
Faster Parameterized Algorithms using Linear Programming

⇤

Daniel Lokshtanov

†
N.S. Narayanaswamy

‡
Venkatesh Raman

§

M.S. Ramanujan

§
Saket Saurabh

§

Abstract

We investigate the parameterized complexity ofVertex Cover parameterized by the
di↵erence between the size of the optimal solution and the value of the linear programming
(LP) relaxation of the problem. By carefully analyzing the change in the LP value in
the branching steps, we argue that combining previously known preprocessing rules with
the most straightforward branching algorithm yields an O⇤(2.618k) algorithm for the
problem. Here k is the excess of the vertex cover size over the LP optimum, and we write
O⇤(f(k)) for a time complexity of the form O(f(k)nO(1)). We proceed to show that a
more sophisticated branching algorithm achieves a running time of O⇤(2.3146k).

Following this, using previously known as well as new reductions, we give O⇤(2.3146k)
algorithms for the parameterized versions of Above Guarantee Vertex Cover, Odd
Cycle Transversal, Split Vertex Deletion andAlmost 2-SAT, andO⇤(1.5214k)
algorithms forKönig Vertex Deletion andVertex Cover parameterized by the size
of the smallest odd cycle transversal and König vertex deletion set. These algorithms
significantly improve the best known bounds for these problems. The most notable
improvement among these is the new bound for Odd Cycle Transversal - this is
the first algorithm which improves upon the dependence on k of the seminal O⇤(3k)
algorithm of Reed, Smith and Vetta. Finally, using our algorithm, we obtain a kernel
for the standard parameterization of Vertex Cover with at most 2k � c log k vertices.
Our kernel is simpler than previously known kernels achieving the same size bound.

Topics: Algorithms and data structures. Graph Algorithms, Parameterized Algo-
rithms.

1 Introduction and Motivation

In this paper we revisit one of the most studied problems in parameterized complexity, the

Vertex Cover problem. Given a graph G = (V,E), a subset S ✓ V is called a vertex cover

if every edge in E has at least one end-point in S. The Vertex Cover problem is formally

defined as follows.
⇤

A preliminary version of this paper appears in the proceedings of STACS 2012.

†

University of Bergen, Bergen, Norway. daniello@ii.uib.no

‡

Department of CSE, IIT Madras, Chennai, India. swamy@cse.iitm.ernet.in

§

The Institute of Mathematical Sciences, Chennai, India.

{vraman|msramanujan|saket}@imsc.res.in

1

Vertex Cover

Instance: An undirected graph G and a positive integer k.

Parameter: k.

Problem: Does G have a vertex cover of of size at most k?

We start with a few basic definitions regarding parameterized complexity. For decision

problems with input size n, and a parameter k, the goal in parameterized complexity is

to design an algorithm with running time f(k)nO(1) where f is a function of k alone, as

contrasted with a nk+O(1) algorithm which is usually trivial. Problems which admit such

algorithms are said to be fixed parameter tractable (FPT). The theory of parameterized

complexity was developed by Downey and Fellows [6]. For more background, the reader is

referred to the monographs [6, 8, 22].

Vertex Cover was one of the first problems that was shown to be FPT [6]. After a long

race, the current best algorithm for Vertex Cover runs in time O(1.2738k+kn) [3]. When

k < m, the size of the maximum matching, the Vertex Cover problem is not interesting,

as the answer is trivially NO. However, when m is large (for example when the graph has a

perfect matching), the running time bound of the standard FPT algorithm is not practical,

as k, in this case, is quite large. This led to the following natural “above guarantee” variant

of the Vertex Cover problem.

Above Guarantee Vertex Cover (agvc)

Instance: An undirected graph G, a maximum matching M and

a positive integer k.

Parameter: k � |M |.
Problem: Does G have a vertex cover of of size at most k?

In addition to being a natural parameterization of the classical Vertex Cover problem,

the agvc problem has a central spot in the “zoo” of parameterized problems. We refer to

Figure 1 for the details of problems reducing to agvc. (See the Appendix for the definition of

these problems.) In particular an improved algorithm for agvc implies improved algorithms

for several other problems as well, including Almost 2-SAT, König Vertex Deletion

(KVD) and Odd Cycle Transversal (OCT).

Initially, agvc was first shown fixed parameter tractable by a parameter preserving re-

duction to Almost 2-SAT. In Almost 2-SAT, we are given a 2-SAT formula �, a positive

integer k and the objective is to check whether there exists a set of at most k clauses whose

deletion from � leaves a satisfiable formula. The Almost 2-SAT problem was introduced

in [17] and a decade later it was proved FPT by Razgon and O’Sullivan [25], who gave

a O⇤(15k) time algorithm for the problem. Recently, two new algorithms were developed

for the agvc problem [5, 24]. The first used new structural results about König-Egerváry

graphs — graphs where the size of a minimum vertex cover is equal to the size of a maximum

matching [24] while the second invoked a reduction to an “above guarantee version” of the

Multiway Cut problem [5]. The second algorithm runs in time O⇤(4k) and this is also the

fastest algorithm for agvc prior to our work.

2

Figure 1: The zoo of problems around agvc; An arrow from a problem P to a problem Q

indicates that there is a parameterized reduction from P to Q with the parameter changes

as indicated on the arrow.

In order to obtain the O⇤(4k) running time bound for Above Guarantee Multiway

Cut (and hence also for agvc), Cygan et al. [5] introduce a novel measure in terms of which

the running time is bounded. Specifically they bound the running time of their algorithm in

terms of the di↵erence between the size of the solution the algorithm looks for and the value

of the optimal solution to the linear programming relaxation of the problem. Since Vertex

Cover is a simpler problem than Multiway Cut it seems likely that a similar approach

could yield simpler and faster algorithms for agvc. This idea is the starting point of our

work.

The well known integer linear programming formulation (ILP) for Vertex Cover is as

follows.

ILP formulation of Minimum Vertex Cover – ILPVC

Instance: A graph G = (V,E).

Feasible Solution: A function x : V ! {0, 1} satisfying edge constraints

x(u) + x(v) � 1 for each edge (u, v) 2 E.

Goal: To minimize w(x) = ⌃u2V x(u) over all feasible solutions x.

In the standard linear programming relaxation of the above ILP, the constraint x(v) 2 {0, 1}
is replaced with x(v) � 0, for all v 2 V . For a graph G, we call this relaxation LPVC(G).

Clearly, every integer feasible solution is also a feasible solution to LPVC(G). If the minimum

value of LPVC(G) is vc⇤(G) then clearly the size of a minimum vertex cover is at least vc⇤(G).

This leads to the following parameterization of Vertex Cover.

Vertex Cover above LP

Instance: An undirected graph G, positive integers k and dvc⇤(G)e,
where vc⇤(G) is the minimum value of LPVC(G).

Parameter: k � vc⇤(G).

Problem: Does G have a vertex cover of size at most k?

3

Problem Name Previous f(k)/Reference New f(k) in this paper

agvc 4k [5] 2.3146k

Almost 2-SAT 4k [5] 2.3146k

RHorn-Backdoor Set Detection 4k [5, 9] 2.3146k

König Vertex Deletion 4k [5, 19] 1.5214k

Split Vertex Deletion 5k [2] 2.3146k

Odd Cycle Transversal 3k [26] 2.3146k

Vertex Cover Param by OCT 2k (folklore) 1.5214k

Vertex Cover Param by KVD – 1.5214k

Table 1: The table gives the previous f(k) bound in the running time of various problems

and the ones obtained in this paper.

Observe that since vc⇤(G) � m, where m is the size of a maximum matching of G, we have

that k � vc⇤(G)  k �m. Thus, any parameterized algorithm for Vertex Cover above

LP is also a parameterized algorithm for agvc and hence an algorithm for every problem

depicted in Figure 1.

Our Results and Methodology. We develop a O⇤(2.3146(k�vc⇤(G))) time branching algo-

rithm for Vertex Cover above LP. In an e↵ort to present the key ideas of our algorithm

in as clear a way as possible, we first present a simpler and slightly slower algorithm in Sec-

tion 3. This algorithm exhaustively applies a collection of previously known preprocessing

steps. If no further preprocessing is possible the algorithm simply selects an arbitrary vertex

v and recursively tries to find a vertex cover of size at most k by considering whether v is in

the solution or not. While the algorithm is simple, the analysis is more involved as it is not

obvious that the measure k � vc⇤(G) actually drops in the recursive calls. In order to prove

that the measure does drop we string together several known results about the linear pro-

gramming relaxation of Vertex Cover, such as the classical Nemhauser-Trotter theorem

and properties of “minimum surplus sets”. We find it intriguing that, as our analysis shows,

combining well-known reduction rules with naive branching yields fast FPT algorithms for

all problems in Figure 1. We then show in Section 4 that adding several more involved

branching rules to our algorithm yields an improved running time of O⇤(2.3146(k�vc⇤(G))).

Using this algorithm we obtain even faster algorithms for the problems in Figure 1.

We give a list of problems with their previous best running time and the ones obtained in

this paper in Table 1. The most notable among them is the new algorithm for Odd Cycle

Transversal, the problem of deleting at most k vertices to obtain a bipartite graph. The

parameterized complexity of Odd Cycle Transversal was a long standing open problem

in the area, and only in 2003 Reed et al. [26] developed an algorithm for the problem running

in time O⇤(3k). However, there has been no further improvement over this algorithm in the

last 9 years; though reinterpretations of the algorithm have been published [11, 16].

We also find the algorithm forKönig Vertex Deletion, the problem of deleting at most

k vertices to obtain a König graph very interesting. König Vertex Deletion is a natural

variant of the odd cycle transversal problem. In [19] it was shown that given a minimum

vertex cover one can solve König Vertex Deletion in polynomial time. In this article we

4

show a relationship between the measure k � vc⇤(G) and the minimum number of vertices

needed to delete to obtain a König graph. This relationship together with a reduction rule

for König Vertex Deletion based on the Nemhauser-Trotter theorem gives an algorithm

for the problem with running time O⇤(1.5214k).

We also note that using our algorithm, we obtain a polynomial time algorithm forVertex

Cover that, given an input (G, k) returns an equivalent instance (G0 = (V 0, E0), k0) such

that k0  k and |V (G0)|  2k� c log k for any fixed constant c. This is known as a kernel for

Vertex Cover in the literature. We note that this kernel is simpler than another kernel

with the same size bound [15].

We hope that this work will lead to a new race towards better algorithms for Vertex

Cover above LP like what we have seen for its classical counterpart, Vertex Cover.

2 Preliminaries

For a graphG = (V,E), for a subset S of V , the subgraph of G induced by S is denoted byG[S]

and it is defined as the subgraph of G with vertex set S and edge set {(u, v) 2 E : u, v 2 S}.
By NG(u) we denote the (open) neighborhood of u, that is, the set of all vertices adjacent

to u. Similarly, for a subset T ✓ V , we define NG(T) = ([v2TNG(v)) \ T . When it is

clear from the context, we drop the subscript G from the notation. We denote by Ni[S],

the set N [Ni�1

(S)] where N
1

[S] = N [S], that is, Ni[S] is the set of vertices which are

within a distance of i from a vertex in S. The surplus of an independent set X ✓ V

is defined as surplus(X) = |N(X)| � |X|. For a set A of independent sets of a graph,

surplus(A) = minX2A surplus(X). The surplus of a graph G, surplus(G), is defined to

be the minimum surplus over all independent sets in the graph.

By the phrase “an optimum solution to LPVC(G)”, we mean a feasible solution with

x(v) � 0 for all v 2 V minimizing the objective function w(x) =
P

u2V x(u). It is well

known that for any graph G, there exists an optimum solution to LPVC(G), such that

x(u) 2 {0, 1
2

, 1} for all u 2 V [20]. Such a feasible optimum solution to LPVC(G) is called a

half integral solution and can be found in polynomial time [20]. In this paper we always deal

with half integral optimum solutions to LPVC(G). Thus, by default whenever we refer to

an optimum solution to LPVC(G) we will be referring to a half integral optimum solution to

LPVC(G). Furthermore, it is also known that the modified LP resulting from forcing certain

variables to a value in {0, 1
2

, 1} also has a half integral optimum solution. Let V C(G) be the

set of all minimum vertex covers of G and vc(G) denote the size of a minimum vertex cover

of G. Let V C⇤(G) be the set of all optimal solutions (including non half integral optimal

solution) to LPVC(G). By vc⇤(G) we denote the value of an optimum solution to LPVC(G).

We define V x
i = {u 2 V : x(u) = i} for each i 2 {0, 1

2

, 1} and define x ⌘ i, i 2 {0, 1
2

, 1}, if
x(u) = i for every u 2 V . Clearly, vc(G) � vc⇤(G) and vc⇤(G)  |V |

2

since x ⌘ 1

2

is always

a feasible solution to LPVC(G). We also refer to the x ⌘ 1

2

solution simply as the all 1

2

solution.

In branching algorithms, we say that a branching step results in a drop of (p
1

, p
2

, . . . , pl)

where pi, 1  i  l is an integer, if the measure we use in the analysis drops respectively

by p
1

, p
2

, ..., pl in the corresponding branches. We also call the vector (p
1

, p
2

, . . . , pl) the

5

branching vector of the step.

3 A Simple Algorithm for Vertex Cover above LP

In this section, we give a simpler algorithm for Vertex Cover above LP. The algorithm

has two phases, a preprocessing phase and a branching phase. We first describe the pre-

processing steps used in the algorithm and then give a simple description of the algorithm.

Finally, we argue about its correctness and prove the desired running time bound on the

algorithm.

3.1 Preprocessing

We describe three standard preprocessing rules to simplify the input instance. We first state

the (known) results which allow for their correctness, and then describe the rules.

Lemma 1. [21, 23] For a graph G with n vertices and m edges, in time O(m
p
n),

1. we can compute an optimal solution x to LPVC(G).

2. for a given set of vertices S = {v
1

, . . . , v`}, and a function f : S ! {0, 1}, we can

compute a feasible solution to LPVC(G) which is optimal among all those feasible

solutions x0 with the property that x0(vi) = f(vi) for every 1  i  `.

3. we can compute an optimal solution x to LPVC(G) such that all 1

2

is the unique optimal

solution to LPVC(G[V x
1/2]). Furthermore, surplus(G[V x

1/2]) > 0.

Note that the second statement in the above lemma allows us to solve LPVC(G) after “set-

ting” the values assigned to certain variables.

Lemma 2. [21] Let G be a graph and x be an optimal solution to LPVC(G). There is a

minimum vertex cover for G which contains all the vertices in V x
1

and none of the vertices

in V x
0

.

Preprocessing Rule 1. Apply Lemma 1 to compute an optimal solution x to LPVC(G)

such that all 1

2

is the unique optimum solution to LPVC(G[V x
1/2]). Delete the vertices in

V x
0

[V x
1

from the graph after including V x
1

in the vertex cover we develop, and reduce k by

|V x
1

|.

In the discussions in the rest of the paper, we say that Preprocessing Rule 1 applies (or is

applicable) if all 1

2

is not the unique solution to LPVC(G) and that it doesn’t apply (or is

not applicable) if all 1

2

is the unique solution to LPVC(G).

The soundness/correctness of Preprocessing Rule 1 follows from Lemma 2. The time required

to check if it is applicable and to apply it is O(mn
p
n). After the application of Preprocessing

Rule 1, we know that x ⌘ 1

2

is the unique optimal solution to LPVC of the resulting graph

and the graph has a surplus of at least 1.

6

Lemma 3. [3, 21] Let G(V,E) be a graph, and let S ✓ V be an independent subset such

that surplus(Y) � surplus(S) for every set Y ✓ S. Then there exists a minimum vertex

cover for G that contains either all of S or none of S. In particular, if S is an independent

set with the minimum surplus, then there exists a minimum vertex cover for G, that contains

all of S or none of S.

The following lemma, which handles without branching, the case when the minimum surplus

of the graph is 1, follows from the above lemma.

Lemma 4. [3, 21] Let G be a graph, and let Z ✓ V (G) be an independent set such that

surplus(Z) = 1 and for every Y ✓ Z, surplus(Y) � surplus(Z). Then,

1. If the graph induced by N(Z) is not an independent set, then there exists a minimum

vertex cover in G that includes all of N(Z) and excludes all of Z.

2. If the graph induced by N(Z) is an independent set, let G0 be the graph obtained from

G by removing Z [N(Z) and adding a vertex z, followed by making z adjacent to

every vertex v 2 G \ (Z [N(Z)) which was adjacent to a vertex in N(Z) (also called

identifying the vertices of N(Z)). Then, G has a vertex cover of size at most k if and

only if G0 has a vertex cover of size at most k � |Z|.

We now give two preprocessing rules to handle the case when the surplus of the graph is 1.

Preprocessing Rule 2. If there is a set Z such that surplus(Z) = 1 and N(Z) is not an

independent set, then apply Lemma 4 to reduce the instance as follows. Include N(Z) in the

vertex cover, delete Z [N(Z) from the graph, and decrease k by |N(Z)|.
Preprocessing Rule 3. If there is a set Z such that surplus(Z) = 1 and N(Z) is an

independent set, then apply Lemma 4 to reduce the instance as follows. Remove Z from the

graph, identify the vertices of N(Z), and decrease k by |Z|.

The correctness of Preprocessing Rules 2 and 3 follows from Lemma 4. The entire prepro-

cessing phase of the algorithm is summarized in Figure 2. Recall that each preprocessing rule

can be applied only when none of the preceding rules are applicable, and that Preprocessing

Rule 1 is applicable if and only if there is a solution to LPVC(G) which does not assign 1

2

to

every vertex. Hence, when Preprocessing Rule 1 does not apply, all 1

2

is the unique solution

for LPVC(G). We now show that we can test whether Preprocessing Rules 2 and 3 are

applicable on the current instance in polynomial time.

Lemma 5. Given an instance (G, k) of Vertex Cover Above LP on which Preprocessing

Rule 1 does not apply, we can test if Preprocessing Rule 2 applies on this instance in time

O(m2

p
n).

Proof. We first prove the following claim.

Claim 1. The graph G (in the statement of the lemma) contains a set Z such that surplus(Z) =

1 and N(Z) is not independent if and only if there is an edge (u, v) 2 E such that solving

LPVC(G) with x(u) = x(v) = 1 results in a solution with value exactly 1

2

greater than the

value of the original LPVC(G).

7

Proof. Suppose there is an edge (u, v) such that w(x0) = w(x) + 1

2

where x is the solution

to the original LPVC(G) and x0 is the solution to LPVC(G) with x0(u) = x0(v) = 1 and let

Z = V x0

0

. We first claim that u, v 2 N(Z). Consider the vertex u. If u /2 N(Z), then it

implies that all the neighbors of u have been assigned a value of at least 1

2

in x0. Therefore,
by setting the value of u to 1

2

, we obtain a feasible solution x00 for LPVC(G) such that

w(x00) = w(x0)� 1

2

. However, we already have that w(x0) = w(x)+ 1

2

, where x is the solution

to LPVC(G). Therefore, w(x00) = w(x), and x00(v) = 1, which is a contradiction since

Preprocessing Rule 1 does not apply. By the same argument, we have that v 2 N(Z) and

in fact, V x0

1

= N(Z). We now claim that the set Z is a set with surplus 1 and that N(Z) is

not independent. Since N(Z) contains the vertices u and v, N(Z) is not an independent set.

Now, since x ⌘ 1

2

(Preprocessing Rule 1 does not apply), w(x0) = w(x)� 1

2

|V x0

0

|+ 1

2

|V x0

1

| =
w(x)� 1

2

|Z|+ 1

2

|N(Z)| = w(x) + 1

2

. Hence, |N(Z)|� |Z| = surplus(Z) = 1.

Conversely, suppose that there is a set Z such that surplus(Z) = 1 and N(Z) contains

vertices u and v such that (u, v) 2 E. Let x0 be the assignment which assigns 0 to all vertices

in Z, 1 to all vertices in N(Z) and 1

2

to the rest of the vertices. Clearly, x0 is a feasible

assignment and w(x0) = |N(Z)| + 1

2

|V \ (Z [N(Z))|. Since Preprocessing Rule 1 does not

apply, w(x0) � w(x) = |N(Z)| � 1

2

(|Z| + |N(Z)|) = 1

2

(|N(Z)| � |Z|) = 1

2

, which proves the

converse part of the claim.

Given the above claim, we check if Preprocessing Rule 2 applies by doing the following

for every edge (u, v) in the graph. Set x(u) = x(v) = 1 and solve the resulting LP looking

for a solution whose optimum value is exactly 1

2

more than the optimum value of LPVC(G).

The time required to check for applicability and to apply the rule is bounded by m times the

time to compute an optimum solution to LPVC(G), which is O(m2

p
n).

Lemma 6. Given an instance (G, k) of Vertex Cover Above LP on which Preprocessing

Rules 1 and 2 do not apply, we can test if Preprocessing Rule 3 applies on this instance in

time O(mn
p
n).

Proof. We first prove a claim analogous to that proved in the previous lemma.

Claim 2. The graph G (in the statement of the lemma) contains a set Z such that surplus(Z) =

1 and N(Z) is independent if and only if there is a vertex u 2 V such that solving LPVC(G)

with x(u) = 0 results in a solution with value exactly 1

2

greater than the value of the original

LPVC(G).

Proof. Suppose there is a vertex u such that w(x0) = w(x) + 1

2

where x is the solution to

the original LPVC(G) and x0 is the solution to LPVC(G) with x0(u) = 0 and let Z = V x0

0

.

We claim that the set Z is a set with surplus 1 and that N(Z) is independent. Since x ⌘ 1

2

(Preprocessing Rule 1 does not apply), w(x0) = w(x)� 1

2

|Z|+ 1

2

|N(Z)| = w(x) + 1

2

. Hence,

|N(Z)|� |Z| = surplus(Z) = 1. Since Preprocessing Rule 2 does not apply, it must be the

case that N(Z) is independent.

Conversely, suppose that there is a set Z such that surplus(Z) = 1 and N(Z) is in-

dependent. Let x0 be the assignment which assigns 0 to all vertices of Z and 1 to all

vertices of N(Z) and 1

2

to the rest of the vertices. Clearly, x0 is a feasible assignment

and w(x0) = |N(Z)| + 1

2

|V \ (Z [N(Z))|. Since Preprocessing Rule 1 does not apply,

8

The rules are applied in the order in which they are presented, that is, any rule is applied
only when none of the earlier rules are applicable.

Preprocessing rule 1: Apply Lemma 1 to compute an optimal solution x to LPVC(G)
such that all 1

2 is the unique optimum solution to LPVC(G[V x
1/2]). Delete the

vertices in V x
0 [V x

1 from the graph after including V x
1 in the vertex cover we

develop, and reduce k by |V x
1 |.

Preprocessing rule 2: Apply Lemma 5 to test if there is a set Z such that
surplus(Z) = 1 and N(Z) is not an independent set. If such a set does exist,
then we apply Lemma 4 to reduce the instance as follows. Include N(Z) in the
vertex cover, delete Z [N(Z) from the graph, and decrease k by |N(Z)|.

Preprocessing rule 3: Apply Lemma 6 to test if there is a set Z such that
surplus(Z) = 1 and N(Z) is an independent set. If there is such a set Z then
apply Lemma 4 to reduce the instance as follows. Remove Z from the graph, iden-
tify the vertices of N(Z), and decrease k by |Z|.

Figure 2: Preprocessing Steps

w(x0)� w(x) = |N(Z)|� 1

2

(|Z|+ |N(Z)|) = 1

2

(|N(Z)|� |Z|) = 1

2

. This proves the converse

part of the claim with u being any vertex of Z.

Given the above claim, we check if Preprocessing Rule 3 applies by doing the following

for every vertex u in the graph. Set x(u) = 0, solve the resulting LP and look for a solution

whose optimum value exactly 1

2

more than the optimum value of LPV C(G). The time

required to check for applicability and to apply the rule is bounded by n times the time to

compute an optimum solution to LPVC(G), which is O(mn
p
n).

Observe that the above algorithm also potentially identifies an application of Preprecess-

ing Rule 2 and hence we may not seem to require separate algorithms for both the rules.

However, we will be treating both rules di↵erently in later sections and therefore will require

a separate algorithm to recognise if Preprocessing Rule 2 is applicable.

Definition 1. For a graph G, we denote by R(G) the graph obtained after applying Prepro-

cessing Rules 1, 2 and 3 exhaustively in this order.

Strictly speaking R(G) is not a well defined function since the reduced graph could

depend on which sets the reduction rules are applied on, and these sets, in turn, depend

on the solution to the LP. To overcome this technicality we let R be a function not only of

the graph G but also of the representation of G in memory. Since our reduction rules are

deterministic (and the LP solver we use as a black box is deterministic as well), running

the reduction rules on (a specific representation of) G will always result in the same graph,

making the function R(G) well defined. Finally, observe that for any G the all 1

2

solution is

the unique optimum solution to the LPVC(R(G)) and R(G) has a surplus of at least 2.

9

3.2 Branching

After the preprocessing rules are applied exhaustively, we pick an arbitrary vertex u in the

graph and branch on it. In other words, in one branch, we add u into the vertex cover,

decrease k by 1, and delete u from the graph, and in the other branch, we add N(u) into the

vertex cover, decrease k by |N(u)|, and delete {u} [N(u) from the graph. The correctness

of this algorithm follows from the soundness of the preprocessing rules and the fact that the

branching is exhaustive.

3.3 Analysis

In order to analyze the running time of our algorithm, we define a measure µ = µ(G, k) =

k�vc⇤(G). We first show that our preprocessing rules do not increase this measure. Following

this, we will prove a lower bound on the decrease in the measure occurring as a result of

the branching, thus allowing us to bound the running time of the algorithm in terms of the

measure µ. For each case, we let (G0, k0) be the instance resulting by the application of the

preprocessing rule or branch, and let x0 be an optimum solution to LPVC(G0).

1. Consider the application of Preprocessing Rule 1. We know that k0 = k � |V x
1

|. Since

x0 ⌘ 1

2

is the unique optimum solution to LPVC(G0), and G0 comprises precisely the

vertices of V x
1/2, the value of the optimum solution to LPVC(G0) is exactly |V x

1

| less
than that of G. Hence, µ(G, k) = µ(G0, k0).

2. We now consider the application of Preprocessing Rule 2 and let V 0 be the set of vertices
in the graph resulting from the application of the rule. We know that N(Z) was not

independent. In this case, k0 = k� |N(Z)|. We also know that w(x0) =
P

u2V 0

x0(u) =
w(x) � 1

2

(|Z| + |N(Z)|) + 1

2

(|V x0

1

| � |V x0

0

|). Adding and subtracting 1

2

|N(Z)|, we get

w(x0) = w(x) � |N(Z)| + 1

2

(|N(Z)| � |Z|) + 1

2

(|V x0

1

| � |V x0

0

|). But, Z [V x0

0

is an

independent set in G, and N(Z [V x0

0

) = N(Z) [V x0

1

in G. Since surplus(G) � 1,

|N(Z[V x0

0

)|�|Z[V x0

0

| � 1. Hence, w(x0) = w(x)�|N(Z)|+ 1

2

(|N(Z[V x0

0

)|�|Z[V x0

0

|) �
w(x)� |N(Z)|+ 1

2

. Thus, µ(G0, k0)  µ(G, k)� 1

2

.

3. We now consider the application of Preprocessing Rule 3. We know that N(Z) was

independent. In this case, k0 = k � |Z|. We claim that w(x0) � w(x) � |Z|. Suppose

that this is not true. Then, it must be the case that w(x0)  w(x) � |Z| � 1

2

. We

will now consider three cases depending on the value x0(z) where z is the vertex in G0

resulting from the identification of N(Z).

Case 1: x0(z) = 1. Now consider the following function x00 : V ! {0, 1
2

, 1}. For every

vertex v in G0 \ {z}, retain the value assigned by x0, that is x00(v) = x0(v). For every

vertex in N(Z), assign 1 and for every vertex in Z, assign 0. Clearly this is a feasible

solution. But now, w(x00) = w(x0)�1+|N(Z)| = w(x0)�1+(|Z|+1)  w(x)� 1

2

. Hence,

we have a feasible solution of value less than the optimum, which is a contradiction.

Case 2: x0(z) = 0. Now consider the following function x00 : V ! {0, 1
2

, 1}. For every

vertex v in G0 \ {z}, retain the value assigned by x0, that is x00(v) = x0(v). For every

vertex in Z, assign 1 and for every vertex in N(Z), assign 0. Clearly this is a feasible

solution. But now, w(x00) = w(x0)+ |Z|  w(x)� 1

2

. Hence, we have a feasible solution

of value less than the optimum, which is a contradiction.

10

Case 3: x0(z) = 1

2

. Now consider the following function x00 : V ! {0, 1
2

, 1}. For

every vertex v in G0 \ {z}, retain the value assigned by x0, that is x00(v) = x0(v). For

every vertex in Z [N(Z), assign 1

2

. Clearly this is a feasible solution. But now,

w(x00) = w(x0)� 1

2

+ 1

2

(|Z|+ |N(Z)|) = w(x0)� 1

2

+ 1

2

(|Z|+ |Z|+1)  w(x)� 1

2

. Hence,

we have a feasible solution of value less than the optimum, which is a contradiction.

Hence, w(x0) � w(x)� |Z|, which implies that µ(G0, k0)  µ(G, k).

4. We now consider the branching step.

(a) Consider the case when we pick u in the vertex cover. In this case, k0 = k � 1.

We claim that w(x0) � w(x) � 1

2

. Suppose that this is not the case. Then,

it must be the case that w(x0)  w(x) � 1. Consider the following function

x00 : V ! {0, 1
2

, 1}. For every vertex v 2 V \ {u}, x00(v) = x0(v) and x00(u) = 1.

Now, x00 is clearly a feasible solution for LPVC(G) and has a value at most that of

x. But this contradicts our assumption that x ⌘ 1

2

is the unique optimum solution

to LPVC(G). Hence, w(x0) � w(x)� 1

2

, which implies that µ(G0, k0)  µ(G, k)� 1

2

.

(b) Consider the case when we don’t pick u in the vertex cover. In this case, k0 =
k � |N(u)|. We know that w(x0) = w(x) � 1

2

(|{u}| + |N(u)|) + 1

2

(|V x0

1

| � |V x0

0

|).
Adding and subtracting 1

2

|N(u)|, we get w(x0) = w(x)�|N(u)|� 1

2

(|{u}|�|N(u)|)+
1

2

(|V x0

1

|� |V x0

0

|). But, {u} [V x0

0

is an independent set in G, and N({u} [V x0

0

) =

N(u)[V x0

1

in G. Since surplus(G) � 2, |N({u}[V x0

0

)|� |{u}[V x0

0

| � 2. Hence,

w(x0) = w(x)� |N(u)|+ 1

2

(|N({u} [V x0

0

)|� |{u} [V x0

0

|) � w(x)� |N(u)|+ 1.

Hence, µ(G0, k0)  µ(G, k)� 1.

We have thus shown that the preprocessing rules do not increase the measure µ = µ(G, k)

and the branching step results in a (1
2

, 1) branching vector, resulting in the recurrence

T (µ)  T (µ � 1

2

) + T (µ � 1) which solves to (2.6181)µ = (2.6181)k�vc⇤(G). Thus, we get

a O⇤(2.6181(k�vc⇤(G))) algorithm for Vertex Cover above LP.

Theorem 1. Vertex Cover above LP can be solved in time O⇤((2.6181)k�vc⇤(G)).

By applying the above theorem iteratively for increasing values of k, we can compute a

minimum vertex cover of G and hence we have the following corollary.

Corollary 1. There is an algorithm that, given a graph G, computes a minimum vertex

cover of G in time O⇤(2.6181(vc(G)�vc⇤(G))).

4 Improved Algorithm for Vertex Cover above LP

In this section we give an improved algorithm for Vertex Cover above LP using some

more branching steps based on the structure of the neighborhood of the vertex (set) on which

we branch. The goal is to achieve branching vectors better that (1
2

, 1).

4.1 Some general claims to measure the drops

First, we capture the drop in the measure in the branching steps, including when we branch

on a larger sized sets. In particular, when we branch on a set S of vertices, in one branch

11

we set all vertices of S to 1, and in the other, we set all vertices of S to 0. Note, however

that such a branching on S may not be exhaustive (as the branching doesn’t explore the

possibility that some vertices of S are set to 0 and some are set to 1) unless the set S satisfies

the premise of Lemma 3. Let µ = µ(G, k) be the measure as defined in the previous section.

Lemma 7. Let G be a graph with surplus(G) = p, and let S be an independent set. Let HS

be the collection of all independent sets of G that contain S (including S). Then, including S

in the vertex cover while branching leads to a decrease of min{ |S|
2

, p
2

} in µ; and the branching

excluding S from the vertex cover leads to a drop of surplus(HS)

2

� p
2

in µ.

Proof. Let (G0, k0) be the instance resulting from the branching, and let x0 be an optimum

solution to LPVC(G0). Consider the case when we pick S in the vertex cover. In this case,

k0 = k � |S|. We know that w(x0) = w(x)� |S|
2

+ 1

2

(|V x0

1

|� |V x0

0

|). If V x0

0

= ;, then we know

that V x0

1

= ;, and hence we have that w(x0) = w(x) � |S|
2

. Else, by adding and subtracting
1

2

|S|, we get w(x0) = w(x)�|S|+ |S|
2

+ 1

2

(|V x0

1

|�|V x0

0

|). However, N(V x0

0

) ✓ S[V x0

1

in G. Thus,

w(x0) � w(x)� |S|+ 1

2

(|N(V x0

0

)|� |V x0

0

|). We also know that V x0

0

is an independent set in G,

and thus, |N(V x0

0

)|�|V x0

0

| � surplus(G) = p. Hence, in the first case µ(G0, k0)  µ(G, k)� |S|
2

and in the second case µ(G0, k0)  µ(G, k) � p
2

. Thus, the drop in the measure when S is

included in the vertex cover is at least min{ |S|
2

, p
2

}.
Consider the case when we don’t pick S in the vertex cover. In this case, k0 = k� |N(S)|.

We know that w(x0) = w(x) � 1

2

(|S| + |N(S)|) + 1

2

(|V x0

1

| � |V x0

0

|). Adding and subtracting
1

2

(|N(S)|), we get w(x0) = w(x)� |N(S)|+ 1

2

(|N(S)|� |S|) + 1

2

(|V x0

1

|� |V x0

0

|). But, S [V x0

0

is an independent set in G, and N(S [V x0

0

) = N(S) [V x0

1

in G. Thus, |N(S [V x0

0

)| �
|S [V x0

0

| � surplus(HS). Hence, w(x0) = w(x) � |N(S)| + 1

2

(|N(S [V x0

0

)| � |S [V x0

0

|) �
w(x)� |N(S)|+ surplus(HS)

2

. Hence, µ(G0, k0)  µ(G, k)� surplus(HS)

2

.

Thus, after the preprocessing steps (when the surplus of the graph is at least 2), suppose we

manage to find (in polynomial time) a set S ✓ V such that

• surplus(G) = surplus(S) = surplus(HS),

• |S| � 2, and

• that the branching that sets all of S to 0 or all of S to 1 is exhaustive.

Then, Lemma 7 guarantees that branching on this set right away leads to a (1, 1) branching

vector. We now explore the cases in which such sets do exist. Note that the first condition

above implies the third from the Lemma 3. First, we show that if there exists a set S such

that |S| � 2 and surplus (G) = surplus(S), then we can find such a set in polynomial time.

Lemma 8. Let G be a graph on which Preprocessing Rule 1 does not apply (i.e. all 1

2

is

the unique solution to LPVC(G)). If G has an independent set S0 such that |S0| � 2 and

surplus(S0) = surplus(G), then in time O(mn2

p
n) we can find an independent set S such

that |S| � 2 and surplus(S) = surplus(G).

Proof. By our assumption we know that G has an independent set S0 such that |S0| � 2 and

surplus(S0) = surplus(G). Let u, v 2 S0. Let H be the collection of all independent sets

12

of G containing u and v. Let x be an optimal solution to LPVC(G) obtained after setting

x(u) = 0 and x(v) = 0. Take S = V x
0

, clearly, we have that {u, v} ✓ V x
0

. We now have the

following claim.

Claim 3. surplus(S) = surplus(G).

Proof. We know that the objective value of LPVC(G) after setting x(u) = x(v) = 0, w(x) =

|V |/2+(|N(S)|� |S|)/2 = |V |/2+surplus(S)/2, as all 1

2

is the unique solution to LPVC(G).

Another solution x0, for LPVC(G) that sets u and v to 0, is obtained by setting x0(a) = 0

for every a 2 S0, x0(a) = 1 for every a 2 N(S0) and by setting all other variables to

1/2. It is easy to see that such a solution is a feasible solution of the required kind and

w(x0) = |V |/2+(|N(S0)|�|S0|)/2 = |V |/2+surplus(S0)/2. However, as x is also an optimum

solution, w(x) = w(x0), and hence we have that surplus(S)  surplus(S0). But as S0 is
a set of minimum surplus in G, we have that surplus(S) = surplus(S0) = surplus(G)

proving the claim.

Thus, we can find a such a set S in polynomial time by solving LPVC(G) after setting

x(u) = 0 and x(v) = 0 for every pair of vertices u, v such that (u, v) /2 E and picking that

set V x
0

which has the minimum surplus among all x0s among all pairs u, v. Since any V x
0

contains at least 2 vertices, we have that |S| � 2. The bound on the time required to find

this set follows from Lemma 1.

4.2 (1,1) drops in the measure

Lemma 7 and Lemma 8 together imply that, if there is a minimum surplus set of size at least

2 in the graph, then we can find and branch on that set to get a (1, 1) drop in the measure.

Suppose that there is no minimum surplus set of size more than 1. Note that, by Lemma

7, when surplus(G) � 2, we get a drop of (surplus(G))/2 � 1 in the branch where we

exclude a vertex or a set. Hence, if we find a vertex (set) to exclude in either branch of a

two way branching, we get a (1, 1) branching vector. We now identify another such case.

Lemma 9. Let v be a vertex such that G[N(v) \ {u}] is a clique for some neighbor u of v.

Then, there exists a minimum vertex cover that excludes either v or u.

Proof. Towards the proof we first show the following well known observation.

Claim 4. Let G be a graph and v be a vertex. Then there exists a minimum vertex cover

for G containing N(v) or at most |N(v)|� 2 vertices from N(v).

Proof. Consider an arbitrary minimum vertex cover of G, say C. If C contains exactly

|N(v)| � 1 vertices of N(v), then we know that C must contain v. Observe that C 0 =

C \ {v} [N(v) is also a vertex cover of G of the same size as C. However, in this case, we

have a minimum vertex cover containing N(v). Thus, there exists a minimum vertex cover

of G containing N(v) or at most |N(v)|� 2 vertices from N(v).

Let v be a vertex such that G[N(v) \ {u}] is a clique. Consider a minimum vertex cover

and suppose that v is in the vertex cover. Clearly, N(v) is not contained in this vertex

13

cover. Since G[N(v) \ {u}] is a clique this vertex cover contains at least |N(v)|� 2 vertices

from G[N(v) \ {u}]. Hence, by Claim 4, the vertex u is not part of the vertex cover. This

completes the proof.

Next, in order to identify another case where we might obtain a (1, 1) branching vector, we

first observe and capture the fact that when Preprocessing Rule 2 is applied, the measure

k � vc⇤(G) actually drops by at least 1

2

(as proved in item 2 of the analysis of the simple

algorithm in Section 3.3).

Lemma 10. Let (G, k) be the input instance and (G0, k0) be the instance obtained after

applying Preprocessing Rule 2. Then, µ(G0, k0)  µ(G, k)� 1

2

.

Thus, after we branch on an arbitrary vertex, if we are able to apply Preprocessing Rule 2 in

the branch where we include that vertex, we get a (1, 1) drop. This is because, in the branch

where we exclude the vertex, we get a drop of 1 by Lemma 7, and in the branch where we

include the vertex, we get a drop of 1

2

by Lemma 7, which is then followed by a drop of 1

2

due to Lemma 10.

Thus, after preprocessing, the algorithm performs the following steps (see Figure 3) each

of which results in a (1, 1) drop as argued before. Note that Preprocessing Rule 1 cannot

apply in the graph G \ {v} since the surplus of G can drop by at most 1 by deleting a

vertex. Hence, checking if rule B3 applies is equivalent to checking if, for some vertex v,

Preprocessing Rule 2 applies in the graph G \ {v}. Recall that, by Lemma 5 we can check

this in polynomial time and hence we can check if B3 applies on the graph in polynomial

time.

Branching Rules.

These branching rules are applied in this order.

B 1. Apply Lemma 8 to test if there is a set S such that surplus(S)=surplus(G) and
|S| � 2. If so, then branch on S.

B 2. Let v be a vertex such that G[N(v) \ {u}] is a clique for some vertex u in N(v).
Then in one branch add N(v) into the vertex cover, decrease k by |N(v)|, and delete N [v]
from the graph. In the other branch add N(u) into the vertex cover, decrease k by |N(u)|,
and delete N [u] from the graph.

B 3. Apply Lemma 5 to test if there is a vertex v such that Preprocessing Rule 2 applies
in G \ {v}. If there is such a vertex, then branch on v.

Figure 3: Outline of the branching steps yielding (1, 1) drop.

4.3 A Branching step yielding (1/2, 3/2) drop

Now, suppose none of the preprocessing and branching rules presented thus far apply. Let

v be a vertex with degree at least 4. Let S = {v} and recall that HS is the collection of all

independent sets containing S, and surplus(HS) is the surplus of an independent set with

minimum surplus in HS . We claim that surplus(HS) � 3.

14

As the preprocessing rules don’t apply, clearly surplus(HS) � surplus(G) � 2. If

surplus(HS) = 2, then the set that realizes surplus(HS) is not S (as the surplus(S) =

degree(v) � 1 = 3), but a superset of S, which is of cardinality at least 2. Then, the

Branching Rule B1 would have applied which is a contradiction. This proves the claim.

Hence, by Lemma 7, we get a drop of at least 3/2 in the branch that excludes the vertex v

resulting in a (1/2, 3/2) drop. This branching step is illustrated in Figure 4.

B 4. If there exists a vertex v of degree at least 4 then branch on v.

Figure 4: The branching step yielding a (1/2, 3/2) drop.

4.4 A Branching step yielding (1, 3/2, 3/2) drop

Next, we observe that when branching on a vertex, if in the branch that includes the vertex

in the vertex cover (which guarantees a drop of 1/2), any of the Branching Rules B1 or

B2 or B3 applies, then combining the subsequent branching with this branch of the current

branching step results in a net drop of (1, 3/2, 3/2) (which is (1, 1/2 + 1, 1/2 + 1)) (see Fig-

ure 5 (a)). Thus, we add the following branching rule to the algorithm (Figure 6).

B 5. Let v be a vertex. If B1 applies inR(G \ {v}) or there exists a vertex w inR(G\{v})
on which either B2 or B3 applies then branch on v.

Figure 6: The branching step yielding a (1, 3/2, 3/2) drop.

4.5 The Final branching step

Observe that if the preprocessing and branching rules presented thus far do not apply, then

we are left with a 3-regular graph. This is because one of the preprocessing rules will apply

on any vertex whose degree is at most 2 and rule B4 will apply on any vertex with a degree

greater than 3. In this final case when the graph is 3-regular, we simply pick a vertex v and

branch. However, we execute the branching step carefully in order to simplify the analysis

of the drop. More precisely, we execute the following step at the end.

B 6. Pick an arbitrary degree 3 vertex v in G and let x, y and z be the neighbors of v.
Then in one branch add v into the vertex cover, decrease k by 1, and delete v from the
graph. The other branch that excludes v from the vertex cover, is performed as follows.
Delete x from the graph, decrease k by 1, and obtain R(G \ {x}). During the process of
obtaining R(G \ {x}), Preprocessing Rule 3 would have been applied on vertices y and
z to obtain a ‘merged’ vertex vyz (see proof of correctness of this rule). Now delete vyz
from the graph R(G \ {x}), and decrease k by 1.

Figure 7: Outline of the last step.

15

Figure 5: Illustrations of the branches of rules (a) B5 and (b) B6

4.6 Complete Algorithm and Correctness

A detailed outline of the algorithm is given in Figure 8. Note that we have already argued

the correctness and analyzed the drops of all steps except the last step, B6.

The correctness of this branching rule will follow from the fact that R(G\{x}) is obtained by

applying Preprocesssing Rule 3 alone and that too only on the neighbors of x, that is, on the

degree 2 vertices of G \ {x} (Lemma 14). Lemma 18 (to appear later) shows the correctness

of deleting vyz from the graph R(G \ {x}) without branching. Thus, the correctness of

this algorithm follows from the soundness of the preprocessing rules and the fact that the

branching is exhaustive.

The running time will be dominated by the way B6 and the subsequent branching ap-

ply. We will see that B6 is our most expensive branching rule. In fact, this step domi-

nates the running time of the algorithm of O⇤(2.3146µ(G,k)) due to a branching vector of

(3/2, 3/2, 5/2, 5/2, 2). We will argue that when we apply B6 on a vertex, say v, then on

either side of the branch we will be able to branch using rules B1, or B2, or B3 or B4. More

precisely, we show that in the branch where we include v in the vertex cover,

• there is a vertex of degree 4 in R(G\{v}). Thus, B4 will apply on the graph R(G\{v})
(if any of the earlier branching rules applied in this graph, then rule B5 would have

applied on G).

• R(G \ {v}) has a degree 4 vertex w such that there is a vertex of degree 4 in the graph

R(R(G \ {v}) \ {w}) and thus one of the Branching Rules B1, B2, B3 or B4 applies

on the graph R(R(G \ {v}) \ {w}).

Similarly, in the branch where we exclude the vertex v from the solution (and add the vertices

x and vyz into the vertex cover), we will show that a degree 4 vertex remains in the reduced

graph. This yields the claimed branching vector (see Figure 9). The rest of the section is

geared towards showing this.

We start with the following definition.

Definition 2. We say that a graph G is irreducible if Preprocessing Rules 1, 2 and 3 and

the Branching Rules B1, B2, B3, B4 and B5 do not apply on G.

16

Preprocessing Step. Apply Preprocessing Rules 1, 2 and 3 in this order exhaustively
on G.

Connected Components. Apply the algorithm on connected components of G sepa-
rately. Furthermore, if a connected component has size at most 10, then solve the
problem optimally in O(1) time.

Branching Rules.

These branching rules are applied in this order.

B1 If there is a set S such that surplus(S)=surplus(G) and |S| � 2, then branch on S.

B2 Let v be a vertex such that G[N(v) \ {u}] is a clique for some vertex u in N(v). Then
in one branch add N(v) into the vertex cover, decrease k by |N(v)|, and delete N [v] from
the graph. In the other branch add N(u) into the vertex cover, decrease k by |N(u)|,
and delete N [u] from the graph.

B3 Let v be a vertex. If Preprocessing Rule 2 can be applied to obtain R(G \ {v}) from
G \ {v}, then branch on v.

B4 If there exists a vertex v of degree at least 4 then branch on v.

B5 Let v be a vertex. If B1 applies in R(G \ {v}) or if there exists a vertex w in
R(G \ {v}) on which B2 or B3 applies then branch on v.

B6 Pick an arbitrary degree 3 vertex v in G and let x, y and z be the neighbors of v.
Then in one branch add v into the vertex cover, decrease k by 1, and delete v from the
graph. The other branch, the one that excludes v from the vertex cover, is performed as
follows. Delete x from the graph, decrease k by 1, and obtain R(G \ {x}). Now, delete
vyz from the graph R(G \ {x}), the vertex that has been created by the application of
Preprocessing Rule 3 on v while obtaining R(G \ {x}) and decrease k by 1.

Figure 8: Outline of the Complete algorithm.

Observe that when we apply B6, the current graph is 3-regular. Our goal is to identify con-

ditions that ensure that after we delete a vertex v from the graph G and apply Preprocessing

Rule 3, we will get at least one degree 4 vertex and furthermore, the degree 4 vertices we

obtain by applying Preprocessing Rule 3 survive in the graph R(G \ {v}). We prove the

existence of degree 4 vertices in subsequent branches after applying B6 as follows.

• We do a closer study of the way Preprocessing Rules 1, 2 and 3 apply on G \ {v} if

Preprocessing Rules 1, 2 and 3 and the Branching Rules B1, B2 and B3 do not apply

on G. Based on our observations, we prove some structural properties of the graph

R(G \ {v}), This is achieved by Lemma 14.

• Next, we show that Lemma 14, along with the fact that the graph is irreducible implies

a lower bound of 7 on the length of the shortest cycle in the graph (Lemma 16). This

lemma allows us to argue that when the preprocessing rules are applied, their e↵ect is

local.

17

Rule B1 B2 B3 B4 B5 B6

Branching Vector (1,1) (1,1) (1,1) (1
2

, 3
2

) (3
2

, 3
2

, 1) (3
2

, 3
2

, 5
2

, 5
2

, 2)

Running time 2µ 2µ 2µ 2.1479µ 2.3146µ 2.3146µ

Figure 9: A table giving the decrease in the measure due to each branching rule.

• Finally, Lemmas 14 and 16 together ensure the presence of the required number of

degree 4 vertices in the subsequent branching (Lemma 17).

4.6.1 Main Structural Lemmas: Lemmas 14 and 16

We start with some simple well known observations that we use repeatedly in this section.

These observations follow from results in [21]. We give proofs for completeness.

Lemma 11. Let G be an undirected graph, then the following are equivalent.

(1) Preprocessing Rule 1 applies (i.e. All 1

2

is not the unique solution to the LPVC(G).)

(2) There exists an independent set I of G such that surplus(I)  0.

(3) There exists an optimal solution x to LPVC(G) that assigns 0 to some vertex.

Proof. (1) =) (3): As we know that the optimum solution is half-integral, there exists an

optimum solution that assigns 0 or 1 to some vertex. Suppose no vertex is assigned 0. Then,

for any vertex which is assigned 1, its value can be reduced to 1

2

maintaining feasibility (as

all its neighbors have been assigned value � 1

2

) which is a contradiction to the optimality of

the given solution.

(3) =) (2): Let I = V x
0

, and suppose that surplus(I) > 0. Then consider the solution x0

that assigns 1/2 to vertices in I [N(I), retaining the value of x for the other vertices. Then

x0 is a feasible solution whose objective value w(x0) drops from w(x) by (|N(I)| � |I|)/2 =

surplus(I)/2 > 0 which is a contradiction to the optimality of x.

(2) =) (1): Setting all vertices in I to 0, all vertices in N(I) to 1 and setting the remaining

vertices to 1

2

gives a feasible solution whose objective value is at most |V |/2, and hence all 1

2

is not the unique solution to LPVC(G).

Lemma 12. Let G be an undirected graph, then the following are equivalent.

(1) Preprocessing Rule 1 or 2 or 3 applies.

(2) There exists an independent set I such that surplus(I)  1.

(3) There exists a vertex v such that an optimal solution x to LPVC(G \ {v}) assigns 0 to

some vertex.

Proof. The fact that (1) and (2) are equivalent follows from the definition of the preprocessing

rules and Lemma 11.

18

(3) =) (2). By Lemma 11, there exists an independent set I in G \ {v} whose surplus is at

most 0. The same set will have surplus at most 1 in G.

(2) =) (3). Let v 2 N(I). Then I is an independent set in G \ {v} with surplus at most

0, and hence by Lemma 11, there exists an optimal solution to LPVC(G \ {v}) that assigns
0 to some vertex.

We now prove an auxiliary lemma about the application of Preprocessing Rule 3 which will

be useful in simplifying later proofs.

Lemma 13. Let G be a graph and GR be the graph obtained from G by applying Preprocessing

Rule 3 on an independent set Z. Let z denote the newly added vertex corresponding to N(Z)

in GR.

1. If GR has an independent set I such that surplus(I) = p, then G also has an indepen-

dent set I 0 such that surplus(I 0) = p and |I 0| � |I|.
2. Furthermore, if z 2 I [N(I) then |I 0| > |I|.

Proof. Let Z denote the minimum surplus independent set on which Preprocessing Rule 3

has been applied and z denote the newly added vertex. Observe that since Preprocessing

Rule 3 applies on Z, we have that Z and N(Z) are independent sets, |N(Z)| = |Z|+ 1 and

|N(Z)| � 2.

Let I be an independent set of GR such that surplus(I) = p.

• If both I and N(I) do not contain z then we have that G has an independent set I

such that surplus(I) = p.

• Suppose z 2 I. Then consider the following set: I 0 := I \ {z} [N(Z). Notice that z

represents N(Z) and thus I does not have any neighbors of N(Z). This implies that

I 0 is an independent set in G. Now we will show that surplus(I 0) = p. We know that

|N(Z)| = |Z|+ 1 and N(I 0) = N(I) [Z. Thus,

|N(I 0)|� |I 0| = (|N(I)|+ |Z|)� |I 0|
= (|N(I)|+ |Z|)� (|I|� 1 + |N(Z)|)
= (|N(I)|+ |Z|)� (|I|+ |Z|)
= |N(I)|� |I| = surplus(I) = p.

• Suppose z 2 N(I). Then consider the following set: I 0 := I [Z. Notice that z

represents N(Z) and since z /2 I we have that I does not have any neighbors of Z.

This implies that I 0 is an independent set in G. We show that surplus(I 0) = p. We

know that |N(Z)| = |Z|+ 1. Thus,

|N(I 0)|� |I 0| = (|N(I)|� 1 + |N(Z)|)� |I 0|
= (|N(I)|� 1 + |N(Z)|)� (|I|+ |Z|)
= (|N(I)|+ |Z|)� (|I|+ |Z|)
= |N(I)|� |I| = surplus(I) = p.

19

From the construction of I 0, it is clear that |I 0| � |I| and if z 2 (I [N(I)) then |I 0| > |I|.
This completes the proof.

We now give some definitions that will be useful in formulating the statement of the main

structural lemma.

Definition 3. Let G be a graph and P = P
1

, P
2

, · · · , P` be a sequence of exhaustive ap-

plications of Preprocessing Rules 1, 2 and 3 applied in this order on G to obtain G0. Let

P
3

= Pa1 , Pa2 , · · · , Pat be the subsequence of P restricted to Preprocessing Rule 3. Further-

more let Zj, j 2 {a
1

, . . . , at} denote the minimum surplus independent set corresponding to

Pt on which the Preprocessing Rule 3 has been applied and zj denote the newly added vertex

(See Lemma 4). Let Z⇤ = {zj | j 2 {a
1

, . . . , at}} be the set of these newly added vertices.

• We say that an application of Preprocessing Rule 3 is trivial if the minimum surplus

independent set Zj on which Pj is applied has size 1, that is, |Zj | = 1.

• We say that all applications of Preprocessing Rule 3 are independent if for all j 2
{a

1

, . . . , at}, N [Zj] \ Z⇤ = ;.

Essentially, independent applications of Preprocessing Rule 3 mean that the set on which

the rule is applied, as well as all its neighbors are vertices in the original graph.

Next, we state and prove one of the main structural lemmas of this section.

Lemma 14. Let G = (V,E) be a graph on which Preprocessing Rules 1, 2 and 3 and the

Branching Rules B1, B2 and B3 do not apply. Then for any vertex v 2 V ,

1. Preprocessing Rules 1 and 2 have not been applied while obtaining R(G \ {v}) from

G \ {v};
2. and all applications of Preprocessing Rule 3 while obtaining R(G \ {v}) from G \ {v}

are independent and trivial.

Proof. Fix a vertex v. Let G
0

= G \ {v}, G
1

, . . . , Gt = R(G \ {v}) be a sequence of graphs

obtained by applying Preprocessing Rules 1, 2 and 3 in this order to obtain the reduced

graph R(G \ {v}).
We first observe that Preprocessing Rule 2 never applies in obtaining R(G \ {v}) from

G \ {v} since otherwise, B3 would have applied on G. Next, we show that Preprocessing

Rule 1 does not apply. Let q be the least integer such that Preprocessing Rule 1 applies on Gq

and it does not apply to any graph Gq0 , q0 < q. Suppose that q � 1. Then, only Preprocessing

Rule 3 has been applied on G
0

, . . . , Gq�1

. This implies that Gq has an independent set Iq
such that surplus(Iq)  0. Then, by Lemma 13, Gq�1

also has an independent set I 0q
such that surplus(I 0q)  0 and thus by Lemma 11 Preprocessing Rule 1 applies to Gq�1

.

This contradicts the assumption that on Gq�1

Preprocessing Rule 1 does not apply. Thus, we

conclude that q must be zero. So, G\{v} has an independent set I
0

such that surplus(I
0

)  0

in G \ {v} and thus I
0

is an independent set in G such that surplus(I
0

)  1 in G. By

Lemma 12 this implies that either of Preprocessing Rules 1, 2 or 3 is applicable on G, a

contradiction to the given assumption.

20

Now we show the second part of the lemma. By the first part we know that the Gi’s

have been obtained by applications of Preprocessing Rule 3 alone. Let Zi, 0  i  t� 1 be

the sets in Gi on which Preprocessing Rule 3 has been applied. Let the newly added vertex

corresponding to N(Zi) in this process be z0i. We now make the following claim.

Claim 5. For any i � 0, if Gi has an independent set Ii such that surplus(Ii) = 1, then

G has an independent set I such that |I| � |Ii| and surplus(I) = 2. Furthermore, if

(Ii [N(Ii)) \ {z
1

, . . . , zi�1

} 6= �, then |I| > |Ii|.

Proof. We prove the claim by induction on the length of the sequence of graphs. For the

base case consider q = 0. Since Preprocessing Rules 1, 2, and 3 do not apply on G, we

have that surplus(G) � 2. Since I
0

is an independent set in G \ {v} we have that I
0

is

an independent set in G also. Furthermore since surplus(I
0

) = 1 in G \ {v}, we have that

surplus(I
0

) = 2 in G, as surplus(G) � 2. This implies that G has an independent set

I
0

with surplus(I
0

) = 2 = surplus(G). Furthermore, since G
0

does not have any newly

introduced vertices, the last assertion is vacuously true. Now let q � 1. Suppose that Gq

has a set |Iq| and surplus(Iq) = 1. Thus, by Lemma 13, Gq�1

also has an independent set

I 0q such that |I 0q| � |Iq| and surplus(I 0q) = 1. Now by the induction hypothesis, G has an

independent set I such that |I| � |I 0q| � |Iq| and surplus(I) = 2 = surplus(G).

Next we consider the case when (Iq[N(Iq))\{z0
1

, . . . , z0q�1

} 6= ;. If z0q�1

/2 Iq[N(Iq) then

we have that Iq is an independent set in Gq�1

such that (Iq [N(Iq)) \ {z0
1

, . . . , z0q�2

} 6= ;.
Thus, by induction we have that G has an independent set I such that |I| > |Iq| and

surplus(I) = 2 = surplus(G). On the other hand, if z0q�1

2 Iq[N(Iq) then by Lemma 13, we

know that Gq�1

has an independent set I 0q such that |I 0q| > |Iq| and surplus(I 0q) = 1. Now by

the induction hypothesis we know that G has an independent set I such that |I| � |I 0q| > |Iq|
and surplus(I) = 2 = surplus(G). This concludes the proof of the claim.

We first show that all the applications of Preprocessing Rule 3 are trivial. Claim 5 implies

that if we have a non-trivial application of Preprocessing Rule 3 then G has an independent

set I such that |I| � 2 and surplus(I) = 2 = surplus(G). Then, B1 would apply on G, a

contradiction.

Finally, we show that all the applications of Preprocessing Rule 3 are independent. Let

q be the least integer such that the application of Preprocessing Rule 3 on Gq is not in-

dependent. That is, the application of Preprocessing Rule 3 on Gq0 , q0 < q, is trivial

and independent. Observe that q � 1. We already know that every application of Pre-

processing Rule 3 is trivial. This implies that the set Zq contains a single vertex. Let

Zq = {zq}. Since the application of Preprocessing Rule 3 on Zq is not independent we

have that (Zq [N(Zq)) \ {z0
1

, · · · , z0q�1

} 6= ;. We also know that surplus(Zq) = 1 and

thus by Claim 5 we have that G has an independent set I such that |I| � 2 > |Zq| and
surplus(I) = 2 = surplus(G). This implies that B1 would apply on G, a contradiction.

Hence, we conclude that all the applications of Preprocessing Rule 3 are independent. This

proves the lemma.

Let g(G) denote the girth of the graph G, that is, the length of the smallest cycle in G.

The next goal of this section is to obtain a lower bound on the girth of an irreducible graph.

Towards this, we first introduce the notion of an untouched vertex.

21

Definition 4. We say that a vertex v is untouched by an application of Preprocessing Rule

2 or Preprocessing Rule 3, if v /2 Z [N(Z), where Z is the set on which the rule is applied.

We now prove an auxiliary lemma regarding the application of the preprocessing rules on

graphs of a certain girth and following that, we will prove a lower bound on the girth of

irreducible graphs.

Lemma 15. Let G be a graph on which Preprocessing Rules 1, 2 and 3 and the Branching

Rules B1, B2, B3 do not apply and suppose that g(G) � 5. Then for any vertex v 2 V ,

any vertex x /2 N
2

[v] is untouched by the preprocessing rules applied to obtain the graph

R(G \ {v}) from G \ {v} and has the same degree as it does in G.

Proof. Since the preprocessing rules do not apply in G, the minimum degree of G is at

least 3 and since the graph G does not have cycles of length 3 or 4, for any vertex v, the

neighbors of v are independent and there are no edges between vertices in the first and second

neighborhood of v.

We know by Lemma 14 that only Preprocessing Rule 3 applies on the graph G \ {v}
and it applies only in a trivial and independent way. Let U = {u

1

, . . . , ut} be the degree 3

neighbors of v in G and let D represent the set of the remaining (high degree) neighbors of v.

Let P
1

, . . . , P` be the sequence of applications of Preprocessing Rule 3 on the graph G \ {v},
let Zi be the minimum surplus set corresponding to the application of Pi and let zi be the

new vertex created during the application of Pi.

We prove by induction on i, that

• the application Pi corresponds to a vertex uj 2 U ,

• any vertex x /2 N
2

[v] \D is untouched by this application, and

• after the application of Pi, the degree of x /2 N
2

[v] in the resulting graph is the same

as that in G.

In the base case, i = 1. Clearly, the only vertices of degree 2 in the graph G \ {v} are

the degree 3 neighbors of v. Hence, the application P
1

corresponds to some uj 2 U . Since

the graph G has girth at least 5, no vertex in D can lie in the set {uj} [N(uj) and hence

must be untouched by the application of P
1

. Since uj is a neighbor of v, it is clear that the

application of P
1

leaves any vertex disjoint from N
2

[v] untouched. Now, suppose that after

the application of P
1

, a vertex w disjoint from N
2

[v] \ D has lost a degree. Then, it must

be the case that the application of P
1

identified two of w’s neighbors, say w
1

and w
2

as the

vertex z
1

. But since P
1

is applied on the vertex uj , this implies the existence of a 4 cycle

uj , w1

, w, w
2

in G, which is a contradiction.

We assume as induction hypothesis that the claim holds for all i0 such that 1  i0 < i

for some i > 1. Now, consider the application of Pi. By Lemma 14, this application cannot

be on any of the vertices created by the application of Pi0 (for i0 < i), and by the induction

hypothesis, after the application of Pi�1

, any vertex disjoint fromN
2

[v]\D remains untouched

and retains the degree (which is � 3) it had in the original graph. Hence, the application of

Pi must occur on some vertex uj 2 U . Now, suppose that a vertex w disjoint from N
2

[v] \D

22

Figure 10: Cases of Lemma 16 when there is a 5 cycle or a 6 cycle in the graph

has lost a degree. Then, it must be the case that Pi identified two of w’s neighbors say w
1

and w
2

as the vertex zi. Since Pi is applied on the vertex uj , this implies the existence of a

4 cycle uj , w1

, w, w
2

in G, which is a contradiction. Finally, after the application of Pi, since

no vertex outside N
2

[v] \D has ever lost degree and they all had degree at least 3 to begin

with, we cannot apply Preprocessing Rule 3 any further. This completes the proof of the

claim.

Hence, after applying Preprocessing Rule 3 exhaustively on G \ {v}, any vertex disjoint

from N
2

[v] is untouched and has the same degree as in the graph G. This completes the

proof of the lemma.

Recall that the graph is irreducible if none of the preprocessing rules or Branching Rules B1

through B5 apply, i.e: the algorithm has reached B6.

Lemma 16. Let G be a connected 3-regular irreducible graph with at least 11 vertices. Then,

g(G) � 7.

Proof. 1. Suppose G contains a triangle v
1

, v
2

, v
3

. Let v
4

be the remaining neighbor of

v
1

. Now, G[N(v
1

) \ {v
4

}] is a clique, which implies that Branching Rule B2 applies

and hence contradicts the irreducibilty of G. Hence, g(G) � 4.

2. Suppose G contains a cycle v
1

, v
2

, v
3

, v
4

of length 4. Since G does not contain triangles,

it must be the case that v
1

and v
3

are independent. Recall that G has minimum surplus

2, and hence surplus of the set {v
1

, v
3

} is at least 2. Since v
2

and v
4

account for two

neighbors of both v
1

and v
3

, the neighborhood of {v
1

, v
3

} can contain at most 2 more

vertices (G is 3 regular). Since the minimum surplus of G is 2, |N({v
1

, v
3

})| = 4 and

hence {v
1

, v
3

} is a minimum surplus set of size 2, which implies that Branching Rule

B1 applies and hence contradicts the irreduciblity of G. Hence, g(G) � 5.

23

3. Suppose that G contains a 5 cycle v
1

, . . . , v
5

. Since g(G) � 5, this cycle does not

contain chords. Let v0i denote the remaining neighbor of the vertex vi in the graph G.

Since there are no triangles or 4 cycles, v0i 6= v0j for any i 6= j, and for any i and j such

that |i� j| = 1, v0i and v0j are independent. Now, we consider the following 2 cases.

Case 1: Suppose that for every i, j such that |i� j| 6= 1, v0i and v0j are adjacent. Then,
since G is a connected 3-regular graph, G has size 10, which is a contradiction.

Case 2: Suppose that for some i, j such that |i � j| 6= 1, v0i and v0j are independent

(see Figure 10). Assume without loss of generality that i = 1 and j = 3. Consider the

vertex v0
1

and let x and y be the remaining 2 neighbors of v0
1

(the first neighbor being

v
1

). Note that x or y cannot be incident to v
3

, since otherwise x or y will coincide with

v0
3

. Hence, v
3

is disjoint from N
2

[v0
1

]. By Lemma 14 and Lemma 15, only Preprocessing

Rule 3 applies in the graph G \ {v0
1

} and the applications are only on the vertices v
1

, x

and y leaving v
3

untouched and the degree of vertex v
3

unchanged. Now, let v̂
1

be the

vertex which is created as a result of applying Preprocessing Rule 3 on v
1

. Let v̂
4

be

the vertex created when v
4

is identified with another vertex during some application

of Preprocessing Rule 3. If v
4

is untouched, then we let v̂
4

= v
4

. Similarly, let v̂0
3

be

the vertex created when v0
3

is identified with another vertex during some application of

Preprocessing Rule 3 . If v0
3

is untouched, then we let v̂0
3

= v0
3

. Since v
3

is untouched

and its degree remains 3 in the graph R(G\{v0
1

}), the neighborhood of v
3

in this graph

can be covered by a 2 clique v̂
1

, v̂
4

and a vertex v̂0
3

, which implies that Branching Rule

B2 applies in this graph, implying that Branching Rule B5 applies in the graph G,

contradicting the irreduciblity of G. Hence, g(G) � 6.

4. Suppose that G contains a 6 cycle v
1

, . . . , v
6

. Since g(G) � 6, this cycle does not

contain chords. Let v0i denote the remaining neighbor of each vertex vi in the graph G.

Let x and y denote the remaining neighbors of v0
1

(see Figure 10). Note that both v
3

and v
5

are disjoint from N
2

[v0
1

] (if this were not the case, then we would have cycles of

length  5). Hence, by Lemma 14 and Lemma 15, we know that only Preprocessing

Rule 3 applies in the graph G \ {v0
1

} and the applications are only on the vertices v
1

,

x and y, leaving the vertices v
3

and v
5

untouched, and the degree of v
3

and v
5

in the

graph R(G \ {v0
1

}) is 3. Let v̂
1

be the vertex which is created as a result of applying

Preprocessing Rule 3 on v
1

. Let v̂
4

be the vertex created when v
4

is identified with

another vertex during some application of Preprocessing Rule 3. If v
4

is untouched,

then we let v̂
4

= v
4

. Now, in the graph R(G \ {v0
1

}), the vertices v
3

and v
5

are

independent and share two neighbors v̂
1

and v̂
4

. The fact that they have degree 3 each

and the surplus of graph R(G \ {v0
1

}) is at least 2 (Lemma 14, Lemma 12) implies that

{v
3

, v
5

} is a minimum surplus set of size at least 2 in the graph R(G \ {v0
1

}), which
implies that branching rule B2 applies in this graph, implying that Branching Rule B5

applies in the graph G, contradicting the irreduciblity of G. Hence, g(G) � 7.

This completes the proof of the lemma.

4.6.2 Correctness and Analysis of the last step

In this section we combine all the results proved above and show the existence of degree 4

vertices in subsequent branchings after B6. Towards this we prove the following lemma.

24

Lemma 17. Let G be a connected 3 regular irreducible graph on at least 11 vertices. Then,

for any vertex v 2 V ,

1. R(G \ {v}) contains three degree 4 vertices, say w
1

, w
2

, w
3

; and

2. for any wi, i 2 {1, 2, 3}, R(R(G \ {v}) \ {wi}) contains wj, i 6= j as a degree 4 vertex.

Proof. 1. Let v
1

, v
2

, v
3

be the neighbors of v. Since G was irreducible, B1, B2, B3 do not

apply on R(G\{v}) (else B5 would have applied on G). By Lemma 14 and Lemma 15,

we know that only Preprocessing Rule 3 would have been applied to get R(G \ {v})
from G \ {v} and the applications are only on these three vertices v

1

, v
2

, v
3

. Let w
1

, w
2

and w
3

be the three vertices which are created as a result of applying Preprocessing

Rule 3 on these three vertices respectively. We claim that the degree of each wi in the

resulting graph is 4. Suppose that the degree of wj is at most 3 for some j. But this

can happen only if there was an edge between two vertices which are at a distance of

2 from v, that is, a path of length 3 between wi and wj for some i 6= j. This implies

the existence of a cycle of length 5 in G, which contradicts Lemma 16.

2. Note that, by Lemma 15, it is su�cient to show that wi is disjoint from N
2

[wj] for any

i 6= j. Suppose that this is not the case and let wi lie in N
2

[wj]. First, suppose that wi

lies in N
2

[wj] \N1

[wj] and there is no wk in N
1

[wi]. Let x be a common neighbor of wi

and wj . This implies that, in G, x has paths of length 3 to v via wi and via wj , which

implies the existence of a cycle of length at most 6, a contradiction. Now, suppose that

wi lies in N
1

[wj]. But this can happen only if there was an edge between two vertices

which are at a distance of 2 from v. This implies the existence of a cycle of length 5 in

G, contradicting Lemma 16.

The next lemma shows the correctness of deleting vyz from the graph R(G \ {x}) without

branching.

Lemma 18. Let G be a connected irreducible graph on at least 11 vertices, v be a vertex

of degree 3, and x, y, z be the set of its neighbors. Then, G \ {x} contains a vertex cover of

size at most k which excludes v if and only if R(G \ {x}) contains a vertex cover of size at

most k � 3 which contains vyz, where vyz is the vertex created in the graph G \ {x} by the

application of Preprocessing Rule 3 on the vertex v.

Proof. We know by Lemma 15 that there will be exactly 3 applications of Preprocessing

Rule 3 in the graph G \ {x}, and they will be on the three neighbors of x. Let G
1

, G
2

, G
3

be

the graphs which result after each such application, in that order. We assume without loss

of generality that the third application of Preprocessing Rule 3 is on the vertex v.

By the correctness of Preprocessing Rule 3, if G \ {x} has a vertex cover of size at most

k which excludes v, then G
2

has a vertex cover of size at most k� 2 which excludes v. Since

this vertex cover must then contain y and z, it is easy to see that G
3

contains a vertex cover

of size at most k � 3 containing vyz.

Conversely, if G
3

has a vertex cover of size at most k�3 containing vyz, then replacing vyz
with the vertices y and z results in a vertex cover for G

2

of size at most k�2 containing y and

25

z (by the correctness of Preprocessing Rule 3). Again, by the correctness of Preprocessing

Rule 3, it follows that G \ {x} contains a vertex cover of size at most k containing y and z.

Since v is adjacent to only y and z in G\{x}, we may assume that this vertex cover excludes

v.

Thus, when Branching Rule B6 applies on the graph G, we know the following about the

graph.

• G is a 3 regular graph. This follows from the fact that Preprocessing Rules 1, 2 and 3

and the Branching Rule B4 do not apply.

• g(G) � 7. This follows from Lemma 16.

Let v be an arbitrary vertex and x, y and z be the neighbors of v. Since G is irreducible,

Lemma 17 implies that R(G \ {x}) contains 3 degree 4 vertices, w
1

, w
2

and w
3

. We let vyz
be w

1

. Lemma 17 also implies that for any i, the graph R(R(G \ {x}) \ {wi}) contains 2

degree 4 vertices. Since the vertex vyz is one of the three degree 4 vertices, in the graph

R(R(G \ {x}) \ vyz), the vertices w
2

and w
3

have degree 4 and one of the Branching Rules

B1, or B2, or B3 or B4 will apply in this graph. Hence, we combine the execution of the rule

B6 along with the subsequent execution of one of the rules B1, B2, B3 or B4 (see Fig. 5).

To analyze the drops in the measure for the combined application of these rules, we consider

each root to leaf path in the tree of Fig. 5 (b) and argue the drops in each path.

• Consider the subtree in which v is not picked in the vertex cover from G, that is, x

is picked in the vertex cover, following which we branch on some vertex w during the

subsequent branching, from the graph R(R(G \ {x}) \ vyz).
Let the instances (corresponding to the nodes of the subtree) be (G, k), (G

1

, k
1

),

(G
2

, k
2

) and (G0
2

, k0
2

). That is, G
1

= R(R(G \ {x}) \ {vyz}), G0
2

= R(G
1

\ {w})
and G

2

= R(G
1

\N [w]).

By Lemma 7, we know that µ(G\{x}, k�1)  µ(G, k)� 1

2

. This implies that µ(R(G\
{x}), k0)  µ(G, k)� 1

2

where (R(G \ {x}), k0) is the instance obtained by applying the

preprocessing rules on G \ {x}.
By Lemma 7, we also know that including vyz into the vertex cover will give a further

drop of 1

2

. Hence, µ(R(G \ {x}) \ {vyz}, k0 � 1)  µ(G, k) � 1. Applying further

preprocessing will not increase the measure. Hence µ(G
1

, k
1

)  µ(G, k)� 1.

Now, when we branch on the vertex w in the next step, we know that we use one of the

rulesB1, B2, B3 orB4. SinceB4 gives the worst branching vector, we assume that this

is the rule applied and hence µ(G
2

, k
2

)  µ(G
1

, k
1

)� 3

2

and µ(G0
2

, k0
2

)  µ(G
1

, k
1

)� 1

2

.

But this implies that µ(G
2

, k
2

)  µ(G, k)� 5

2

and µ(G0
2

, k0
2

)  µ(G, k)� 3

2

.

This completes the analysis of the branch of rule B6 where v is not included in the

vertex cover.

• Consider the subtree in which v is included in the vertex cover, by Lemma 17 we have

that R(G \ {v}) has exactly three degree 4 vertices, say w
1

, w
2

, w
3

and furthermore

for any wi, i 2 {1, 2, 3}, R(R(G \ {v}) \ {wi}) contains 2 degree 4 vertices. Since G

26

is irreducible, we have that for any vertex v in G, the Branching Rules B1, B2 and

B3 do not apply on the graph R(G \ {v}). Thus, we know that in the branch where

we include v in the vertex cover, the first branching rule that applies on the graph

R(G \ {v}) is B4. Without loss of generality, we assume that B4 is applied on the

vertex w
1

. Thus, in the branch where we include w
1

in the vertex cover, we know that

R(R(G \ {v}) \ {w
1

}) contains w
2

and w
3

as degree 4 vertices, This implies that in the

graph R(R(G \ {v}) \ {w
1

}) one of the Branching Rules B1, B2, B3 or B4 apply on a

vertex w⇤
1

. Hence, we combine the execution of the rule B6 along with the subsequent

executions of B4 and one of the rules B1, B2, B3 or B4 (see Fig. 5).

We let the instances corresponding to the nodes of this subtree be (G, k), (G
1

, k
1

),

(G
2

, k
2

), (G0
2

, k0
2

), (G
3

, k
3

) and (G0
3

, k0
3

), where G
1

= R(G \ {v}), G
2

= R(G
1

\N [w
1

]),

G0
2

= R(G
1

\ {w
1

}), G
3

= R(G0
2

\N [w⇤
1

]) and G0
3

= R(G0
2

\ {w⇤
1

}).
Lemma 7, and the fact that preprocessing rules do not increase the measure implies

that µ(G
1

, k
1

)  µ(G, k)� 1

2

.

Now, sinceB4 has been applied to branch on w
1

, the analysis of the drop of measure due

to B4 shows that µ(G
2

, k
2

)  µ(G
1

, k
1

)� 3

2

and µ(G0
2

, k0
2

)  µ(G
1

, k
1

)� 1

2

. Similarly,

since, in the graph G0
2

, we branch on vertex w⇤
1

using one of the rules B1, B2, B3 or

B4, we assume that we use B4 (since it has the worst branching factor) and get that

µ(G
3

, k
3

)  µ(G0
2

, k0
2

)� 3

2

and µ(G0
3

, k0
3

)  µ(G0
2

, k0
2

)� 1

2

.

Combining these, we get that µ(G
3

, k
3

)  µ(G, k)� 5

2

and µ(G0
3

, k0
3

)  µ(G, k)� 3

2

. This

completes the analysis of rule B6 where v is included in the vertex cover. Combining

the analysis for both the cases results in a branching vector of (3
2

, 5
2

, 5
2

, 3
2

, 2) for the rule

B6.

Finally, we combine all the above results to obtain the following theorem.

Theorem 2. Vertex Cover above LP can be solved in time O⇤((2.3146)k�vc⇤(G)).

Proof. Let us fix µ = µ(G, k) = k�vc⇤(G). We have thus shown that the preprocessing rules

do not increase the measure. Branching Rules B1 or B2 or B3 results in a (1, 1) decrease

in µ(G, k) = µ, resulting in the recurrence T (µ)  T (µ � 1) + T (µ � 1) which solves to

2µ = 2k�vc⇤(G).

Branching Rule B4 results in a (1
2

, 3
2

) decrease in µ(G, k) = µ, resulting in the recurrence

T (µ)  T (µ� 1

2

) + T (µ� 3

2

) which solves to 2.1479µ = 2.1479k�vc⇤(G).

Branching Rule B5 combined with the next step in the algorithm results in a (1, 3
2

, 3
2

)

branching vector, resulting in the recurrence T (µ)  T (µ � 1) + 2T (µ � 3

2

) which solves to

2.3146µ = 2.3146k�vc⇤(G).

We analyzed the way the algorithm works after an application of Branching Rule B6

before Theorem 2. An overview of drop in measure is given in Figure 9.

This leads to a (3
2

, 5
2

, 2, 3
2

, 5
2

) branching vector, resulting in the recurrence T (µ)  T (µ�
1) + 2T (µ� 3

2

) which solves to 2.3146µ = 2.3146k�vc⇤(G).

Thus, we get an O⇤(2.3146(k�vc⇤(G))) algorithm for Vertex Cover above LP.

27

5 Applications

In this section we give several applications of the algorithm developed for Vertex Cover

above LP.

5.1 An algorithm for Above Guarantee Vertex Cover

Since the value of the LP relaxation is at least the size of the maximum matching, our

algorithm also runs in time O⇤(2.3146k�m) where k is the size of the minimum vertex cover

and m is the size of the maximum matching.

Theorem 3. Above Guarantee Vertex Cover can be solved in time O⇤(2.3146`) time,

where ` is the excess of the minimum vertex cover size above the size of the maximum match-

ing.

Now by the known reductions in [9, 18, 24] (see also Figure 1) we get the following corollary

to Theorem 3.

Corollary 2. Almost 2-SAT, Almost 2-SAT(v), RHorn-Backdoor Set Detection

can be solved in time O⇤(2.3146k), and KVDpm can be solved in time O⇤(2.3146
k
2) =

O⇤(1.5214k).

5.2 Algorithms for Odd Cycle Transversal and Split Vertex Deletion

We describe a generic algorithm for both Odd Cycle Transversal and Split Vertex

Deletion. Let X,Y 2 {Clique, Independent Set}. A graph G is called an (X,Y)-graph if

its vertices can be partitioned into X and Y . Observe that when X = Y = independent

set, this corresponds to a bipartite graph and when X = clique and Y = independent set,

this corresponds to a split graph. In this section we outline an algorithm that runs in time

O⇤(2.3146k) and solves the following problem.

(X,Y)-Graph Vertex Deletion

Instance: An undirected graph G and a positive integer k.

Parameter: k.

Problem: Does G have a vertex subset S of size at most k such that

its deletion leaves a (X,Y)-graph?

We solve the (X,Y)-Graph Vertex Deletion problem by using a parameter preserving

reduction to the Almost 2 SAT(Variable) problem.

Construction : Given a graph G = (V,E) and (X,Y), we construct a 2-SAT

formula �(G,X, Y) as follows. The formula �(G,X, Y) has a variable xv for

each vertex v 2 V . We now add the following clauses to �(G,X, Y). If X =

clique, then, for every non-edge (u, v) /2 E, we add the clause (xu _ xv). If X =

independent set, then for every edge (u, v) 2 E, we add the clause (xu _ xv).

Similarly, if Y = clique, then for every non-edge (u, v) /2 E, we add the clause

28

(x̄u _ x̄v) and if Y = independent set, then for every edge (u, v) 2 E, we add the

clause (x̄u _ x̄v). This completes the construction of �(G,X, Y).

Lemma 19. Given a graph G = (V,E) and (X,Y), let �(G,X, Y) be the 2-SAT formula ob-

tained by the above construction. Then, (G, k) is a Yes instance of (X,Y)-Graph Vertex

Deletion i↵ (�(G,X, Y), k) is a Yes instance of Almost 2 SAT(Variable).

Proof. Suppose there is a set S ✓ V such that |S|  k and G \ S is an (X,Y)-graph. Let

Sv be the set of variables of � = �(G,X, Y) which correspond to the vertices in S. Clearly,

|Sv|  k. We claim that � \ Sv is satisfiable by the following assignment. For each vertex in

the X-partition of G \ S, assign the corresponding variable the value 0 and for each vertex

in the Y -partition of G \S, assign the corresponding variable the value 1. Suppose that this

assignment does not satisfy � \ Sv and let C be an unsatisfied clause. By the construction,

we know that C is of the form (xu_xv) or (x̄u_ x̄v). We consider only the first case, since the

second is analogous to the first. If (u, v) 2 E, then it must be the case that X = independent

set (by construction). Since this clause is unsatisfied, the value assigned to both xu and xv
was 0. But this implies that u and v lie in the X-partition of G \S, where X = independent

set, which is a contradiction. Similarly, if (u, v) /2 E, then it must be the case that X =

clique (by construction). Since this clause is unsatisfied, the value assigned to both xu and

xv was 0. But this implies that u and v lie in the X-partition of G \ S, where X = clique,

which is a contradiction.

Conversely, let Sv be a set of variables of � = �(G,X, Y) such that |Sv|  k and � \ Sv

is satisfiable. Let ⇢ be a satisfying assignment to � \ Sv and let S be the set of vertices of

G which correspond to Sv. Clearly, |S|  k. We now define the following partition of the

vertices in G \ S. For each vertex of G \ S, if the corresponding variable is assigned 0 by ⇢,

then add it into partition A or into partition B otherwise. We claim that the partition (A,B)

of G \ S is an (X,Y) partition. Suppose that A is not an X-partition, where X = clique.

We only consider this case since the remaining cases can be argued analogously. Consider a

non-edge (u, v) such that u, v 2 A. But, by the construction, � contains the clause (xu_xv).

Since G \S contains both the vertices u and v, it must be the case that � \Sv contains both

xu and xv, implying that it contains the clause (xu _ xv). But, by the construction of the

set A, ⇢ assigned 0 to both xu and xv, which is a contradiction. This completes the proof of

the lemma.

Combining the above lemma with Theorem 3, we have the following.

Theorem 4. (X,Y)-Graph Vertex Deletion can be solved in time O⇤(2.3146k).

As a corollary to the above theorem we get the following new results.

Corollary 3. Odd Cycle Transversal and Split Vertex Deletion can be solved in

time O⇤(2.3146k).

Observe that the reduction from Edge Bipartization to Odd Cycle Transversal rep-

resented in Figure 1, along with the above corollary implies that Edge Bipartization can

also be solved in time O⇤(2.3146k). However, we note that there is an algorithm for this

problem due to Guo et al. [10], running in time O⇤(2k).

29

5.3 An algorithm for König Vertex Deletion

A graph G is called König if the size of a minimum vertex cover equals that of a maximum

matching in the graph. Clearly bipartite graphs are König but there are non-bipartite graphs

that are König (a triangle with an edge attached to one of its vertices, for example). Thus the

König Vertex Deletion problem, as stated below, is closely connected to Odd Cycle

Transversal.

König Vertex Deletion (KVD)

Instance: An undirected graph G and a positive integer k.

Parameter: k.

Problem: Does G have a vertex subset S of size at most k such

that G \ S is a König graph?

If the input graph G to König Vertex Deletion has a perfect matching then this problem

is called KVDpm. By Corollary 2, we already know that KVDpm has an algorithm with

running time O⇤(1.5214k) by a polynomial time reduction to agvc, that maps k to k/2.

However, there is no known reduction if we do not assume that the input graph has a

perfect matching and it required several interesting structural theorems in [19] to show that

KVD can be solved as fast as agvc. Here, we outline an algorithm for KVD that runs in

O⇤(1.5214k) and uses an interesting reduction rule. However, for our algorithm we take a

detour and solve a slightly di↵erent, although equally interesting problem. Given a graph,

a set S of vertices is called König vertex deletion set (kvd set) if its removal leaves a König

graph. The auxiliary problem we study is following.

Vertex Cover Param by KVD

Instance: An undirected graph G, a König vertex deletion set S of size

at most k and a positive integer `.

Parameter: k.

Problem: Does G have a vertex cover of size at most `?

This fits into the recent study of problems parameterized by other structural parameters.

See, for example, Odd Cycle Transversal parameterized by various structural parame-

ters [13] or Treewidth parameterized by vertex cover [1] or Vertex Cover parameterized

by feedback vertex set [12] or Dominating Set parameterized by max-leaf number [7]. For

our proofs we will use the following characterization of König graphs.

Lemma 20. [19, Lemma 1] A graph G = (V,E) is König if and only if there exists a

bipartition of V into V
1

] V
2

, with V
1

a vertex cover of G such that there exists a matching

across the cut (V
1

, V
2

) saturating every vertex of V
1

.

Note that in Vertex Cover param by KVD, G \ S is a König graph. So one could

branch on all subsets of S to include in the output vertex cover, and for those elements not

picked in S, we could pick its neighbors in G \ S and delete them. However, the resulting

graph need not be König adding to the complications. Note, however, that such an algorithm

30

would yield an O⇤(2k) algorithm for Vertex Cover Param by OCT. That is, if S were

an odd cycle transversal then the resulting graph after deleting the neighbors of vertices not

picked from S will remain a bipartite graph, where an optimum vertex cover can be found

in polynomial time.

Given a graph G = (V,E) and two disjoint vertex subsets V
1

, V
2

of V , we let (V
1

, V
2

)

denote the bipartite graph with vertex set V
1

[V
2

and the edge set described as {{u, v} :

{u, v} 2 E and u 2 V
1

, v 2 V
2

}. Now, we describe an algorithm based on Theorem 1, that

solves Vertex Cover param by KVD in time O⇤(1.5214k).

Theorem 5. Vertex Cover Param by KVD can be solved in time O⇤(1.5214k).

Proof. Let G be the input graph, S be a kvd set of size at most k. We first apply Lemma 1

on G = (V,E) and obtain an optimum solution to LPVC(G) such that all 1

2

is the unique

optimum solution to LPVC(G[V x
1/2]). Due to Lemma 2, this implies that there exists a

minimum vertex cover of G that contains all the vertices in V x
1

and none of the vertices

in V x
0

. Hence, the problem reduces to finding a vertex cover of size `0 = ` � |V x
1

| for the

graph G0 = G[V x
1/2]. Before we describe the rest of the algorithm, we prove the following

lemma regarding kvd sets in G and G0 which shows that if G has a kvd set of size at most

k then so does G0. Even though this looks straightforward, the fact that König graphs are

not hereditary (i.e. induced subgraphs of König graphs need not be König) makes this a

non-trivial claim to prove.

Lemma 21. Let G and G0 be defined as above. Let S be a kvd set of graph G of size at most

k. Then, there is a kvd set of graph G0 of size at most k.

Proof. It is known that the sets (V x
0

, V x
1

, V x
1/2) form a crown decomposition of the graph

G [4]. In other words, N(V x
0

) = V x
1

and there is a matching saturating V x
1

in the bipartite

graph (V x
1

, V x
0

). The set V x
0

is called the crown and the set V x
1

is called the head of the

decomposition. For ease of presentation, we will refer to the set V x
0

as C, V x
1

as H and the

set V x
1/2 as R. In accordance with Lemma 20, let A be the minimum vertex cover and let I

be the corresponding independent set of G \ S such that there is a matching saturating A

across the bipartite graph (A, I). First of all, note that if the set S is disjoint from C [H,

H ✓ A, and C ✓ I, we are done, since the set S itself can be taken as a kvd set for G0. This
last assertion follows because there exists a matching saturating H into C. Hence, we may

assume that this is not the case. However, we will argue that given a kvd set of G of size at

most k we will always be able to modify it in a way that it is of size at most k, it is disjoint

from C [H, H ✓ A, and C ✓ I. This will allow us to prove our lemma. Towards this, we

now consider the set H 0 = H \ I and consider the following two cases.

1. H 0 is empty. We now consider the set S0 = S \ (C [H) and claim that S0 is also a kvd

set of G of size at most k such that G \ S0 has a vertex cover A0 = (A \ C) [H with

the corresponding independent set being I 0 = I [C. In other words, we move all the

vertices of H to A and the vertices of C to I. Clearly, the size of the set S0 is at most

that of S. The set I 0 is independent since I was intially independent, and the newly

added vertices have edges only to vertices of H, which are not in I 0. Hence, the set A0

is indeed a vertex cover of G\S0. Now, the vertices of R, which lie in A, (and hence A0)

31

Figure 11: An illustration of case 2 of Lemma 21

were saturated by vertices not in H, since H \ I was empty. Hence, we may retain the

matching edges saturating these vertices, and as for the vertices of H, we may use the

matching edges given by the crown decomposition to saturate these vertices and thus

there is a matching saturating every vertex in A0 across the bipartite graph (A0, I 0).
Hence, we now have a kvd set S0 disjoint from C [H, such that H is part of the vertex

cover and C lies in the independent set of the König graph G \ S0.

2. H 0 is non empty. Let C
1

be the set of vertices in A \ C which are adjacent to H 0 (see
Fig. 11) , let C

2

be the set of vertices in C \S, which are adjacent to H 0, and let P be

the set of vertices of R\A which are saturated by vertices of H 0 in the bipartite graph

(A, I). We now consider the set S0 = (S \C
2

)[P and claim that S0 is also a kvd set of

G of size at most k such that G\S0 has a minimum vertex cover A0 = (A\(C
1

[P))[H 0

with the corresponding independent set being I 0 = (I \H 0)[(C
1

[C
2

). In other words,

we move the set H 0 to A, the sets C
1

and C
2

to I and the set P to S. The set I 0 is
independent since I was independent and the vertices added to I are adjacent only to

vertices of H, which are not in I 0. Hence, A0 is indeed a vertex cover of G \ S0. To

see that there is still a matching saturating A0 into I 0, note that any vertex previously

saturated by a vertex not in H can still be saturated by the same vertex. As for vertices

of H 0, which have been newly added to A, they can be saturated by the vertices in

C
1

[C
2

. Observe that C
1

[C
2

is precisely the neighborhood of H 0 in C and since there

is a matching saturating H in the bipartite graph (H,C) by Hall’s Matching Theorem

we have that for every subset Ĥ ✓ H, |N(Ĥ) \ (C
1

[C
2

)| � |Ĥ|. Hence, by Hall’s

Matching Theorem there is a matching saturating A0 in the bipartite graph (A0, I 0). It
now remains to show that |S0|  k.

Since N(H 0) = C
1

[C
2

in the bipartite graph (C,H), we know that |C
1

|+ |C
2

| � |H 0|.
In addition, the vertices of C

1

have to be saturated in the bipartite graph (A, I) by

vertices in H 0. Hence, we also have that |C
1

|+ |P |  |H 0|. This implies that |C
2

| � |P |.
Hence, |S0|  |S|  k. This completes the proof of the claim. But now, notice that we

have a kvd set of size at most k such that there are no vertices of H in the independent

set side of the corresponding König graph. Thus, we have fallen into Case 1, which has

been handled above.

32

This completes the proof of the lemma.

We now show that µ = vc(G0)� vc⇤(G0)  k
2

. Let O be a kvd set of G0 and define G00 as the
König graph G0\O. It is well known that in König graphs, |M | = vc(G00) = vc⇤(G00), whereM
is a maximum matching in the graph G00. This implies that vc(G0)  vc(G00)+|O| = |M |+|O|.
But, we also know that vc⇤(G0) � |M |+ 1

2

|O| and hence, vc(G0)�vc⇤(G0)  1

2

|O|. By Lemma

21, we know that there is an O such that |O|  k and hence, vc(G0)� vc⇤(G0)  k
2

.

By Corollary 1, we can find a minimum vertex cover of G0 in time O⇤(2.3146vc(G0

)�vc⇤(G0

))

and hence in time O⇤(2.3146k/2). If the size of the minimum vertex cover obtained for G0 is
at most `0, then we return yes else we return no. We complete the proof of the theorem with

a remark that, in the algorithm described above, we do not, in fact, even require a kvd set

to be part of the input.

It is known that, given a minimum vertex cover, a minimum sized kvd set can be computed

in polynomial time [19]. Hence, Theorem 5 has the following corollary.

Corollary 4. KVD can be solved in time O⇤(1.5214k).

Since the size of a minimum Odd Cycle Transversal is at least the size of a minimum König

Vertex Deletion set, we also have the following corollary.

Corollary 5. Vertex Cover Param by OCT can be solved in time O⇤(1.5214k).

5.4 A simple improved kernel for Vertex Cover

We give a kernelization for Vertex Cover based on Theorem 1 as follows. Exhaustively,

apply the Preprocessing rules 1, 2 and 3 (see Section 3). When the rules no longer apply, if

k � vc⇤(G)  log k, then solve the problem in time O⇤(2.3146log k) = O(nO(1)). Otherwise,

just return the instance. We claim that the number of vertices in the returned instance is

at most 2k � 2 log k. Since k � vc⇤(G) > log k, vc⇤(G) is upper bounded by k � log k. But,

we also know that when Preprocessing Rule 1 is no longer applicable, all 1

2

is the unique

optimum to LPVC(G) and hence, the number of vertices in the graph G is twice the value

of the optimum value of LPVC(G). Hence, |V | = 2vc⇤(G)  2(k � log k). Observe that by

the same method we can also show that in the reduced instance the number of vertices is

upper bounded by 2k � c log k for any fixed constant c. Independently, Lampis [15] has also

shown an upper bound of 2k� c log k on the size of a kernel for vertex cover for any fixed

constant c.

6 Conclusion

We have demonstrated that using the change in LP values to analyze branching algorithms

can give powerful results for parameterized complexity. We believe that our algorithm is

the beginning of a race to improve the running time bound for agvc. Furthermore, the

running time bound for the classical vertex cover problem, has seen no improvement

in the last several years after a number of initial results. We believe that our algorithm

may lead towards an improvement in this time bound by reducing the need to resort to too

33

many refined branchings, which is possibly the reason why the progress in this direction has

stagnated.

Our other contribution is to exhibit several parameterized problems that are equivalent

to or reduce to agvc through parameterized reductions. We observe that as the parame-

ter change in these reductions are linear, any upper or lower bound results for kernels for

one problem will carry over for the other problems too (subject to the directions of the

reductions). For instance, recently, Kratsch and Wahlström [14] studied the kernelization

complexity of agvc and obtained a randomized polynomial sized kernel for this problem

through matroid based techniques. This implies a randomized polynomial kernel for all the

problems in this paper.

Acknowledgements We would like to thank the anonymous reviewers for several useful

comments on the presentation of our results.

References

[1] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch, Preprocessing for treewidth:

A combinatorial analysis through kernelization, in ICALP (1), 2011, pp. 437–448.

[2] L. Cai, Fixed-parameter tractability of graph modification problems for hereditary prop-

erties, Inf. Process. Lett., 58 (1996), pp. 171–176.

[3] J. Chen, I. A. Kanj, and G. Xia, Improved upper bounds for vertex cover, Theor.

Comput. Sci., 411 (2010), pp. 3736–3756.

[4] M. Chleb́ık and J. Chleb́ıková, Crown reductions for the minimum weighted vertex

cover problem, Discrete Applied Mathematics, 156 (2008), pp. 292–312.

[5] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk, On multiway

cut parameterized above lower bounds, TOCT, 5 (2013), p. 3.

[6] R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer-Verlag,

New York, 1999.

[7] M. R. Fellows, D. Lokshtanov, N. Misra, M. Mnich, F. A. Rosamond, and

S. Saurabh, The complexity ecology of parameters: An illustration using bounded max

leaf number, Theory Comput. Syst., 45 (2009), pp. 822–848.

[8] J. Flum and M. Grohe, Parameterized Complexity Theory, Texts in Theoretical Com-

puter Science. An EATCS Series, Springer-Verlag, Berlin, 2006.

[9] G. Gottlob and S. Szeider, Fixed-parameter algorithms for artificial intelligence,

constraint satisfaction and database problems, Comput. J., 51 (2008), pp. 303–325.

[10] J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke,

Compression-based fixed-parameter algorithms for feedback vertex set and edge bipar-

tization, J. Comput. Syst. Sci., 72 (2006), pp. 1386–1396.

34

[11] F. Hüffner, Algorithm engineering for optimal graph bipartization, J. Graph Algo-

rithms Appl., 13 (2009), pp. 77–98.

[12] B. M. P. Jansen and H. L. Bodlaender, Vertex cover kernelization revisited - upper

and lower bounds for a refined parameter, Theory Comput. Syst., 53 (2013), pp. 263–299.

[13] B. M. P. Jansen and S. Kratsch, On polynomial kernels for structural parameteri-

zations of odd cycle transversal, in IPEC, 2011, pp. 132–144.

[14] S. Kratsch and M. Wahlström, Representative sets and irrelevant vertices: New

tools for kernelization, in FOCS, 2012, pp. 450–459.

[15] M. Lampis, A kernel of order 2 k-c log k for vertex cover, Inf. Process. Lett., 111 (2011),

pp. 1089–1091.

[16] D. Lokshtanov, S. Saurabh, and S. Sikdar, Simpler parameterized algorithm for

OCT, in IWOCA, 2009, pp. 380–384.

[17] M. Mahajan and V. Raman, Parameterizing above guaranteed values: MaxSat and

MaxCut, J. Algorithms, 31 (1999), pp. 335–354.

[18] D. Marx and I. Razgon, Constant ratio fixed-parameter approximation of the edge

multicut problem, Inf. Process. Lett., 109 (2009), pp. 1161–1166.

[19] S. Mishra, V. Raman, S. Saurabh, S. Sikdar, and C. R. Subramanian, The

complexity of König subgraph problems and above-guarantee vertex cover, Algorithmica,

58 (2010).

[20] G. L. Nemhauser and L. E. Trotter, Properties of vertex packing and independence

system polyhedra, Mathematical Programming, 6 (1974), pp. 48–61.

[21] , Vertex packings: Structural properties and algorithms, Mathematical Program-

ming, 8 (1975), pp. 232–248.

[22] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, vol. 31 of Oxford Lecture

Series in Mathematics and its Applications, Oxford University Press, Oxford, 2006.

[23] J.-C. Picard and M. Queyranne, On the integer-valued variables in the linear vertex

packing problem, Mathematical Programming, 12 (1977), pp. 97–101.

[24] V. Raman, M. S. Ramanujan, and S. Saurabh, Paths, flowers and vertex cover, in

ESA, 2011, pp. 382–393.

[25] I. Razgon and B. O’Sullivan, Almost 2-SAT is fixed-parameter tractable., J. Com-

put. Syst. Sci., 75 (2009), pp. 435–450.

[26] B. A. Reed, K. Smith, and A. Vetta, Finding odd cycle transversals, Oper. Res.

Lett., 32 (2004), pp. 299–301.

35

7 Appendix: Problem Definitions

Vertex Cover

Instance: An undirected graph G and a positive integer k.

Parameter: k.

Problem: Does G have a vertex cover of of size at most k?

Above Guarantee Vertex Cover (agvc)

Instance: An undirected graph G, a maximum matching M and

a positive integer `.

Parameter: `.

Problem: Does G have a vertex cover of of size at most |M |+ `?

Vertex Cover above LP

Instance: An undirected graph G, positive integers k and dvc⇤(G)e,
where vc⇤(G) is the minimum value of LPVC.

Parameter: k � dvc⇤(G)e.
Problem: Does G have a vertex cover of of size at most k?

A graph G is called an bipartite if its vertices can be partitioned into X and Y such that X

and Y are independent sets.

Odd Cycle Transveral (OCT)

Instance: An undirected graph G and a positive integer k.

Parameter: k.

Problem: Does G have a vertex subset S of size at most k such

that G \ S is a bipartite graph?

Edge Bipartization (EB)

Instance: An undirected graph G and a positive integer k.

Parameter: k.

Problem: Does G have an edge subset S of size at most k such

that G0 = (V,E \ S) is a bipartite graph?

A graph G is called an split if its vertices can be partitioned into X and Y such that X is a

clique and Y is an independent set.

Split Vertex Deletion

Instance: An undirected graph G and a positive integer k.

Parameter: k.

Problem: Does G have a vertex subset S of size at most k such

that G \ S is a split graph?

36

A graph G is called an König if the size of a maximum matching is equal to the size of a

minimum vertex cover.

König Vertex Deletion (KVD)

Instance: An undirected graph G and a positive integer k.

Parameter: k.

Problem: Does G have a vertex subset S of size at most k such

that G \ S is a König graph?

If the input graph to KVD has a perfect matching then we call it KVDpm.

Given a 2-SAT formula � on variables x
1

, . . . , xn, and with clauses C
1

, . . . , Cm, we define

deleting a clause from � as removing the clause from the formula � and deleting a variable

from � as removing all the clauses which involve that variable, from �.

Almost 2-SAT

Instance: A 2-SAT formula � and a positive integer k.

Parameter: k.

Problem: Does there exist a set of at most k clauses, whose deletion

from � makes the resulting formula satisfiable?

Almost 2-SAT-VARIABLE VERSION (Almost 2-SAT(v))

Instance: A 2-SAT formula � and a positive integer k.

Parameter: k.

Problem: Does there exist a set of at most k variables, whose deletion

from � makes the resulting formula satisfiable?

Given a graph G, a vertex subset K of G is said to be a König vertex deletion (KVD) set if

the graph G \K is a König graph.

Vertex Cover Param By KVD

Instance: An undirected graph G, a positive integer k, and a set K,

which is a KVD set for G.

Parameter: |K|.
Problem: Does G have a vertex cover of size at most k?

Vertex Cover Param By OCT

Instance: An undirected graph G, a positive integer k, and a set K,

which is an OCT for G.

Parameter: |K|.
Problem: Does G have a vertex cover of size at most k?

37

Horn denotes the set of CNF formulas where each clause contains at most one positive literal.

RHorn denotes the class of renamable Horn CNF formulas, that is, of CNF formulas F for

which there exists a set X ⇢ var(F) such that, replacing in the clauses of F the literal x by

x̄ and the literal x̄ by x whenever x 2 X, yields a Horn formula. The set var(F) contains the

variables contained in F . Obviously, RHorn properly contains Horn.For a CNF formula F

and a set of variables B ✓ var(F) let F \B denote the CNF formula {C \ (B[B) : C 2 F},
that is, set of clauses obtained after deleting the variables and its negation in the set B. For

a formula F , we say that a set B ✓ var(F) is deletion RHorn-backdoor set if F \ B is in

RHorn.

RHorn-Backdoor Set Detection (RHBDS)

Instance: A CNF formula � and a positive integer k.

Parameter: k.

Problem: Does there exists a deletion RHorn-backdoor set of size

at most k?

38

