
Independent Set in P5-Free Graphs in Polynomial Time

Daniel Lokshtanov∗ Martin Vatshelle∗ Yngve Villanger∗

October 25, 2013

Abstract

The Independent Set problem is NP-hard in general, however polynomial time al-
gorithms exist for the problem on various specific graph classes. Over the last couple of
decades there has been a long sequence of papers exploring the boundary between the NP-
hard and polynomial time solvable cases. In particular the complexity of Independent
Set on P5-free graphs has received significant attention, and there has been a long list of
results showing that the problem becomes polynomial time solvable on sub-classes of P5-free
graphs. In this paper we give the first polynomial time algorithm for Independent Set on
P5-free graphs. Our algorithm also works for the Weighted Independent Set problem.

1 Introduction

An independent set (also known as stable set) in a graph G is a set of pairwise non-adjacent
vertices. In the Independent Set problem we are given as input a graph G on n vertices and
the task is to find the largest independent set in G. In the weighted variant of the problem
each vertex v comes with a non-negative weight wv and the goal is to find the independent
set I in G that maximizes

∑
v∈I wv. The problem has numerous applications, including train

dispatching [22] and data mining [48]. Independent Set is NP-complete, in fact it is one of the
21 problems proved NP-complete by Karp [33] in 1972. On general graphs Independent Set
is hard to approximate within a factor of O(nε) for ε < 1 [4], is not fixed parameter tractable
unless FPT=W[1] [21], and admits no subexponential time algorithm under the Exponential
Time Hypothesis [32, 36]. This motivates the study of Independent Set on restricted graph
classes, and there is a wealth of research on the complexity of Independent Set on graphs
with a structural constraint. For an example the problem becomes polynomial time solvable
on bipartite graphs [17], but remains NP-complete on planar graphs. However, on planar
graphs Independent Set admits polynomial time approximation schemes [35, 5] as well as
subexponential time exact and parameterized algorithms [35].

Considerable effort has gone into classifying the graph classes for which the Independent
Set problem becomes polynomial time solvable, and for which it remains NP-complete. A
seminal result of Grötschel et al. [28] shows that Independent Set can be solved in polynomial
time on perfect graphs. Polynomial time algorithms have also been found for k × K2-free
graphs [6], graphs of bounded clique-width [19], and many others (see [13]). On the other hand
the problem remains NP-complete even on planar graphs of maximum degree 3 [24], unit disc
graphs [16], triangle-free graphs [44] and AT-free graphs [14]. While a complete classification
of the complexity status of Independent Set on all graph classes is out of reach, achieving
such a classification for all classes of graphs excluding a single graph H as an induced subgraph
(we call such graphs H-free) seems like a more feasible goal, in particular if H is connected.
It was noted by Alekseev [1] that Independent Set remains NP-complete on H-free graphs
whenever H is connected, but neither a path nor a subdivision of the claw (K1,3).
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Graphs excluding the path P3 are disjoint unions of cliques and so Independent Set is
trivially solvable in polynomial time on P3-free graphs. The graphs excluding a path P4 on four
vertices are known as cographs, and a linear time algorithm for Independent Set on cographs
was shown by Corneil et al. [18] in 1981. For claw-free graphs, Sbihi [47] and Minty [40] showed
polynomial time algorithms in 1980. There are two graphs H on five vertices for which NP-
completeness of Independent Set on H-free graphs does not follow from Alekseev’s result,
namely the path P5 on five vertices and the fork, which is obtained from the claw K1,3 by
subdividing any one of its edges. For fork-free graphs the complexity status of Independent
Set was open until 2004, when Alekseev [2] gave a polynomial time algorithm. Subsequently,
Lozin and Milanič [37] gave an algorithm for the weighted Independent Set problem on fork-
free graphs. Thus, the only connected five-vertex graph H on which the complexity status of
Independent Set on H-free graphs remained unknown was the P5. In this paper we give the
first polynomial time algorithm for Independent Set on P5-free graphs, resolving an open
problem of [3, 9, 12, 26, 31, 38, 39, 41, 42, 45]. Our algorithm also works for the weighted
version of the problem.

Methodology. The starting point of our algorithm is an algorithm of Fomin and Villanger [23]
to find large induced subgraphs of constant tree-width. To describe this result we need to
introduce some terminology.

A graph H is called chordal if it does not contain any cycle on at least four vertices as an
induced subgraph. For a graph G a chordal supergraph H of G is called a triangulation of
G, and a triangulation H is called a minimal triangulation if no proper subgraph of H is a
triangulation of G. A clique in G is a set C of pairwise adjacent vertices in G, and a clique C
is called a maximal clique if no proper supersets of C are also cliques in G. The tree-width of a
graph G is the minimum over all triangulations H of G of the maximum clique size in H, minus
1. It is easy to see that a graph has tree-width 0 if and only if it is an independent set. A set
Ω of vertices in G is called a potential maximal clique if there exists a minimal triangulation H
of G such that Ω is a maximal clique of H.

For every t ≥ 0, Fomin and Villanger [23] give an algorithm that given as input a graph G
together with a list Π of all the potential maximal cliques of G, finds a largest induced subgraph
of G of treewidth at most t in time polynomial in |V (G)| and |Π|. Since independent sets are
exactly the graphs of treewidth 0 this algorithm may be used to solve the Independent Set
problem. The algorithm works in polynomial time on all graph classes where every graph G
in the class has at most |V (G)|O(1) potential maximal cliques, and we can list them efficiently.
However the graph obtained by taking two cliques of size n/2 and joining them by a perfect
matching is P5-free and has Ω(2n/2) potential maximal cliques. Thus, at the first glance, the
algorithm above seems useless for our purposes.

A closer inspection of the algorithm of Fomin and Villanger reveals that it produces mean-
ingful output even when given as input a graph G together with a not necessarily exhaustive
list Π of potential maximal cliques in G. In fact, the following proposition follows implicitely
from the correctness proof of their algorithm.

Proposition 1 ([23]). There is an algorithm that given as input a vertex weighted graph G
on n vertices and m edges, together with a list Π of potential maximal cliques, outputs in
time O(|Π|n5m) the weight of the maximum weight independent set I such that there exists
a minimal triangulation H of G such that every maximal clique C of H is on the list Π and
satisfies |C ∩ I| ≤ 1.

It turns out that for any maximal independent set I of a graph G there exists some minimal
triangulation H of G such that every maximal clique C of H satisfies |C∩I| ≤ 1 (see Lemma 2).
Thus when Π is an exhaustive list of potential maximal cliques of G, Proposition 1 proves the
main result of Fomin and Villanger [23] for t = 0. When Π is not exhaustive, Proposition 1
guarantees that the algorithm will return the weight of some independent set of G.
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Furthermore, if we are lucky and G contains a maximum weight independent set I such that
there exists a minimal triangulation H of G such that every maximal clique C of H is in Π and
satisfies |C ∩ I| ≤ 1, then the algorithm of Proposition 1 will output the weight of I. Our main
technical contribution is to show that on P5-free graphs, we can always be lucky. Specifically
we will show the following lemma.

Lemma 1. There is an algorithm that given a P5-free graph G outputs in time O(n9m) a family
Π of size at most 3n7, such that for every maximal independent set I of G with |I| ≥ 2 there
exists an I-good minimal triangulation H of G such that ζ(H) ⊆ Π.

Here ζ(H) returns the set of maximal cliques of H and an I-good minimal triangulation H
of G is a minimal triangulation where every vertex v ∈ I has the same neighbors in G and
in H. Any I-good minimal triangulation must satisfy that for every maximal clique C of H,
|C ∩ I| ≤ 1. If some clique C contains two vertices of I then they are adjacent in H but
not in G, contradicting that H is I-good. Hence feeding the output of Lemma 1 directly into
the algorithm of Proposition 1 yields a O(n12m) time algorithm to compute the weight of the
maximum weight independent set, over all independent sets of size at least two. Comparing the
output of this algorithm with the weight of the heaviest vertex and selecting the heaviest of the
two yields the proof of our main theorem.

Theorem 1. There is a O(n12m) time algorithm for Weighted Independent Set on P5-free
graphs.

Organization of the paper. In Section 2 we give all the necessary definitions and state the
known results about minimal triangulations and potential maximal cliques that will be used in
the proof. In Section 3 we give a proof of Lemma 1. Since Proposition 1 is only implicitely
proved by Fomin and Villanger [23], we provide for the sake of completeness a proof of a weaker
variant of this proposition in Section 4. This variant of Proposition 1 is sufficient for an O(n18m)
time algorithm for Weighted Independent Set on P5-free graphs. We conclude with some
closing remarks in Section 5.

2 Preliminaries

In this paper we deal with graphs that are simple, finite and undirected. For a graph G = (V,E)
the integers n and m are used to denote the number of vertices and edges, i.e. |V | = n and
|E| = m. The neighborhood of a vertex v in a graph G is NG(v) = {u ∈ V : uv ∈ E}
and the closed neighborhood of v is NG[v] = N(v) ∪ {v}. For a vertex set W ⊆ V (G) we
similarly define NG[W ] =

⋃
v∈W NG[v] and NG(W ) = NG[W ]\W . To simplify notation we also

define for a pair u, v of vertices NG(u, v) = NG({u, v}) and NG[u, v] = NG[{u, v}] and δG(v) as
{u ∈ NG(v) : uw ∈ E for some w 6∈ NG[v]}. In particular δG(v) are the vertices in NG(v) with
neighbours outside of NG[v].

For any non-empty subset W ⊆ V , the subgraph of G induced by W is denoted by G[W ] and
for ease of notation G \W is used for the induced subgraph G[V \W ]. A clique W of a graph
G is a subset of V such that all the vertices of W are pairwise adjacent, and an independent set
is a vertex set W where all vertices are pairwise non-adjacent. For a graph G, let ζ(G) denote
the family of maximal cliques of G.

A path is a sequence of vertices (w1, w2, . . . , w`) such that wiwi+1 ∈ E for i ∈ [1..`− 1], and
the path is called induced if these are the only edges of G[{w1, w2, . . . , w`}]. If w1w` ∈ E for a
path (w1, w2, . . . , w`) then this path is called a cycle and the cycle is called induced if the path
becomes induced when removing the edge w1w`. Induced paths and cycles are also known as
chordless paths and cycles.

A vertex set S ⊂ V of a graph G = (V,E) is called a separator if there exist vertices u, v in
different connected components of G \ S that belong to the same connected component of G.
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The separator S is called minimal for a pair of vertices u, v if no proper subset of S separates
u and v. A vertex set S of G is called a minimal separator of G if it is minimal for some pair
of vertices in G.

A connected component C of G \S is a full component associated with S if N(C) = S. The
pair (C, S) where C is a full component associated with the minimal separator S is called a
block. The following proposition is an exercise in [27].

Proposition 2 (Folklore). A set S of vertices of G is a minimal a, b-separator if and only if a
and b are in different full components associated with S. In particular, S is a minimal separator
if and only if there are at least two distinct full components associated with S.

For a vertex set Ω ⊆ V (G) let C(Ω) = C1, . . . Ct be the connected components of G \Ω. We
define the set ∆(Ω) to be the family {N(Ci) : i ≤ t}

2.1 Minimal triangulations and chordal graphs

A graph H = (V,E ∪ F ) is called a triangulation of graph G = (V,E) if every cycle of length
at least four in H has an chord, i.e. an edge between two non consecutive vertices of the cycle.
The edges of F , i.e the edges in E(H) \ E(G) are called fill edges. Triangulated graphs are
also called chordal graphs. A triangulation H = (V,E ∪ F ) of a graph G is called minimal if
(V,E ∪ F ′) is not chordal for every set F ′ ⊂ F . Minimal triangulations can be computed in
O(nm) time by a range of algorithms, see [29] for a survey.

It is well known that chordal graphs have at most n maximal cliques and at most n − 1
minimal separators, that all are cliques [20]. Both the minimal separators and the maximal
cliques of a chordal graph can be enumerated in linear time [8].

The potential maximal cliques of a graph G are defined to be the set of maximal cliques
over all minimal triangulations of the graph G. We denote by Ω(G) the set of all potential
maximal cliques in G. If Ω is a potential maximal clique of G then ∆(Ω) will return all minimal
separators of G that are subsets of Ω (see [10]).

The following result about the structure of potential maximal cliques is due to Bouchitté
and Todinca.

Proposition 3 ([10]). Let Ω ⊆ V be a set of vertices of the graph G. Then Ω is a potential
maximal clique of G if and only if:

1. G \Ω has no full component associated to Ω, i.e. for every S ∈ ∆(Ω) we have S ⊂ Ω, and

2. the graph on the vertex set Ω obtained from G[Ω] by completing each S ∈ ∆(Ω) into a
clique, is a complete graph. In other words, every pair of non-adjacent vertices of Ω is in
some S ∈ ∆(Ω).

Moreover, if Ω is a potential maximal clique, then ∆(Ω) is the set of minimal separators of G
contained in Ω.

A direct consequence is the following.

Proposition 4 ([10]). There is an algorithm that, given a graph G = (V,E) and a set of vertices
Ω ⊆ V , verifies if Ω is a potential maximal clique of G in time O(nm).

The following proposition provides a useful tool for manipulating minimal triangulations.

Proposition 5 ([10, 34]). Let X be either a potential maximal clique or a minimal separator
of G, and let GX be the graph obtained from G by completing X into a clique. Then a graph H
obtained from GX by adding a set of fill edges F is a minimal triangulation of G if and only if
F =

⋃
C∈C(X) FC , where FC is the set of fill edges in a minimal triangulation of GX [N [C]].
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An immediate consequence of Proposition 5 is that a minimal separator or potential maximal
clique that already is a clique G remains a minimal separator or potential maximal clique in
every minimal triangulation of the graph. Furthermore any minimal triangulation of the graph
G can be obtained by combining minimal triangulations of G[N [C]] for each C ∈ C(X). Both
the minimal separators and the full components associated with them can be mapped back to
minimal separators and full components of G.

Proposition 6 ([34, 43]). Let H be a minimal triangulation of G. Then every minimal separator
in H is a minimal separator in G.

Proposition 7 ([34, 43]). Let H be a minimal triangulation of G. Then every full component C
associated with a minimal separator S in H is also a full component associated with the minimal
separator S in G.

A tree decomposition of a graph G is a pair (T, χ) consisting of a tree T and a function
χ : V (T ) → 2V (G) satisfying the following properties. For every uv ∈ E(G), {u, v} ⊆ χ(v) for
some v ∈ V (T ); and for every vertex v ∈ V (G) the set {u ∈ V (T ) : v ∈ χ(u)} is non-empty
and induces a connected subtree of T . The elements of the range {χ(v) : v ∈ V (T )} of χ are
called bags of T . In a rooted tree-decomposition (T, χ) the tree T is rooted, and the root vertex
of T is denoted by r(T ). Tree decompositions are strongly related to chordal graphs due to the
following proposition.

Proposition 8 ([15, 25, 49]). A graph G is chordal if and only if there exists a tree decomposition
(T, χ) of G such that every bag is a maximal clique in G.

Such a tree decomposition is referred to as a clique tree of the chordal graph G. It is well
known that a clique tree of a chordal graph on n vertices and m edges can be constructed in
O(n+m) time [8]. We also need the following result relating edges of a clique tree of a chordal
graph and its minimal separators.

Proposition 9 ([15, 30]). Let (T, χ) be a clique tree of a chordal graph G. Then S is a minimal
separator of G if and only if S = χ(u) ∩ χ(v) for some edge uv ∈ E(T ).

3 Enumerating potential maximal cliques

For an independent set I we will say that a triangulation H of G is I-good if every vertex v in
I satisfies NG[v] = NH [v]. In other words a triangulation is I-good if no vertex in I is incident
to a fill edge.

Lemma 2. For every graph G and independent set I there exists an I-good minimal triangula-
tion H.

Proof. Consider the graph Ĥ obtained from G by turning V (G) \ I into a clique. The graph Ĥ
is a split graph, since its vertex set may be partitioned into an independent set (I) and a clique
(V (G)\ I). Every split graph is chordal, and so Ĥ is an I-good triangulation of G. There exists
a minimal triangulation H such that G ⊆ H ⊆ Ĥ, since Ĥ is I-good, so is H.

In the remainder of the section, unless explicitely stated otherwise, let G be a P5 free graph,
I be an independent set in G. The aim of this section is to design a polynomial time algorithm
that given G outputs a family Π of vertex sets of G such that |Π| is polynomial in n and there
exists some I-good minimal triangulation H of G such that ζ(H) ⊆ Π. We build Π in two steps,
specifically Π = Π1 ∪ Π2 where Π1 and Π2 are designed to handle different kinds of maximal
cliques Ω ∈ ζ(H). We start by defining Π1.
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Definition 1. For every pair u, v ∈ V (G) such that uv /∈ E(G) define the graph Guv as the
graph obtained from G by making δG(u) and δG(v) into cliques, and let Huv be a {u,v}-good
minimal triangulation of Guv. Define the family Π1 as follows.

Π1 =
⋃

u,v∈V (G),
uv /∈E(G)

ζ (Huv [NG[u, v]])

Observation 1. |Π1| ≤ n3 and Π1 can be computed from G in time O(n6).

Proof. The size bound follows from the fact that there are less than n2 choices for u and v,
and for each choice Huv has at most n maximal cliques [20]. For each choice of u and v we
can construct Guv in time O(n2) and a {u, v}-good triangulation H ′uv obtained from Guv by
making all vertices of V (Guv) \ {u, v} into a clique. Now a minimal triangulation Huv of Guv
such that Huv ⊆ H ′uv can be computed in time O(n4) by an algorithm of Blair et al. [7]. Since
H ′uv is {u, v}-good, so is Huv.

Lemma 3. For every I-good triangulation H of G and v ∈ I, H[δG(v)] is a clique.

Proof. Suppose for contradiction that H[δG(v)] is not a clique and assume that two vertices
u,w ∈ δG(v) are non-adjacent in H. Since u,w ∈ δG(v), u has a neighbor u′ (in G) outside
NG[u]. Similarly w has a neighbor w′ (in G) outside NG[u]. Let Cu be the connected component
of H \ δG(v) that contains u′ and Cw be the connected component of H \ δG(v) that contains
w′. Note that u ∈ NH(Cu) and w ∈ NH(Cw). If w ∈ NH(Cu) then H is not chordal, since an
induced cycle of length at least 4 can be obtained by going from u to v to w and then back to
u through Cu. Thus we have w /∈ NH(Cu). An identical argment yields u /∈ NH(Cw). But then
Cu and Cw are distinct connected components of H \ δG(v) and hence u′, u, v, w,w′ induces a
P5 in G, yielding the desired contradiction.

Lemma 4. Let H be an I-good triangulation of G, u, v ∈ I and C be a connected component
of G \NG[u, v] Then H[NG(C)] is a clique.

Proof. Suppose for contradiction that H[NG(C)] is not a clique and let u′ ∈ NG(C), v′ ∈ NG(C)
such that u′v′ /∈ E(H). Since H is I-good and every vertex in NG(C) has a neighbor in C we
have that NG(C) ⊆ δG(u)∪δG(v). Lemma 3 yields that H[δG(u)] and H[δG(v)] are both cliques.
Hence one of u′ and v′ must be in δG(u) \ δG(v) and the other in δG(v) \ δG(u). Without loss
of generality u′ ∈ δG(u) \ δG(v) and v′ ∈ δG(v) \ δG(u). Let P be a shortest path in G starting
in u′, ending in v′ and having all internal vertices in C. Such a path exists and has at least
one internal vertex, since u′v′ /∈ E(G). But then u, u′, P, v′, v is an induced path on at least 5
vertices in G.

Lemma 4 combined with well-known facts about clique separators and minimal triangula-
tions yields the following corollaries.

Corollary 1. Let H be an I-good minimal triangulation of G, u, v ∈ I and C be a connected
component of G \ NG[u, v]. Then NH(C) = NG(C) and H[NG[C]] is a minimal triangulation
of Guv[NG[C]].

Proof. By Lemma 4 NG(C) is a clique in any I-good triangulation H of G, and hence H is
an I-good minimal triangulation of Guv. The vertex set NG(C) separates C from V \N [C] in
the graph Guv and by Proposition 5 no fill edges of H can go between different components of
Guv \NG(C). Furthermore, by Proposition 5 any minimal triangulation of Guv can be obtained
by taking the union of minimal triangulations of Guv[N [C ′]] for each connected component C ′

of G \NG(C).
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Corollary 2. Let H be an I-good minimal triangulation of G, u, v ∈ I, C1, . . . Ct be the con-
nected components of G \N [u, v] and Ω be a maximal clique of H. Then Ω is a maximal clique
of H[NG[u, v]] or a maximal clique of H[NG[Ci]] for some i ≤ t.

Proof. By Corollary 1 there are no edges in H between vertices of C and V \NG[C]. As there
are no edges between these two vertex sets there is also no maximal clique containing vertices
of both C and V \NG[C].

Corollary 3. Huv[NG[u, v]] is a minimal triangulation of Guv[NG[u, v]].

Proof. By Corollary 1 we have that for every connected component C of G\NG[u, v], a minimal
triangulation Huv of Guv is composed of a minimal triangulation of Guv[NG[C]] and a minimal
triangulation of Guv[NG[V \ C]]. Repeating this argument for each connected component C of
V (G) \NG[u, v] until Guv[NG[u, v]] remains proves the claim.

Lemma 5. Let Π be a family of subsets of V (G) such that Π1 ⊆ Π and let H be an I-good
minimal triangulation of G that minimizes |ζ(H) \ Π|. Let u, v ∈ I and Ω ∈ ζ(H) such that
Ω ⊆ NG[u, v]. Then Ω ∈ Π.

Proof. Suppose for contradiction that Ω /∈ Π. We make a new graph H ′ as follows: Start with
G and for every fill edge xy of H such that x /∈ NG[u, v], add xy to E(H ′). For every fill edge
xy of Huv such that {x, y} ⊆ NG[u, v] add xy to H ′. In other words,

H ′ = (V (G), E(Huv[NG[u, v]]) ∪ {xy ∈ E(H) : x /∈ NG[u, v]}) .

We show that H ′ is an I-good minimal triangulation of G. Let C1, . . . Ct be the connected
components of G \NG[u, v]. We first argue that H ′ is chordal.

Suppose for contradiction that H ′ has a chordless cycle Q of length at least 4. If Q∩Ci 6= ∅
for some i ≤ t there are two cases; either Q ⊆ NG[Ci] or not. However Q ⊆ NG[Ci] gives
a contradiction, since Lemma 4 applied to Huv implies that H ′[NG(Ci)] is a clique, but then
H ′[NG[Ci]] = H[NG[Ci]] and H is chordal. Thus Q \NG[Ci] 6= ∅. By Corollary 1 we have that
NH′(Ci) = NH(Ci) = NG(Ci) and hence NG(Ci) separates Ci from V (H ′)\(Ci∪NG(Ci)) in H ′.
Since Q is a cycle with non-empty intersection both with Ci and with V (H ′) \ (Ci ∪NG(Ci)) it
follows that Q∩NG(Ci) contains two vertices x and y that are not consecutive on the cycle. But
H ′[NG(Ci)] = H[NG(Ci)] is a clique by Lemma 4 and so x and y are adjacent, contradicting that
Q is a chordless cycle in H ′. We conclude that Q ∩ Ci = ∅ for every i. But then Q ⊆ NG[u, v]
while H ′[NG[u, v]] = Huv[NG[u, v]], contradicting that Huv is chordal.

Next we argue that H ′ is I-good. Every fill edge e of H ′ is either a fill edge of H or a fill
edge if Huv[NG[u, v]]. No fill edges of H are incident to I. If e is a fill edge of Huv[NG[u, v]]
then e has both endpoints in NG[u, v]], and I ∩NG[u, v] = {u, v}. Since Huv is {u, v}-good, e
is neither incident to u nor to v, hence H ′ is I-good.

Finally we argue that H ′ is a minimal triangulation of G. To that end we use the result
of Rose et al. [46] that states that a triangulation Ĥ of G is a minimal triangulation if and
only if Ĥ \ e is not chordal for every e ∈ (E(Ĥ) \ E(G)). Suppose for contradiction that
H ′ \ xy is chordal for some edge xy ∈ E(H ′) \ E(G). If H ′ \ xy is not a supergraph of Guv
this contradicts the statement of Lemma 3 that every I-good triangulation of G makes δG(u)
and δG(v) into cliques. If there exists an i ≤ t such that {x, y} ⊆ NG[Ci], then observe
that H ′[NG[Ci]] \ xy = H[NG[Ci]] \ xy. Since H ′[NG[Ci]] \ xy is a supergraph of Guv[NG[Ci]]
this implies that H[NG[Ci]] \ xy is a chordal supergraph of Guv[NG[Ci]], contradicting the
conclusion of Corollary 1 that H[NG[Ci]] is a minimal triangulation of Guv[NG[Ci]]. Thus
{x, y} ⊆ NG[u, v]. But then H ′[NG[u, v]] \ xy = Huv[NG[u, v]] \ xy is a chordal supergraph
of Guv[NG[x, y]] contradicting the conclusion of Corollary 3 that Huv[NG[u, v]] is a minimal
triangulation of Guv[NG[x, y]]. Hence H ′ is an I-good minimal triangulation of G.
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By Corollary 2 every maximal clique Ω′ ofH ′ is a maximal clique ofH ′[NG[u, v]] or a maximal
clique of H ′[NG[Ci]]. In the case that Ω′ is a maximal clique of H ′[NG[u, v]] = Huv[NG[u, v]],
we have Ω′ ∈ Π1. Consider now the case that Ω′ is a maximal clique of H ′[NG[Ci]] for some
i but not a maximal clique of H ′[NG[u, v]]. In this case Ω′ contains at least one vertex of Ci.
Further, by Lemma 4 H ′[NG[Ci]] = H[NG[Ci]] and hence Ω′ is a maximal clique of H. This
implies that every maximal clique Ω′ of H ′ that is not a maximal clique of H is in Π. Further,
Ω is a maximal clique of H, Ω /∈ Π. Since Ω ⊆ NG[u, v] and every maximal clique of H ′ which
is a subset of NG[u, v] is in Π, Ω is not a maximal clique of H ′. Hence (ζ(H ′) \ Π) \ ζ(H) = ∅,
while (ζ(H) \Π) \ ζ(H ′) 6= ∅, implying |ζ(H) \Π| > |ζ(H ′) \Π| and contradicting the choice of
H.

Armed with Lemma 5, the next natural goal is to find a polynomial size family Π2 that
will contain every maximal clique Ω of an I-good minimal triangulation H such that Ω is not a
subset of NG[u, v] for any choice of u, v ∈ I. We will compute such a set Π2 in an indirect way.
We will first define a polynomial size family ∆2 of vertex sets of G such that any Ω that is not
a subset of NG[u, v] for any choice of u, v ∈ I satisfies ∆(Ω) ⊆ ∆2. We then show the following
result.

Lemma 6. There is an algorithm that given as input a P5-free graph G and family ∆ of vertex
sets in G, outputs in time O(|∆|n6m) the family

{Ω ∈ Ω(G) : ∆(Ω) ⊆ ∆}.

Further, the size of the family output by the algorithm is at most O(2|∆|n4).

The proof of Lemma 6 is postponed to Section 3.1. We will then define Π2 = {Ω ∈
Ω(G) : ∆(Ω) ⊆ ∆2}. Thus we may compute Π2 from ∆2 in polynomial time using Lemma 6.
We start by defining ∆2.

Definition 2. Let ∆2 be a set of vertex sets such that NG(Ĉu) ∈ ∆2 for each ordered triple
(u, v, w) of vertices where:

• {u, v, w} is an independent set in G,

• Cw is the connected component of G \NG[u, v] containing w, and

• Ĉu is the connected component of G \NG[Cw] containing u.

Observation 2. There is an algorithm that given G outputs ∆2 in time O(n4m). Furthermore,
|∆2| ≤ n3.

Proof. |∆2| ≤ n3 follows from the fact that each set in ∆2 is uniquely defined by the three
vertices u, v and w. The algorithm to compute ∆2 goes over all possible choices for u, v and
w, computes Cw using a BFS from w in O(n+m) time, then computes Ĉu by a BFS from u in
O(n+m) time.

We remark that the running time of the algorithm computing ∆2 can be improved, however
this does not affect the running time of our final algorithm for Independent Set on P5-free
graphs.

We aim to zero in on the maximal cliques of I-good minimal triangulations that cannot
be covered by the neighborhood of two I-vertices. We prove a few simple properties of such
maximal cliques.

Lemma 7. Let I be a maximal independent set of G with |I| ≥ 2, H be an I-good minimal
triangulation of G and Ω ∈ ζ(H) be such that there is no u, v ∈ I with Ω ⊆ NG[u, v] then

1. Ω ∩ I = ∅,
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2. Every component C of G \ Ω contains a vertex of I,

3. No set S ∈ ∆(Ω) contains all other sets in ∆(Ω).

Proof. To see that Ω ∩ I = ∅, observe that Ω is a clique in H and hence if u ∈ I ∩ Ω it follows
that Ω ⊆ NH [u]. But H is I-good and hence NH [u] = NG[u]. Let v be an arbitrary vertex of
I \ {u}, then Ω ⊆ NG[u, v], a contradiction.

If some component C of G \ Ω is disjoint from I, let u be an arbitrary vertex of C. Since
Ω ∩ I = ∅, the set I ∪ {u} is independent in G, contradicting that I is a maximal independent
set of G.

Suppose for contradiction that there exists an S ∈ ∆(Ω) such that for every S′ ∈ ∆(Ω),
S′ ⊆ S. By Proposition 3 Ω\S 6= ∅. Let u ∈ Ω\S, since Ω∩I = ∅ the set I∪{u} is independent
in G, contradicting that I is a maximal independent set of G.

Lemma 8. A graph G is P5-free if and only for every pair u, v of non-adjacent vertices and
every minimal u, v-separator S, we have that S ⊆ NG(u, v).

Proof. For the forward direction, assume that G is P5-free, let u, v be non-adjacent vertices in
G and S be a minimal u, v-separator. Assume for a contradiction that S is not a subset of
NG(u, v), hence there is a node w ∈ S which is neither adjacent to u nor to v. Let Cu and Cv
be the connected components of G \ S containing u and v respectively. Since S is a minimal
separator w has neighbors in both Cu and Cv, and hence both G[Cu ∪ {w}] and G[Cv ∪ {w}]
are connected. Let Pu be a shortest path from u to w in G[Cu∪{w}] and Pv be a shortest path
from v to w in G[Cv ∪ {w}]. Both Pu and Pv have at least 3 vertices (including w) since neiter
u nor v are adjacent to w. Thus G[V (Pu) ∪ V (Pv)] contains an induced P5, contradicting that
G is P5-free. We conclude that S ⊆ N(u, v).

Now assume that G is not P5-free, and let v1, v2, v3, v4, v5 be an induced P5 in G. Set
S∗ = V (G) \ {v1, v2, v4, v5}. We have that S∗ is a v1, v5-separator. Let S ⊆ S∗ be a minimal
v1, v5 separator. Now v3 ∈ S since otherwise v1, v2, v3, v4, v5 is a path in G \ S, contradicting
that S is a v1, v5 separator. Further v3 is neither adjacent to v1 nor v5 and so S is a minimal
v1, v5 separator which is not a subset of N(v1, v5).

We will also need the following simple lemma about potential maximal cliques in any graph
G.

Lemma 9. Let G be a graph, Ω be a potential maximal clique of G, Cu and Cv be components
of G \ Ω such that NG(Cv) \ NG(Cu) 6= ∅. Let u ∈ Cu, v ∈ Cv. Then NG(Cu) is a minimal
u-v-separator.

Proof. Clearly N(Cu) separates u from v. We now show that N(Cu) is a minimal u-v-separator,
specifically that for any x ∈ NG(Cu) there is a path from u to v in G \ (NG(Cu) \ {x}). Clearly
there is a path from u to x. Let y ∈ NG(Cv) \NG(Cu). If xy ∈ e then there is a path from x
to y via the edge xy and then to v through Cv. If xy /∈ E(G), Proposition 3 implies that there
is a component C of G \ Ω such that {x, y} ⊆ NG(C). In this case there is a path from u to x
(through Cu), from x to y (through C) and finally from y to v (through Cv).

Lemma 10. Let I be a maximal independent set of G with |I| ≥ 2, H be an I-good minimal
triangulation of G and Ω ∈ ζ(H) be such that there is no u, v ∈ I with Ω ⊆ NG[u, v] then
∆(Ω) ⊆ ∆2

Proof. Let Su ∈ ∆(Ω), we argue that Su ∈ ∆2. Let Ĉu be a connected component of G\Ω such
that NG(Ĉu) = Su. By Lemma 7 Ĉu ∩ I 6= ∅, so let u be a vertex in Ĉu ∩ I. By Lemma 7 G \Ω
has a connected component Ĉv such that NG(Ĉv) \NG(Ĉu) 6= ∅. If NG(Ĉu) ⊆ NG(Ĉv) then, by
Proposition 3 there is a vertex w ∈ Ω\(NG(Cu)∪NG(Cv)) = Ω\NG(Cv). Such a w satisfies w /∈
NG[u, v]. If on the other hand NG(Ĉu) \NG(Ĉv) 6= ∅ then Lemma 9 implies that both NG(Ĉu)
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and NG(Ĉv) are minimal u-v-separators. Then, by Lemma 8 NG(Ĉu) ∪ NG(Ĉv) ⊆ NG(u, v).
By choice of Ω there must be a vertex w ∈ Ω \ NG[u, v]. In either case we selected a vertex
w ∈ Ω \ NG[u, v] such that w /∈ NG(Ĉu) ∪ NG(Ĉv). Let Cw be the component of G \ NG[u, v]
that contains w. We show that u, v and w witness that Su = N(Ĉu) ∈ ∆2. Specifically we
argue that Ĉu is a connected component of G \ NG[Cw]. To that end we need two argue that
(a) NG[Cw] ∩ Ĉu = ∅ and (b) that NG(Ĉu) ⊆ NG[Cw].

We first show that NG[Cw]∩Ĉu = ∅. Suppose not, then Cw∩NG[Ĉu] 6= ∅. Furthermore, w /∈
NG[Ĉu] and hence Cw\NG[Ĉu] 6= ∅. Since G[Cw] is connected this implies that Cw∩NG(Ĉu) 6= ∅.
However NG(Ĉv) \ NG(Ĉu) 6= ∅ and therefore Lemma 9 yields that NG(Ĉu) is a minimal u-v-
separator. Thus, by Lemma 8, NG(Ĉu) ⊆ NG(u, v). But NG(u, v) ∩ Cw = ∅, a contradiction to
Cw ∩NG(Ĉu) 6= ∅.

We now show that NG(Ĉu) ⊆ NG[Cw]. For each x ∈ NG(Ĉu) we have x ∈ Ω. Hence, if
wx /∈ E(G) Proposition 3 implies that there is a component C of G \ Ω such that {w, x} ⊆
NG(C). We argue that C ⊆ Cw, this implies that x ∈ NG[Cw]. Suppose that C \Cw 6= ∅, then,
since G[C] is connected C ∩NG(Cw) 6= ∅. But NG(Cw) ⊆ NG(u, v) and therefore C must either
contain a neighbor of u or a neighbor of v. But then C = Ĉu or C = Ĉv which contradicts that
w /∈ NG(Cu) ∪NG(Cv) while w ∈ N(C).

We are now in position to prove Lemma 1.

Lemma 1 (restated). There is an algorithm that given a graph P5-free graph G outputs in
time O(n9m) a family Π of size at most 3n7, such that for every maximal independent set I of
G with |I| ≥ 2 there exists an I-good minimal triangulation H of G such that ζ(H) ⊆ Π.

Proof. The algorithm computes the family Π1 of size n3 in time O(n3m) using Observation 1.
Then it computes the set ∆2 of size at most n3 in time O(n4m) using Observation 2. Finally
it computes the set Π2 = {Ω ∈ Ω(G) : ∆(Ω) ⊆ ∆2} from ∆2 in time O(n9m) using Lemma 6.
By Lemma 6, |Π2| ≤ 2n7. The algorithm outputs the family Π = Π1 ∪ Π2. The size of Π2 is
upper bounded by 3n7.

We need to argue that there exists an I-good minimal triangulation H of G such that
ζ(H) ⊆ Π. Let H be an I-good minimal triangulation of G that minimizes ζ(H) \ Π. By
Lemma 5, for every Ω ∈ ζ(H) such that there exists a pair u, v ∈ I such that Ω ⊆ NG[u, v] we
have Ω ∈ Π. On the other hand, for every Ω ∈ ζ(H) for which no such pair exists Lemma 10
yields that ∆(Ω) ⊆ ∆2. Further, Ω is a potential maximal clique of G and hence Ω ∈ Ω(G).
But then Ω ∈ Π2, concluding the proof.

3.1 From Minimal Separators to Potential Maximal Ciques

The goal of this section is to prove the following result.

Lemma 6 (restated). There is an algorithm that given as input a P5-free graph G and family
∆ of vertex sets in G, outputs in time O(|∆|n6m) the family

{Ω ∈ Ω(G) : ∆(Ω) ⊆ ∆}.

Further, the size of the family output by the algorithm is at most 2|∆|n4.

In order to prove Lemma 6 we will employ a few results by Bouchitté and Todinca [11] on
the enumeration of potential maximal cliques. Let Ω be a potential maximal clique of a graph
G and let S ∈ ∆(Ω). We say that S is active for Ω if Ω is not a clique in the graph GΩ,S

obtained from G by completing all sets S′ ∈ (∆(Ω) \ {S}) to cliques. If S is active, a pair of
vertices x, y ∈ S non adjacent in GΩ,S is called an active pair. We say that a potential maximal
clique Ω is nice if at least one set S ∈ ∆(Ω) is active for Ω. Let v1, v2, . . . , vn be an arbitrarily
chosen vertex ordering of V . Define Vi = {v1, v2, . . . , vi} and Gi = G[Vi]. We will say that a
potential maximal clique Ωi is a seed if there is a set Si ∈ ∆Gi(Ωi) and vertex v ∈ Vi such that
Ωi = Si ∪ {v}, or if Ωi is a nice potential maximal clique of Gi.
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Lemma 11 ([11]). Let Ω be a potential maximal clique of G. Then there exists an i ≤ n such
that Ωi = Ω ∩ Vi is a seed potential maximal clique of Gi.

Lemma 12 ([11]). For every i ≤ n and potential maximal clique Ωi of Gi, there is exactly one
potential maximal clique Ω of G such that Ωi = Ω ∩ Vi. Furthermore, given Ωi we can compute
Ω in O(n2m) time.

Lemma 11 and Lemma 12 are not stated explicitely in this way by [11]. However, Lemma 11
is a direct corollary of Theorem 20 of [11], while Lemma 12 follows from Corollary 21 and
Corollary 12 of [11]. For every i ≤ n we make a set ∆i from ∆ as follows.

Definition 3. For every i ≤ n let ∆i be a set of vertex sets of Gi such that NGi(Ci) ∈ ∆i for
each pair (S,Ci) where S ∈ ∆ and Ci is a connected component of Gi \ S.

Observation 3. For every i |∆i| ≤ |∆|n, and ∆i can be computed from ∆ in time O(|∆|n2).

Proof. |∆i| ≤ |∆|n since there are |∆| choices for S and at most n components of Gi \ S. We
can compute the connected components of G \S in time O(n+m), and for each component Ci
listing NGi(Ci) takes time at most O(n).

Lemma 13. Let Ω ∈ Ω(G) be such that ∆(Ω) ⊆ ∆. Let Ωi = Ω ∩ Vi. Then ∆Gi(Ωi) ⊆ ∆i.

Proof. Let Si ∈ ∆Gi(Ωi) and let Ci be the connected component of Gi \Ωi such that NGi(Ci) =
Si. Since Ωi = Ω ∩ Vi it follows that Ω ∩ Ci = ∅ and hence there is a connected component
C of G \ Ω such that Ci ⊆ C. Since NGi(Ci) ⊆ Ωi ⊆ Ω it follows that NGi(Ci) ⊆ N(C). Let
S = N(C), since NGi(Ci) ⊆ S it follows that Ci is a connected component of Gi \ S. But
Si = NGi(Ci) = Si so (S,Ci) witness the fact that Si ∈ ∆Gi(Ωi).

Definition 4. For every i ≤ n define Πi
A = {(Si ∪ {v}) ∈ Πi : Si ∈ ∆iand v ∈ Vi}.

Definition 5. For every i ≤ n let Πi
B be a set of vertex sets of Gi such that Si∪(NGi(v)∩Ci) ∈

Πi
B for each triple (Si, v, Ci) where Si ∈ ∆i, v ∈ Si and Ci is a connected component of Gi \Si.

Observation 4. For every i ≤ n, |Πi
A| ≤ |∆|n2 and |Πi

B| ≤ |∆|n3. Furthermore, Πi
A can be

computed in time O(|∆|n3) and Πi
B in time O(|∆|n4).

Proof. |Πi
A| ≤ |∆|n2 and that Πi

A can be computed in time O(|∆|n3) follows directly from the
definition of Πi

A together with Observation 3. |Πi
B| ≤ |∆|n3 also follows from Observation 3

since each Ωi ∈ Πi
B is indexed by a set S in ∆i, a connected component Ci of Gi \ S and a

vertex in S. For each choice of S ∈ ∆i we can find connected components of Gi \ S in time
O(n+m). For each Ci and each v we may list out Si ∪ (NGi(v) ∩ Ci) in time O(n), giving the
O(|∆|n4) time bound to compute Πi

B.

Lemma 14. Let Ωi be a seed potential maximal clique of Gi such that ∆Gi(Ωi) ⊆ ∆i. Then
Ωi ∈ (Πi

A ∪Πi
B).

Proof. There are two cases, either Ωi is nice or not. Suppose Ωi is not nice. Then, since Ωi is a
seed, there is a set Si ∈ ∆Gi(Ωi) and vertex v ∈ Vi such that Ωi = Si ∪ {v}. But then Si ∈ ∆i

and hence (Si, v) witnesses that Ωi ∈ Πi
A.

Suppose now that Ωi is nice and let Si ∈ ∆Gi(Ωi) be an active set for Ωi. Let x, y ∈ Si
be an active pair, that is xy /∈ E(Gi) and no S′ ∈ (∆Gi(Ωi) \ {Si}) contains both x and y.
Let X1, . . . Xt be the connected components of Gi \ Ωi that satisfy NGi(Xj) = Si, and let
X =

⋃
j≤tXj . Let Pxy be a shortest path between x and y in Gi[X1∪{x, y}], since xy /∈ E(Gi),

Pxy has at least three vertices.
We argue that NGi(x) \ (X ∪ Ωi) = ∅ or NGi(y) \ (X ∪ Ωi) = ∅. Suppose not, and let

x′ ∈ NGi(x) \ (X ∪ Ωi) and y′ ∈ NGi(y) \ (X ∪ Ωi). No component of Gi \ Ωi except for the
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Xj ’s is adjacent to both x and y, while the component Cx of Gi \Ωi that contains x′ is adjacent
to x and the component Cy of Gi \ Ωi that contains y′ is adjacent to y. Hence Cx and Cy are
distinct components of Gi \ Ωi. But then x′, x, Pxy, y, y

′ forms an induced path on at least five
vertices in Gi, a contradiction.

Let v ∈ {x, y} be such that NGi(v) \ (X ∪ Ωi) = ∅ and let u ∈ Ωi \ Si. We argue that
uv ∈ E(Gi). Suppose not, then by Proposition 3 there is a connected component C of Gi \ Ωi

such that {u, v} ⊆ NGi(C). But N(C) 6= Si implies that C ∩ X = ∅ and v has a neighbor
v′ ∈ C, contradicting that NGi(v) \ (X ∪ Ωi) = ∅. Thus v is adjacent to every u in Ωi \ Si, or
in other words Ωi \ Si ⊆ NGi(v).

Since Ωi is a potential maximal clique of Gi, Proposition 3 implies that there is a connected
component Ci of G \ Si such that (Ωi \ Si) ⊆ Ci. We show that Ωi = Si ∪ (NGi(v) ∩ Ci).

We have that Ωi ⊆ Ci ∪ Si and that Ωi \ Si ⊆ NGi(v), therefore

Si ∪ (NGi(v) ∩ Ci) ⊇ Si ∪ (NGi(v) ∩ (Ωi \ Si)) ⊇ Si ∪ (Ωi \ Si) = Ωi.

Furthermore the components X1, . . . Xt are also connected components of Gi \ Si, but each
Xj is disjoint from Ωi and hence Ci ∩ X = ∅. Since NGi(v) \ (X ∪ Ωi) = ∅ it follows that
NGi(v)∩Ci ⊆ Ωi. This yields Si∪(NGi(v)∩Ci) ⊆ Ωi. We conclude that Ωi = Si∪(NGi(v)∩Ci).
Thus (Si, v, Ci) witnesses that Ωi ∈ Πi

B, concluding the proof.

We are now ready to prove the main result of this section.

Proof of Lemma 6. Given G and ∆ we compute Πi
A and Πi

B using Observation 4. For each
Ωi ∈ Πi

A ∪Πi
B we check using Proposition 4 in time O(nm) whether Ωi is a potential maximal

clique of Gi. If so, we compute in O(n2m) time using Lemma 12 the unique potential maximal
clique Ω such that Ωi = Ω ∩ Vi. Finally, we check whether ∆(Ω) ⊆ ∆, and if so, the algorithm
adds Ω to its output family. Checking whether ∆(Ω) ⊆ ∆ can be done in time O(n2); for each
of the n sets S ∈ ∆(Ω) we can check whether S ∈ ∆ if ∆ is stored as a prefix-tree. If the input
family ∆ is given as a list of sets, rather than a prefix tree we may compute a prefix tree for ∆
in time O(|∆|n log n) before starting the remaining computation. Thus the total running time
of the algorithm is bounded by O(|∆|n6m) as claimed. The algorithm outputs at most one
potential maximal clique Ω for every i ≤ n and Ωi ∈ Πi

A ∪Πi
B. Therefore the family output by

the algorithm has size at most 2|∆|n4.
For every Ω output by the algorithm, Ω is a potential maximal clique of G (by Lemma 12)

and ∆(Ω) ⊆ ∆ since we verify that it is. It remains to show that for every potential maximal
clique Ω of G such that ∆(Ω) ⊆ ∆, Ω is output by the algorithm. By Lemma 11 there is an
i ≤ n such that Ωi = Ω ∩ Vi is a seed of Gi. By Lemma 14, Ωi ∈ Πi

A ∪ Πi
B. Since Ωi is a

potential maximal clique of Gi the algorithm will output the unique potential maximal clique
of G whose intersection with Vi is Ωi, namely Ω.

4 Dynamic Programming for Independent set

We prove the following variant of Proposition 1.

Lemma 15. There is an algorithm that given as input a vertex weighted graph G on n ver-
tices and m edges, together with a list Π of potential maximal cliques in G, outputs in time
O(|Π|2n4m) the weight of the maximum weight independent set I such that there exists a min-
imal triangulation H of G such that every maximal clique C of H is on the list Π and satisfies
|C ∩ I| ≤ 1. If no such independent set exists, the algorithm outputs −∞.

To prove Lemma 15 we prove a slightly more general result, stated in terms of tree-
decompositions, rather than triangulations.

12



Definition 6 (I-sparse tree-decomposition). For an independent set I ⊆ V (G), a tree-decomposition
(T, χ) of G is called I-sparse if for each bag B we have |B ∩ I| ≤ 1.

Definition 7 (simple tree decomposition). Let G be a graph and (T, χ) be a rooted tree decom-
position of G. We say (T, χ) is simple if (a) no bag B is a subset of any other bag B′ and (b)
For every u, v ∈ V (T ) where v is a descendant of u in T , there exists a component C ∈ C(χ(u))
such that χ(v) ⊂ χ(u) ∪ C.

Rooting a clique tree of a minimal triangulation at an arbitrary vertex yields a simple tree
decomposition. On the other hand, Proposition 5 implies that any simple tree-decomposition
of G whose bags are potential maximal cliques of G is a clique-tree of a minimal triangulation
H of G. Hence Lemma 15 follows directly from the following lemma.

Lemma 16. There is an algorithm that given as input a vertex weighted graph G on n vertices
and m edges, together with a list Π of vertex sets in G, outputs in time O(|Π|2n4m) the weight
of the maximum weight independent set I such that there exists an I-sparse simple tree decom-
position (T, χ) of G such that χ(v) ∈ Π for all v ∈ V (T ). If no such independent set exists, the
algorithm outputs −∞.

We now define a function M as follows. M takes as input a vertex set B ∈ Π, a vertex
set X ⊆ B with |X| ≤ 1 and a component C ∈ C(B). The function returns the weight of
the maximum weight independent set I ⊆ B ∪ C such that I ∩ B = X and there exists an
I-sparse simple tree-decomposition (T, χ) of G[X ∪C] such that all bags of (T, χ) are in Π and
χ(r(T )) = B for the root vertex r(T ) of T . If no such independent set exists, M returns −∞.

Lemma 17. For every set B ∈ Π, X ⊆ B with |X| ≤ 1 and component C ∈ C(B), M satisfies
the following recurrence.

M(B,X,C) = w(X) + max
B′,X′

w(X ′ \X) +
∑

C′∈C(B′)
C′⊆C

(
M(B′, X ′, C ′)− w(X ′)

)
Here the maximum is taken over all sets B′ ⊆ Π and X ′ ⊆ B′ such that (i) B′ ⊆ B ∪ C, (ii)
N(C) ⊆ B′, (iii) B′ ∩ C 6= ∅, (iv) |X ′| ≤ 1, (v) B ∩B′ ∩X = B ∩B′ ∩X ′ and (vi) G[X ′ ∪X]
is independent. If no such B′ and X ′ exist the recurrence above is not well defined, and in this
case M(B,X,C) = −∞.

Proof. For the ≥ direction of the proof, the inequality holds automatically if the right hand side
is −∞. Consider therefore a pair B′, X ′ satisfying conditions (i)− (vi). For each C ′ ∈ C(B′) let
IC′ be an independent set of weight M(B′, X ′, C ′) such that IC′ ∩ B′ = X ′, and let (TC′ , χC′)
be an IC′-sparse simple tree-decomposition of G[B′ ∩ C ′] such that χ(r(TC)) = B′. Set

I =
⋃

C′∈C(B′),
C′⊆C

IC′ ∪X

Clearly I is independent. For the weight of I we have that

w(I) = w(X) + w(X ′ \X) +
∑

C′∈C(B′)
C′⊆C

(
M(B′, X ′, C ′)− w(X ′)

)
.

We now build a rooted tree-decomposition (T, χ) of G[B ∪ C] by identifying all of the tree-
decompositions (TC′ , χC′) at their root r, adding a new root vertex r′ and making r′ the parent
of r, and setting χ(r) = B. For all other vertices v ∈ V (T ), v is a vertex of TC′ for some

13



C ′ ∈ C(B′) with C ′ ⊆ C. We set χ(v) = χC′(v). It is easy to verify that (T, χ) is indeed an
I-sparse simple tree-decomposition of G[B∪C] with all bags from Π, hence M(B,X,C) ≥ w(I)
proving the ≥ direction of the inequality.

For the ≤ direction of the equality, the inequality is trivially true if the left hand side is −∞.
Thus, let I be an independent set in G[B ∪C] of weight M(B,X,C) such that I ∩B = X and
let (T, χ) be an I-good simple tree-decomposition of G[B ∪C] with root bag B. We claim that
r(T ) only has one child. Suppose not and let v1 and v2 be two children of r(T ). Since no bag
is a subset of another bag and χ(r(T )) = B it follows that χ(v1) ∩ C 6= ∅ and χ(v2) ∩ C 6= ∅.
But this contradicts that the set {v ∈ V (T ) : χ(v)∩C 6= ∅} induces a connected subtree of T .
Hence r(T ) has only one child r′. Let B′ = χ(r′) and X ′ = I ∩ B′. The sets B′ and X ′ satisfy
conditions (i)-(vi). For each C ′ ∈ C(B′) such that C ′ ⊆ C let I ′C = I ∩ (B′ ∪ C ′). Observe that

w(I) = w(X) + w(X ′ \X) +
∑

C′∈C(B′)
C′⊆C

(
w(IC′ − w(X ′)

)
.

Hence, to complete the proof it is sufficient to prove that for every C ′ ∈ C(B′) such that C ′ ⊆ C,
M(B′, X ′, C ′) ≥ w(IC′). Consider the tree-decomposition (T, χ) and let ZC′ be the vertices in
T whose bags have non-empty intersection with C ′, that is ZC′ = {v ∈ V (T ) : χ(v)∩C ′ 6= ∅}.
The set ZC′ is a connected subtree of T . Furthermore, since (T, χ) is simple, for every vertex
v ∈ ZC′ , all vertices of χ(v) are in the same connected component of G \ B′, hence χ(v) ⊆ C ′.
Thus (T [ZC′ ], χ) (with χ restricted to ZC′) is an (IC′ ∩C ′)-sparse simple tree decomposition of
G[C ′] with all bags from Π. Let r? be the vertex in ZC′ closest to the root of T . We argue that
N(C ′) ⊆ χ(r?). For each a ∈ N(C ′) there is some b ∈ C ′ such that ab ∈ E(G). The topmost
bag in T that contains b is χ(r?) or χ(u) for a descendant u of r?. Furthermore a ∈ B′. Since
some bag of T must contain the edge ab and the set of bags containing a is connected in T , it
follows that a ∈ χ(r?). Hence N(C ′) ⊆ χ(r?). We make a tree-decomposition (TC′ , χC′) from
(T [ZC′ ], χ) by attaching a new node r̂ to r?, making r̂ the parent of r? in T , setting χC′(r̂) =
B′ and χC′(v) = χ(v) for all v ∈ ZC′ . The tree-decomposition (TC′ , χC′) is an IC′-sparse
simple tree-decomposition of G[B′ ∪C ′] using only bags from Π. Thus M(B′, X ′, C ′) ≥ w(IC′),
completing the proof.

We conclude the section with a proof of Lemma 16.

Proof of Lemma 16. The weight of the maximum weight independent set I such that there
exists an I-sparse simple tree decomposition (T, χ) of G is exacly

max
B,X

w(X) +
∑

C∈C(C)

(M(B,X,C)− w(X))

 (1)

where the maximum is taken over all B ∈ Π and X ⊆ B with |X| ≤ 1.
The algorithm computes M(B,X,C) for every choice of B, X and C using the recurrence

of Lemma 17. In order to compute the value of M(B,X,C) using this recurrence we only need
to look up the value for M(B′, X ′, C ′) for choices of (B′, X ′, C ′) with |C ′| < |C|. Thus we
process the triples (B,X,C) sorted by |C|. Once the algorithm has pre-computed the value of
M(B,X,C) for every possible choice of B, X and C, it computes the weight of the maximum
weight independent set I such that there exists an I-sparse simple tree decomposition (T, χ) of
G using Equation 1. Correctness of the algorithm follows from Lemma 17.

The running time is dominated by the first step where we compute the value of M(B,X,C)
for each choice of parameters. There are |Π| choices for B, |B| + 1 ≤ n + 1 choices for X and
at most n choices for C, so there are O(|Π|n2) choices for the parameters. For a particular
choice of (B,X,C) computing M(B,X,C) in a naive manner takes time O(|Π|nm) and needs
O(|Π|n2) table look-ups. Hence the total running time of the algorithm is upper bounded by
O(|Π|2n4m).
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5 Conclusion

We gave an algorithm with running time O(n12m) for the Weighted Independent Set
problem on P5-free graphs. We did not try to optimize the running time of the algorithm,
but it seems difficult to go below O(n10) using our approach. Getting an algorithm with a
more practically feasible running time would be quite interesting. Our methods seem to break
down already on P6 free graphs, and so a complete classification of the complexity status of
Independent Set on graphs with a single connected forbidden induced subgraph remains wide
open.
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