as their boundary. Here h is the maximum number of vertices of a graph in F .

For such a pair (B,Q), σP (B,Q) outputs the size of a minimum cardinality set S ⊂ P ∪B
such that folio(GBC \ S) ∩ Q = ∅. (See Figure 13.) Recall that GBP is the t-boundaried graph
G[P ∪B] with boundary B. The signature of a vertex set P is taken with respect to the graph
G - we will sometimes consider the signature of P with respect to G′, a graph obtained from G
by a single minor operation. For an integer r the r-truncated signature of P is a function σrP
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Figure 12: A representation of a set in the border collection of P . The gray areas show a subset
B that would be an element of BP . It satisfies that outside X, B is contained in N(P ), and the
intersection of B with X is at most η + 1.

with the same domain as σP . The function σrP (B,Q) evaluates to σP (B,Q) if σP (B,Q) ≤ r
and σrP (B,Q) =∞ otherwise.

Figure 13: The signature function. For a boundary set B and a family Q, the signature
function σP considers the graph GBP , that is, the graph with boundary B and P as the internal
set. It returns the size of the smallest subset S of P∪B whose removal makes the graph H-minor
free for all H ∈ Q.

Lemma 27. The signature of an interesting set P can be computed in time O(nO(η)).

Proof. Observe that the border collection BP has size O(kO(η)) = O(nO(η)), since |N(P ) \X| ≤
4(η+ 1). For each choice of B ∈ BP , the size of Q is given by the number of possible collections

of t-boundaried graphs with border B and at most |B|+h vertices, which is at most 22O(|B|+h)2

,
a function of F . Thus we need to show that we can in polynomial time evaluate σ(B,Q) for
any choice of B and Q. This amounts to finding a minimum cardinality set S ⊆ P ∪ B such
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that folio(GBP \S)∩Q = ∅. This problem can be expressed by the following MSO-optimization
problem:

Minimize S ⊆ V (G)[
∧
H∈Q

¬φ(GBP \ S,H, δ(GBP \ S), δ(H))] (2)

Recall that φ is as defined in equation (1) (Section 2.5), has length depending only on h and
|B|. Clearly, the length of this formula depends only on F . Since GBC has treewidth at most
5(η + 1) and MSO-optimization problems can be solved in linear time on graphs of bounded
treewidth [20], the proof follows.

Lemma 28. Let P be an interesting set and let G′ and P ′ be obtained from G and P respectively
by deleting a vertex of P , deleting an edge with at least one endponint in P , or contracting an
edge with both endpoints in P . Suppose the k-truncated signatures σkP of P and σkP ′ of P ′ are
identical, that is σkP (B,Q) = σkP ′(B,Q) for every (B,Q) with B ∈ BP and Q being a family of
t-boundaried graphs of size at most |B|+ h. Then G has a F-deletion set of size k if and only
if G′ does.

Proof. Since G′ is a minor of G it follows that when G has a F-deletion set of size k then G′

does as well. Suppose now that G′ has a F-deletion set S′ of size at most k. G′ was obtained
from G by deleting a vertex v ∈ P or deleting or contracting some edge e with an endpoint
v ∈ P . Now S∗ = S′ ∪ {v} is a F-deletion set of G of size at most k + 1, and so by Lemma 26
|N(C)∩(X \S∗)| ≤ η+1. Recall that C is the component of G\(X∪Y ) that contains P . Hence
|N(P )∩(X \S∗)| ≤ η+1 as well. Since S∗∩X = S′∩X it follows that |N(P ′)∩(X \S′)| ≤ η+1.

Figure 14: A schematic representation of the various subsets involved in the proof of Lemma 28.

Set B = NG′\S′(P ′ \S′) and observe that B ∈ BP . Now define GBP ′\S′ to be the t-boundaried
graph G′[(P ′ \ S′)∪B] with boundary B. Set Q to be the set of all t-boundaried graphs of size
at most (5(η+ 1) + h) that are not minors of GBP ′\S′ . Observe that σ′P ′(B,Q) ≤ |S′ ∩P ′|. Thus
there exists a set SP of size at most |S′ ∩ P ′| such that GBP \ SP excludes every graph Q as a
minor. Set S = (S′ \P ′)∪SP . Observe that since |SP | ≤ |S′ ∩P ′| it follows that |S| ≤ |S′| ≤ k.
We argue that S is a F-deletion set of G.
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Define GBR to be the t-boundaried graph G′ \ (S′ ∪ P ′) with boundary B. Observe that GBR
is also equal to G \ (S ∪ P ) with boundary B. Thus we have

G′ \ S′ = GBR ⊕ (GBP ′ \ S′) G \ S = GBR ⊕ (GBP \ SP ).

Since (5(η + 1) + h)-folio(GBP \ S) ⊆ (5(η + 1) + h)-folioGBP ′\S′ and GBR ⊕ (GBP ′ \ S′) is F-free,
Lemma 23 implies that GBR ⊕ (GBP \ SP ) = G \ S is F-free as well. Hence S is a F-deletion set
of G of size at most k.

Lemmata 27 and 28 naturally lead to the following reduction rule. In particular Lemma 28
guarantees correctness, while Lemma 27 ensures that we can check in polynomial time whether
the rule applies.

Reduction Rule 1. Let P be an interesting set and let G′ and P ′ be obtained from G and
P respectively by deleting a vertex of P , deleting an edge with at least one endponint in P , or
contracting an edge with both endpoints in P . If the k-truncated signatures σkP of P and σkP ′ of
P ′ are identical, that is σkP (B,Q) = σkP ′(B,Q) for every (B,Q), then reduce (G, k) to (G′, k).

We now turn to the analysis of graphs to which Rule 1 can not be applied. Over the rest of
this section we will show the following lemma.

Lemma 29. There exists a constant γ depending only on F such that for any graph G on which
Rule 1 does not apply, every component of G \X ∪ Y has at most γ · kγ vertices.

We say that an interesting vertex set P ⊆ V (G)\(X∪Y ) has a signature gap if the following
holds: for every set B ⊆ BP and collection Q of t-boundaried graphs of size at most |B| + h
whose boundary is a subset of B, either σP (B,Q) ≤ |B| or σP (B,Q) ≥ k+2. We will prove that
any large enough interesting set P contains a large interesting subset P ′ that has a signature
gap. To that end we first prove a preliminary lemma. For a graph H and vertex set P ⊆ C,
define ζP (H) to be the size of the smallest vertex set S ⊆ P such that G[P \ S] excludes H as
a minor.

Lemma 30. There exist constants λ and γ depending only on F such that for any interesting
set P of size at least γkγ there exists an interesting set P ′ ⊆ P of size at least |P |

λ·kλ and for
every graph H of size at most 5(η + 1) + h, either ζP (H) = 0 or ζP (H) ≥ k + 2.

Proof. Consider the nice tree-decomposition (T,B = {Bt : t ∈ V (T )}) of width at most η of
G[C], where C is the component of G \ (X ∪ Z) that contains P . Let Q be the subtree of T
such that P = {v ∈ V (G) : Tv ⊆ Q}. Since P is an interesting set such a subtree Q exists, and
|N(TP )| ≤ 2. Now, set M = N(Q). The set M refers to marked nodes in T . We run and analyze
an algorithm that will modify Q and M . For a Q define P (Q) to be {v ∈ V (G) : Tv ⊆ Q}.
We will maintain the following invariants: NT (Q) = M , |M | ≤ 2 and Q induces a connected
subtree of T . It is easy to verify that initially Q and M satisfy these invariants.

The algorithm proceeds as follows. If there does not exist a graph H on at most 5(η+1)+h
vertices such that 0 < ζP (Q)(H) < k + 2 output P (Q). Otherwise there exists a set S ⊆ P (Q)
of size at most k + 1 such that G[P (Q)] \ S excludes H as a minor. We build the set M ′ by
starting from M and then for each vertex v ∈ S select a node t ∈ Q such that v ∈ Bt and
add it to M ′. Then, set M∗ = LCA-closure(M ′). Let Q′ be the component of Q \M∗ that
maximizes |P (Q′)|. Clearly Q′ is a connected subtree of T and by Lemma 1, |N(Q′)| ≤ 2. The
algorithm changes Q to Q′ and M = N(Q′), maintaining the invariants. Since the size of Q
drops in every iteration the algorithm eventually terminates, and when it terminates it satisfies
that P ′ = P (Q) is an interesting set and that for every graph H of size at most 5(η + 1) + h,
either ζP ′(H) = 0 or ζP ′(H) ≥ k + 2. Thus it remains to show that |P ′| ≥ |P |

λ·kλ .
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For every iteration of the algorithm the set P (Q) shrinks to a subset of itself. Hence if
ζP (Q)(H) = 0 for a graph H at some step it will remain 0 in all future steps. Furthermore the
graph H which had 0 < ζP (Q)(H) < k + 2 before the iteration satisfies ζP (Q)(H) = 0 after.
Thus in every iteration the number of graphs H of size at most 5(η + 1) + h with ζP (H) = 0
increases by at least one. Since the number of graphs on at most 5(η+ 1) +h vertices is at most
2(5(η+1)+h)2 , the algorithm must terminate after this many iterations.

Finally, in every iteration of the algorithm the size of the set M ′ is at most k+ 4 and hence
by Lemma 1 M∗ is at most 2k+ 8. Since every vertex in T has degree at most 3 the number of
components of T [Q \M∗] is at most 6k + 24. Hence

P (Q′) ≥ |P (Q)| − (η + 1)(2k + 8)
6k + 24

.

As long as |P (Q)| ≥ 2(η + 1)(2k + 8) and k ≥ 1 this is lower bounded by |P (Q)|
60k . Hence |P (Q)|

drops at most by a factor 60k in every iteration. Thus there exist constants λ and γ depending
only on F such that for any interesting set P of size at least γ · kγ , the size of P ′ is at least
|P |
λ·kλ .

Lemma 31. There exist constants λ and γ depending only on F such that for any interesting
set P of size at least γkγ there exists an interesting set P ′ ⊆ P of size at least |P |

λ·kλ such that
P ′ has a signature gap.

Proof. Set the constants γ and λ as guaranteed by Lemma 30, and let P ′ ⊆ P be a set of size at
least |P |

λ·kλ as guaranteed by Lemma 30. That is, for every graph H of size at most 5(η+ 1) + h,
either ζP ′(H) = 0 or ζP ′(H) ≥ k + 2. We prove that P ′ has a signature gap.

If there is at least one graph H ∈ Q that has no boundary and ζP ′(H) ≥ k + 2 then
σ(Q, B) ≥ k + 2 since any set S of size less than k + 2 can’t hit all copies of H as a minor
in G[P ′], and hence can’t hit all copies of H as a t-boundaried minor of GBP ′ . On the other
hand if no such graph H exists then every H ∈ Q that has no boundary does not appear in
GBP ′ as a minor because H is not a minor of G[P ′] and a model of H in GBP ′ can not contain
boundary vertices. Furthermore, the set B hits all t-boundaried graphs H that contain at least
one boundary vertex. Hence GBP ′ \B is Q-free and so P ′ has a signature gap.

We now show that if P is an interesting set with a signature gap and some vertex x ∈ X
has too many neighbours in X, then there exists an edge e from x to P such that deleting e
does not affect the k-truncated signature of P . We first observe that we only need care about
preserving the signature value for the pairs (B,Q) such that σP (B,Q) ≤ |B|.

Lemma 32. Let G be a graph and P be an interesting set in G with a signature gap. Let G′ be
obtained from G by deleting an edge e with at least one endpoint in P , contracting an edge e′

with both endpoints in P or deleting a vertex in P . Let χP and χkP be the signature and the k-
truncated signature of P in G′ respectively. If σP (B,Q) = χP (B,Q) whenever σP (B,Q) ≤ |B|,
then σkP (B,Q) = χkP (B,Q) for all (B,Q).

Proof. Cleary σkP (B,Q) ≥ χkP (B,Q) for all (B,Q) so it suffices to show that σP (B,Q) > |B|
implies σkP (B,Q) ≤ χkP (B,Q). If σP (B,Q) > |B| we have that σP (B,Q) ≥ k + 2 since P has a
signature gap. Then σkP (B,Q) =∞ and χP (B,Q) ≥ k+1 so χkP (B,Q) =∞ as well, concluding
the proof.

Now we need a few definitions. For a pair of integers t, β and finite set Q of t-boundaried
graphs, define the class Π(t,β)

Q to be the set of all t-boundaried graphs of treewidth at most t,

such that every graph G ∈ Π(t,β)
Q has a vertex set S of size at most β such that G \ S is Q-free.
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For every choice of t, β and Q the corresponding class G ∈ Π(t,β)
Q is closed under minors, since

taking minors can not increase treewidth nor increase the size of the smallest Q-deletion set
in G. Thus, by Lemma 24 for each such class Π(t,β)

Q there is a finite set F (t,β)
Q such that a

t-boundaried graph G is in Π(t,β)
Q if and only if it is F (t,β)

Q -free.
We also introduce the notion of a vital set in a minor model. Let PH := {P1, . . . , P|V (H)|} be a

minor model of H in G, and let h := |V (H)|. The vital trees of PH are given by {T1, . . . , T|V (H)|},
where Ti ⊆ E(Pi) induces a spanning tree of Pi. Let EH := {ei | 1 ≤ i ≤ |E(H)|} denote a
set of edges in G which witness the adjacencies of H in PH , that is, if (i, j) ∈ E(H), then ei
represents some uv ∈ E(G) such that u ∈ Pi and v ∈ Pj . be The vital edges of PH are defined
as
⋃

1≤i≤|V (H)| Ti ∪ EH . The following observation is easy to make:

Observation 5. Let PH := {P1, . . . , P|V (H)|} be a minimal minor model of H in G, where
h := |V (H)|. Let {T1, . . . , T|V (H)|} be the vital trees of PH , and let EH be the set of vital edges.
Then every Ti has at most h leaves, and no vertex in any Pi is incident to more than h vital
edges.

Proof. We first show that the vital trees of a minimal minor model have at most h leaves.
Suppose not, and let Ti be the vital tree with more than h leaves. This implies that there is at
least one leaf vertex v which is not adjacent to any vertex outside Pi. Note that {P1, . . . , Pi \
{v}, . . . , P|V (H)|} continues to be a minor model of H, since deleting a leaf vertex from a spanning
tree of Pi does not affect the connectivity of Pi and the adjacencies of H are maintained since
v was not adjacent to any vertex outside Pi. This contradicts the assumption that PH was a
minimal minor model of H.

Since Ti has at most h leaves, the degree of the internal vertices of Ti (and hence, Pi) is
bounded by h. A leaf vertex in Pi has one neighbor in Pi and is adjacent at most (h−1) vertices
outside Pi (note that in a minimal minor model, a leaf of Ti is never adjacent to more than one
vertex in Pj , j 6= i). Therefore, every vertex in Pi is adjacent to at most h vital edges.

We are now ready to show that in a irreducible graph a vertex in X can’t have too many
neighbours in an interesting set with a signature gap.

Lemma 33. There exists a constant µ depending only on F such that if x ∈ X has at least
µ · kµ neighbors in an interesting set P that has a signature gap, then there is an edge e from x
to P such that the k-truncated signature σP remains unchanged when e is deleted from G.

Proof. Recall that σP is the signature and σkP is the k-truncated signature of P respectively.
For an edge e let G′ = G \ e and let χP be the signature of P in G′. Similarly, let χkP be the
k-truncated signature of P in G′. By Lemma 32 it is sufficient to find an edge e incident to x
such that σP (B,Q) = χP (B,Q) whenever σP (B,Q) ≤ |B|.

For every pair (B,Q) such that σkP (B,Q) ≤ |B|, set β = σkP (B,Q). We have that GBP ∈
Π(η,β)
Q , but also that GBP /∈ Π(η,β−1)

Q . Hence GBP contains a graph H ∈ F (η,β−1)
Q as a minor.

Mark a vital set of edges of a minimal model of H in GBP . Do this marking for every pair
(B,Q) such that σkP (B,Q) ≤ |B|. The size of any graph H in F (η,β−1)

Q is upper bounded by
a function depending only on F . Thus, for each pair (B,Q), by Observation 5 the number of
edges incident to x that are marked is bounded by a constant depending only on F . The number
of pairs (B,Q) is bounded by O(k5(η+1)) and hence, the exists a constant µ depending only on
F such that if x ∈ X has at least µ · kµ neighbors P , then at least one edge e is left unmarked
by the process above. We claim that σP (B,Q) = χP (B,Q) whenever σP (B,Q) ≤ |B|.

Suppose for contradiction that σP (B,Q) ≤ |B| but σP (B,Q) > χP (B,Q) for some pair
(B,Q). Set β = σkP (B,Q). We have that GBP /∈ Π(η,β−1)

Q . Hence GBP contains a graph H ∈
F (η,β−1)
Q as a minor. Furthermore, all vital edges of a model of H in GBP are marked. Since the

edge e is unmarked H is also a minor of GBP \ e, contradicting that χkP (B,Q) ≤ β − 1.
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Lemma 31 allows us to find a large interesting set P with a signature gap. Lemma 33 shows
that in a graph where Reduction Rule 1 does not apply, every vertex in X has few neighbours
inside P . We now that if P is a large interesting set and X has few neoghbours in P then P
contains a large interesting subset P ′ that has a signature gap and contains no neighbours of
X.

Lemma 34. There exist constants ρ and τ such that for any interesting set P of size at least
ρkρ · (|P ∩N(X)|) there is an interesting set P ′ ⊆ P of size at least |P |

τ ·kτ ·|P∩N(X)| , such that P ′

has a signature gap and P ′ ∩N(X) = ∅.

Proof. Since P is interesting there is a subtree Q of T such that |N(Q)| ≤ 2 and P = {v ∈
C : Tv ⊂ Q}. Initially, set M = N(Q) and then, for each v ∈ N(X) ∩ P we insert a node
in Tv into M . We let M∗ = LCA-closure(M) and let Q∗ be the component of Q \M that
maximizes |{v ∈ C : Tv ⊆ Q∗}|. Set P ∗ = {v ∈ C : Tv ⊆ Q∗}. We have that |M | ≤ |P ∩N(X)|
and by Lemma 1 M∗ ≤ 2|M |. Thus the number of connected components of Q \M is at most
6|P ∩N(X)|. From this is follows that |P ∗| ≥ |P |−(η+1)2|P∩N(X)|

6|P∩N(X)| ≥ |P |
12|P∩N(X)| . Now, P ∗ is an

interesting set, as evidenced by Q∗ and the fact that |N(Q∗)| ≤ 2. Furthermore, P ∗∩N(X) = ∅.
If ρ is chosen appropriately then we can invoke Lemma 31 and obtain an interesting set P ′ ⊆ P
with a signature gap. The size of P ′ is lower bounded by |P |

τ ·kτ ·|P∩N(X)| for a constant τ .

Now we show that Reduction Rule 1 will reduce large enough interesting sets with a signature
gap and no neighbors in X.

Lemma 35. There exists a constant ω depending only on F such that for any interesting set
P such that |P | > ω, P has a signature gap and P ∩ N(X) = ∅, there is an edge e with both
endpoints in P such that deleting or contacting e does not change the k-truncated signature of
P , or a vertex v such that deleting v does not change the k-truncated signature of P .

Proof. We show the existence of a minor operation inside P that produces a graph G′ with the
following properties. Let χP and χkP BE the signature and the k-truncated signature of P in G′

respectively. Then, if σP (B,Q) ≤ |B| then σP (B,Q) = χP (B,Q). By Lemma 32 this implies
that the minor operation in fact preserves the k-truncated signature of P .

For each pair (B,Q) such that σP (B,Q) ≤ |B| ≤ 5(η + 1), let β = σP (B,Q). We have
that GBP contains a boundaried graph HB,Q ∈ F (t,β−1)

Q as a minor. Thus G
N(P )
P contains

HB,Q as a minor as well. Let R be the collection of all graphs HB,Q for pairs (B,Q) such
that σP (B,Q) ≤ |B|. If GN(P )

P contains all graphs in R even after the minor operation, then
σP (B,Q) = χP (B,Q) for all (B,Q) such that σP (B,Q) = χP (B,Q).

Consider the collection S of 5(η + 1) boundaried graphs of treewidth at most η, such that
each graph J ∈ S contains all graphs in R as a minor, but no minor of J contains all graphs in
R as a minor. No two graphs in S are minors of each other and hence by Lemma 24 S is finite.
Let ω be the size of the largest graph in S. Since ω only depends on the values of σP (B,Q), each
value of σP (B,Q) is bounded by 5(η + 1) and the number of choices for (B,Q) is a function of
η only, ω is upper bounded by a function of F . Furthermore, GN(P )

P contains all graphs in R as
a minor, and if |P | > ω, GN(P )

P has a minor that also contains all graphs in R as minors. Thus
there is a minor opreration that ensures that if σP (B,Q) ≤ |B| then σP (B,Q) = χP (B,Q),
proving the lemma.

We are now in position to tie the results of the section together and prove Lemma 29.

Proof of Lemma 29. If |C| ≥ γ · kγ then by Lemma 31 there is an interesting set P of size
γ
λ · k

γ−λ with a signature gap. If some vertex x ∈ X has at least µ · kµ neigbours in P then by
Lemma 33, Rule 1 applies to P . If no vertex x ∈ X has at least µ · kµ neigbours in P then by
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Lemma 34 P has an interesting subset P ′ with a signature gap such that |P ′| ≥ γ
λ·µ·τ ·k

γ−λ−µ−τ

and P ∩ N(X) = ∅. For a sufficiently large choice of γ (still depending only on F), we have
that |P ′| > ω and hence by Lemma 35, Rule 1 applies on P ′.

8.4 Reducing the number of near-Protrusions

If Rule 1 can not be applied but the input graph G is still large, the number of components of
G \X must be large. We now show that if the number of components is too large then we can
remove a vertex from one of them. For a component C, set B ∈ BC and a boundaried graph H
with B as boundary, we say that C realizes (B,H) if H ≤m GBC . We say that a pair (B,H) is
rich if there are at least |X|+ |Z|+ k+ (h+ 3(η+ 1))2 + 2 components. We prove the following
lemma, which naturally leads to a reduction rule.

Lemma 36. Let C be a component of G \ (X ∪ Z) such that every pair (B,H) that C realizes
is rich. Then, for any vertex v ∈ C, G \ v has an F-deletion set of size at most k if and only if
G does.

Proof. If G has a F-deletion set S of size at most k, then S \{v} is a F-deletion set of G, hence
it suffices to show the reverse direction. Assume now that G \ v has an F-deletion set S of size
at most k. We argue that S is in fact a F-deletion set of G as well. Suppose not, then S∩v is an
F-deletion set of G of size at most k+ 1 and hence by Lemma 26, |(N(C)∩X) \S| ≤ η+ 1. Set
B = N(C) \ S and R = V (G) \ (C ∪ S ∪B). We have that |B| ≤ 3(η + 1) (and hence B ∈ BC)
and that G \ S = GBC ⊕ GBR. Since G \ S is not F-free, by Lemma 23 there are boundaried
graphs H1 and H2 on at most h+ 3(η + 1) vertices each such that H ≤m H1 ⊕H2, H1 ≤m GBC
and H2 ≤m GBR.

Suppose that we show the existence of a component C ′ 6= C of G\ (X ∪Z) such that C ′ ⊆ R
such that C ′ ∩ S = ∅, H1 ≤m GBC′ and H2 ≤m (GBR \ C ′). Then Lemma 23 would yield that H
is a minor of GBC′ ⊕ (GBR \C ′) = G \ (S ∪C), contradicting that S ∪ v is an F-deletion set of G.
It remains to find such a component C ′. We prove the lemma assuming the following claim.

Claim 1. Any minimal minor model of H2 in GBR has a non-empty intersection with at most
|X|+ |Z|+ (h+ 3(η + 1))2 components of G \ (X ∪ Z).

Since C realizes (B,H1), we have that (B,H1) is rich and so there are at least |X|+ |Z|+
k + (h+ 3(η + 1))2 + 2 components of G \ (X ∪ Z) that realize (B,H1). Consider any minimal
minor model of H2 in GBR. By Claim 1 there are at least k+ 2 components of G \ (X ∪Z) that
realize (B,H1) and are disjoint from this model of H2. At least two of these are disjoint from
S, and at least one of these two is not C. Let this component be C ′. We have that C ′ 6= C,
C ′ ∩ S = ∅, H1 ≤m GBC′ and H2 ≤m (GBR \ C ′). This completes the proof of the lemma, up to
proving Claim 1.

Proof. Proof of Claim 1. Consider a minimal model (P1, P2, . . . , P`) of H2 in GBR. Here ` =
|V (H2)| ≤ h+ 3(η+ 1). For every i ≤ ` select a spanning tree Ti of G[Pi]. Since (P1, P2, . . . , P`)
is a minimal model, each tree Ti has at most ` leaves. Consider the connected components of
Ti \ (X ∪Z). Each component has at least one edge to X ∪Z and the components that do not
contain leaves have at least two edges to X ∪ Z. Counting the total number of vertices and
edges incident to each component and using that E(Ti) = V (Ti) + 1 yields that the number of
components of Ti\(X∪Z) is at most |V (Ti)∩(X∪Z)|−1+`−1. Since the intersection of Ti with
different components of G \ (X ∪ Z) must be in different components of Ti \ (X ∪ Z) it follows
that the number of components that intersect with Ti is at most |V (Ti) ∩ (X ∪ Z)| − 1 + `− 1
as well. Hence the number of components with non-empty intersection with the model of H2 is
at most

∑
i≤` |V (Ti) ∩ (X ∪ Z)|+ `− 2 ≤ |X ∪ Z|+ `2. Since ` ≤ h+ 3(η + 1) this proves the

claim.
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For each component C of G \ (X ∪ V ) and set B of size at most 3(η + 1) the boundaried
graph GBC has constant treewidth. For every boundaried graph H on at most h + 3(η + 1)
vertices we can encode whether GBC contains H as a minor in monadic second order logic. Thus
for each choice of C, B ∈ BC and H we can test whether C realises a pair (B,H) in linear time.
Since the number of pairs B ∈ BC is bounded by a polynomial and the number of boundaried
graphs on at most h + 3(η + 1) vertices is constant this means we can test in polynimial time
whether there exists a component C of G \ (X ∪Z) such that every pair (B,H) that C realizes
is rich, and find such a component if it does. This, together with Lemma 36 yields the following
reduction rule.

Reduction Rule 2. If there is a component C of G \ (X ∪Z) such that every pair (B,H) that
C realizes is rich, remove an arbitrary vertex v from C.

Lemma 36 shows that Rule 2 is safe, it remains to show that if the number of components
of G \ (X ∪ Y ) is too large, then Rule 2 applies.

Lemma 37. There exists a constant θ depending only on F such that if the number of compo-
nents of G \ (X ∪ Z) is at least θ · kθ then Rule 2 applies.

Proof. If Rule 2 does not apply then every component C can realize at least one pair (B,H)
that is not rich. The number of choices for B is at most |X ∪ Z|3(η+1) while the number of
choices for H is at most 2(3(η+1)+h

2 ). For each choice of (B,H) that is poor, at most |X|+ |Z|+
k + (h + 3(η + 1))2 + 1 components realize that pair. Thus by the pigeon hole principle the
number of components is at most θ · kθ for some constant θ depending only on F .

Lemmata 25, 29 and 37 together imply that every p-F-Deletion problem has a polynomial
kernel. Specifically, Lemma 25 proves that in a reduced graph |X ∪ Z| ≤ O(k3), Lemma 29
shows that the size of each component of G \ (X ∪ Z) is kO(1) while Lemma 37 shows that the
number of components of G \ (X ∪ Z) is kO(1). This proves the following theorem.

Theorem 15. Every p-F-Deletion problem has a randomized polynomial kernel.

We now turn to two interesting consequences of Theorem 15. The first concerns a bound
on the obstructions for the family GF ,k, which contains all yes instances of the p-F-Deletion
problem with parameter k. We first make the following observation:

Observation 6. For a graph G /∈ GF ,k, let H be some graph in the obstruction set of GF ,k, and
let H∗ be a minimal minor model of H in G. Then, H∗ ∈ GF ,k+1.

Proof. Clearly, H∗ /∈ GF ,k. If H∗ /∈ GF ,k+1, then H∗ ∈ GF ,j for some j > k + 1, and this
contradicts the minimality of H∗.

The first step in the kernelization algorithm used the approximation algorithm to reject all
instances where the size of the optimal solution was at least (k + 2). Therefore, by Observa-
tion 6, all minimal minor models of graphs in the obstruction set of GF ,k are present in any
non-trivial reduced instance. The other two reduction rules performed by the kernelization al-
gorithm involve only minor operations, which clearly do not destroy minimal minor models of
the obstruction graphs. Therefore, we have the following corollary.

Corollary 1. When F contains a planar graph, every minimal obstruction for GF ,k is of size
polynomial in k.
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By standard arguments that translate a kernelization algorithm into a FPT algorithm, we
also have the following consequence.

Corollary 2. Every p-F-Deletion problem admits an O(kk) FPT algorithm.

Finally a note about computability; the implementation of the decomposition algorithm and
the two rules is entirely constructive. That is, there is an algorithm that given G, k and F ,
runs in time O(nc) and outputs a reduced instance. Here the constant c depends on F and is

upper bounded by 22h
10

, where h is the size of the largest graph in F . A slightly tighter analysis
reveals that the running time is actually n2 ·kc which of course is still horrendous, but at least it
is quadratic for fixed k. The size of the kernel, however, is not explicit. Several of the constants
that go into the proof of Lemma 29 depend on the size of the largest graph in certain antichains
in a well-quasi-order and thus we dont know what the (constant) exponent bounding the size
of the kernel is. We leave it to future work to make also the size of the kernel explicit.

9 Conclusions and open problems

The techniques of fast protrusion reductions developed for p-F-Deletion have a broader spec-
trum of applications which we mention briefly. By combining results from [50] with fast pro-
trusion reducers, we have that kernelization algorithms on apex-free and H-minor free graphs
for all bidimensional problems from [50] can be implemented in linear time if we use random-
ized protrusion reducer and in time O(n log2 n) when we use deterministic reducer. This gives
randomized linear time linear kernels for a multitude of problems.

In the framework for obtaining EPTAS on H-minor-free graphs in [48], the running time of
approximation algorithms for many problems is f(1/ε) · nO(g(H)), where g is some function of
H only. The only bottleneck for improving polynomial time dependence in [48] is Lemma 4.1,
which gives a constant factor approximation algorithm for Treewidth η-Deletion or η-
Transversal of running time nO(g(H)). Now instead of that algorithm, we can use the algo-
rithm from Theorem 1, which runs in time O(n2). Therefore each EPTAS from [48] runs in time
O(f(1/ε) · n2). For the same reason, PTAS for many problems on unit disc and map graphs
from [49] become EPTAS.

Finally, an interesting direction for further research is to investigate p-F-Deletion when
none of the graphs in F is planar. The most interesting case here is when F = {K5,K3,3}
aka the Vertex Planarization problem. Surprisingly, we are not aware even of a single
case of p-F-Deletion with F containing no planar graph admitting either constant factor
approximation, or polynomial kernelization, or parameterized single-exponential algorithms. It
is tempting to conjecture that the line of tractability is determined by whether F contains a
planar graph or not.
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