
Consensus Patterns (Probably) Has no EPTAS

Christina Boucher∗ Christine Lo∗ Daniel Lokshantov∗

June 23, 2015

Abstract

Given n length-L strings S = {s1, . . . , sn} over a constant size alphabet Σ together with
an integer `, where ` ≤ L, the objective of Consensus Patterns is to find a length-` string s,
a substring ti of each si in S such that

∑
∀i d(ti, s) is minimized. Here d(x, y) denotes the

Hamming distance between the two strings x and y. Consensus Patterns admits a PTAS [Li
et al., JCSS 2002] is fixed parameter tractable when parameterized by the objective function
value [Marx, SICOMP 2008], and although it is a well-studied problem, improvement of the
PTAS to an EPTAS seemed elusive. We prove that Consensus Patterns does not admit an
EPTAS unless FPT=W[1], answering an open problem from [Fellows et al., STACS 2002,
Combinatorica 2006]. To the best of our knowledge, Consensus Patterns is the first problem
that admits a PTAS, and is fixed parameter tractable when parameterized by the value of the
objective function but does not admit an EPTAS under plausible complexity assumptions.
The proof of our hardness of approximation result combines parameterized reductions and
gap preserving reductions in a novel manner.

1 Introduction

Lanctot et al. [15] initiated the study of distinguishing string selection problems in bioinformatics,
where we seek a representative string satisfying some distance constraints from each of the
input strings. The Consensus Patterns problem falls within this broad class of stringology
problems. Given n length-L strings S = {s1, . . . , sn} over a constant size alphabet Σ together
with an integer `, where ` ≤ L, the objective of Consensus Patterns is to find a length-` string
s, a length-` substring ti of each si in S such that

∑
∀i d(ti, s) is minimized. Here d(x, y)

denotes the Hamming distance between the two strings x and y. One specific application of
Consensus Patterns in bioinformatics is the problem of finding transcription factor binding
sites [15, 22]. Transcription factors are proteins that bind to promoter regions in the genome
and have the effect of regulating the expression of one or more genes. Hence, the region where
a transcription factor binds is very well-conserved, and the problem of detecting such regions
can be extrapolated to the problem of finding the substrings {t1, . . . , tn}.

Consensus Patterns is NP-hard even when the alphabet is binary [16], so we do not expect a
polynomial-time algorithm for the problem. On the other hand, the problem admits a polynomial
time approximation scheme (PTAS), which finds a solution that is at most a factor (1 + ε)

worse than the optimum [16] in nO(1
ε2

log 1
ε
)-time. While a superpolynomial dependence of the

running time on 1
ε is implied by the NP-hardness of Consensus Patterns, there is still room for

faster approximation schemes for the problem and so a significant effort has been invested in
attempting on proving tighter bounds on the running time of the PTAS [4, 5]. If the exponent
of the polynomial in the running time of a PTAS is independent of ε then the PTAS is called

∗Department of Computer Science and Engineering, University of California, San Diego

1

an efficient PTAS (EPTAS). An interesting question, posed by Fellows et al. [9] is whether
Consensus Patterns admits an EPTAS.

The difference in running time of a PTAS and an EPTAS can be quite dramatic. For
instance, running a O(21/εn)-time algorithm is reasonable for ε = 1

10 and n = 1000, whereas

running a O(n1/ε)-time algorithm is infeasible on this same input. Hence, considerable effort
has been devoted to improving PTASs to EPTASs, and showing that such an improvement is
unlikely for some problems. For example, Arora [2] gave a nO(1/ε)-time PTAS for Euclidean
TSP, which was then improved to a O(2O(1/ε2)n2)-time algorithm in the journal version of the
paper [3]. On the other hand Independent Set admits a PTAS on unit disk graphs [14] but
Marx [18] showed that it does not admit an EPTAS assuming FPT 6=W[1]—a widely believed
assumption from parameterized complexity. Many more examples of PTASs that have been
improved to EPTASs, and problems for which there exists a PTAS but the existence of an
EPTAS has been ruled out under the assumption that FPT 6=W[1] can be found in the survey
of Marx [19]. In this paper we show that assuming FPT 6=W[1], Consensus Patterns does not
admit an EPTAS, resolving the open problem of Fellows et al. [9]. Since Consensus Patterns
has a PTAS and is FPT, standard methods for ruling out an EPTAS cannot be applied. We
discuss this in more details in Section 1.1. Our proof avoids this obstacle by combining gap
preseving reductions and parameterized reductions in a novel manner.

1.1 Methods

Our lower bounds are proved under the assumption FPT 6=W[1], a standard assumption in
parameterized complexity that we will briefly discuss here. In a parameterized problem every
instance I comes with a parameter k. A parameterized problem is said to be fixed parameter
tractable (FPT) if there is an algorithm solving instances of the problem in time f(k)|I|O(1) for
some function f depending only on k and not on |I|. The class of all fixed parameter tractable
problems is denoted by FPT. The class W[1] of parameterized problems is the basic class for
fixed parameter intractability, FPT ⊆ W[1] and the containment is believed to be proper.
A parameterized problem Π with the property that an FPT algorithm for Π would imply that
FPT=W[1] is called W[1]-hard. Thus demonstrating W[1]-hardness of a parameterized problem
implies that it is unlikely that the problem is FPT. We refer the reader to the textbooks [6, 8,
11, 21] for a more thorough discussion of parameterized complexity.

W[1]-hardness is frequently used to rule out EPTAS’s for optimization problems, since an
EPTAS for an optimization problem automatically yields a FPT algorithm for the corresponding
decision problem parameterized by the value of the objective function [19]. More specifically,
if we set ε = 1

2α , where α is the value of the objective function, then a (1 + ε)-approximation
algorithm would distinguish between “yes” and “no” instances of the problem. Hence, an
EPTAS could be used to solve the problem in O(f(ε)nO(1)) = O(g(α)nO(1))-time. Hence, if
a problem is W[1]-hard when parameterized by the value of the objective function then the
corresponding optimization problem does not admit an EPTAS unless FPT=W[1]. To the
best of our knowledge, all known results ruling out EPTASs for problems for which a PTAS
is known use this approach. However, this approach cannot be used to rule out an EPTAS
for Consensus Patterns because Consensus Patterns parameterized by d has been shown to be
FPT by Marx [17]. Thus, different methods are required to rule out an EPTAS for Consensus
Patterns.

In his survey, Marx [19] introduces a hybrid of FPT reductions and gap preserving reductions
and argues that it is conceivable that such a reduction could be used to prove that a problem
that has a PTAS and is FPT parameterized by the value of the objective function does not
admit an EPTAS unless FPT=W[1]. We show that Consensus Patterns does not admit an
EPTAS unless FPT=W[1], giving the first example of this phenomenon.

2

Preliminaries

A PTAS for a minimization problem finds a (1 + ε)-approximate solution in time |I|f(1/ε) for
some function f . An approximation scheme where the exponent of |I| in the running time
is independent of ε is called an efficient polynomial time approximation scheme (EPTAS).
Formally, an EPTAS is a PTAS whose running time is f(1/ε)O(1)|I|O(1).

Let L,L′ ⊆
∑∗×N be two parameterized problems. We say that L fpt-reduces to L′ if there

are functions f, g : N→ N, and an algorithm that given an instance (I, k) runs in time f(k)|I|f(k)

and outputs an instance (I ′, k′) such that k′ ≤ g(k) and (I, k) ∈ L ⇐⇒ (I ′, k′) ∈ L′. These
reductions work as expected; if L fpt-reduces to L′ and L′ is FPT then so is L′. Furthermore,
if L fpt-reduces to L′ and L is W[1]-hard then so is L′.

Let s be a string over the alphabet Σ. We denote the length of s as |s|, and the jth character
of s as s[j]. Hence, s = s[1]s[2] . . . s[|s|]. For a set S of strings of the same length we denote by
S[i] as {s[i] : s ∈ S}. Thus, if the same character appears at position i in several strings it is
counted several times in S[i]. For an interval P = {i, i+ 1, . . . , j − 1, j} of integers, define s[P]
to be the substring s[i]s[i+ 1] . . . s[j] of s. For a set S of strings and interval P define S[P] to
be the (multi)set {s[P] : s ∈ S}. For a set S of length-` strings we define the consensus string
of S, denoted as c(S), as the sequence where c(S)[i] is the most-frequent character in S[i] for
all i ≤ `. Ties are broken by selecting the lexicographically first such character, however, we
note that the tie-breaking will not affect our arguments.

We denote the sum Hamming distance between a string, s, and a set of strings, S, as d(S, s).
Observe that the consensus string c(S) minimizes d(S, c(S))—implying that no other string x
is closer to S than c(S). However, some x 6= c(S) could achieve d(S, x) = d(S, c(S)) and we
refer to such strings as majority strings because they are obtained by picking a most-frequent
character at every position with ties broken arbitrarily.

We will use standard concentration bounds for sums of independent random variables. In
particular, the following variant of the Hoeffding’s bound [13] given by Grimmett and Stirzaker
[12, p. 476] will be needed.

Proposition 1. (Hoeffding’s bound) Let X1, X2, ...Xn be independent random variables
such that ai ≤ Xi ≤ bi for all i. Let X = ΣiXi and the expected value of X be E[X] then it
follows that:

Pr[X − E[X] ≥ t] ≤ exp

(
−2t2

Σn
i=1 (bi − ai)2

)
.

2 Hardness of Approximating Colored Consensus String with
Outliers

To show that Consensus Patterns does not admit an EPTAS we will first demonstrate hardness
the following problem, that we call Colored Gap-Consensus String with Outliers. When defining
parameterized gap problems, we follow the notation of Marx [19].

3

Colored Gap-Consensus String with Outliers (CCWSO)
Input: A (multi)set of n length-` strings S = {s1, . . . , sn} over a finite alpha-

bet Σ, an integer n∗ ≤ n, a partitioning of S into n∗ sets

S = S1 ∪ S2 . . . Sn∗ ,

a rational ε and two integers Dyes and Dno with Dno ≥ Dyes(1+ε) such
that either (a) there exists a set S∗ such that |S∗ ∩ Si| = 1 for every
i and d(S∗, c(S∗)) ≤ Dyes or (b) for every S∗ such that |S∗ ∩ Si| = 1
for every i we have d(S∗, c(S∗)) ≥ Dno.

Parameter: d1/εe
Question: Is there an S∗ such that d(S∗, c(S∗)) ≤ Dyes?

The aim of this section is to prove the following lemma.

Lemma 1. Gap-Colored Consensus String with Outliers is W[1]-hard.

The proof of Lemma 1 is by reduction from the MultiColored Clique (MCC) problem. Here
input is a graph G, an integer k and a partition of V (G) into V1] V2 . . . Vk such that for each
i, G[Vi] is an independent set. The task is to determine whether G contains a clique C of size
k. Observe that such a clique must contain exactly one vertex from each Vi, since for each i we
have C ∩ Vi ≤ 1. It is well-known that MCC is W[1]-hard [10].

Given an instance (G, k) of MCC we produce in f(k)nO(1)-time an instance (S1, S2, . . . Sn∗)
of Colored Gap-Consensus String with Outliers. We will say that a subset S∗ of S such that
|S∗ ∩ Si| = 1 for every i ≤ n∗ is a potential solution to the CCWSO instance. Our constructed
instance will have the following property. If G has a k-clique then there exists a potential
solution S∗ such that d(S∗, c(S∗)) ≤ Dyes. On the other hand, if no k-clique exists in G then
for each potential solution S∗ we have d(S∗, c(S∗)) ≥ Dno. The values of Dyes and Dno will
be chosen later in the proof, however, we note that the crucial point of the construction is

that Dno ≥
(

1 + 1
h(k)

)
Dyes. Hence, a f(ε)(n`)O(1)-time algorithm for Gap-Consensus String

with Outliers could be used to solve to solve the MCC problem in time g(k)nO(1) by setting
ε = 1

2h(k) . Thus, the reduction is a parameterized, gap-creating reduction where the size of the
gap decreases as k increases but the decrease is a function of k only.

Construction. We describe how the instance (S1, S2, . . . Sn∗) is constructed from (G, k). Our
construction is randomized, and will succeed with probability 2

3 . To prove Lemma 1 we have to
change the construction to make it deterministic but for now let us not worry about that.

We start by considering the instance (G, k) and let E(G) = {e1, e2, . . . em}. In the reduction
we will create one string si for every edge ei ∈ E(G). We partition the edge set E(G) into sets(
k
2

)
sets E{p,q} where 1 ≤ p, q ≤ k as follows; ei ∈ Ep,q if ei has one endpoint in Vp and the other

in Vq. The edge ei ∈ Ep,q has two endpoints, one in Vp and the other in Vq. The string si is
inserted into the set S{p,q} and the set S of strings in the instance of Gap-Colored Consensus
String with Outliers will be exactly

S =
⋃
p,q
p 6=q

S{p,q}.

We set n∗ =
(
k
2

)
, and use exactly the partition of S into the sets S{p,q} as the partition into n∗

sets in the instance. Thus, picking a potential solution S∗ corresponds to picking a set of edges
with exactly one edge from each of the sets E{p,q}.

4

There are K = k · (k − 1) · (k − 2) ordered triples of integers from 1 to k. Consider the
lexicographic ordering of such triples. As an example, if k = 3 this ordering is

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).

For each i from 1 to K, let σ(i) be the i’th triple in this ordering. Thus, for k = 3, we have
that σ(4) = (2, 3, 1). The functions σ1, σ2 and σ3 return the first, second and third entry of
the triple returned by σ. Continuing our example for the case that k = 3, we have σ1(4) = 2,
σ2(4) = 3 and σ3(4) = 1.

Based on G and k, we select an integer `. The exact value of ` will be discussed later in the
proof, for now the reader may think of ` as some function of k time log n. We construct a set
Z = z1, z2, . . . zm of strings, Z will act as a “pool of random bits” in our construction. For each
edge ei ∈ E(G) we make a string zi as follows.

zi = a
σ(1)
i ◦ aσ(2)

i . . . ◦ aσ(K)
i

For every i ≤ m and p ≤ K, the strings ãi, ã
′
i and a

σ(p)
i are random binary strings of length

`. For each p ≤ K and vertex u ∈ Vσ1(p) we make an identification string idp(u) of length `. Let

i be the smallest integer such that the edge ei is incident to u. We set idp(u) = a
σ(p)
i . Notice

that the other endpoint of ei a vertex not in Vp. Thus, for any other vertex v ∈ Vp distinct from

u we have that idp(v) = a
σ(p)
j for some integer j 6= i.

We now make the set S of strings in our instance. For each edge ei ∈ E(G) we make a string
si as follows.

si = a
σ(1)
i ◦ aσ(2)

i . . . ◦ aσ(K)
i

For each x ≤ K we define axi using the following rules. Let ei = uv with u ∈ Vp and v ∈ Vq. If

σ1(x) = p and σ2(x) = q or σ1(x) = p and σ3(x) = q, we set a
σ(x)
i = idx(u). If σ1(x) = q and

σ2(x) = p or σ1(x) = q and σ3(x) = p, we set a
σ(x)
i = idx(v). Otherwise we set a

σ(x)
i = a

σ(x)
i .

For 1 ≤ p ≤ K we define Bp = {(p−1)`+1, (p−1)`+2, . . . (p−1)`+ `}, and will refer to Bp

as the p’th block of the instance. Notice that for every i ≤ m and p ≤ K we have si[Bp] = a
σ(p)
i .

We set L = K · ` and N = |S| = m, this concludes the construction. Recall that n∗ is the size
of the solution S∗ sought for and observe that L is the length of the constructed strings in S.

Analysis. We consider the constructed strings si as random variables, and for every j the
character si[j] is also a random variable which takes value 1 with probability 1/2 and 0 with
probability 1/2. Observe that for any two positions j and j′ such that j 6= j′ and any i and i′

the random variables si[j] and si′ [j
′] are independent. On the other hand si[j] and si′ [j] could

be dependent. However, if si[j] and si′ [j] are dependent then, by construction si[j] = si′ [j].
Let S∗ ⊆ S be a potential solution. Here we consider S∗ as a set of random string variables,

rather than a set of strings. We are interested in studying d(S∗, c(S∗)) for different choices of
the set S∗. We can write out d(S∗, c(S∗)) as

d(S∗, c(S∗)) =

K∑
p=1

d(S∗[Bp], c(S
∗)[Bp]) (1)

and
d(S∗[Bp], c(S

∗)[Bp]) =
∑
j∈Bp

d(S∗[j], c(S∗)[j]).

Thus, for each p ≤ K we have that d(S∗[Bp], c(S
∗)[Bp]) is a sum of ` independent random

variables, each taking values from 0 to n∗. Hence, when ` is large enough d(S∗[Bp], c(S
∗)[Bp])

5

is sharply concentrated around its expected value. Using a union bound (over the choices of p)
we can show that d(S∗, c(S∗)) is sharply concentrated around its expectation as well.

We turn our attention to E[d(S∗, c(S∗))] for different choices of S∗. The two main cases
that we distinguish between is whether S∗ corresponds to the set of edges of a clique in G or
not. Note that a potential solution S∗ corresponds to a set of E∗ edges with exactly one edge
e{p,q} ∈ E{p,q} for every (unordered) pair p,q. In the remainder of this section S∗ is a potential
solution and E∗ is the edge set corresponding to S∗. For each pair p,q of integers, e{p,q} is the
unique edge in E∗∩ ∈ E{p,q}. We will determine whether E∗ is the set of edges of a clique using
the following observation, whose proof is obvious and hence omitted.

Observation 1. E∗ is the edge set of a clique in G if and only if for every ordered triple (a, b, c)
of distinct integers between 1 and k the edge e{a,b} and the edge e{a,c} are incident to the same
vertex in Va.

In the constructed instance the block Bp such that σ(p) = (a, b, c) is responsible for per-
forming the check for the triple (a, b, c). Before proceeding we need some additional definitions
regarding random walks on the integers. Let ~v be a vector of positive integers. We define the
random variable X~v = ~W · ~v where ~W is a random vector with same dimension as ~v, such
that each coordinate of ~W is drawn from {−1, 1} uniformly at random. The variable X~v is
interpreted as follows: start a one-dimensional random walk at 0, in each step of the walk we
go left or right with probability 1/2. However, the length of the different steps varies, in step i
the walk jumps ~v[i] to the left or right. The value of X~v is the offset from the origin at the end
of the walk. The total length of the random walk is

∑
i ~v[i] whereas the number of steps of the

walk is the dimension of ~v. We define the random variable Xi
r,t = i + X~v where v is a vector

with r − 2t entries that are 1 and t entries that are 2. Intuitively Xi
r,t is the offset from 0 of a

random walk starting at i of length r, with t steps of length 2 and the remaining steps of length
1. We set xir,t = E[|Xi

r,t|].
The next lemma characterizes the expectation of d(S∗[Bp], c(S

∗)[Bp]), subject to the case
distinction on whether the solution S∗ passes or fails the test of Observation 1 for the triple
σ(p).

Lemma 2. Let p ≤ K and let σ(p) = (a, b, c). If e{a,b} and e{a,c} are incident to the same
vertex in Va, then

E[d(S∗[Bp], c(S
∗)[Bp])] = ` · (n∗/2− x0

n∗,1).

If e{a,b} and e{a,c} are not incident to the same vertex in Va, then

E[d(S∗[Bp], c(S
∗)[Bp])] = ` · (n∗/2− x0

n∗,0).

Proof. Every string si ∈ S∗ corresponds to an edge ei ∈ E(G). If ei /∈ Ea,b ∪ Ea,c then

si[Bp] = a
σ(p)
i = a

σ(p)
i . On the other hand, if ei = Ea,b∪Ea,c then si[Bp] = a

σ(p)
i = idp(u), where

u is the vertex of Va incident to ei.
Let j be a position in Bp. Consider the case that the two edges e{a,b} and e{a,c} in E∗

are not incident to the same vertex in Va. Then d(S∗[j], c(S∗[j])) is distributed as n∗/2− |X~v|
where ~v is a n∗-dimensional vector of 1s. Specifically for all si ∈ S∗ the si[j]s are independent
so c(S∗[j]) is the majority character out of n∗ characters independently drawn from {0, 1}, and
d(c(S∗[j], S∗[j])) is the number of occurrences of the minority character. This is distributed as
n∗/2− |X~v|.

Consider now the case that the two edges e{a,b} and e{a,c} in E∗ are incident to the same

vertex in Va. From the construction of the strings a
σ(p)
i it follows that all of the characters in

S∗[j] are independent with the exception of the two characters in the strings corresponding to
the two edges e{a,b} and e{a,c}; these two characters are equal. Therefore d(S∗[j], c(S∗[j])) is

6

distributed as n∗/2 − |X~v| where ~v is a n∗ − 1 dimensional vector with 1 entry of value 2 and
n∗ − 1 entries with value 1. Linearity of expectation implies the lemma.

We now define Eyes as follows.

Eyes = K · ` · (n∗/2− x0
n∗,1)

Observe that Equation 1, Lemma 2 and linearity of expectation immedeately implies that if
E∗ is the set of edges of a clique then E[d(S∗, c(S∗))] = Eyes. Furthermore, By Lemma 2 each
triple (a, b, c) of distinct integers from 1 to k such that the edge e{a,b} and e{a,c} are not incident
to the same vertex in Va will contribute exactly ` · (n∗/2− x0

n∗,0) instead of ` · (n∗/2− x0
n∗,1) to

the expectation E[d(S∗, c(S∗))]. This proves the following lemma.

Lemma 3. Let t be the number of ordered triples (a, b, c) of distinct integers from 1 to k such
that the edge e{a,b} and e{a,c} are not incident to the same vertex in Va. Then

E[d(S∗, c(S∗))] = Eyes + t · ` · (x0
n∗,1 − x0

n∗,0)

To conclude the analysis we need to show that as the number of triples t that fail the test
of Observation 1 increases, so does the expected value of d(S∗, c(S∗)). To that end, all we need
to prove is that x0

n∗,1−x0
n∗,0 > 0. We will prove this by “differentiating” x0

n∗,t with respect to t.

Claim 1. x0
n∗,0 < x0

n∗,1. Furthermore we can compute x0
n∗,0 and x0

n∗,1 in time polynomial in n∗.

Proof. Recall that xir,t = E[|Xi
r,t|] where Xi

r,t is a random variable denoting the final position
of a random walk of length r, with t double steps, starting at i. Here i is an integer and might
be negative. Conditional expectation yields the following recurrence for xir,t, r ≥ 2t ≥ 0.

xir,t =

|i| if r = 0,

(xi+1
r−1,t + xi−1

r−1,t)/2 if r > 2t,

(xi+2
r−2,t−1 + xi−2

r−2,t−1)/2 if t ≥ 1.

It is easy to see that one of the three cases must apply when r ≥ 2t ≥ 0 - and xir,t is only defined
for these values. Observe that if r > 2t and t ≥ 1 then both the second and the third case
apply. The recurrence above also yields a polynomial time algorithm to compute xir,t. Now, for
integers i, r, t such that r ≥ 1 and t ≥ 2 define δxir,t = xir,t − xir,t−1. The recurrence above

together with definition of δxir,t yields the following recurrence for δxir,t, for r ≥ 2t and t ≥ 1.

δxir,t =

0 if r = 2, |i| ≥ 2,

1/2 if r = 2, |i| = 1,

1 if r = 2, |i| = 0,

(δxi+1
r−1,t + δxi−1

r−1,t)/2 if r > 2t,

(δxi+2
r−2,t−1 + δxi−2

r−2,t−1)/2 if t ≥ 2.

A straightforward induction using this recurrence shows that δx0
r,1 > 0 for all r ≥ 1, proving

that x0
n∗,0 < x0

n∗,1, as claimed.

We now define ∆ as follows,
∆ = x0

n∗,1 − x0
n∗,0,

and note that Claim 1 implies that ∆ > 0. Furthermore, note that ∆ depends only on n∗ =
(
k
2

)
,

so ∆ is a computable function of k. Define

Eno = Eyes + ∆ · ` (2)

7

Observe that Eno/Eyes ≥ 1 + 2∆
K·n∗ , and that therefore Eno/Eyes ≥ 1 + 1/h(k) for a function h

depending only on k. Lemma 3, Claim 1 and the definition of Eno implies the following lemma,
which summarizes the analysis up until now.

Lemma 4. If E∗ is the edge set of a clique in G, then E[d(S∗[Bp], c(S
∗)[Bp])] = Eyes. Otherwise

E[d(S∗[Bp], c(S
∗)[Bp])] ≥ Eno.

From the definitions of Eyes and Eno it follows that there exist constants κyes and κno
depending only on k such that Eyes = κyes` and Eno = κno`. Furthermore, κyes < κno and
the value of κyes and κno can be computed in time f(k) for some function f . Set κ′yes =
(2κyes +κno)/3 and κ′no = (κyes + 2κno)/3. Then κyes < κ′yes < κ′no < κno. We set Dyes = κ′yes`
and Dno = κ′no`. Notice that

κ′yes − κyes = κno − κ′no.

A randomized analogue of Lemma 1. Before proving Lemma 1 we argue that the ran-
domized construction works. Specifically, we show that if Gap-Consensus String With Outliers
is W[1]-hard under randomized FPT-reductions. The results proved in this section are not used
in the proof of Lemma 1, but they provide useful insights on how the deterministic construction
works.

Lemma 5. For any potential solution S∗, any p ≤ K and any real x > 0 we have the following
inequality.

P
[
|d(S∗[Bp], c(S

∗)[Bp])− E[d(S∗[Bp], c(S
∗)[Bp])]| > x · `

]
≤ 2 exp

(
−2
(x
n∗

)2
`

)
.

Proof. We have that d(S∗[Bp], c(S
∗)[Bp]) =

∑
j∈Bp d(S∗[j], c(S∗)[j]). The d(S∗[j], c(S∗)[j])’s are

independent of each other, and therefore d(S∗[Bp], c(S
∗)[Bp]) is the sum of ` independent random

variables taking values from 0 to n∗. The statement of the lemma follows from Hoeffding’s
inequality (Proposition 1).

We now define `. This value for ` is only valid for the randomized construction, and a
different value for ` is used in the proof of Lemma 1.

` =

(
Kn∗

κ′yes − κyes

)2

ln
(

20Kmn∗
)
. (3)

Recall that m is the number of edges in the graph G, so m ≤ n2 and hence `1 ≤ f · log n for
some f depending only on k.

Lemma 6. If G has a k-clique C, let S∗ be the set of strings corresponding to edges of C. Then
P [d(S∗, c(S∗)) > Dyes] ≤ 1

10(m)n∗
. If G does not contain a k-clique, then the probability that S

contains a potential solution S∗ such that d(S∗, c(S∗)) < Dno is at most 1/10.

Proof. If G has a k-clique C, let S∗ be the set of strings corresponding to edge endpoints of
edges in C. By Lemma 5 it follows that for any p ≤ K we have

P
[
|d(S∗[Bp], c(S

∗)[Bp])− E[d(S∗[Bp], c(S
∗)[Bp])]| >

κyes′ − κyes
K

· `
]

≤ 2 exp

(
−2

(
κ′yes − κyes

Kn∗

)2

`

)
≤ 1

10Kmn∗
.

8

The union bound over all choices of p ≤ K, together with Equation 1 yields

P
[
|d(S∗, c(S∗))− E[d(S∗, c(S∗))]| > (κyes′ − κyes) · `

]
≤ 1

10mn∗
.

Since Dyes − Eyes = (κyes′ − κyes)`, it follows that P [d(S∗, c(S∗)) > Dyes] ≤ 1
10mn∗

.
On the other hand, consider a set S∗ of size n∗ that does not correspond to the edge endpoints

of a clique. An argument identical to the one above (but using that κ′yes − κyes = κno − κ′no)
shows that P [d(S∗, c(S∗)) < Dno] ≤ 1

10mn∗
. Since there are at most mn∗ choices for potential

solutions S∗, the union bound implies the second statement of the lemma.

We now prove a randomized analogue of Lemma 1.

Lemma 7. If Colored Gap-Consensus String With Outliers is FPT then W[1] ⊆ randomized
FPT.

Proof. Assiming that Colored Gap-Consensus String With Outliers has an algorithm with run-
ning time f(ε)(n`)O(1) we give a randomized fixed parameter tractable algorithm for MCC with
two sided error. We construct the instance to Colored Gap-Consensus String With Outliers

as described, and set ε = Dno
Dyes

− 1 = κ′no
κ′yes
− 1. If the algorithm for Colored Gap-Consensus

String With Outliers concludes that there potential solution S∗ such that d(S∗, c(S∗)) ≤ Dyes

the algorithm returns that the input graph G contains a k-clique, otherwise we return that G
has no k-clique. The construction takes time O(f(k)nO(1)) for some function f , and ε depends
only on k. Hence the total running time is g(k)nc for some function g. Thus the algorithm
terminates in FPT time.

If G contains a k-clique, then by Lemma 6, with probability at least 1 − 1
10(m)n

∗ ≥ 1 − 1
nk

there is a set S∗ of size n∗ such that d(S∗, c(S∗)) ≤ Dyes. If this event occurs, the algorithm for
Colored Gap-Consensus String With Outliers will correctly find such a set and correctly return
“yes”. Hence the probability of false negatives is at most 1

nk
.

If G does not contain a k-clique, then by Lemma 6, with probability at least 9/10 for every
set S∗ of size n∗ we have d(S∗, c(S∗)) > Dno. If this event occurs the algorithm correctly returns
“no” and hence the probability if false positives is at most 1/10. This implies that there is a
randomized fixed parameter tractable algorithm for MCC, which in turn shows that W[1] ⊆
randomized FPT.

A Deterministic Construction and Proof of Lemma 1. In order to prove Lemma 1 we
need to make the construction deterministic. We only used randomness to construct the set Z,
all other steps are deterministic. We now show how Z can be computed deterministically instead
of being selected at random, preserving the properties of the reduction. For this, we need the
concept of near p-wise independence defined by Naor and Naor [20]. The original definition of
near p-wise independence is in terms of sample spaces, we define near p-wise independence in
terms of collections of binary strings. This is only a notational difference, and one may freely
translate between the two variants.

Definition 1 ([20]). A set C = {c1, c2, . . . ct} of length ` binary strings is (ε, p)-independent if
for any subset C ′ of C of size p, if a position i ≤ t is selected uniformly at random, then∑

α∈{0,1}p
|P [C ′[i] = α]− 2−p| ≤ ε.

9

Naor and Naor [20] and Alon et al. [1] give determinsitic constructions of small nearly k-wise
independent sample spaces. Reformulated in our terminology, Alon et al. [1] prove a slightly
stronger version of the following theorem.

Theorem 1 ([1]). For every t, p, and ε there is a (ε, p)-independent set C = {c1, c2, . . . ct}
of binary strings of length `, where ` = O(2k·k log t

ε). Furthermore, C can be computed in time

O(|C|O(1)).

We use Theorem 1 to construct the set Z. We set

ε =
κ′yes − κyes
K · n∗

and construct an (ε, n∗)-independent set C of 2m strings. These strings have length ` = f ·log(n)
for some f depending only on k, and C can be constructed in time O(gnO(1)) for some g
depending only on k. i we set

zi = ci ◦ ci ◦ . . . ◦ ci,

where we used K copies of ci such that zi is a string of length L. That is, in the construction of

zi we set a
σ(p)
i = ci for all p ≤ K. The remaining part of the construction, i.e the construction of

S from Z remains unchanged. To distinguish between the deterministically constructed S and
the randomized construction, we refer to the deterministically constructed S as Sdet. We now
prove that for every potential solution S∗det ⊆ Sdet, if S∗ is the set of strings in the randomized
construction that corresponds to the same edges as S∗det, then d(S∗det, c(S

∗
det)) is almost equal

to E[d(S∗, c(S∗))]. When considering E[d(S∗, c(S∗))] we consider the randomized construction,
but with the same choice of ` as in the construction of Sdet, so that the strings in S and Sdet
have the same length.

For a subset I of {1, 2, . . . ,m} define S∗(I) = {si ∈ S : i ∈ I} and S∗det(I) = {si ∈
Sdet : i ∈ I}. The construction of Sdet (and S) from Z implies that for every x ≤ K,
there exists a function fx : N → N such that for any i ≤ m, si[Bx] = zf(i)[Bx]. For any
I ⊆ {1, 2, . . . ,m} and x ≤ K we define Z∗(I, x) to be an arbitrarily chosen subset of Z of size
n∗ such that {zfx(i) : i ∈ I} ⊆ Z∗(I, x). The reason we did not define Z∗(I, x) as exactly
{zfx(i) : i ∈ I} is that the function fx is not injective, and we want to ensure |Z∗(I, x)| = n∗.
The definition of Z∗(I, x) ensures that for every I ⊆ {1, 2, . . . ,m} of size n∗, the string sets
S∗(I)[Bx] and S∗det(I)[Bx] are functions of Z∗(I, x)[Bx]. Even stronger, for every j ∈ Bx we have
that the strings S∗(I)[j] and S∗det(I)[j] are functions of Z∗(I, x)[j]. Strictly speaking S∗(I)[j],
S∗det(I)[j] and Z∗(I, x)[j] are multi-sets of characters, but we can think of them as strings by,
for example, reading the characters in S∗(I)[j] as si[j] for all i ∈ I in increasing order. Since
the deterministic and randomized constructions are identical (except for the construction of Z)
the strings S∗(I)[j] and S∗det(I)[j] depend on Z∗(I, x)[j] in exactly the same way.

An immediate implication of the fact that S∗(I)[Bx] and S∗det(I)[Bx] are functions of Z∗(I, x)[Bx],
is that the distances d(S∗(I)[j], c(S∗(I)[j])) and d(S∗det(I)[j], c(S∗det(I)[j])) are also functions of
Z∗(I, x)[j]. We now give these functions a name. For every set I ⊆ {1, 2, . . . ,m} of size n∗ and
integer x < K define dIx : {0, 1}n∗ → {0, 1, . . . , n∗} to be a function such that for any j ∈ Bx, if
Z∗(I)[j] = α then d(S∗(I)[j], c(S∗(I)[j])) = dIx(α) and d(S∗det(I)[j], c(S∗det(I)[j])) = dIx(α).

For every set I ⊆ {1, 2, . . . ,m} of size n∗ and integer x ≤ K we have the following expression
for d(S∗(I)det[Bx], c(S∗(I)det[Bx])).

d (S∗det(I)[Bx], c(S∗det(I)[Bx])) = ` ·
∑

α∈{0,1}n∗
P [Z∗(I)[j] = α] · dIj (α) (4)

10

Here the probability P [Z∗(I)[j] = α] is taken over random selections of j from Bx. For the
randomized construction we have that P [Z∗(I)[j] = α] = 1

2n∗
, which yields the following ex-

pression.

E [d (S∗(I)[Bx], c(S∗(I)[Bx]))] = ` ·
∑

α∈{0,1}n∗

1

2n∗
· dIj (α) (5)

Combining Equations 4 and 5 yields the following bound.∣∣∣d (S∗det(I)[Bx], c(S∗det(I)[Bx]))− E[d(S∗(I)[Bx], c(S∗(I)[Bx]))]
∣∣∣

= ` ·

∣∣∣∣∣∣
∑

α∈{0,1}n∗

(
P [Z∗(I)[p] = α]− 1

2n∗

)
· dIj (α)

∣∣∣∣∣∣ (6)

≤ ` · ε · n∗

Summing Equation 6 over 1 ≤ x ≤ K yields the desired bound for every I ⊆ {1, 2, . . . , 2m} of
size n∗. ∣∣∣d (S∗det(I), c(S∗det(I)))− E[d(S∗(I), c(S∗(I)))]

∣∣∣ ≤ ` ·K · ε · n∗ ≤ ` · (κyes′ − κyes) (7)

Equation 7 allows us to finish the proof of Lemma 1. For any potential solution S∗ that
corresponds to a clique in G, we have that E[d(S∗(I), c(S∗(I)))] = Eyes = `κyes, and so by
Equation 7,

d (S∗det(I), c(S∗det(I))) ≤ `κ′yes = Dyes.

For any potential solution S∗ of size n∗ that does not correspond to a clique in G, we have that
E[d(S∗(I), c(S∗(I)))] ≥ Eno = `κno, and so by Equation 7,

d (S∗det(I), c(S∗det(I))) ≥ `κ′no = Dno.

Since Dno
Dyes

≥ 1 + δ for some δ depending only on k, the construction is an fpt-reduction from
MCC to Gap-Consensus String With Outliers, completing the proof of Lemma 1. �

3 Hardness of Approximating Consensus Patterns

To show that Consensus Patterns does not have an EPTAS unless FPT = W [1] we introduce
the following gap variant of the problem.

Gap-Consensus Patterns
Input: A set S = {s1, . . . , sn} of length-L strings over a constant size alphabet

Σ together with an integer `, where ` ≤ L, a rational ε and intgers Dyes

and Dno with Dno ≥ Dyes(1 + ε) such that the following holds. Either
there is a length-` substring ti of each si in S such that

∑
∀i d(ti, s) ≤

Dyes or for every collection t1, . . . tn such that ti is a length-` substring
si we have

∑
∀i d(ti, s) ≥ Dno.

Parameter: d1/εe
Question: Is there a length-` substring ti of each si in S such that

∑
∀i d(ti, s) ≤

Dyes?

We will now give a fpt-reduction from Gap-Colored Consensus String with Outliers to gap-
Consensus Patterns. The main ingredient in our reduction is a gadget string w. The string w
has length L1 (to be determined later), and for every i ≥ 1, w[i] = 1 if i = j2 for an integer j
and w[i] = 0 otherwise. We will say that an integer i is a square if i = j2 for some integer j.
Thus w[i] is 1 if and only if i is a square.

11

Lemma 8. For positive integers x, y and z such that z ≥ L1
4 , x < y and y + z ≤ L1 we have

d(w[{x, x+ 1, . . . , x+ z}], w[{y, y + 1, . . . , y + z}]) ≥ b
√
L1

16 c

Proof. To lower bound d(w[{x, x+ 1, . . . , x+ z}], w[{y, y + 1, . . . , y + z}]) it is sufficient to find
the number of values for i between 0 and z such that w[x+ i] = 1 but w[y+ i] = 0, that is x+ i
is a square but y + i is not. Let i1, i2, . . . it be all the values for i such that x + i is square, in
increasing order. We prove that if y + ij is square then y + ij+1 is not. In particular, suppose
y+ ij is square. Let rx and ry be the integers such that x+ ij = r2

x and y+ ij = r2
y. Since x < y

we have rx < ry. Furthermore, x+ ij+1 = (rx + 1)2. Hence

y + ij+1 = r2
y + ij+1 − ij = r2

y + ((rx + 1)2 − r2
x) < r2

y + ((ry + 1)2 − r2
y) = (ry + 1)2.

But then y + ij+1 can’t be square. It follows that there are at least b t2c values for i such that
x+ i is a square but y + i is not. It remains to lower bound t.

The gap between a square number i and the next square number i′ is less than 2
√
i′ ≤ 2

√
L1.

Thus the number of square numbers in {x, x+1, . . . , x+z} is at least L1
4 ·

1
2
√
L1
≥ b

√
L1
8 c. Hence

d(w[{x, x+ 1, . . . , x+ z}], w[{y, y + 1, . . . , y + z}]) ≥ b
√
L1

16 c.

Given an instance n∗, S = S1]S2] . . .]Sn∗ of Gap-Colored Consensus String with Outliers
we construct an instance of Gap-Cosensus Patterns as follows. First we ensure that all of the
(multi) sets Si contain the same number of strings; if |Si| < |Sj | for some i, j we can make
duplicates of strings in Si until equality is obtained. This does not affect any other aspects of
the instance, since a solution S∗ has to pick one string from each Si.

Let ` be the length of all the strings in S. We choose L1 such that b
√
L1

16 c > n∗ · ` and
construct a gadget string w of length L1. For every i ≤ n∗ we make a string ŝi from the set Si.
Let Si = s1

i , s
2
i , . . . , s

t
i. We define

ŝi = w ◦ s1
i ◦ w ◦ s2

i ◦ w . . . ◦ w ◦ sti.

and set L = L1 + `. We keep the values of Dyes and Dno. This concludes the construction.

Lemma 9. For every S∗ = {s∗1, . . . , s∗n∗} ⊂ S such that s∗i ∈ Si for all i there is a collection
T ∗ = t∗1, . . . t

∗
n∗ such that t∗i is a length L substring of ŝi and d(c(T ∗), T ∗) ≤ d(C(S∗), S∗).

Proof. For every i, set t∗1 = w ◦ s∗i . Since s∗i ∈ Si we have that t∗1 is a length L substring of ŝi.
Set c = w ◦ c(S∗), we have that d(c(T ∗), T ∗) ≤ d(c, T ∗) ≤ d(C(S∗), S∗).

Lemma 10. For every collection T ∗ = t∗1, . . . t
∗
n∗ such that t∗i is a length L substring of ŝi and

d(c(T ∗), T ∗) ≤ n∗ · ` there is a subset S∗ = {s∗1, . . . , s∗n∗} ⊂ S such that s∗i ∈ Si for all i and
d(C(S∗), S∗) ≤ d(c(T ∗), T ∗).

Proof. For every i we can decompose t∗i into t∗i = w[{ai + 1, . . . , L}] ◦ s∗i ◦ w[{1, . . . , ai}] for a
non-negative integer ai ≤ L, where s∗i ∈ Si. If ai = 0 then t∗i = w ◦ s∗i while ai = L gives
t∗i = s∗i ◦ w. Set S∗ = {s∗1, . . . , s∗n∗}. We need to show that d(C(S∗), S∗) ≤ d(c(T ∗), T ∗). It
is sufficient to show that for every i, j we have ai = aj because then all the s∗i ’s align in the
decomposition of the t∗i ’s and so d(C(S∗), S∗) ≤ d(c(T ∗), T ∗) holds.

We prove that if ai 6= aj for some i, j then d(c(T ∗), T ∗) ≥ d(t∗i , t
∗
j) > d(t∗i , t

∗
j) > n∗ · `,

contradicting the assumption of the lemma. If ai 6= aj , without loss of generality ai < aj .
Then we can decompose t∗i = w1

i ◦ zi ◦ w2
i ◦ s∗i ◦ w3

i and t∗j = w1
j ◦ sj ◦ w2

j ◦ s∗j ◦ w3
j such that

the following properties hold. The lengths of w1
i , w

2
i and w3

i equals the lengths of w1
j , w

2
j and

w3
j respectively, zi and zj both have length `, and w1

i , w
2
i , w

3
i , w

1
j , w

2
j , w

3
j are all substrings

of w. Since ` ≤ L1
4 we have that one of w1

i , w
2
i , w

3
i have length at least L1

4 . Without loss of

12

generality this is w1
i . We have that d(t∗i , t

∗
j) ≥ d(w1

i , w
1
j). Furthermore, since ai 6= aj we have

w1
i 6= w1

j and hence by Lemma 8 it follows that d(w1
i , w

1
j) ≥ b

√
L1

16 c > n∗ · `. But this implies
that d(t∗i , t

∗
j) > n∗ ·`. By the triangle inequality we have d(c(T ∗), T ∗) ≥ d(t∗i , t

∗
j) > n∗ ·` yielding

the desired contradiction.

The construction, together with Lemmata 1, 9 and 10 yield the following result.

Lemma 11. Gap-Consensus Patterns is W[1]-hard.

Since an EPTAS for Consensus Patterns could be used to solve Gap-Consensus Patterns in
time f(ε)(nL)O(1), Lemma 11 implies our main result.

Theorem 2. Consensus Patterns does not have an EPTAS unless FPT=W[1].

4 Conclusions and Future Work

We have shown that Consensus Patterns does not admit an EPTAS unless FPT=W[1]. Our re-
sult rules out the possibility of a (1+ε) approximation algorithms with running time f(1/ε)nO(1),
while the best PTAS for Consensus Patterns has running time nO(1/ε4). Hence there is still a sig-
nificant gap between the known upper and lower bounds, and obtaining tighter bounds warrants
further investigation.

References

[1] N. Alon, O. Goldreich, J. H̊astad and R. Peralta, Simple Construction of Almost k-wise Independent
Random Variables. Random Struct. Algor., 3(3): 289–304, 1992.

[2] S. Arora. Polynomial Time Approximation Schemes for Euclidean TSP and Other Geometric Prob-
lems. Proc of 37th FOCS, pages 2-11, 1996.

[3] S. Arora, Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and other
Geometric Problems. J. ACM, 45, 5:753–782, 1998.

[4] B. Brejová, D.G. Brown, I.M. Harrower, and T. Vinar. New Bounds for Motif Finding in Strong
Instances. Proc. of 17th CPM, pages 94–105, 2006.

[5] B. Brejová, D.G. Brown, I.M. Harrower, A. López-Ortiz and T. Vinar. Sharper Upper and Lower
Bounds for an Approximation Scheme for Consensus-Pattern. Proc. of 16th CPM, pages 1–10, 2005.

[6] M. Cygan, F. V. Fomin, D. Lokshtanov, L. Kowalik, D. Marx, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh. Parameterized Algorithms. Springer, 2015. In press.

[7] C. Lo, B. Kakaradov, D. Lokshtanov, and C. Boucher. SeeSite: Efficiently Finding Co-occurring
Splice Sites and Exon Splicing Enhancers. arXiv:1206.5846v1.

[8] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer
Science. Springer, 2013.

[9] M.R. Fellows, J. Gramm, and R. Niedermeier. On the parameterized intractability of motif search
problems. Combinatorica, 26:141–167, 2006.

[10] M.R. Fellows, D. Hermelin, F.A. Rosamond, and S. Vialette. On the parameterized complexity of
multiple-interval graph problems. Theor. Comput. Sci., 410(1):53–61, 2009

[11] J. Flum, and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.

[12] F. Grimmett, and D. Stirzaker. Probability and random processes. Oxford University Press, 3
edition, 2001.

[13] W. Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. J. Amer. Statistical
Assoc., 58(301): 13–30, 1963.

13

[14] H.B. Hunt III, M.V. Marathe, V. Radhakrishnan, S.S. Ravi, D.J. Rosenkrantz, and R.E. Stearns,
NC-Approximation Schemes for NP- and PSPACE-Hard Problems for Geometric Graphs. J. Algo-
rithms, 26(2):238–274, 1998

[15] J.K. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang. Distinguishing string selection problems.
Inform. Comput., 185(1):41–55, 2003. Preliminary version appeared in Proc. 10th SODA, pages
41-55, 1999.

[16] M. Li, B. Ma, and L. Wang. Finding similar regions in many sequences. J. Comput. System Sci.,
65(1):73–96, 2002.

[17] D. Marx. Closest Substring Problems with Small Distances. SIAM J. Comput., 38(4):1283–1410,
2008.

[18] D. Marx. Efficient Approximation Schemes for Geometric Problems? Proc. of 13th ESA, 51(1):
448–459, 2005.

[19] D. Marx. Parameterized complexity and approximation algorithms. Comput. J., 51(1): 60–78, 2008.

[20] J. Naor and M. Naor. Small-Bias Probability Spaces: Efficient Constructions and Applications.
SIAM J. Comput., 22(4): 838–856, 1993.

[21] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.

[22] P. Pevzner and S. Sze. Combinatorial approaches to finding subtle signals in DNA strings. In
Proc. of the 8th ISMB, pages 269–278, 2000.

14

